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Abstract
We show that the 2d Poisson SigmaModel on a Poisson groupoid arises as an effective
theory of the 3d Courant Sigma Model associated with the double of the underlying
Lie bialgebroid. This field-theoretic result follows from a Lie-theoretic one involving a
coisotropic reduction of the odd cotangent bundle by a generalized space of algebroid
paths. We also provide several examples, including the case of symplectic groupoids
in which we relate the symplectic realization construction of Crainic–Marcut to a
particular gauge fixing of the 3d theory.
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1 Introduction

Topological sigma models can incorporate geometric structures, both from the source
and target manifolds, and their quantization has shown to be able to provide very
interesting results when read in terms of the geometric inputs. Paradigmatic exam-
ples include the 2d Poisson Sigma Model and Kontsevich’s quantization of Poisson
manifolds [12] and 3d Chern–Simons theory and knot invariants. In this context, the
Courant Sigma Model [39] appears as a natural generalization of 3d Chern–Simons.

In this paper, we focus on the target space geometry and find a non-trivial relation
between instances of the Courant sigma model (CSM) and the Poisson sigma model
(PSM). More precisely, we study three-dimensional Courant sigma models associated
with a particular class of Courant algebroids E = A ⊕ A∗ arising as doubles of Lie
bialgebroids (A, A∗). We show that, when the source is a product �(2d) × [0, 1],
this CSM induces an effective theory that can be identified with the two-dimensional
Poisson sigma model on � and with target being the Poisson groupoid (GA, πG)

integrating (A, A∗) in the Lie-theoretic sense [33]. We also prove an intermediate
Lie-theoretic argument needed to connect the infinitesimal information encoded in
(A, A∗) with the groupoid one (GA, πG) in a way that it is compatible with the sigma
models formulation.
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We begin this introduction by describing the main ingredients involved in these
constructions. We then proceed to describe the main Field-theoretic claim and to
outline the underlying arguments.

1.1 Main ingredients

A Lie bialgebroid (A, A∗) is given by two Lie algebroid structures, one on the vector
bundle A → M and another on the dual A∗ → M , subject to a compatibility condition
[32]. These generalize the familiar Lie bialgebras (g, g∗) coming from the theory of
quantum groups and Poisson–Lie groups. In the general case, the double E = A⊕ A∗
inherits the structure of a Courant algebroid in which A and A∗ sit as transverse Dirac
structures, see [29].

The Lie algebroid structure on A∗ induces a linear Poisson structure πA on the total
space of A which is infinitesimally multiplicative (see [6]). When the Lie algebroid
A is integrable by a Lie groupoid, it was shown in [33] that there exists a source-
simply-connected integration GA ⇒ M (unique up to isomorphism) which becomes
a Poisson groupoid, (GA ⇒ M, πG), where πG is a multiplicative Poisson structure
on GA integrating the linear one πA.

1.2 Main field-theoretic claim

Let (A, A∗) be a Lie bialgebroid with the double Courant algebroid E = A ⊕ A∗.
Denote by � a closed oriented surface and I = [0, 1]. Assume that A is an integrable
Lie algebroid and denote (GA ⇒ M, πG) the corresponding Poisson groupoid.

Claim 1.1 (Main field-theoretic result) The Courant sigma model (CSM) on the cylin-
der � × I with target E = A⊕ A∗ and boundary conditions determined by A∗ ⊂ E
has the Poisson sigma model (PSM) on� with target (GA, πG) as an effective theory:
for an appropriate subset of observables O and gauge fixings of the CSM,

〈O〉CSM(�×I ,E) = 〈Ored〉PSM(�,GA),

where Ored denotes an induced observable in the PSM.

The subsets of observables and gauge fixings mentioned in the claim are described in
Sect. 4.2.2, as well as the description of the induced observablesOred.We also remark
that the claim can be extended to the case when ∂� �= ∅, as explained in Remarks
4.2, 4.3 and 5.8.

1.3 Summary of arguments and outline

Let us now explain the arguments behind the main claim above and indicate where to
find them in the paper.
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We begin with preliminaries. The relation between (target space) supergeometry
and underlying ordinary geometric structures is recalled in Sect. 2, where we also
recall the Lie theory for Poisson groupoids and Lie bialgebroids. The overall BV-
formalism used for the topological sigma models of this paper is recalled in Section3.
In particular, the Courant sigma model of our claim is built using the target space
M = T ∗[2]A[1]with structure corresponding to the double of a bialgebroid (A, A∗).

Next, the first step towards Claim 1.1 is to observe that there is an exponential map
identification

F ≡ F�×I (M) := Map(T [1]� × T [1]I ,M)
(1)� Map(T [1]�,Map(T [1]I ,M))

= Map(T [1]�,Z)

where Z := Map(T [1]I ,M) = FI (M). Details are provided in Section4.1. The
boundary conditions are defined by the Dirac structure A∗ as

{φ ∈ Map(T [1]I , T ∗[2]A[1]) | φ|t=0,1 ∈ A∗[1]}.

We now consider the relevant field theoretic computations which are of the form

〈O〉CSM(�×I ,A⊕A∗) :=
∫
L⊂F�×I (M)

√
μ O e

i
�
SF�×I (M)

(1)=
∫
L′⊂F�(FI (M))

√
μ′ O′ e

i
�
SF�(FI (M))

=
∫
L′⊂F�(Z)

√
μ′ O′ e

i
�
SF�(Z)

(2)=
∫
Lred⊂F�(Zred)

√
μred Ored e

i
�
SF�(Zred)

(3)=〈Ored〉PSM(�,GA)

(1)

Step(1) is the exponential identification already mentioned. In Step(2), one rec-
ognizes a special structure on Z . It consists of the existence of an additional
(ghost-antighost) grading “ga(·)" and an underlying coisotropic submanifold C inside
of its degree zero partZga=0. This situation was studied in [4] where conditions onμ′,
L′ andO′ where identified for the computation to (formally) descend to the symplectic
reduction Zred = Zga=0//C. This is recalled in Section4.2.

Step(3) involves a Lie-theoretic result. We find that the manifold Zga=0 yields
T ∗[1]Map(I , A), the odd cotangent bundle to the space of paths on A, while C ⊂
Zga=0 is induced by the subspace of algebroid paths. Extending the integration picture
in which GA is identified with algebroid paths modulo algebroid homotopies (see
[14], [21]), we show that, due to our choice of boundary conditions, the corresponding
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symplectic reduction yields

Zred = T ∗[1]GA, SF�(Zred) = SF�(T ∗[1]GA).

These results are explained in Section5, with 5.1 devoted to the Lie-theoretic con-
structions only involving paths and 5.2 detailing how to apply it to obtain Claim 1.1.

Altogether, we obtain that the PSM on (GA, πG) arises as an effective theory (see
Section3.1) for the CSM after “integrating out" some of the involved fields. Finally,
some examples are discussed in Section6, including the use of a Poisson spray as a
gauge fixing and the relation to the symplectic realization of [22].

We finish the Introduction commenting on known particular cases, providing an
outlook of possible developments and commenting on the style of presentation.

1.4 Related results in the literature

In [18], itwas studied aparticular case of the above claim,which serves as an inspiration
for our work. It consists of the case in which the Lie algebroid structure on A is trivial,
ρ = 0, [·, ·]A = 0, thus having only a nontrivial dual Lie algebroid structure on A∗.
The case considered in [18] can be taken to be a “linear version” of our non-linear
results: in that case, GA ⇒ M is given by A → M seen as a groupoid with fiberwise
addition.

On another direction, similar effective “dimensional reductions" from � × I to �

have been largely studied. Inmost cases, though, the resulting theory on� is conformal
instead of topological as in our case above (see the cases of Chern–Simons, i.e., when
M is a point, and WZW, see, e.g., [35, 46]). Topological boundary conditions for
Abelian Chern–Simons were studied in [26], and a mixture of topological with non-
topological boundaries appear recently in [36, 42]. It would be interesting to relate
these cases to our case. We also point that the usual “dimensional reduction" from
� × S1 to � have been studied in the Chern–Simons case see, e.g., [3].

Finally, the Hamilton–Jacobi action for AKSZ theories was studied in the recent
work [16]. On cylinders, this actionwas shown to give rise to a boundary theorywhich,
in turn, is the leading order of the effective action for a special choice of gauge-fixing
in the original theory. Our result suggests that, for the CSM on a cylinder � × I
and with appropriate boundary conditions, the corresponding Hamilton–Jacobi action
might coincide with that of the PSM on �. This will be explored elsewhere.

1.5 Outlook

Themainpossible application of the heuristic Field-theoreticmanipulations is to obtain
nontrivial quantum computations. An instancewould be the use of Chern–Simonswith
source � × I and target g �� g∗ to make interesting computations on the PSM with
source� and target the Poisson–Lie group (G, πG), or vice-versa. This will be studied
elsewhere. See also [16, 17] for recent developments.
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1.6 About the presentation of the paper

In this paper, we will focus on providing global geometric constructions for all the
ingredients needed. Once these global definitions are established, we can then proceed
to verify some of their properties through simple local coordinate computations. This
also helps to make the connection with familiar expressions for the field theories
present in the literature.

2 Preliminaries I: relevant geometric structures and supergeometry

In this section, we begin recalling Lie bialgebroids, their doubles given by Courant
algebroids and their Lie-theoretic correspondence with Poisson groupoids. In the last
subsection, we also recall how these structures are encoded as various types of tensors
on supermanifolds. This last presentation is the one which makes the connection with
the topological field theories we study in the rest of the paper.

2.1 Lie bialgebroids and Courant algebroids

A common generalization of both Lie algebras and integrable distributions is given
by the concept of a Lie algebroid (A → M, [·, ·], ρ), which also plays a key role
in Poisson geometry. It consists of a vector bundle A → M endowed with a vector
bundle morphism ρ : A → T M , called the anchor, and a Lie bracket on the space of
sections [·, ·] : �A × �A → �A satisfying

[a, f b] = f [a, b] + (Lρ(a) f ) b, a, b ∈ �A, f ∈ C∞(M).

Given a Lie algebroid structure (A → M, [·, ·], ρ), the total space A∗ of its dual
vector bundle A∗ → M inherits a (fiberwise) linear Poisson structure denoted πA∗
(see [31, Section 10.3]).Also, the graded algebra of forms��•A∗ inherits aChevalley-
Eilenberg differential d ≡ dA from the algebroid structure on A and there is an induced
Lie derivative operation La = iad + dia for each section a ∈ �A (here, ia denotes
contraction).

Example 2.1 The basic examples of Lie algebroids that we will use include:

(a) Lie algebras (g, [·, ·]). In this case, M = pt , therefore the anchor is zero. The
linear Poisson structure πg∗ ≡ ci jk x

k∂xi ∧ ∂x j on g∗ is the standard one induced

by the Lie algebra with [ei , e j ] = ci jk e
k for a basis (ei ) of g.

(b) Tangent bundles (A = T M → M, [·, ·], ρ = Id). The bracket is the usual bracket
of vector fields, and the anchor is just the identity. The linear Poisson structure
πT ∗M = ω−1

c is just the standard symplectic one on A∗ = T ∗M .
(c) Cotangent of Poisson manifolds T ∗π M = (T ∗M → M, [·, ·]π , ρ = π
), with

π ∈ X2(M) a Poisson structure on M . For α, β ∈ 
1(M), the bracket is given by
the formula [α, β]π = Lπ
(α)β − Lπ
(β)α − dπ(α, β) and the anchor is ρ(α) =
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π
(α). In this case, the linear Poisson structure πT M is the tangent lift of π to T M
(see [31, Section 10.1]).

A Lie bialgebroid, denoted (A, A∗) consists of Lie algebroid structures on both A →
M and its dual A∗ → M satisfying a suitable compatibility condition. One way of
stating this condition is that the linear Poisson structure πA (on the total space of A)
coming from the Lie algebroid on A∗ is infinitesimally multiplicative with respect to
(A, [·, ·], ρ), see [6]. We will see below (Section2.3) a more explicit formulation of
the compatibility in terms of supergeometry which is better adapted to the purposes
of this paper. For the moment, we observe that the notion is self-dual: (A, A∗) defines
a Lie bialgebroid if and only if (A∗, A) does.

Before moving forward, we mention two important particular examples of Lie
bialgebroids. In the case where M = pt is just a point, (A = g, A∗ = g∗) reduces to
an ordinary Lie bialgebra. When (M, π) is an ordinary Poisson manifold, the induced
cotangent Lie algebroid A = T ∗π M is endowedwith a natural Lie bialgebroid structure
for which A∗ = T M reduces to the standard tangent algebroid [32]. In this last case,
as in the above examples, the canonical symplectic πA = ω−1

c is the one that becomes
infinitesimally multiplicative for A = T ∗π M .

We now proceed to describe Courant algebroids which appear as doubles for such
(A, A∗). As a motivation, we recall that, in the case of Lie bialgebras (g, g∗), the
Drinfeld double structure on g⊕g∗ (which is again a Lie bialgebra) plays an important
role in the theory. For general Lie bialgebroids, the corresponding doubleswere studied
in [29] where it is shown that it leads to the new notion of a Courant algebroid. A
Courant algebroid (E → M, 〈·, ·〉, [[·, ·]], a) is a vector bundle E → M endowed
with a non-degerate symmetric pairing 〈·, ·〉, an anchor a : E → T M and a bracket
[[·, ·]] : �E × �E → �E satisfying:

• �e1, f e2� = a(e1)( f )e2 + f �e1, e2�,
• a(e1)(〈e2, e3〉) = 〈�e1, e2�, e3〉 + 〈e2, �e1, e3�〉,
• ��e1, e2�, e3� = �e1, �e2, e3��− �e2, �e1, e3��,
• �e1, e2�+ �e2, e1� = D〈e1, e2〉,

where D : C∞(M) → �(E) is defined by 〈D f , e〉 = a(e)( f ).
In the case of a Lie bialgebroid (A, A∗), the double is given by E = A⊕ A∗ → M

with the following Courant algebroid structure

E = A ⊕ A∗ → M, 〈e1, e2〉 = 〈b1, a2〉 + 〈b2, a1〉, a(e1) = ρ(b1)+ ρ̃(a1),

[[e1, e2]] = [b1, b2] + L∗a1 b2 − ia2d
∗b1 + [a1, a2]∗ + Lb1 a2 − ib2da1,

(2)

where ei = bi + ai with bi ∈ �A, ai ∈ �A∗ for i = 1, 2, ρ (resp. ρ̃) is the anchor of
A (resp. A∗) and L, d (resp. L∗, d∗) comes from the Cartan calculus of A (resp. A∗)
recalled above.
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2.2 Lie theory for bialgebroids and path integration

In this subsection, we recall the following ingredients of Lie theory: differentiation of
Lie groups into Lie algebras can be generalized into

Lie groupoids
Lie functor→ Lie algebroids

(G ⇒ M) �→ (AG → M),

and that it can be refined to yield a correspondence

Poisson groupoids, (G ⇒ M, πG) → Lie bialgebroids, (A, A∗).

In this way, Lie bialgebroids are seen as infinitesimal counterparts of so-called Pois-
son groupoids and, at the end, we describe some ingredients entering the converse
("integration") constructions involving algebroid paths.

We begin observing that, just as Lie algebras are the infinitesimal versions of Lie
groups, Lie algebroids can be seen as infinitesimal versions of Lie groupoids. Recall
that a groupoid G ⇒ M can be described as a category in which every morphism is
invertible,M denoting the set of objects andG the set ofmorphismsor arrows.WhenM
and G are manifolds1 and the source and target maps s, t : G → M are submersions,
we say that G ⇒ M defines a Lie groupoid (see [31] for an extensive treatment). In
particular, for each object x ∈ M , there is one identity 1x ∈ G and composition of
arrows is only partially defined on G, namely, m(g, h) ∈ G for g, h ∈ G is defined
when s(g) = t(h).

Ordinary Lie theory can be extended to a large extent to the context of Lie algebroids
and Lie groupoids. The above-mentioned Lie functor takes a Lie groupoid G ⇒ M
and associates a Lie algebroid AG given by AG = ker T s|M → M, anchor ρ = T t | :
AG → T M and bracket induced by the Lie bracket of right-invariant vector fields. In
this sense, elements in the algebroid AG can be seen as infinitesimal arrows deforming
the identity ones with their source being kept fixed. The standard Lie theorems I and II,
which state that the infinitesimal information uniquely characterizes a given groupoid
morphism up to (source fibers) coverings, still hold true. Nevertheless, unlike Lie III
in the usual theory, not every Lie algebroid (A → M, [·, ·], ρ) is isomorphic to AG for
some Lie groupoid G ⇒ M , see [21] where the corresponding theory of obstructions
is developed. When it is the case, we say that the Lie algebroid is integrable and we
denote by GA ⇒ M the integration of A with 1-connected source fibers (which is
unique up to isomorphism), so that AGA � A.

We now proceed to describe the refinement of this Lie theory targeting Lie bial-
gebroids (A, A∗). As it turns out, when A is integrable, GA inherits an extra Poisson
structure πG coming from the linear one πA on A (which, in turn, is defined by the
dual algebroid on A∗ as recalled in Section2.1). The resulting structure is axiomatized
as that of a Poisson groupoid: it consists of a pair (G ⇒ M, πG) where πG defines
a Poisson structure on the space of arrows G such that graph(m) ⊆ G × G × Ḡ is

1 It is customary to allow G to be non-Hausdorff, though the s-fibers must be.
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a coisotropic submanifold, the bar means that we consider −π instead of π . Struc-
tures on G satisfying this condition are called multiplicative. Poisson groupoids were
introduced in [45] in order to unify Poisson Lie groups and symplectic groupoids.

Given a Poisson groupoid (G ⇒ M, πG), one can verify that the Lie algebroid
A = AG inherits a Lie bialgebroid structure from πG , see [32]. Indeed, πG can be
differentiated to a linear Poisson structure πA on A, thus defining an algebroid on A∗,
and which is infinitesimally multiplicative as recalled above (see also [6]). In [33], it
was show the converse integration result:

Theorem 2.2 (Mackenzie-Xu [33])Let (A, A∗)beaLie bialgebroid andassume that A
is integrable. Then, GA inherits a unique Poisson groupoid structure (GA ⇒ M, πG)

whose differentiation yields (A, A∗).

In the case of a Lie bialgebra (g, g∗), the group (GA ≡ G, πG) becomes a familiar
Poisson-Lie group and the integration result was proved by Drinfeld. The Lie bialge-
broid (T ∗π M, T M) associated to an ordinary Poisson manifold (M, π) yields, in the
integrable case, a Poisson groupoid (GA, πG) in which πG is symplectic, establishing
thewell-known correspondence between Poissonmanifolds and symplectic groupoids
(see more details in e.g. [33]).

2.2.1 Integration through paths

We finish this subsection by recalling the following concrete construction of GA

following [14, 21].Given aLie algebroid (A → M, [·, ·], ρ), one considers the spaceof
algebroid paths PA consisting of vector bundle morphisms T I → A, (t, ∂t ) �→ a(t)
(I = [0, 1]) satisfying the condition

d

dt
x(t) = ρ(a(t)), where x(t) ∈ M is the projection of a(t) along A → M . (3)

There is a corresponding notion of algebroid homotopy (with fixed end-points) defined
by algebroid morphisms T (I × I ) → A subject to suitable boundary conditions and
inducing an equivalence relation ∼ on PA. With these ingredients, one obtains

GA = PA/ ∼ (4)

which can be endowed with a groupoid structure over M coming from concatenation
of paths. In [21, Section 2.1], it is shown that, when A is integrable, PA/ ∼ inherits
a smooth structure turning it into the integration GA ⇒ M of A introduced above.
When A = T ∗π M comes from a Poisson manifold (M, π), the quotient PA/ ∼ can be
interpreted as a symplectic reduction from the space of all paths Map(I , T ∗M) and
also as the physical phase space of the PSM with source � = I × I , see [14].

Example 2.3 (Integrating a cotangent lift [11]) Let A → M be a vector bundle. Then,
there is a natural vector bundle structure T ∗A → A∗ and an identification T ∗A �
T ∗A∗ which brings the latter into the ordinary cotangent structure. When A is a Lie
algebroid, T ∗A → A∗ inherits a natural Lie algebroid structure over A∗ called the
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cotangent lift of A. This can be identified as a particular case of Example 2.1(c)
coming from the Poisson structure πA∗ on A∗ (see [31, Section 9.4]). When GA ⇒ M
integrates A, then T ∗GA ⇒ A∗ inherits a Lie groupoid structure2 which integrates
T ∗A, [11, 31].

Let us discuss algebroid paths into (T ∗A → A∗) for latter reference. In this case, an
algebroid path T I → T ∗A projects, under the natural map T ∗A → A, to an algebroid
path in A. Hence, we say that such a T ∗A-path is a cotangent lift of the base A-path.
For later comparison, let us spell out the T ∗A-path equations on a trivializing chart
(xi , aα, pi , paα = bα) induced by a trivializing chart (xi , aα) for A. As equation. (3)
shows, we just need to know the anchor of T ∗A → A∗. Example 2.1(c) combined
with the isomorphism T ∗A ∼= T ∗A∗ shows that the anchor is given by π



A∗ yielding

that, on top of Eq. (3) for (xi , aα), a T ∗A-path must satisfy

d

dt

(
xi , bα

)
(t) =

(
ρi

αa
α,−ρi

α pi − cγ
αβbγ a

β
)
(t). (5)

For general Lie bialgebroids, the induced πG on GA can be explicitly described
in terms of paths, using the identification GA = PA/ ∼ described above, out of
the infinitesimal data πA on A, see [25]. (See also [6] for a formulation in terms of
algebroid morphisms.) We shall come back to this description in Sect. 5.1.

2.3 Supergeometric formulation

In this paper, we make extensive use of the language of supermanifolds and N-graded
supermanifolds. We thus first review some general definitions (see, e.g., [9, 19, 34]
for a more detailed treatment) and then proceed to recall known descriptions of the
Lie bialgebroids and their doubles in supergeometric terms. These descriptions will
be used in the sequel.

We begin recalling that a supermanifold (resp. a N-graded supermanifold) M =
(M,C∞(M)) is a ringed space where M is a smooth manifold andC∞(M) is a sheaf
of Z2-graded (resp. N-graded) commutative algebras with a local model given by

C∞(M)|U ∼= C∞(U )⊗ S• V ∗,

where V is a purely odd (resp. N>0-graded) vector space and S• denotes the graded
symmetric algebra. On a supermanifold, there is thus an atlas of coordinates (xi , θa)
which split into two subsets, the even (Bosonic) ones xi x j = x j xi and the odd
(Fermionic) ones θaθb = −θbθa . The structure of an N-graded supermarmanifold
can be seen as a refinement of the (Z2-)supermanifold structure in which there is an
atlas by graded coordinates (xi00 , y jn

(n))n>0, |xi00 | = 0, |y jn
(n)| = n, where | · | denotes

the degree and the induced Z2-parity is given by n mod 2 ∈ Z2, and changes of
coordinates are polynomial for degrees > 0. It is interesting to recall that this N-
refinement can be globally encoded as a smooth action of the multiplicative monoid
R on the supermanifold M (see [24]).

2 In fact, is a VB-groupoid over GA ⇒ M , see [31, Section 11.3] for details.
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Remark 2.4 We observe that Z-graded supermanifolds can be defined analogously
and that they play an important role in the BV formalism by allowing both positive
and negatively graded coordinates. One technical detail to have in mind is that, in
general, changes of coordinates can involve (formal) infinite power series in which
the total degree of each term is a given fixed m ∈ Z. The Z-graded supermanifolds
which play an important role in our description (especially in Section5) have a very
controlled structure, being defined from underlying vector bundles, and the above
possible convergence problems do not appear.

Basic elements of differential geometry can be defined on supermanifolds and
N-graded supermanifolds. In particular, (multi-)vector fields X(M) and differential
forms
(M) can be defined and super/graded versions of Cartan calculus hold. In the
case M carries an additional N-grading, there is a subset of vector fields and forms
which are homogeneous of degree j which are denoted by lower indices, i.e., we will
have C∞

j (M) for functions of degree j or 
k
j (M) for differential k-forms of degree

j or Xk
j (M) for k-multivector fields of degree j . We refer to this inherited grading

given by j as the “internal degree" and is denoted by | · |.
Example 2.5 A simple example is given byM = R

n0×R
n1 [1]where the [1] indicates

that the latter linear coordinates aα on R
n1 are defined to have degree 1 while the xi

on R
n0 are standard, degree zero, ones (M = R

n0 here). In this case, we can provide
simple examples of internally graded tensors onM to fix ideas:

f (x) ∈ C∞(Rn0) ⊂ C∞
0 (M), fαβ(x)aαaβ ∈ C∞

2 (M),

ωi j (x)dx
idx j ∈ 
2

0(M), cαiβ(x)aαdxidaβ, ωαβ(x)daαdaβ ∈ 
2
2(M),

π i j (x)∂xi ∂x j ∈ X2
0(M), παβ

γ (x)aγ ∂aα ∂aβ ∈ X2−1(M).

(Observe the internal degrees |aα| = 1 = |daα| and, then, |∂aα | = −1.)
The most important notions on N-graded supermanifolds M that we shall use are

the following:

• A Q- manifold (M, Q) is given by a vector field Q ∈ X1
1(M) of internal degree 1

(which thus it is an odd derivation of C∞(M)) which is homological in the sense
that [Q, Q] = 2Q2 = 0. The algebra of global sections C∞(M) becomes a d.g.a.
with differential Q.

• A QP-manifold of (internal) degree n (M, ω, Q, θ) is defined by a symplectic
structureω ∈ 
2

n(M) of internal degree n (which can thus be even or odd depend-
ing on the parity of n), a vector field Q ∈ X1

1(M) and a function θ ∈ C∞
n+1(M)

such that Q is the Hamiltonian vector field associated with θ ,

iQω = dθ ∈ 
1
n+1(M)
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and the Classical Master Equation holds,

{θ, θ}ω = 0,

where {, }ω denote the graded Poisson brackets induced byω (which are of internal
degree −n).

We observe that Q in a QP-manifold structure defines a Q-manifold one as a conse-
quence of the classical master equation for the Hamiltonian θ . Since Q is completely
determined by the rest of the data, we often simplify and refer to (M, ω, θ) as defining
theQP-manifold structure.Also, the definitions have a straightforward pureZ2-version
(just consider n ∈ Z2 above) as well as Z-graded ones.

2.3.1 Encoding Lie bialgebroids and their doubles supergeometrically

Let us go back to the setting of the previous subsections. Given a vector bundle
A → M , we can define an N-graded supermanifold M = A[1] by declaring

C∞(M) = ��•A∗

with its standard grading. This corresponds to a global version of Example 2.5 inwhich
sections of A∗ are seen as fiberwise linear odd coordinates on A[1] of internal degree
1. The first important result for this article is the following supergeometric description
of Lie algebroids.

Proposition 2.6 (Vaintrob [43]) Let A → M be a vector bundle. The following struc-
tures are in 1 : 1 correspondence:
(a) (A → M, [·, ·], ρ) Lie algebroid structures on A → M.
(b) (A[1], QA)Q-manifold structures on A[1], i.e., QA ∈ X1

1(A[1])with [QA, QA] =
0.

(c) (A∗[1], πA∗) degree −1 Poisson structures on A∗[1], πA∗ ∈ X2−1(A[1]) with
[πA∗ , πA∗ ] = 0.

Let us review this correspondence using local coordinates. If {xi } are coordinates in
M , {bα} a basis of sections for A, inducing fiber coordinates on A∗[1], and {aα} the
dual basis, inducing fiber coordinates on A[1]; then a local coordinate description of
the preceding structures is given by

ρ(bα)(xi ) = ρα
i and [bα, bβ ] = cγ

αβbγ with ρα
i , cγ

αβ ∈ C∞(M); (6)

C∞(A[1]) ⊃ {xi , aα} with |xi | = 0, |aα| = 1

and QA = ρi
αa

α ∂

∂xi
+ 1

2
cγ
αβa

αaβ ∂

∂aγ
; (7)

C∞(A∗[1]) ⊃ {xi , bα} with |xi | = 0, |bα| = 1

and πA∗ = ρi
α

∂

∂bα

∂

∂xi
+ 1

2
cα
βγ bα

∂

∂bβ

∂

∂bγ

. (8)
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Notice that, since πA∗ is linear with respect to the bundle structure, it has the same
expression on both the ordinary A∗ (as recalled before) and on the shifted A∗[1].

Now, consider a Lie bialgebroid (A, A∗). The algebroid structure on A corresponds
to the vector field QA on A[1], while the algebroid structure on A∗ corresponds to
the Poisson structure πA on A[1]. The needed properties stating that (A[1], QA, πA)

defines a Lie bialgebroid can be summarized as follows: QA ∈ X1
1(A[1]) and πA ∈

X2−1(A[1]) satisfy

LQA QA = [QA, QA] = 0, [πA, πA] = 0 and LQA πA = [QA, πA] = 0. (9)

Indeed, using the preceding equivalence, we see that the first two equations say that
we have induced Lie algebroids (A → M, [·, ·], ρ) and (A∗ → M, [·, ·]∗, ρ̃), while
the last condition is the compatibility between them. It is not hard to see that if
(A[1], QA, πA) is a Lie bialgebroid, then (A∗[1], QA∗ , πA∗) is also a Lie bialgebroid
where QA∗ ↔ πA and πA∗ ↔ QA. For the classical definition of Lie bialgebroids
see, e.g., [32], the equivalence to the present description is proven in [37, 44].

Remark 2.7 In coordinates as above, a Lie bialgebroid structure (A[1], QA, πA) is
given by

C∞(A[1]) ⊃ {xi , aα} with |xi | = 0, |aα| = 1,

QA = ρi
αa

α ∂

∂xi
+ 1

2
cγ
αβa

αaβ ∂

∂aγ
and πA = ρ̃αi ∂

∂aα

∂

∂xi
+ 1

2
c̃βγ
α aα ∂

∂aβ

∂

∂aγ
.

where ρi
α, cγ

αβ, ρ̃αi , c̃βγ
α ∈ C∞(M) satisfying relations induced by equations (9).

Similarly, Courant algebroids also have a supergeometric description that help us
to understand them.

Theorem 2.8 (Roytenberg [37]) There is a one to one correspondence between
Courant algebroids and degree 2 QP-manifolds.

In the case of the double E = A ⊕ A∗ of a Lie bialgebroid (A, A∗), as recalled in
Sect. 2.1, the associatedQP-manifold is given by a graded cotangent lift as follows. Let
(A[1], QA, πA) be a Lie bialgebroid then (T ∗[2]A[1], ω, θ = QA +πA) is a degree
2 QP-manifold where the symplectic structure ω is the canonical one (as defined on
any shifted cotangent bundle) and the functions are given by the identification

C∞
k (T ∗[2]A[1]) =

⊕
2i+ j=k

Xi
j (A[1]), hence θ = QA + πA ∈ C∞

3 (T ∗[2]A[1]).

Notice that the symplectic Poissonbrackets correspond to theSchoutenbracket onmul-
tivectorsX•(A[1]) shifted by 2. The Lie bialgebroid conditions (9) for (A[1], QA, πA)
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are equivalent to {θ, θ} = 0 and therefore, we have a QP-manifold structure. The
Courant algebroid (2) can be recovered by the formulas

�E = C∞
1 (T ∗[2]A[1]), 〈e1, e2〉 = {e1, e2},

a(e1)( f ) = {{e1, θ}, f }, [[e1, e2]] = {{e1, θ}, e2}

where e1, e2 ∈ �E and {·, ·} is the degree −2 Poisson bracket defined by ω. For a
coordinate description, see Sect. 3.2 below.

Remark 2.9 Another structure on supermanifolds that we will be using is that of inte-
grationwith respect to Berezinian volumes.We shall not detail these further, the reader
can consult, e.g., [34, 40] for an account suited to the uses in this paper. For these oper-
ations, the relevant structure is the Z2-supermanifold one. We also mention that, in
the context of field theories and the BV formalism below, QP-manifold structures
appear (formally) on infinite dimensional spaces of maps between supermanifolds.
As customary, we will use the same notations and shall proceed formally as if these
were finite dimensional supermanifolds. Finally, we remind the reader that, typically,
operations and structures which involve differentiation can be formalized even in infi-
nite dimensions while operations which involve integration require extra care and have
to be analyzed in a case-by-case basis.

3 Preliminaries II: field theoretic constructions

3.1 BV quantization

The so-called BV formalism is a device oriented toward quantization of field the-
ories with generalized gauge symmetries through path integrals with additional
(super)fields. It includes topological sigma models, and it is the general formalism
that we will be dealing with in this paper. We thus provide a short summary below,
following the geometric description of [40], and at the same time fix some general
notations.

In the BV setting, we have a space of superfields F (typically a formal infinite
dimensional supermanifold) endowed with an odd symplectic structure ωF and a
(formal) Berezinian volume μ satisfying the compatibility condition encoded in the
notion of SP-structure, see [40]. The key quantum computations are of the form

〈O〉 =
∫
L⊂F

√
μ O e

i
�
S

where L ⊂ (F, ωF) is a Lagrangian submanifold implementing a gauge fixing condi-
tion,

√
μ is a naturally induced Berezinian measure on L, and O and S are functions

on F representing an observable and the BV-action, respectively. In the presence of
internal Z-grading, it is conventionally assumed that ωF is of degree −1 so that the
BV-action S is of degree zero.
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The key fact, which can be rigorously proven when F is a finite-dimensional SP-
manifold (see [40]), is that the integral 〈O〉 is stable under deformations of the gauge
fixing L ⊂ F when the following two conditions are met:

(a) S satisfies the Quantum Master Equation (QME): {S, S} − 2i��S = 0
(b) O is a Quantum observable: {S,O} − i��O = 0.

Here, {·, ·} denote the (formal) Poisson brackets induced by ωF and � is the so-

called BV-laplacian defined by the SP-structure as � f = (−1)deg( f )

2 divμ(X f ), the
μ-divergence of the Hamiltonian vector field X f in (F, ωF). It is worth noting that the

above two conditions combine to give�(Oe
i
�
S) = 0 which is the general requirement

for the stability of the integral under deformations of L. It is also interesting to have
in mind that

∫
L⊂F

√
μ �( f ) = 0 for any f when L is closed.3

The leading order in � in the QME yields the Classical Master Equation,

{S, S} = 0.

Forgetting about the (formal) measureμ, the triple (F, ωF, S) thus defines an odd QP-
structure in the sense of Sect. 2.3. In most relevant cases for us, F carries an internal
Z-grading for which ωF is of degree −1 and S is of degree zero. This is the standard
convention for the BV formalism.

Finally, we recall the notion of an effective theory within the BV formalism, see
[30] and [34, Section 4.7]. The key idea can be seen in the case in which F = F1×F2
as SP-manifolds. In this case, choosing a Lagrangian L2 ⊂ F2, we can define an
effective action Seff ∈ C∞(F1) via

e
i
�
Seff =

∫
L2

√
μ2 e

i
�
S .

It follows directly that Seff satisfies the QME on F1,

�1e
i
�
Seff =

∫
L2

√
μ2 �1e

i
�
S =

∫
L2

√
μ2 (�1 +�2)e

i
�
S = 0.

This construction generalizes to the case in which there is a fibration F→ F1 adapted
to the SP-structures and one replaces

∫
L2

by a suitable pushforward, see [34, Sec.
4.7]. In these cases, we refer to (F1, ωF1 , μ1, Seff) as an effective theory induced by
(F, ωF, μ, S).

3.2 AKSZ construction of the space of superfields

In this section, we recall the AKSZ construction [2] which yields the information of
the space of (BV-)superfields (F, ωF, S), endowed with a relevant QP-structure, out

3 Schwartz shows in [40] that these facts are equivalent to the classical Stokes theorem under a transfor-
mation which maps � to de Rham differential.
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of source and target supermanifolds endowed with appropriate geometric structures.
This construction is, by now, standard material, see, e.g., [15, 34, 39, 40].

Let N and M be supermanifolds (typically finite dimensional and endowed
with an additional N- or Z-grading). Consider the (formal) supermanifold of maps4

Map(N ,M) so that N is called the source and M is the target. Associated with it,
we have the evaluation map ev : N ×Map(N ,M) → M and the induced pullback
operation

ev∗ : 
p
q (M) → 


p
q (N ×Map(N ,M)),

where 

p
q (M) denotes p-forms which are of internal-degree q (with respect to the

extra Z-grading). When the manifold N has a Berezinian volume μ of degree n, an
induced transgression map is defined by

TN : 
p
q (M) → 


p
q−n(Map(N ,M)), TN (ω) =

∫
N

μ ev∗ω.

The case which interests us the most is N = T [1]N , the odd tangent bundle of an
ordinary oriented manifold N , possibly with boundary j : ∂N → N , which comes
endowed with a natural Berezinian volume μ (defined by the orientation) and with
the de Rham vector field dN ∈ X(T [1]N ) (yielding a Q-structure). In this case, we
simplify the notation as TT [1]N ≡ TN .

Next, assume the target is endowedwith a QP-structure (M, ω = dλ, θ) of internal
degree k in which ω ∈ 
2

k(M) is exact with potential λ. Denote by Q = {θ, ·} the
corresponding vector field. Hence, on Map(T [1]N ,M) we have an induced 2-form,
a vector field and a function given by

ωF = TN (ω) ∈ 
2
k−n(F), QF = Q̂ + d̂N ∈ X1

1(F),

SF = TN (θ)+ id̂N TN (λ) ∈ C∞
k−n(F),

where Q̂ and d̂N denote the natural lifts of Q and dN to the space of maps (seen as
infinitesimal transformations of the target and the source, respectively).

Denote by j ! : Map(T [1]N ,M) → Map(T [1]∂N ,M) the natural restriction map
induced by the inclusion j : ∂N → N . The key properties of this construction are
(see [13, 15])

LQF ωF = 0, [QF, QF] = 0, iQFωF = (−1)ndSF + j !∗T∂N (λ).

We thus see that, when ∂N = ∅, the space F = Map(T [1]N ,M) inherits a QP-
structure. When N has boundary, we can impose appropriate boundary conditions.
One possibility comes from the choice of a Lagrangian Q-submanifold on the target
i : L ↪→M such that i∗λ = 0 and defining

F := {φ ∈ Map(T [1]N ,M) | φ(T [1]∂N ) ⊂ L}.
4 In categorical terms, we consider the inner-hom in the category of supermanifolds.
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We thus get that (F, ωF, SF) defines a QP-structure (we omit the obvious pullbacks
along F ↪→ Map(T [1]N ,M)). When we need to highlight the source and target in
this construction, we will write

F ≡ FN (M).

We notice that, when taking into account internal Z-gradings, one conventionally
considers dim(N ) = k+ 1 so that the resulting QP-structure on FN (M) is of internal
degree −1 as in the convention for the BV-formalism.

Finally, we observe that when N has no boundary, the AKSZ action SF is indepen-
dent of the choice of potential λ. But in the presence of boundary, ∂N �= ∅, SF does
depend on λ and thus, it has to be considered as part of the defining data for F, see
[13, 35].

The two main cases of this paper are the Poisson sigma model and the Courant
sigma model, that we describe using the AKSZ construction as follows.

Poisson sigmamodel (PSM)Let (M, π)be aPoissonmanifold.Wedefine the exactQP-
manifold (T ∗[1]M, ωcan = dλcan, θ = π)where T ∗[1]M = (M,C∞• (T ∗[1]M) =
X•(M)), ωcan of internal degree k = 1 (here λcan is the Liouville 1-form) and
θ = π ∈ X2(M) = C∞

2 (T ∗[1]M). Using coordinates {yi } on M , a coordinate
description of the exact QP-manifold is

C∞(T ∗[1]M) ⊃ {yi , vi } with degree |yi | = 0, |vi | = 1 then

ωcan = dvidy
i , λcan = vi dy

i , Q = π i jvi
∂

∂ y j
+ 1

2
∂iπ

jkv jvk
∂

∂vi
,

θ = 1

2
π i jviv j .

Let� be an oriented two-dimensional manifold. The induced space of fields for the
PSM F ≡ F�(T ∗[1]M) = Map(T [1]�, T ∗[1]M) can be described by the coordinate
superfields

ev∗yi = Y
i = Y i

0 + Y i
1 + Y i

2, |Y i
j | = − j, Y0 : � → M, Y j ∈ 
 j (�; Y ∗0 T M),

ev∗vi = Vi = V 0
i + V 1

i + V 2
i , |V j

i | = 1− j, V j ∈ 
 j (�; Y ∗0 T ∗M). (10)

Let us describe the components in this simple case. The fields with | · | = 0 are called
classical fields, here Y0 and V1. Gauge symmetries are encoded by fields with degree
| · | = 1, which in this case corresponds to V 0. The other three are called antifields;
they are conjugate to the former with respect to the symplectic form

ωF =
∫
T [1]�

dVidY
i =

∫
�

dV 0
i dY

i
2 + dV 1

i dY
i
1 + dV 2

i dY
i
0 .
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The action SF is locally given by

SF =
∫
T [1]�

Vid�Y
i + 1

2
π i j (Y)ViV j

=
∫

�

(
V 1
i d�Y

i
0 +

1

2
π i j (Y0)V

1
i V

1
j

)
+ V 2

j π
i j (Y0)V

0
j

+ Y i
1

(
d�V 0

i + ∂iπ
jk(Y0)V

0
j V

1
k

)

+ 1

2
Y i
2∂iπ

jk(Y0)V
0
j V

0
k +

1

4
Y i
1Y

j
1 ∂i∂ jπ

kl(Y0)V
0
k V

0
l .

(11)

If ∂� �= ∅, we choose i : L→ T ∗[1]M Lagrangian Q-submanifold with i∗λcan = 0.
For example, the choice considered in [12] to compute the Kontsevich �-product using
a disk is L = 0M = {vi = 0}, or in terms of the superfields {Vi

|T [1](∂�) = 0}.
Courant sigma model (CSM) In Sect. 2.3, we saw that Courant algebroids (E →
M, 〈·, ·〉, [[·, ·]], ρ) admit a description in terms of QP-manifolds (M, ω, θ) with ω of
internal degree 2, see Proposition 2.8. As mentioned in the introduction, we specialize
to Courant algebroids that are the double of Lie bialgebroids. Recall that the double
of a Lie bialgebroid (A[1], QA, πA) is given by the exact QP-manifold

(M = T ∗[2]A[1], ω = dλ, θ = QA + πA), (12)

with functions given by C∞
k (M) = ⊕2i+ j=kXi

j (A[1]) so that θ ∈ C∞
3 (M) (see

Sect. 2.3). The Liouville 1-form λ above is the one corresponding to the cotangent
bundle fibration T ∗[2]A[1] → A[1].

To fix ideas, we provide a coordinate description of (12) as follows. The manifold
A[1] admits coordinates

C∞(A[1]) ⊃ {xi , aα} with degree |xi | = 0, |aα| = 1

; therefore, the manifold T ∗[2]A[1] has coordinates

C∞(T ∗[2]A[1]) ⊃ {xi , aα, bα, pi }
with degree |xi | = 0, |aα| = 1, |bα| = 1, |pi | = 2; (13)

the canonical symplectic form ω and the degree 3 function are given by

ω = dpidx
i + dbαda

α and

θ = QA + πA = ρi
αa

α pi + 1

2
cγ
αβa

αaβbγ

+ρ̃αi bα pi + 1

2
c̃αβ
γ bαbβa

γ , (14)

123



Dimensional reduction of Courant sigma models and Lie... Page 19 of 48 104

with ρi
α, cγ

αβ, ρ̃αi , c̃αβ
γ ∈ C∞(M). Since T ∗[2]A[1] ∼= T ∗[2]A∗[1], we get that ω

admit two different potentials but we just consider

λ = pidx
i + bαda

α.

It is easy to check that the fiber through zero

A∗[1] � {aα = 0, pi = 0} ↪→ T ∗[2]A∗[1] (15)

is a Lagrangian Q-submanifold satisfying λ|A∗[1] = 0. Therefore, it can be used as a
boundary condition for the resulting topological sigma model.

Let N be an oriented three-dimensional manifold. The induced space of superfields
for the CSM is

F ≡ FN (M) = Map(T [1]N , T ∗[2]A[1]) (16)

and locally it is described by the coordinate superfields5

X
i = ev∗xi , A

α = ev∗aα, Bα = ev∗bα and Pi = ev∗ pi ,
with ev : T [1]N × FN (M) →M.

The symplectic form ωF and the action SF are locally given by

ωF =
∫
T [1]N

dPidX
i + dBαdA

α and

SF =
∫
T [1]N

(
PidNX

i + BαdNA
α + ρi

α(X)Aα
Pi + 1

2
cγ
αβ(X)Aα

A
β
Bγ

+ρ̃αi (X)BαPi + 1

2
c̃αβ
γ (X)BαBβA

γ

)
. (17)

When ∂N �= ∅, we choose i : L→M a Lagrangian Q-submanifold with i∗λ = 0.
In our case, we will consider L = A∗[1] = {aα = pi = 0} or, in terms of the
superfields, the boundary condition

{Aα|T [1]∂N = 0, Pi |T [1]∂N = 0}.

4 Some properties of the AKSZ construction

In this section, we study two special properties of the AKSZ construction which are
key steps in the proof of the main Claim 1.1. Namely, the behavior under exponential

5 As in the PSM, one can decompose the superfields into its homogeneous components.
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type identifications (corresponding to Step (1) in Eq. (1)) and the relation to symplectic
reduction in the target space (corresponding to Step (2) in Eq. (1)).

4.1 The exponential map for product sources

Here, we discuss a general exponential-type feature of the AKSZ construction and
apply it to the case of the CSM with source being N = � × I , I = [0, 1].

First, consider a product supermanifoldN = N1 ×N2 and anyM. Then, there is
a natural exponential map identification

Map(N1 ×N2,M) � Map(N1,Map(N2,M)). (18)

When N1 ×N2 is endowed with a product Berezinian volume, this exponential map
interacts with the transgression in the following way

TN1×N2 � TN1 ◦ TN2 .

Example 4.1 To fix ideas, we verify the above isomorphisms in the case N1 = N2 =
R[1]. Denote the coordinates onM by xα and the coordinates onNi by ξ i ∈ C∞

1 (Ni ).
Hence, the supermanifold Map(N2,M) is parametrized by superfields Xα = aα +
bαξ2. Therefore, the supermanifoldsMap(N1×N2,M) andMap(N1,Map(N2,M))

are, respectively, parametrized by

Y α = φα
0 + φα

1 ξ1 + φα
2 ξ2 + φα

21ξ
2ξ1

Zα = Xα
0 + Xα

1 ξ1 = (aα
0 + bα

0 ξ2)+ (aα
1 + bα

1 ξ2)ξ1

inducing the desired isomorphism of (18) in an obviousway from Y α � Zα . Now, sup-
pose that we have ω = ωαβ(x)δxαδxβ ∈ 
2(M). The corresponding transgression
gives

TN1×N2(ω) =
∫
N1×N2

μN1×N2 ev∗ω =
∫

dξ1dξ2ωαβ(Y )δY αδY β

�
∫

dξ1
∫

dξ2ωαβ(X0 + X1ξ
1)δ

(
Xα
0 + Xα

1 ξ1
)
δ
(
Xβ
0 + Xβ

1 ξ1
)

= TN1(TN2(ω)).

An analogous property holds for the lifts of vector fields from the source and target
to the space of maps. Thus, altogether, we have the following general property of the
AKSZ construction: the exponential identification (18) induces an isomorphism

FN1×N2(M) � FN1(FN2(M)) as (formal) QP-manifolds.
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Remark 4.2 (Corners I) We observe that the above identification can be used to define
AKSZfield theories inwhich the source N is amanifoldwith corners.Concretely,when
N = N1× N2 and both the N j have boundaries, we can impose appropriate boundary
conditions (as in Sect. 3.2) following the right-hand side of the above isomorphism,
as follows. First, consider a Lagrangian L ↪→ M which we use to define boundary
conditions for ∂N2,

FLN2
(M) := {ϕ ∈ Map(T [1]N2,M) : ϕ|T [1]∂N2 ⊂ L}.

Then,we choose aLagrangianL2 ↪→ FLN2
(M)whichwe use to fix boundary condition

for ∂N1: the space of fields on N1 × N2 with corner-conditions can be defined as the
subset of Map(T [1]N1,Map(T [1]N2,M)) � Map(T [1](N1 × N2),M) given by

{φ ∈ Map(T [1]N1,F
L
N2

(M)) : φ|∂N1 ⊂ L2}.

4.1.1 CSM on cylinders

The following particular case is the one that we are most interested in. Consider
M = T ∗[2]A[1] the target space of the CSM and N = � × I as source, with � a
closed oriented surface and I = [0, 1]. From the general property of the exponential
map (18), we have an identification of QP-manifolds

F�×I (M) � F�(FI (M)),

where we choose the boundary condition corresponding to ∂ I = {0} ∪ {1} by the
Lagrangian L = A∗[1] ↪→M. In this way, we have

F�×I (M) = {φ ∈ Map(T [1]� × T [1]I , T ∗[2]A[1]) : φ|t=0,1(T [1]�) ⊂ A∗[1]},

and

FI (M) = {γ ∈ Map(T [1]I , T ∗[2]A[1]) : γ |t=0,1 ∈ A∗[1]}.

The QP-manifold (FI (M), ωFI (M), SFI (M)) will play an important role in the Lie-
theoretic results of the following section. For the reader’s convenience, we summarize
its relation to the CSM on the cylinder defined by F�×I (M) � F�(FI (M)) as
follows: the quantum computations yield

〈O〉CSM(�×I ,A⊕A∗) :=
∫
L⊂F�×I (M)

√
μ O e

i
�
SF�×I (M)

=
∫
L′⊂F�(FI (M))

√
μ′ O′ e

i
�
SF�(FI (M)) ,
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where L′,O′ and μ′ denote the induced isomorphic structures under the identification
(18), and we have

ωF�(FI (M)) = T�(ωFI (M)), SF�(FI (M)) = T�(SFI (M))+ id̂�
T�(TI (λ)).

Remark 4.3 (Corners II) Following the general discussion of Remark 4.2, when ∂� �=
∅, we can defineF�×I (M) � F�(FI (M)) by takingFI (M) exactly as above and also
choosing an appropiate lagrangian L2 ↪→ FI (M) to impose the boundary conditions
corresponding to ∂�. We will provide a concrete example of such a choice when
discussing the underlying effective PSM in Sect. 5.2 below (see Remark 5.8).

4.2 Homological reduction of target spaces in AKSZ

In this subsection, we revisit from [4] the idea of considering AKSZ constructions
in which the target space Mred = M//C can be obtained as a symplectic reduction
fromM by a coisotropic C ↪→M. The idea is to relate such a field theory to another
one constructed using as target a larger (“BFV-type") supermanifold Z in which the
reduction is encoded homologically. See also [41].

A concise way to characterize such homologically encoded reduction is by consid-
ering an extra grading denoted by ga(·) (“ghost-antighost" degrees).
Definition 4.4 Let (Z, ω, θ) be a QP-manifold of internal degree n. We say that it
carries a compatible ga(·) degree if it admits an atlas carrying an extra grading, called
ga(·), in which the coordinates are ga-homogeneous, ga(ω) = 0 and θ = ∑

r≤1 θr
with ga(θr ) = r .

Indeed, following [4], every such (Z, ω, θ) encodes a tuple (Z0, ω0, C, θ0), which
we call reduction data, consisting of a symplectic manifold (Z0, ω0) of internal degree
n, a coisotropic C ↪→ Z0 (defined by a coisotropic vanishing ideal in C∞(Z0)) and
a function θ0 ∈ C∞

n+1(Z0) which is C-reducible and defines a QP-structure after
reduction, as follows.

Let us denote the ga-homogeneous coordinates onZ by {qi , ξa, pξb }with ga(qi ) =
0, ga(ξa) > 0 (“ghosts") and ga(pξb ) < 0 (“antighosts"). The coordinates with ga = 0
define a submanifold

i : Z0 ↪→ Z that together with ω0 := i∗ω and θ0 := i∗θr=0 (19)

will define part of our reduction data. The coisotropic submanifold C ↪→ Z0 is given
locally by

C loc=
{
i∗ ∂θ1

∂ξa
= 0 with ga(ξa) = 1

}
. (20)

Although C is only defined through a (coisotropic) vanishing ideal IC ⊂ C∞(Z0)

generated by the above functions extracted from θ1, we shall assume that IC is regular
enough and that thus defines a smooth submanifold C ↪→ Z0. The compatibility
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between θ0 and C thus reads {θ0, IC}Z0 ⊂ IC (we say that θ0 is reducible by C) and
that {θ0, θ0}Z0 ∈ IC .

These properties ensure that, when the symplectic quotient C → Zred = Z0//C
by the singular foliation of ω0|C is regular, then ω0 and θ0 descend to Zred defining
a reduced QP-manifold (Zred, ωred, θred) (also of internal degree n). To see this,
we recall that the reduced Poisson algebra can be described as C∞(Zred) = { f ∈
C∞(Z0) : { f , IC} ⊂ IC}/IC . It is interesting to notice that all the above conclusions
about reduction of Z0 come from the equation {θ, θ} = 0 on Z and the extra ga-
grading.

We say that (Z, ga) provides an homological model for the reduced QP-structure
on Zred. The paradigmatic case, which explains the nomenclature, is recalled in the
next example.

Example 4.5 The standard “BFV" (sometimes also called “BRST")model for (regular)
reduction of an ordinary symplectic manifold M by a Hamiltonian G-action is a
particular case of the above. In this case,Z = M×T ∗g[1] = M×g[1]×g∗[−1]where
the degree shifts coincide with the ga-grading (so that Z0 = M) and g = Lie(G). In
this case, the symplectic form is the product of the form on M times the canonical on
T ∗g[1] and

θ = θga=1 = μαξα + 1

2
cγ
αβξαξβ pγ

where μα are the components of the moment map, ξα ∈ C∞
1 (g[1]) and pα ∈

C∞−1(g∗[−1]). In particular, θ0 = 0 and the ga = 0 cohomology yields the reduced
Poisson algebra,

Hga=0(C∞(Z), {θ,−}Z ) = C∞(M0//G).

See more details in [4] and references therein.

In the case of a general (Z, ga), there is a map from certain cocycles in
(C∞(Z), {θ,−}Z ) to cocycles in the complexof the reducedQP-manifold (C∞(Zred),

{θred,−}Zred). Indeed, consider a cocycle of the following form

O =
∑
r≤0

Or ∈ C∞(Z), ga(Or ) = r , {θ, O} = 0. (21)

Then, f := O0|Z0 ∈ C∞(Z0) is a reducible classical observable, namely, { f , IC} ⊂
IC and {θ0, f } ⊂ IC . This implies that, f |C is basic for the quotient C → Zred
inducing a function Ored ∈ C∞(Zred) which is a cocycle, {θred, Ored}Zred = 0. In
general, when θ0 �= 0, the assignment O → Ored might not descend to cohomology,
see [4, Section 3, Rmk. 9]. On the other hand, the idea is that, under certain regularity
assumptions, any such Ored can be homologically represented by an observable O in
the model given by Z thus defining a “lifting" map from the QP-cohomology of Zred
into the cohomology of Z (see [4, Prop. 11(ii)]).
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4.2.1 Induced AKSZ theories from homological reduction of target spaces

We now turn to the relation found in [4] between the AKSZ construction and the target
space QP-reduction. Assume that the reduction (Zred, ωred, Qred, θred) is regular,
as above, and that ω = dλ with λ reducible to Zred. Hence, we have two natural
(n + 1)-dimensional AKSZ sigma models with space of fields given by

F ≡ FN (Z) = Map(T [1]N ,Z) and Fred ≡ FN (Zred) = Map(T [1]N ,Zred).

The main result of [4] is that Fred arises as an effective theory coming from F, as we
shall review in the remaining of this section.

First, a key observation is that the ga grading induces an analogous one on the
space of superfields F and that the resulting structure (formally) fulfills Definition 4.4
in the case of internal degree n = −1. Moreover, the reduction data underlying (F, ga)
yields Fred as the resulting reduced QP-manifold (of degree −1). We can thus say
that F provides an homological model for the QP-structure of Fred.

We observe that the ga = 0 sector underlyingF is given byF0 := Map(T [1]N ,Z0).
Also, that (formally) we can relate classical observables on F and Fred following the
general homological prescription recalled above. In particular, a classical observable
O ∈ C∞(F), {SF,O}F = 0 with ga-structure given as in Eq. (21) can be seen as
a representative of an observable Ored ∈ C∞(Fred). Moreover, formally, any Ored
can be lifted to such a representative O under appropriate regularity assumptions.

4.2.2 Expectation values, compatible gauge fixings and quantum observables

Next, following [4, §4], the idea is to enhance this homological model for reduc-
tion from the QP-structure to the BV-structure (i.e., the SP-structure and its induced
BV-laplacian, as recalled in Sect. 3.1), thus allowing to relate expectation values of
observables inF andFred. Since the involved supermanifolds are infinite dimensional,
the discussion involvingBerezinians and integration is formal and proceeds by analogy
with finite dimensional models like the following one.

Remark 4.6 (A simple model from [4, §4.1]) Let q : N → N/G be a finite
dimensional principal G-bundle. Then, F0 = T ∗[1]N has a canonical degree −1
symplectic structure and a volume form λ on N induces a Berezinian μλ on F0
defining an SP-structure (see [4, §2.1]). The G-action on N naturally lifts to a Hamil-
tonian action on F0 and the corresponding degree −1 symplectic reduction yields
Fred = F0//G � T ∗[−1](N/G). This reduction can be homologically encoded in

F := F0 × g[1] × g∗[−2]

where the ga-grading is 1 on the second factor and −1 on the third. The factor g[1] ×
g∗[−2] can be endowed with a natural Berezinian μgh. Moreover, there is a natural
function θga=1 ∈ C∞(F) determined by the G-action (with an analogous expression
to that of Example 4.5) and, given S0 a G-invariant degree zero function on F0 (we
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denote its pullback to F with the same notation), then

S := S0 + θ1 ∈ C∞(F), {S, S}F = 0.

This structure (F, ga) fullfills Definition 4.4 and the underlying n = −1 reduced
QP-structure is Fred with the induced function Sred naturally coming from the G-
invariant S0. This provides a simple model to analyze reduction in the context of the
BV-formalism, the main new ingredient being the Berezinianμλ×μgh which we will
study below.

In order to study computations of expectation values in F, we first discuss the impli-
cations of the QME to the underlying reduction. If the given action SF (coming from
the AKSZ construction with target Z) satisfies the QME, this (formally) implies that
both SF|ga=0 and the (formal) Berezinian μ on F descend to Fred. This is explained
in [4, §4.1] and can be tested in the simple model of Remark 4.6 in which one finds
that

iδCλ = q∗λred, (22)

where δC is a fermionic Dirac delta function on T ∗[−1]N (i.e., a multivector on N )
supported on the (odd) conormal C ↪→ T ∗[−1]N to the G-orbits on N and λred is an
induced volume form on N/G. Notice that C is the coisotropic given as the zero level
set of the underlying moment map which defines the symplectic reduction.

Similarly, we have that a quantum observable of the formO = ∑
r≤0 Oga=r for the

F-theory, in particular, induces a reduced observable Ored in Fred (recall Eq. (21)).
More consequences of the condition of being a quantum observable in F can be found
in [4, §4.1].

4.2.3 Compatible gauge fixings

For the expectation value computation on F to descend to a corresponding compu-
tation on Fred, we need to choose the gauge fixing in a particular way. The key
point behind this choice is to take advantage of the ga-grading structure and, upon
integration of ghost fields, to produce a Dirac delta supported on the coisotropic
C = Map(T [1]N , C).

In the simple model of Remark 4.6, this choice is given by

L = N∗[−1]� × g[1] × 0 ↪→ T ∗[−1]N × g[1] × g∗[−2] = F

where � ⊂ N is a lift of a submanifold �̃ ⊂ N/G, i.e., q|� : � → �̃ is a (local)
diffeomorphism, and the coordinates pa ∈ C∞(g∗[−2]) with ga = −1 (i.e., the
antighosts) are set to zero. With this choice, for O ∈ C∞(F) as in Eq. (21) and

satisfying the quantum observable condition �(Oe
i
�
S) = 0, the expectation value
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computation yields (see [4, Prop. 15])

〈O〉 =
∫
L

√
μλ × μgh O e

i
�
S =

∫
N∗[−1]�

√
μλ δC O0|F0 e

i
�
S0

=
∫
N∗[−1]�̃

√
μλred Ored e

i
�
Sred = 〈Ored〉,

(23)

where, in the second equality, we integrated out the ghost ga = 1 variables ξa

(corresponding to g[1]) producing the (fermionic) delta function δC supported on
C ↪→ T ∗[−1]N out of the term θ1|pa=0 = μaξ

a in the exponent (see also Example
4.5), and we then used equation (22) relating the volumes λ and λred on N and N/G,
respectively. It is interesting to notice that, � being a cover for �̃, entails an underly-
ing transversality condition on the ga = 0 part of the gauge fixing, L0 := N∗[−1]�,
with respect to the quotient map C → T ∗[−1](N/G). This condition ensures that L0
descends to the well defined Lagrangian Lred := N∗[−1]�̃ ↪→ Fred and is essential
for 〈O〉 not to be artificially zero (or ill defined in an infinite dimensional situation).

Generalizing the situation given in the model above, coming back to F =
Map(T [1]N ,Z), the choice of compatible gauge fixing L ↪→ F is taken as fol-
lows: the ga < 0 fields are set to zero (i.e., ev∗ pξb = 0) and L0 := L ∩ Fga=0
(namely, the ga = 0 sector of the gauge fixing) is required to descend to a Lagrangian
Lred ↪→ Fred under reduction. Thus, the LagrangianLwill locally look likeL0×Lgh
withL0 ⊂ Map(T [1]N , C) satisfying a transversality condition relative to the quotient
C → Zred and where Lgh is defined by ev∗ pξb = 0 as above.

4.2.4 Expectation values

With a compatible gauge fixing L ↪→ F as above and considering a quantum observ-
able O ∈ C∞(F) with the ga-structure as in (21), we formally obtain

〈O〉 =
∫
L⊂F

√
μ O e

i
�
SF (∗)=

∫
L0⊂F0

√
μ0 δC O|ga=0 e

i
�
SF|ga=0

=
∫
Lred⊂Fred

√
μred Ored e

i
�
SFred = 〈Ored〉

The step (∗) above is a pushforward in which the ga > 0 superfields corresponding to
ev∗ξa are integrated out and the result is a delta distribution factor δC supported on
C = Map(T [1]N , C) (in general, it can have both bosonic and fermionic components).
By the reducibility of SF|ga=0 and O|ga=0 (coming from the QME and the quantum
observable condition, respectively), the resulting integral can be identified with one in
associated with the symplectic quotient Fred = Map(T [1]N ,Zred). See more details
in [4, §4.2].

In the simple finite dimensional model recalled above, the equality of expecta-
tion values (23) is verified exactly. In infinite dimensional situations, a priori certain
“anomalies" could occur so that the computations onF andFred yield different results.
Nevertheless, in concrete cases, we expect that appropriate choices of the underlying
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regularization (of infinite dimensional integrals), of the (ga = 0) gauge fixing, and of
the homological representative O of Ored, can be made so that, indeed, the indepen-
dent computations of 〈O〉 and 〈Ored〉 coincide.
Remark 4.7 If one starts with the reduced data μred, Lred and Ored it can be a non-
trivial task to find the corresponding μ, L and O satisfying the above equality. In
particular, Lred has to be lifted along the symplectic reduction F0 �→ Fred and
finding O can be phrased in homological terms where the technique of homological
perturbation is typically used (see [4, §3 and §4] for a detailed discussion).

5 Lie-theoretic result and field-theoretic application

In this section, we show the main Lie-theoretic result which characterizes the sym-
plectic reduction of the target space appearing in Step (3) in Eq. (1). After this result is
established, we finish the proof of the main Claim 1.1 by combining all the arguments
described thus far.

5.1 Lie-theoretic interpretation of the coisotropic reduction

Let (A[1], QA, πA) encode a Lie bialgebroid (A, A∗). As explained in Sects. 2.1 and
2.3, the double Courant algebroid E = A⊕ A∗ corresponds to the exact QP-manifold
of internal degree 2 given by

M ≡ (M = T ∗[2]A[1], ω = dλ, θ = QA + πA).

Here, we show that (Z = FI (M), ωZ , SZ ) with boundary conditions induced by
A∗[1] can be endowed with the structure encoding an underlying symplectic reduc-
tion (in the sense of Sect. 4.2) and that the associated reduced space is given by
(T ∗[1]GA, ωcan, πG), namely, precisely by the target space of a PSM on the Poisson
groupoid (GA, πG) integrating the lie bialgebroid (A, A∗). The key argument is com-
pletely rigorous and only involves path spaces, extending the construction of GA as
A-paths modulo A-homotopies of [21] (see Sect. 2.2).

5.1.1 Auxiliary finite-dimensional structures

First notice that the graded manifold T [1]I decomposes into the product

T [1]I = I × R[1].

Therefore, we can use the exponential identification with respect to this product. The
advantage is that the graded manifold

Y := FR[1](M) = Map(R[1], T ∗[2]A[1]) = T [−1]T ∗[2]A[1]
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is finite dimensional, the only warning is that it has coordinates in positive and neg-
ative degrees. This finite dimensional Z-graded supermanifold carries the relevant
ga-grading structure that we will need to describe Z = FI (M) below.

We start by identifying the relevant geometric structures of the manifold Y . First
notice that it fits into a double vector bundle given by

Y T [−1]A∗[1]

M A∗[1]

with M = T ∗[2]A[1] as in (12). Therefore, Y can be endowed with an additional
grading that we will denote by ga(·) coming from the above double vector bundle
structure (see [31] for the general theory of double vector bundles). This grading is
given by −1 for the vertical fibers and 1 for the horizontal fibers. (In the language of
double vector bundles, we thus obtain that the core variables have ga = 0 degree.)
Notice that it is globally defined. Second, since R[1] has a natural Berezinian we can
make transgression from M to Y of ω, λ and θ to obtain a QP-structure of degree 1
defined by

(
Y, ωY := TR[1](ω) = ωT , λY := TR[1](λ) = λT , θY := TR[1](θ) = θT

)
.

It is worth noting that the above transgressions coincide with an odd ([−1]-shifted)
version of the tangent lift of differential forms 
(M) → 
(T [−1]M), β �→ βT ,
see [47, §1.3].

Remark 5.1 A coordinate description of (Y, ωY = dλY , θY ) and the ga(·) grading
is the following. The manifold Y = T [−1]T ∗[2]A[1] it has coordinates {q, q̇} for
q ∈ {xi , aα, bα, pi } coordinates on T ∗[2]A[1] with |q̇| = |q| − 1 and

ga(xi ) = ga(ȧα) = ga(bα) = ga( ṗi ) = 0,

ga(aα) = ga(pi ) = 1, ga(ẋ i ) = ga(ḃα) = −1. (24)

The 1-form λY ∈ 
1
1(Y) is given by

λY = ṗidx
i − pidẋ

i + ȧαdbα + aαdḃα,
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and the function θY ∈ C∞
2 (Y) has the form θY = θ0Y + θ1Y with

θ1Y = ∂ jρ
i
α ẋ

j aα pi + ρi
α ȧ

α pi − ρi
αa

α ṗi + 1

2
∂i c

γ
αβ ẋ

i aαaβbγ

+ cγ
αβ ȧ

αaβbγ + 1

2
cγ
αβa

αaβ ḃγ

θ0Y = ∂ j ρ̃
αi ẋ j bα pi + ρ̃αi ḃα pi − ρ̃αi bα ṗi + 1

2
∂i c̃

αβ
γ ẋ i bαbβa

γ

+ c̃αβ
γ ḃαbβa

γ + 1

2
c̃αβ
γ bαbβ ȧ

γ .

Notice that, in the setting of Sect. 4.2, the ghosts ξa correspond to {aα, pi } while the
antighosts pξb correspond to {ẋ i , ḃα}.

It is easy to see that

ga(ωY ) = 0, ga(θ1Y ) = 1 and ga(θ0Y ) = 0.

We can then extract from Y and its ga(·)-grading the underlying reduction data as
recalled in Sect. 4.2.

Proposition 5.2 The reduction data (Y0, i∗ωY , i∗θ0Y , C) are given by

Y0 = T ∗[1]A, i∗ωY = ωcan, i∗θ0Y = πA,

C loc= {ρi
α ȧ

α = 0, −ρi
α ṗi + cγ

βα ȧ
βbγ = 0}.

Proof By (19), we get that Y0 is locally given by the coordinates with ga(·) grading
0 and in our case those are {xi , ȧα, bα, ṗi }, see (24). By the properties of the tangent
lift, {xi , ȧα} are coordinates on A (of degree 0) and { ṗi , bα} are cotangent coordinates
(of degree 1), thus Y0 = T ∗[1]A. This identifies C∞

2 (Y0) = X2(A) and 
2
1(Y0) =


2
lin(T ∗A). Working in coordinates, we see that

i∗ωY = d ṗidx
i + dbαdȧ

α = ωcan and i∗θ0 = −ρ̃αi bα ṗi + 1

2
c̃αβ
γ bαbβ ȧ

γ = πA.

Finally, the coisotropic submanifold is given by (20) and a direct computation show
that it is defined by the equations C = {ρi

α ȧ
α = 0, −ρi

α ṗi + cγ
βα ȧ

βbγ = 0}. � 

One observes that the coisotropic submanifold corresponds to infinitesimal Lie
algebroid paths. In this case, the reduced space T ∗[1]A//C is singular. Below, we will
see that our space of interest FI (M) � Map(I ,Y) involves finite algebroid paths and
homotopies and that, in this case, the corresponding reduction is regular (whenever A
is integrable).
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5.1.2 The reduction underlying

FI (M) We reproduce the preceding computations in

Z := FI (M) = {� ∈ Map(T [1]I ,M) | �(T [1]∂ I ) = A∗[1] ⊆M}.

Since M is an exact QP-manifold of degree 2 and T [1]I has a 1-Berezinian, we can
transgress ω, λ and S and obtain a degree 1 QP-structure on Z defined by

ωZ := TI (ω), λZ := TI (λ) and θZ := id̂I TI (λ)+ TI (θ).

The exponential property of the mapping space allows us to identify Z with paths
in Y ,

Z ∼= {� ∈ Map(I ,Y) | �t=0,1 ∈ A∗[1]}. (25)

Moreover, the key point is that the ga(·) grading of Y can be transported into Z .

Remark 5.3 The local coordinates onM given by (13) induce superfields on Z of the
form

ev∗T [1]I xi = Xi + Ẋ i with X : I → M, Ẋ ∈ 
1(I ; X∗T M),

ev∗T [1]I aα = Aα + Ȧα with A ∈ 
0(I , X∗A), Ȧ ∈ 
1(I ; X∗A),

ev∗T [1]I bα = Bα + Ḃα with B ∈ 
0(I ; X∗A∗), Ḃ ∈ 
1(I ; X∗A∗),
ev∗T [1]I pi = Pi + Ṗi with P ∈ 
0(I ; X∗T ∗M), Ṗ ∈ 
1(I ; X∗T ∗M).

Moreover, recalling the set of coordinates {xi , aα, bα, pi , ẋ i , ȧα, ḃα, ṗi } for Y , the
isomorphism (25) allows us to identify Xi = ev∗I xi , Ẋ i = ev∗I ẋ i and so on. Therefore,
the ga(·)-degree of the fields are

ga(Xi ) = ga( Ȧα) = ga(Bα) = ga(Ṗi ) = 0, ga(Aα) = ga(Pi ) = 1,

ga(Ẋ i ) = ga(Ḃα) = −1.

The boundary conditions read

{Aα|t=0,1 = 0, Pi |t=0,1 = 0}, (26)
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and ωZ , λZ and θZ = θ0Z + θ1Z are given by

ωZ =
∫
I
dṖidX

i + dPid Ẋ
i + dḂαdA

α + dBαd Ȧ
α,

λZ =
∫
I
ṖidX

i − PidẊ
i + ḂαdA

α + Bαd Ȧ
α.

θ1Z =
∫
I
PidI X

i + Aα(dI Bα)+ ∂iρ
j
α Ẋ

i AαPj + ρi
α Ȧ

αPi − ρi
αA

α Ṗi

+ 1

2
∂i c

γ
αβ Ẋ

i AαAβBγ + cγ
αβ Ȧ

αAβBγ + 1

2
cγ
αβ A

αAβ Ḃγ

θ0Z =
∫
I
∂i ρ̃

α j Ẋ i BαPj + ρ̃αi ḂαPi − ρ̃αi Bα Ṗi

+ 1

2
∂i c̃

αβ
γ Ẋ i BαBβ Aγ + c̃αβ

γ ḂαBβ Aγ + 1

2
c̃αβ
γ BαBβ Ȧγ .

(27)

All the constructions relative to Z have been described geometrically, and we can
thus reduce the verification of non-trivial properties to coordinate computations. For
example, by inspection on the above formulas we get that

ga(ωZ ) = 0, ga(θ1Z ) = 1 and ga(θ0Z ) = 0.

Asbefore, this structure onZ togetherwith the extra ga-gradingdetermines symplectic
reduction data as in Sect. 4.2.

Proposition 5.4 The reduction data (Z0, i∗ωZ , i∗θ0Z , C)with i : Z0 ↪→ Z are given
by

Z0 = Map(I , T ∗[1]A), i∗ωZ =
∫
I
ev∗ωcan, i∗θ0Z =

∫
I
ev∗πA

C loc= {∂t X i + ρi
α Ȧ

α = 0, ∂t Bα − ρi
α Ṗi + cγ

βα Ȧ
βBγ = 0}.

Moreover, we have that i∗λZ = ∫
I ev

∗λcan and this 1-form is reducible by C.

Proof From the definition of the ga(·)-degree onZ and Proposition 5.2 follows imme-
diately that Z0 = Map(I , T ∗[1]A). Using the expressions (27), we obtain the other
statements by straightforward computations. � 

This proposition establishes a key connection between the structure on Z and the
Lie-theoretic integration of A described in Sect. 2.2. The first equation in the definition
of C above is no other than Eq. (3) for an algebroid path T I → A. The second equation
is the odd ([1]-shifted) analogue of the equation for an algebroid path in the cotangent
lifted algebroid T ∗A (see Eq. (5) in Example 2.3). Since the cotangent lifted algebroid
structure on T ∗A → A∗ is “linear" (indeed, it defines a so-called VB-algebroid [31]),
the [1]-shift into T ∗[1]A → A∗[1] is inessential for the present considerations, and
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we analogously have that

Map(I , T ∗[1]A)//C = {algebroid paths in T ∗[1]A}
∼

� T ∗[1]GA.

Above, we use GA = PA/ ∼ as recalled in Sect. 2.2. Under this identification, the
function i∗S0Z |C can be identified with a lift of πA to the space of algebroid paths PA,
as appears in [25, §3.3], where it is also shown that it descends to πG (seen here as a
function on T ∗[1]GA). In conclusion, we obtain the main result of this subsection:

Theorem 5.5 Let (A[1], QA, πA) define a Lie bialgebroid (A, A∗)which integrates to
the Poisson groupoid (GA ⇒ M, πG). Then, the quotient C → Zred corresponding
to the reduction data of Proposition 5.4 is regular and the reduced QP-manifold(Zred , (ωZ )red = d(λZ )red , (θZ )red

)
of internal degree 1 is given by

Zred = T ∗[1]GA, (ωZ )red = ωcan, (λZ )red = λcan, (θZ )red = πG .

Remark 5.6 The roles of A and A∗ can be easily reversed in all the constructions above.
In this case, the boundary condition is given by A[1] ⊆ T ∗[2]A[1], the zero section
of the other vector bundle structure. We obtain a different ga(·)-grading given by

g̃a(Xi ) = g̃a(Ḃα) = g̃a(Aα) = g̃a(Ṗi ) = 0, g̃a(Bα) = g̃a(Pi ) = 1,

g̃a(Ẋ i ) = g̃a( Ȧα) = −1.

In order to obtain as reduced manifold T ∗[1]GA∗ with the canonical 1-form as
potential, we also need to change the potential in the Courant algebroid to the one
corresponding to the cotangent fibration T ∗[2]A[1] � T ∗[2]A∗[1] → A∗[1]. In coor-
dinates,

λ̃ = pidx
i + aαdbα.

Remark 5.7 (Lie quasi-bialgebroids) Here, we comment on the possibility of apply-
ing this sub-section’s results to more general Courant algebroids than doubles of Lie
bialgebroids. Pick a vector bundle A → M and consider the internal degree 2 sym-
plectic manifold (T ∗[2]A[1], ω). From Sect. 2.3, we have that a θ ∈ C∞

3 (T ∗[2]A[1])
decomposes into θ = H + QA + πA + H̃ with H ∈ C∞

3 (A[1]) = � ∧3 A∗ and
H̃ ∈ X3−3(A[1]) = � ∧3 A. When {θ, θ} = 0, we have a so-called proto-Lie bial-
gebroid structure on A, see [28, 38]. Following the notation of (13), the coordinate
expression of the new terms is

H = 1

3
hαβγ a

αaβaγ and H̃ = 1

3
h̃αβγ bαbβbγ .

If H �= 0, then A → M is not a Lie algebroid and cannot be integrated. Moreover,
considering Z ⊂ Map(T [1]I , T ∗[2]A[1]) as in this sub-section, we observe that the
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induced function θZ as in (27) contains the extra ga-degree 2 term

θ2Z =
∫
I
∂i hαβγ Ẋ

i AαAβ Aγ + hαβγ Ȧ
αAβ Aγ with ga(θ2Z ) = 2.

Therefore, the reduction procedure of Sect. 4.2 does not apply to Z since Definition
4.4 is not fulfilled. Next, assuming H = 0, the structure on A is known as a Lie
quasi-bialgebroid. In particular, A is a Lie algebroid but πA is not Poisson (only
quasi-Poisson) and the defect to the Jacobi identity is controlled by H̃ . It was shown
in [25, Thm.4.9] that Lie quasi-bialgebroids integrate to quasi-Poisson groupoids,
i.e., a Lie groupoid G endowed with a bivector which is not Poisson. We thus see that
the effective theory should deviate from the ordinary PSM on G (the CME associated
with this non-integrable bivector is not satisfied). From the point of view of our Lie-
theoretic results above, in this case, we see that the Lagrangian A∗[1] = {aα =
0, pi = 0} ⊂ T ∗[2]A[1] is no longer a Q-submanifold due to the term {H̃ ,−} in the
Q-structure. It is thus no longer a valid boundary condition for the definition of Z
and thus, our procedure cannot be carried out (as expected since, otherwise, it would
yield a solution to the CME). To deal with quasi-bialgebroids, we think that a small
modification of our method is needed in which one allows for boundary contributions
that can eventually produce an effective theory on the quasi-Poisson groupoid similar
to the twisted Poisson sigma model studied in [27]. We plan to explore this elsewhere.

5.2 Field-theoretic application: the PSM on GA from a CSM on A ⊕ A∗

Here, we give the details on the heuristic manipulations with path integrals involved
in the main claim 1.1, stating that the Poisson sigma model on the groupoid is an
effective theory for the Courant sigma model on A ⊕ A∗. A key point is that all the
needed constructions, as explained in the previous sections, are of geometric nature
and thus, the relevant verifications can be reduced to the local coordinate case. Also,
for the computation of expectation values we will follow the general procedure of
Sect. 4.2.2 which takes into account the ga-grading on Z = Map(T [1]I ,M).

We begin considering our Courant sigma model as in Sect. 3.2. Recall that for a
three-dimensional manifold N , the expectation value of an observableO ∈ C∞(F) in
the Courant sigma model (M = T ∗[2]A[1], ω = dλ, θ = QA + πA) is given by

〈O〉CSM(N ,A⊕A∗) =
∫
L⊂F

√
μ O e

i
�
SF

where the space of fields F is defined in (16) and the action SF is given by (17). When
N is the cylinder N = � × I , the exponential map explained in Sect. 4.1, yields the
isomorphism

F = Map(T [1](� × I ),M) � Map(T [1]�,Map(T [1]I ,M)) = Map(T [1]�,Z),
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where Z = Map(T [1]I ,M). Let us fix coordinates on M as in Sect. 3.2. The above
isomorphism induces a decomposition of superfields as

X
i = Xi + Ẋi , A

α = Aα + Ȧα, Bα = Bα + Ḃα, Pi = Pi + Ṗi

where Xi = ev∗�Xi for Xi coordinate in Z and so on. For simplicity, we assume that
∂� = ∅ so that ∂N = � × ∂ I , and we impose the boundary conditions coming from
(26), i.e.,

{Aα|t=0,1 = 0, Pi |t=0,1 = 0}.

Remark 5.8 (Corners III) Following Remarks 4.2 and 4.3, the discussion can be easily
adapted to the case ∂� �= ∅ by choosing a Lagrangian L2 ↪→ Z = FI (M) to define
the boundary conditions corresponding to ∂� in Map(T [1]�,Z) on top of those
corresponding to ∂ I already included in the definition ofZ . To see a concrete example,
let us recall that, when � = D is a 2-disk, the boundary conditions on T [1]∂D used
by Cattaneo–Felder in [12] for a PSM with target a general Poisson manifold (P, πP )

correspond to the zero section 0P ↪→ T ∗[1]P . Then, a choice of boundary conditions
for our CSM on D × I which will lead to the Cattaneo–Felder BCs on the effective
theory with source D and target P = GA corresponds to the Lagrangian L2 ↪→ Z
which, in the coordinates for Z given in Remark 5.3, is given by

L2
loc= {Bα = 0, Ṗi = 0, Ẋ i = 0, Ḃα = 0}.

Notice that the choice Ẋ i = 0, Ḃα = 0 corresponds to the ga = −1 sector and is
taken for consistency with the overall gauge fixing described below. The equations
Bα = 0, Ṗi = 0 define a Lagrangian on Zga=0 which goes down to the desired zero
section of T ∗[1]GA upon reduction.

Let us next study the structure on Map(T [1]�,Z). In the new superfields, the
symplectic form is given by

ωF =
∫
T [1]�

μ�

∫
I
dṖidXi + dPidẊi + dḂαdAα + dBαdȦα
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and the action SF = id̂�×I
T(λ)+ T�×I (θ) takes the form

id̂�×I
T(λ) =

∫
T [1]�

μ�

∫
T [1]I

μI

(
Pi (d� × dI )X

i + Bα(d� × dI )A
α
)

=
∫
T [1]�

μ�

∫
I
Ṗi d�Xi + Pi dIXi − Pi d�Ẋi

+Ḃαd�Aα − BαdIAα + Bαd�Ȧα

=
∫
T [1]�

μ�

∫
I

(
Ṗi d�Xi + Bαd�Ȧα

)
+ Pi dIXi

+Aα(dIBα)− Pi d�Ẋi + Ḃαd�Aα,

T�×I (θ) =
∫
T [1]�

μ�

∫
T [1]I

μI

(
ρi

αA
α
Pi + 1

2
cγ
αβA

α
A

β
Bγ

+ρ̃αi
BαPi + 1

2
c̃αβ
γ BαBβAγ

)

=
∫
T [1]�

μ�

∫
I
∂iρ

j
αẊ

iAαP j + ρi
αȦ

αPi − ρi
αA

αṖi

+1

2
∂i c

γ
αβẊ

iAαAβBγ + cγ
αβȦ

αAβBγ + 1

2
cγ
αβA

αAβ Ḃγ

+∂i ρ̃
α j ẊiBαP j + ρ̃αi ḂαPi − ρ̃αiBαṖi

+1

2
∂i c̃

αβ
γ ẊiBαBβAγ + c̃αβ

γ ḂαBβAγ + 1

2
c̃αβ
γ BαBβȦγ .

Finally, we consider the general procedure of Sect. 4.2.2 to relate the expec-
tation values in F = Map(T [1]�,Z) to those on the reduced theory Fred =
Map(T [1]�,Zred), having inmind thatwe already provedZred � T ∗GA in Sect. 5.1.

According to the general treatment, a choice of compatible gaugefixingL ↪→ Fwill

locally look likeL
loc= L0×Lgh ↪→ F0×Fgh

loc= F, withL0 ↪→ Map(T [1]�,Zga=0)
inducing a Lagrangian Lred ↪→ Fred upon reduction by C = Map(T [1]�, C) and

Lgh = {(Aα,Pi , Ẋi , Ḃα) ∈ Fgh | Ẋi = 0, Ḃα = 0}, (28)

being defined by setting the fields with ga < 0 (i.e., the antighosts) to zero. When we
restrict the action SF to the subset with antighosts set to zero, we obtain

SF|F0×Lgh =
∫
T [1]�

μ�

∫
I

(
Ṗi d�Xi + Bαd�Ȧα

)
+

(
− ρ̃αiBαṖi

+ 1

2
c̃αβ
γ BαBβȦγ

)

+ Pi

(
dIXi + ρi

αȦ
α
)
+ Aα

(
dIBα − ρi

αṖi + cγ
βαȦ

βBγ

)
.

(29)
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As recalled from [4] in the general setting of Sect. 4.2.2, we consider an observableO
on F which has the ga-structure given in eq. (21) and induces a reduced observable
Ored on Fred. Integrating out the ga > 0 superfields Pi and Aα inside of 〈O〉CSM
yields a delta δC supported on the coisotropic submanifold C = Map(T [1]�, C).
Following that section further, the resulting integral formally corresponds to 〈Ored〉
on Fred = Map(T [1]�,Zred). Finally, by Theorem 5.5, we have Zred � T ∗[1]GA

and that 〈Ored〉 identifies with the an expectation value for the PSM with target
(GA, πG). This finishes the arguments supporting Claim 1.1.

A detailed analysis of howgiven observablesOred of the PSMcan be homologically
represented by observables O in the CSM, specializing the general discussion of
Sect. 4.2.2, will be detailed elsewhere. The fact that a compatible gauge fixing L ↪→
F with the features used above can actually be implemented is a consequence of
the discussion in the following Remark, which describes the transverse geometry
associated with the quotient C → T ∗[1]GA.

Remark 5.9 (Algebroid sprays) Following [7], one can use a so-called algebroid spray
Z ∈ X1(A) for A to construct a local section of the quotient

q : C → Zred � T ∗[1]GA.

Indeed, Z is a vector field whose flow allows one to choose a particular algebroid path
t �→ a(t) out of each initial condition a0 ∈ A close enough to the zero section. In this
way, one obtains an exponential-type identification A ⊃ UA

∼→ UG ⊂ GA, a0 �→
[at ], onto a neighborhood UG of the identities 1 : M ↪→ GA in the groupoid GA;
notice that this is global along M . This identification can be promoted to one between
T ∗[1]UG and T ∗[1]UA ↪→ T ∗[1]PA so that (small enough) groupoid elements are
associated with the corresponding (small enough) algebroid paths. In this way, we get
a local section of the quotient q above,

K : T ∗[1]UG ⊂ T ∗[1]GA → C

defined around the identities inGA. In Sect. 6.3 below,wewill explore this construction
in detail for the particular case A = T ∗π M , coming from a Poisson manifold (M, π),
in which case Z is called a Poisson spray and πG |UG is shown to define a symplectic
realization through a specific formula [22]. Finally, we point thatK can be used to lift
“small" fields from the PSM to the CSM,

{φ ∈ Map(T [1]�, T ∗[1]GA) : Im(φ)⊂T ∗[1]UG} K� Map(T [1]�, C)

⊂ Map(T [1]�, MMap(T [1]I ,M))︸ ︷︷ ︸
�Map(T [1](�×I ),M)

.

Moreover, the restriction to the image ofK inside C can be interpreted as part of theL0

component of a complete gauge fixingL
loc= L0×Lgh for the full CSMwhich leads to

an effective PSM gauge fixing Lred ⊂ Map(T [1]�, T ∗[1]UG) after reduction, as in
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the main computation (1) and Sect. 4.2.2. (In other words, K can be used to construct
a lift L0 of a given Lred as described in Remark 4.7.)

6 Examples

This final section is devoted to particularly relevant examples that illustrate howClaim
1.1 works. In the first simple example, we reprove many of the relevant arguments to
gain insight on how they work and to bring concreteness to the abstract treatment of
the previous sections. In the last example, taking A = T ∗π M induced from a Poisson
structure, we make the connection between a partial gauge fixing choice for the CSM
and a construction of a symplectic realization in the context of Poisson geometry due
to Crainic and Marcut [22].

6.1 Lie bialgebras

In this example, we work out the details of the case in which M = pt is a point
and, thus (A, A∗) = (g, g∗) is a Lie bialgebra. We also use the example to detail the
general constructions. To emphasize the relevant ingredients, we begin with a sub-case
in which the dual structure on g∗ is trivial.

6.1.1 Lie algebra case

Let (g, [·, ·]) be a Lie algebra that we consider it as a Lie bialgebra with πg = 0. The
Poisson Lie group integrating it is (G, πG = 0), the connected and simply connected
Lie group integrating g with the zero Poisson structure. The corresponding double is
the semi-direct product E = g � g∗ or, in graded terms, given by the internal degree
2 QP-manifold (T ∗[2]g[1] ∼= (g⊕ g∗)[1], ω, θ = Qg + 0). Hence, Claim 1.1 shows
the heuristic relation between observables

〈O〉CSM(�×I ,g�g∗) = 〈Ored〉PSM(�,(G,πG=0)).

For a three-dimensional N , the space of superfields FN (T ∗[2]g[1]) for the CSM
is parametrized by two superfields A and B, each superfield has four components
{A(q), B

(q)}3q=0 with

A(q) ∈ 
q(N ; g), B
(q) ∈ 
q(N ; g∗) and |A(q)| = |B(q)| = q − 1.

The action is given by

SCSM(N ,g�g∗) =
∫
T [1]N

BαdNA
α + 1

2
cγ
αβA

α
A

β
Bγ . (30)

Therefore, the CSM coincides with the 3d Chern–Simons for the quadratic Lie algebra
g � g∗ that is also known as 3d BF-theory associated with g.
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Considering N = �× I as before, our boundary conditions reduce to A|t=0,1 = 0.
Taking the gauge fixing as in (28), we obtain that the action (29) has the simpler form

(SCSM(N ,g�g∗))|F0×Lgh =
∫
T [1]�

μ�

∫
I
Bαd�Ȧα + Aα

(
dIBα + cγ

βαȦ
βBγ

)
.

(31)

Integrating out the fieldAα in the path integral underlying 〈O〉CSM(�×I ,g�g∗) results
in a Dirac delta distribution δC supported on the coisotropic submanifoldC = {dIBα+
cγ
βαȦ

βBγ = 0}. We recognize this equation as the one given algebroid paths on the
Lie algebroid T ∗πg∗ [1]g∗[1] � T ∗[1]g associated with the linear Poisson structure
πg∗ on g∗[1]. Moreover, the remaining term in the action (31) is invariant under the
infinitesimal gauge transformations

Bα → Bα + ε(cγ
βαBγ �β) Ȧα → Ȧα + ε(dI �

α + cα
βγ Ȧ

β�γ )

with �α ∈ 
0(I , g), �α|t=0,1 = 0.

These symmetries restricted to C correspond to algebroid homotopies and yield the
null directions that must be quotiented out in the coisotropic reduction in Sect. 5.1.
The identification

(C/ ∼) � T ∗[1]G,

can be verified directly in this case. If we denote by q : C → T ∗[1]G the quotient
projection, the induced superfields on the quotient are Y

α = q(Ȧα), Vα = q(Bα)

with components {Yα
(k), V

(k)
α }2k=0 defined by

Y(0) : � → G, Y(k) ∈ 
k(�;Y∗
(0)TG), V(k) ∈ 
q(�;Y∗

(0)T
∗G)

and effective action given by

(SCSM(N ,g�g∗))e f f =
∫
T [1]�

Vαd�Y
α = SPSM(�,(G,πG=0)). (32)

Remark 6.1 In this simple case, the identification g ⊃ Ug
∼→ UG ⊂ G given in

Remark 5.9 can be taken to be the ordinary exponential from a neighborhood of zero
in the Lie algebra to a neighborhood of the identity in the group. Following that
Remark further, we get an induced identification T ∗[1]UG � T ∗[1]Ug ↪→ T ∗[1]Pg
with which we can relate explicitly the fields of the PSM lying in UG ⊂ G with a
subset of fields in the CSM described in terms of g⊕g∗. Thus, in this simple case, our
main claim boils down to the use of exponential coordinates for G and representing
elements as certain paths from zero in g. As mentioned in Remark 5.9, the restrictions
on the CSM fields obtained this way can be interpreted as part of a gauge fixing for
the full theory.
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As mentioned in Remark 5.6, the roles of g and g∗ can be exchanged. In the present
simple case, it is equivalent to an integration by parts in (31). The resulting theory
corresponds to the following case.

6.1.2 Lie coalgebra case

Let (g∗, [·, ·]∗) be a Lie algebra and consider (g, [·, ·] = 0, πg) the associated Lie
bialgebra with trivial Lie bracket. The Poisson Lie group integrating it is (g, πg)where
g is an abelian group under addition and the linear Poisson structure πg is induced by
[·, ·]∗. The corresponding double is the semi-direct product E = g � g∗ or, in graded
terms, the internal degree 2 QP-manifold (T ∗[2]g[1] ∼= (g⊕g∗)[1], ω, θ = 0+πg∗).
Hence, Claim 1.1 gives the heuristic relation between observables

〈O〉CSM(�×I ,g�g∗) = 〈Ored〉PSM(�,(g,πg)).

For the CSM, we have the same space of superfields that in the previous case and
the action for a three-dimensional manifold N is

SCSM(N ,g�g∗) =
∫
T [1]N

BαdNA
α + 1

2
c̃αβ
γ BαBβA

γ .

Notice that it coincides with the previous action (31) once we integrate by parts if N
is closed or once we impose the boundary conditions {A = 0} or {B = 0}.

By considering N = � × I with boundary conditions {A = 0} and making the
same gauge fixing as before, we arrive to

(SCSM(N ,g�g∗))|F0×Lgh =
∫
T [1]�

μ�

∫
I
Bαd�Ȧα + 1

2
c̃αβ
γ BαBβȦγ + AαdIBα.

Integrating out the fieldAα in the path integral underlying 〈O〉CSM(�×I ,g�g∗) yields
a delta supported on fields Bα which are constant along t ∈ I . Hence, making the field
redefinition Vα = Bα and Y

α = ∫
I Ȧ

α we obtain that the effective action is given by

(SCSM(N ,g�g∗))e f f =
∫
T [1]�

Vαd�Y
α + 1

2
c̃αβY

γ

γ VαVβ

=
∫
T [1]�

Vαd�Y
α + 1

2
π

αβ
g∗ VαVβ = SPSM(�,(g,πg∗ )).

The above field redefinition was given in [18] and is a special case of the general
coisotropic reduction procedure of Sect. 5.1.Moreover, this case also yields a reduction
procedure from the 3d BF-theory to the 2d BF-theory both associated with the Lie
algebra g∗. More general boundary conditions for the Abelian case, i.e., when [·, ·]∗ =
0, were intensively studied in [26].
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6.1.3 General Lie bialgebra case

The combination of the two previous examples yields the Lie bialgebra case
(g, [·, ·], πg). The corresponding target space of the PSM is given by the Poisson
Lie group (G ⇒ pt, πG) integrating this bialgebra.

Associated with the bialgebra we have its Drinfeld double E = g �� g∗, that
in graded terms is given by the internal degree 2 QP-manifold (T ∗[2]g[1] ∼= (g ⊕
g∗)[1], ω, θ = Qg ⊕ πg∗). For a surface �, the main Claim 1.1 gives the following
relation between observables

〈O〉CSM(�×I ,g��g∗) = 〈Ored〉PSM(�,(G,πG )).

The computations are an straightforward combination of the two previous cases.
We notice that the 3d-model coincides with 3d Chern–Simons theory for the

quadratic Lie algebra given by the double g �� g∗. However, our result is differ-
ent from the usual holographic principle, see, e.g., [17, 35], since our 2d theory is
again topological instead of conformal. On the other hand, PSM with target a Poisson
Lie group are already present in the literature, see, e.g., [5, 8], mainly in connection
with coset models G/G as in [1, 23]. Finally, a direct relation between Chern–Simons
on g �� g∗ and the PSM on (G, πG), in exactly the same spirit of the present paper,
was previously explored by A. Cattaneo and K. Wernli ( [10]). The idea was to try to
characterize the quantumgroup structure associatedwith (G, πG) via 3d computations
on D × I , with D a disk (see also [17]).

6.2 Trivial A case

This case was explained in [18] and gives the inspiration for our general statement.
Here, we compare both approaches. Let (A∗, [·, ·]∗, ρ̃) be a Lie algebroid and consider
(A, [·, ·] = 0, ρA = 0, πA) the associated Lie bialgebroid with trivial Lie bracket and
anchor. The Poisson groupoid integrating it is (A ⇒ M, πA) where A ⇒ M is an
abelian groupoid with multiplication given by the fiber-wise addition and the linear
Poisson structure πA is induced by [·, ·]∗ and ρ̃ (as in Sect. 2).

The double associated with (A, A∗) is the Courant algebroid E = A � A∗ or, in
graded terms, the internal degree 2QP-manifold (T ∗[2]A[1], ω, θ = 0+πA∗). Hence,
Claim 1.1 gives the heuristic relation between observables

〈O〉CSM(�×I ,A�A∗) = 〈Ored〉PSM(�,(A,πA)).

For the CSM on a 3d manifold N , the space of superfields F = FN (T ∗[1]A[1]) is
locally given by four superfields X, A, B, P each of them with four components living
as follows X(0) : N → M and

X(q) ∈ 
q(N ;X∗
(0)T M), A(q) ∈ 
q(N ;X∗

(0)A), B
(q) ∈ 
q(N ;X∗

(0)A
∗),

P
(q) ∈ 
q(N ;X∗

(0)T
∗M)
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of internal degrees |X(q)| = q, |A(q)| = |B(q)| = q − 1, |P(q)| = q − 2. Thus, the
action (17) simplifies to

SF =
∫
T [1]N

Pi dNX
i + BαdNA

α + ρ̃αi (X)BαPi + 1

2
c̃αβ
γ (X)BαBβA

γ .

By considering N = � × I with boundary conditions {A|t=0,1 = 0} and making
the gauge fixing (28), we arrive to

SF|F0×Lgh =
∫
T [1]�

μ�

∫
I
Ṗi d�Xi + Bαd�Ȧα − ρ̃αiBαṖi

+1

2
c̃αβ
γ BαBβȦγ + Pi dIXi + AαdIBα.

Integrating out the fields Aα,Pi in the path integral underlying 〈O〉CSM(�×I ,A�A∗)
yields a delta supported on fields Xi ,Bα which are constant along t ∈ I .

In our approach, the effective action is obtained via a coisotropic reduction that can
be easily understood as quotient by the symmetries

Ȧα → Ȧα + εdI �
α, Ṗi → Ṗi + εdI ξi , �α ∈ 
0(I , A), ξi ∈ 
1(I ,X∗T ∗M)

with �α|t=0,1 = (ξi )|t=0,1 = 0. Therefore, as done in [18], the effective fields can be

identified with the following integrals along I :
∫
I Ȧ

α,
∫
I Ṗi . By direct comparison,

the resulting effective action indeed coincides with the PSM on (A, πA).

6.3 Poissonmanifolds, symplectic groupoids and the spray realization

We begin recalling some general Poisson-geometric facts. We already explained in
Example 2.1 and Sect. 2.1 that associated with a Poisson manifold (M, π) there
is a natural Lie bialgebroid (A = T ∗π M, A∗ = T M). In this case, the associated
supergeometric data (A[1], QA, πA) have the property that πA = ω−1

can is the canon-
ical (shifted) symplectic structure on T ∗[1]M and thus, we get an internal degree
1 QP-manifold (T ∗[1]M, Qπ , ωcan). In contrast with the previous examples, there
can be obstructions for the Lie algebroid A = T ∗π M to be integrable by a Lie
groupoid, see [21]. Assuming it is integrable, then the induced Poisson structure πG

on G = GT ∗π M ⇒ M is actually symplectic πG = ω−1
G . The pair (G ⇒ M, ωG)

defines a symplectic groupoid integrating the Poisson manifold (M, π) and the source
map s : (G, ωG) → (M, π) is a Poisson morphism defining a (strict) symplectic
realization, see, e.g., [20].

Let us now move toward the associated field theories. The corresponding double
of (T ∗π M, T M) is the Courant algebroid E = T ∗M ��π T M defined by

E = T M ⊕ T ∗M, 〈X + α,Y + β〉 = α(Y )+ β(X), a(X + α) = X + π
(α),

�X + α,Y + β� = [X ,Y ] + [π
(α), Y ] − 〈β, [π,Y ]〉 + [α, β]π + LXβ − iY dα
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for X ,Y ∈ X(M), α, β ∈ 
1(M). The supergeometric description of Proposition 2.8
encodes this structure in the internal degree 2 QP-manifold (T ∗[2]T ∗[1]M, ω, θ =
Qπ + ω−1

can).

Our main result, Claim 1.1, states that for � a closed surface we have the relation

〈O〉CSM(�×I ,T ∗M��π T M) = 〈Ored〉PSM(�,(G,ω−1G ))
.

In this case, we shall not repeat all the general arguments. Instead, we shall enrich
them by choosing a partial gauge fixing for the CSM using an algebroid spray as in
Remark 5.9. Since A = T ∗π M , the spray is called a Poisson spray Z ∈ X(T ∗M) (see
below for a definition) and the main result will be that the partially gauge fixed CSM
action recovers the formula given in [22] for a symplectic realization (U ⊂ T ∗M, ωZ )

of (M, π).

We start by describing the CSM action for 3d-manifold N . In the remainder of this
section, we interchange the notation for variables a and b (with underlying exchange
A = T ∗π M ↔ A∗ = T M , as explained in Remark 5.6) although we are indeed
interested in GA and not GA∗ . We count on the reader not getting confused as the
role of each field will be explained in detail below. The space of superfields F =
FN (T ∗[2]T [1]M) is parametrized by X, A, B, P, each of them with four components,
defined as

X(0) : N → M, X(q), A(q) ∈ 
q(N ;X∗
(0)T M), B

(q), P
(q) ∈ 
q(N ;X∗

(0)T
∗M)

with degrees |X(q)| = q, |A(q)| = |B(q)| = q − 1, |P(q)| = q − 2 and action given
by

SCSM(N ,T ∗M��π T M) =
∫
T [1]N

Pi dNX
i + A

i dNBi + A
i
Pi + π i j (X)BiP j

+1

2
∂iπ

jk(X)B jBkA
i . (33)

Taking N = � × I , our boundary conditions read {B|t=0,1 = 0}. We locally split the
superfields into the sectors F = F0×Fgh with Fgh = {Bi ,Pi , Ẋi , Ȧi } and choose the
“UV" gauge fixing Lgh = {Ẋi = Ȧi = 0} ⊂ Fgh . Then, the action (33) reduces to

SCSM(N ,T ∗M��π T M)|F0×Lgh =
∫
T [1]�

μ�

∫
I
Ṗi d�Xi + Ai d�Ḃi − Ai Ṗi

+ Pi

(
dIXi + π j i Ḃ j

)

+ Bi

(
dIAi − π i j Ṗ j + ∂kπ

j i Ḃ jAk
)
.

By integrating out the fields Pi and Bi in the path integral underlying
〈O〉CSM(�×I ,T ∗M��π T M), we obtain deltas supported on the coisotropic submanifold
Map(T [1]�, C) locally given by {dIXi+π j i Ḃ j =0, dIAi−π i j Ṗ j+∂kπ

j i Ḃ jAk=0}.
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From the general reduction result in Sect. 5.1, we know that the underlying sym-
plectic quotient for the coisotropic C ⊂ Z = FI (M) yields

q : C → C
∼ � T ∗[1]G. (34)

Following Remark 5.9, the key point in this subsection is to use a Poisson spray to
define a (local) section K of q on a neighborhood of the form T ∗[1]UG ⊂ T ∗[1]G
whereUG ⊂ G is an open neighborhood of the identity arrows 1M ⊂ G in G. Indeed,
the Poisson spray will also allow us to identifyUG � U ⊂ T ∗M with a neighborhood
of the zero section on the algebroid T ∗M .

We thus proceed to describe Poisson sprays and the induced section K. A Poisson
spray for (M, π) is a vector field Z on the manifold T ∗M satisfying that

∀ξ ∈ T ∗M, (dp)ξ (Zξ ) = π
(ξ) and m∗
λZ = λZ ∀λ > 0,

where p : T ∗M → M is the bundle projection and mλ : T ∗M → T ∗M is the fiber
multiplication by λ ∈ R. Denoting by ϕt : T ∗M → T ∗M its flow, the key point is
that t �→ ϕt (y) defines an algebroid path in A = T ∗π M for each y ∈ T ∗M . Consider
an open neighborhood U ⊆ T ∗M of the zero section where the flow of the spray is
defined for t ∈ [0, 1]. Then, possibly shrinking U , the following 2-form

ωZ =
∫
I
ϕ∗t ωcan dt

is symplectic on U . The main statement in [22] says that the bundle projection

p : (U ⊂ T ∗M, ωZ ) → (M, π)

is a Poisson morphism, thus defining a (strict) symplectic realization of (M, π). The
idea is that, as it will be clear below, (U , ωZ , p) is isomorphic to a neighborhood
(UG, ωG , s) of 1M ⊂ G in G with s being the source map of G.

Let us now describe the section K of the quotient (34). The idea is as follows:
recalling that G is identified with algebroid paths in A = T ∗π M modulo algebroid
homotopies, given y ∈ U ⊂ T ∗M we can use the flow ϕt of the spray to produce an
algebroid path

t �→ ϕt (y).

In [21], it is shown that U can be taken small enough so that this procedure defines a
map expZ : U → PA ⊂ Map(I , T ∗M) which cuts the algebroid homotopy classes
transversally, thus inducing the diffeomorphism U � UG mentioned above. This
diffeomorphism has a natural lift to one between T ∗[1]U and a neighborhood of paths
inside C, thus providing the desired sectionK of q in (34). Notice that this construction
is global along M .
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Finally, we use K to promote PSM fields into a subset of “partially gauge fixed"
CSM fields, as described in Remark 5.9. Our aim is to compare the correspond-
ing restricted CSM action and the symplectic PSM with target (U , ωZ ). To that
end, we first describe the latter with focus on the restriction to the classical fields
Hom(T�, T ∗U ) ⊂ Map(T [1]�, T ∗[1]U ) given by vector bundle morphisms.6

By the general construction recalled on Sect. 3.2, since T ∗U � TU by means
of the symplectic structure on U , the PSM of (U , ωZ ) can be defined by fields
Y : � → U , V ∈ 
1(�; Y ∗TU ). Moreover, since U ⊆ T ∗M , we decompose
Y = (Yx ,Yb) and V = (Vx , Vb) into vertical and horizontal components as

Yx : � → M, Yb ∈ 
0(�, Y ∗x T ∗M), Vx ∈ 
1(�,Y ∗x T M)

and Vb ∈ 
1(�, Y ∗x T ∗M).

Here, x denotes coordinates on M and b fiberwise linear coordinates on T ∗M . With
these fields and identifications, the classical part of the PSM action (11) becomes

S(cl)
PSM(�,(U ,ωZ ))

=
∫

�

ωZ (V i , d�Y
i )+ 1

2
ωZ (V i , V j )

=
∫

�

∫
I

(
ϕ∗t (ωcan)(V i , d�Y

i )+ 1

2
ϕ∗t (ωcan)(V i , V j )

)
dt .

On the other hand, we can consider the embedding of (classical) PSM fields into CSM
fields induced by K,

jZ : Hom(T�, TU ) → Map(T [1]� × T [1]I , T ∗[2]T [1]M) = F

which results from the embedding of the internal degree zero part Hom(T�, TU ) ⊂
Map(T [1]�, T [1]U ), the spray-induced identification

T [1]U � T ∗[1]U K
↪→ C ⊂ Map(T [1]I , T ∗[2]T [1]M)

and the exponential identification of Sect. 4.1.
In local coordinates, one characterizes the image of jZ as those fields on T [1](�×I )

whose t-dependence is fixed by the spray flow as follows:

(
Xi (e, t), Ḃi (e, t)

) = (
ϕ
1,i
t

(
X(e, 0), Ḃ(e, 0)

)
, ϕ

2,i
t

(
X(e, 0), Ḃ(e, 0)

))
(35)

6 These are the components of the superfields which have internal degree zero, see, e.g., [12].
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for e ∈ �, t ∈ I = [0, 1], while the other two fields appear as variations of the
previous ones

Ai (e, t) = ∂ϕ
1,i
t

∂X j (e, 0)
A j (e, 0)+ ∂ϕ

1,i
t

∂ Ḃ j (e, 0)
Ṗ j (e, 0) (36)

Ṗi (e, t) = ∂ϕ
2,i
t

∂Xk(e, 0)
Ak(e, 0)+ ∂ϕ

2,i
t

∂ Ḃk(e, 0)
Ṗk(e, 0) (37)

whereweabbreviatedϕ
1,i
t = ϕ

1,i
t

(
X(e, 0), Ḃ(e, 0)

)
andϕ

2,i
t = ϕ

2,i
t

(
X(e, 0), Ḃ(e, 0)

)
.

Themain result relating this spray-induced partial gauge fixing of theCSM(namely,
the image of jZ ) to the symplectic realization ωZ is the following.

Proposition 6.2 With the notations above and using the upper-script (cl) to indicate
the internal degree zero (i.e., the classical) part of the corresponding action,

SCSM(�×I ,T ∗M��π T M) ◦ jZ = S(cl)
PSM(�,(U ,ωZ ))

where jZ : Hom(T�, TU ) → Map(T [1]� × T [1]I , T ∗[2]T [1]M) is the injection
of PSM fields into CSM fields induced by the Poisson spray Z ∈ X(T ∗M) as described
using Eqs. (35)–(37) above and ωZ ∈ 
2(U ⊂ T ∗M) is the symplectic realization
2-form defined by Z in [22].

Proof Once we reduce the statement to the coordinate case, we need to show

∫
�

ωZ (V i , d�Y
i )+ 1

2
ωZ (V i , V j ) =

∫
�

∫
I

(
Ṗi d�Xi + Aid� Ḃi − Ai Ṗi

)
dt,

after the identifications Xi (e, 0) = Y i
x (e), Ḃi (e, 0) = Y i

b(e), Ai (e, 0) =
Vx (e), Ṗi (e, 0) = V i

b (e), e ∈ � and where the t-dependence of X , Ḃ, A, Ṗ is
defined by Eqs. (35)-(37). After these identifications, the statement follows from the
equalities

ϕ∗t (ωcan)(V i , d�Y
i ) = Ṗi d�Xi + Aid� Ḃi and

1

2
ϕ∗t (ωcan)(V i , V j ) = −Ai Ṗi (38)

that we will prove by direct computation. In order to see these equations observe that

ϕ∗t (ωcan) = dϕ1,i
t ∧ dϕ2,i

t =
(

∂ϕ
1,i
t

∂Y j
x (e)

dY j
x + ∂ϕ

1,i
t

∂Y j
b (e)

dY j
b

)

∧
(

∂ϕ
2,i
t

∂Y k
x (e)

dY k
x +

∂ϕ
2,i
t

∂Y k
b (e)

dY k
b

)
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and

V i = V i
x (e)

∂

∂Y i
x
+ V i

b (e)
∂

∂Y i
b

and d�Y
i = d�Y

i
x (e)

∂

∂Y i
x
+ d�Y

i
b(e)

∂

∂Y i
x
.

Finally, if we combine Eqs. (36) and (37) with

d�Xi = ∂ϕ
1,i
t

∂X j (e, 0)
d�X j (e, 0)+ ∂ϕ

1,i
t

∂ Ḃ j (e, 0)
d� Ḃ j (e, 0)

d� Ḃi = ∂ϕ
2,i
t

∂X j (e, 0)
d�X j (e, 0)+ ∂ϕ

2,i
t

∂ Ḃ j (e, 0)
d� Ḃ j (e, 0),

a further straightforward computation shows that the equations in (38) follow as
desired. � 
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