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Abstract: Plant density is a significant variable in crop growth. Plant density estimation by combining
unmanned aerial vehicles (UAVs) and deep learning algorithms is a well-established procedure.
However, flight companies for wheat density estimation are typically executed at early development
stages. Further exploration is required to estimate the wheat plant density after the tillering stage,
which is crucial to the following growth stages. This study proposed a plant density estimation
model, DeNet, for highly accurate wheat plant density estimation after tillering. The validation
results presented that (1) the DeNet with global-scale attention is superior in plant density estimation,
outperforming the typical deep learning models of SegNet and U-Net; (2) the sigma value at 16 is
optimal to generate heatmaps for the plant density estimation model; (3) the normalized inverse
distance weighted technique is robust to assembling heatmaps. The model test on field-sampled
datasets revealed that the model was feasible to estimate the plant density in the field, wherein
a higher density level or lower zenith angle would degrade the model performance. This study
demonstrates the potential of deep learning algorithms to capture plant density from high-resolution
UAV imageries for wheat plants including tillers.

Keywords: plant density; remote sensing; deep learning; unmanned aerial vehicle (UAV); wheat; tillering

1. Introduction

Plant density is a critical variable for crop growth and yield by influencing inter- and
intraspecific competition for the available resources (e.g., water, nutrients, and radiation) [1].
During the growth season, sowing and planting densities should be similar in optimal
conditions. However, poor emergence, competition for resources, extreme weather events,
technical issues within sowing machinery, and pests and diseases would influence planting
density over the growing period [2–5]. Moreover, plant arrangements in the field are pivotal
to precise crop management, which can determine plant establishment and growth [2,3]
and guide site-specific irrigation and fertilization [6,7]. Therefore, developing accurate,
detailed, and non-destructive approaches for plant density monitoring is crucial.

Plant density monitoring was traditionally based on ground counts within quadrats
or segments [2]. Manually counting plants in the field is time-consuming and destructive,
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making it impossible to undertake over a large area. Remote sensing, which typically
observes crops from a canopy top view, can monitor plant density over extended areas [8].
According to platforms, remote sensing can be categorized into three main types: satellite,
proximal, and unmanned aerial vehicle (UAV) [9]. Observing crops from space, satellite
remote sensing can estimate extensive plant distribution by employing empirical relation-
ships between ground measurements and vegetation indices [10]. However, satellite-based
sensors have limitations in presenting details, especially for identifying field-scale indi-
vidual plants due to coarse spatial resolutions [8]. The proximal platform can provide
high-resolution images for plant counting, which has been widely used for plant density
surveys [2,11,12]. However, its application in practice is either impeded by large observ-
ing frame installation (e.g., gantry-based platforms) or limited with flexibility in field
panoramic observation (e.g., handheld, pole-based, or unmanned ground vehicle-based
platforms). Benefiting from significant progress in hardware and decreased equipment cost,
unmanned aircraft vehicles (UAVs) have become a promising platform for conducting plant
density surveys [9]. Moreover, it is feasible to acquire high-resolution images of individual
plants using UAVs due to their flexibility in flight altitude [13].

However, pinpointing single plants from dense canopies within UAV images (e.g.,
more than 1000 plants per image in this study) is still challenging. Although manually
counting plants from UAV imagery is relatively simple and straightforward, exploring big
imagery data from multiple UAV campaigns is labor-intensive and time-consuming [14].
In order to resolve this challenge, various automatic techniques have been proposed to
estimate plant density from UAV images [15–17]. Pixel-based classification methods, such
as threshold setting and supervised regression, are the least complex and most commonly
used methods for counting plants in the imageries [18–21]. These methods are adequate
for segmenting plant pixels but have limited accuracy in plant counting [22]. Machine
learning has been proposed to distinguish plant instances in remote sensing imagery
to improve model performance in plant counting [13,23]. However, the performance
of the machine learning algorithms is often limited in complex conditions (e.g., overlay
existing among plants), mainly because machine-learning-based identifying is still based
on pixel-based classification.

Recent advances in deep learning, an artificial intelligence subfield, have opened
up new possibilities in remote sensing [24]. As a result of deep convolutional networks’
ability to extract image features, deep-learning-based image identification has gathered
remarkable results, and computer vision techniques have been constantly updated in
order to achieve better results [25]. It has become increasingly common to use deep
learning to estimate plant density [12,14,16,26]. A single-stage object detection algorithm
(YOLOv3) was adopted for cotton plant detection from low-altitude UAV images [27].
Machefer et al. [28] employed the Mask R-CNN algorithm to realize plant numbers and
sizing for potatoes and lettuce in UAV imagery [29]. Additionally, a Faster R-CNN-based
pipeline was developed for cotton seedling detection and counting in proximal sensed
videos [11]. Therefore, deep learning has proved to be a powerful tool for plant density
estimation with robust performance. Nevertheless, these deep learning approaches for
plant density estimation mainly depended on bounding box-based object detection, lacking
the capacity to monitor dense plants with an overlay to each other on the image.

Generally, the plant density is stable from the preliminary development stage. The
plant densities of some row crops (e.g., maize and soybean) from emergence to harvest are
essentially constant in optimal growing conditions in the absence of severe biotic and abiotic
stressors. On the other hand, some other crops (e.g., wheat, rice and barley) can compensate
for low plant densities from emergencies with a tillering mechanism [2]. The previous
wheat plant density studies were normally carried out shortly after crop emergence when
plants were still present as individuals. For instance, Liu et al. [2] developed an automated
wheat seedling count method based on skeleton optimization. An estimation of wheat
plant density at the early stage was executed by identifying the green pixels from RGB
images [1]. Jin et al. [13] developed a pipeline to estimate wheat plant density at emergence
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using support-vector-machine-based number counting. These studies accurately captured
the plant density at emergence, but the wheat plant density after tillering still needs
further exploration. Specifically, unlike wheat plants before tillering, mainly presented
as individual plants, the plants after tillering are highly clustered and more challenging
to be identified. Nevertheless, wheat plant density including tillers is a crucial variable
for following growth stages. Firstly, tillers are a significant supplement to low main-stem
density and seedling abortion [30,31]. Secondly, intraspecific competition exists between
main stems and tillers for available resources such as light and nutrition [32,33]. Thirdly,
tillers can make an important contribution to grain yield, providing partial wheat heads at
the mature stage [34].

The objective of this study was to detect the wheat plant density after the tillering stage
by leveraging a UAV and deep learning. For this purpose, a deep learning model, DeNet,
was developed to generate a heatmap of wheat plant. Then, the wheat counting was derived
according to the sum of the heatmap. To validate the performance of DeNet, two typical
deep learning algorithms (i.e., SegNet and U-Net) were adopted as benchmarks [35,36]. At
the same time, the DeNet was firstly validated on annotation-based images and then tested
on field-sampling-based wheat density datasets.

2. Materials and Methods
2.1. Study Area and Data Acquisition

This study’s field works include field sampling and a UAV flight campaign. The field
sampling obtained wheat plant numbers in quadrats for testing the accuracy of the plant
density model in the field condition. The UAV flight campaign collected images to observe
the wheat plant density remotely.

2.1.1. Study Area

The wheat field was located in the yellow river delta (118◦55′17.91′′N, 37◦40′17.94′′E)
(Figure 1a). This coastal area suffers from salinization (with soil salt content at 3–15 g/kg
for 0–20 cm soil depth) as a newly formed river delta (approximately 80 years). The
altitude of this flat area is 6 m above sea level. The mean annual temperature of this area is
13.2 ◦C for the year of 2021, with the maximum and minimum value at 34.7 and −16.1 ◦C,
respectively. The annual precipitation sum of this area is 511 mm for the year of 2021, with
most precipitation in summer. The winter wheat (Triticum aestivum L.) field trial sampling
site is presented in Figure 1b. The sowing density was 320 seed/m2 with a row interval
of 15 cm. In addition, the wheat plants in this area suffered a drought stress in this year
with only limited rainfed irrigation (a total of 75 mm precipitation from the sowing day
on October 15, 2020 to the field sampling day at March 29, 2021). Thus, wheat plants were
under heterogeneous growing status (with distinct plant density) because of dual stresses
from salinization and drought.

2.1.2. Field Sampling

From March 29 to 31, 2021, wheat plant counting was conducted at three sampling
regions (red boxes in Figure 1b). Three sampling areas (blue boxes in Figure 1b) within
sampling regions were dedicatedly selected to make the dataset more comprehensive,
covering an increasing gradient of plant density (B < A < C) with marginal effect considered.
Ten sampling quadrats with an area of 0.50 m × 0.50 m were set for manual wheat plant
counting after the tillering stage at each sampling area (Figure 1c). Main stems and tillers
with three or more fully developed leaves were treated as individual plants during the
plant counting because tillers with three or more leaves are nutritionally independent of
the main stem [37]. As a result, 30 quadrats with plant densities ranging between 45 and
136 plant/plot were recorded.
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Figure 1. (a) Overview of study area location in China. (b) Seven patches of wheat farming fields
with orange boxes and red boxes represent flight and sampling regions, respectively. The blue box
indicates the area containing sampling quadrats with more details in (c). (c) The distribution of
12 quadrats (ten red boxes indicate ten 0.5 m × 0.5 m sampling quadrats adopted, and two yellow
boxes indicate two 1 m × 1 m sampling quadrats abandoned because of unsuitable size for deep
learning models). (d) A UAV full image with a sampling quadrat located in the center (Z1) and other
eight quadrat-distributing locations on corresponding images indicated by white dash boxes (Z2, Z3,
and Z4).
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2.1.3. UAV Flight Campaigns

A DJI Mavic Air 2 UAV (DJI Innovation Company Inc., Shenzhen, China) with a
built-in sensor was adopted in the image acquisition from March 27 to 28, 2021, from
11:00 to 13:00 local time, under a sunny weather condition. The UAV system collected
orthoimages containing red, green, and blue channels at three meters above ground altitude.
The image spatial resolution was 48 MP (8000 × 6000), with the ground sampling distance
at approximately 0.4 mm. The UAV flights were divided into two campaigns: with and
without a sampling quadrat.

As for the campaign with a sampling quadrat, nine images were obtained for each
quadrat (30 quadrats in total). More specifically, these nine images for a quadrat were
obtained with the quadrat distributed at nine different locations in the corresponding im-
ages (Figure 1d). As for the campaign without a sampling quadrat, images were randomly
collected within four flight regions (orange boxes in Figure 1b) without overlay among
images. In total, 370 UAV images were collected in the flight campaigns, including 270
images with a sampling quadrat and 100 images without a sampling quadrat (Table 1).

Table 1. A brief introduction of UAV datasets used in this study.

Dataset Quadrat Full Image Patch Patch Size Usage

Training No 85 2550 1200 × 1200 Model training
Validation No 15 945 ~1200 × 1200 Model validation

Test Yes 270 270 ~1200 to 1300 Model test
Quadrat: containing a sampling quadrat or not in the image; full image: total number counting of the used full
UAV images; Patch: total number counting of the used image patches; Patch size: image patch resolution or height
(or width) with the unit of ‘pixel’. The symbol ‘~’ indicates an approximate value.

2.2. Image Preparation and Postprocessing

This section introduces how to prepare the full UAV images for inputting into the
density estimation model and how to process the model outputs further. These procedures
include allocating data into three parts (training, validation, and test), splitting images into
image patches (to fit the memory limitations of the graphics card), annotating images for
model training and evaluation, and assembling the model-generated heatmaps according
to the original sequence.

2.2.1. Image Allocation

Full UAV images were allocated into three parts: training, validation, and test dataset
(Table 1). The training and validation datasets did not cover sampling quadrats within the
images, whereas the test datasets did. The training set was employed to train the plant
density estimation model. The validation set was used to validate the model performance
with various configurations in regard to neural network architectures, sigma values, and
assembling techniques. The test set was used to test the model performance based on
field sampling. The image numbers for training and validation were 85 and 15 to robustly
satisfy the model training and validation functions, respectively. Images with the sampling
quadrats were allocated to the test dataset. No image was repeatedly included in the three
datasets to avoid data corruption.

2.2.2. Image Splitting and Heatmap Assembling

Before the model development, full UAV images were split into image patches to fit
the memory capacity of the graphics card. Comprised of multi-layer neural networks, the
plant density estimation model would generate a mass of temporary data. These temporary
data would be stored in the graphics card for deep learning models that adopted the CUDA
(compute unified device architecture) technique to accelerate processing [38]. Generally,
the full images would immensely exceed the memory capacity of the graphics card. A
standard solution to this problem is splitting the full images into smaller patches [15,39].
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Thus, full images in training, validation, and test datasets were split into image patches
with different procedures.

As for the training dataset, full images were split into 2550 image patches with the
size of 1200 × 1200 pixels (without overlay), while the smaller patches at the image
edge were abandoned (Table 1). Regarding the validation dataset, full images were split
into 1200 × 1200 pixels’ patches with an overlay between adjacent patches (Figure 2).
The overlay ensured that the interested objects (wheat plants) divided by cut-off lines
would be integrally presented on the adjacent patches. The overlap width was set to
320 pixels, following the principle that the overlap should be wider than the wheat plant
(approximately 150 to 250 pixels on the images). Therefore, each full UAV image was
divided into 7 × 9 patches (patches at the image edge may have different sizes). In total,
945 patches were obtained in the validation dataset. As for test datasets with sampling
quadrats, the image patch was detached from each full image along the quadrat border. In
total, 270 image patches were obtained in the test dataset with the patch height (or width)
ranging between 1200 and 1300 pixels.
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Figure 2. An overview of UAV image splitting with overlay (purple strips). The red box emphasizes
an image patch with wheat plants annotated.

As for the validation dataset, the plant-density-model-generated heatmaps (with more
details in Section 2.3.1) were assembled according to the original sequence of image patches
to present the plant density on full images (Figure 2). Two approaches were adopted to
fuse the heat value on adjacent heatmaps within the overlay area: the average heat value
and the normalized inverse distance weighted (NIDW) heat value. The average heat value
was derived by averaging the heat value on overlapped heatmaps, whereas the NIDW heat
value was derived as Equation (1).

Heati+1 =

(
Doverlay − Dborder

)
∗ Heati + Dborder ∗ Heatpatch

Doverlay
, (1)

where Heati+1 and Heati are the heatmaps for the (i+1)th and ith assembled images in the
irritation, respectively; Heatpatch is the heatmap for image patch; and Dborder and Doverlay
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(with the unit of the pixel) are the distance to the nearest border of image patch and the
width of overlay strip, respectively.

2.2.3. Image Annotation

The ‘labelme’ graphical image annotation tool was employed to draw points on wheat
plants (Figure 2) [40]. Annotating the points was a tough task since wheat plants might be
clustered after tillering. Accordingly, the annotation task was carried out in two procedures:
(i) the annotated point was set on the main stem if the main stem was visible on the image;
otherwise, (ii) the annotated point was set on leaves by visually interpreting the wheat
plants through the leaf morphology. In order to reduce subjective biases, the annotation task
was carried out by two operators, with one charging for drawing points and the other one
charging for checking results. Notably, the training and validation datasets were annotated
on full images with annotations split together with the image in the splitting operation.
In contrast, the test dataset was annotated on image patches after image splitting. The
annotation task cost approximately a month for these two operators, with eight hours daily.

2.3. Deep Learning Models

This study developed a Gaussian heatmap-based deep learning model to estimate
the wheat plant density in the field. This section introduced five main components of the
model, including the network architecture, the gaussian heatmap, the loss function, the
evaluation criteria and running environment. The workflow of the plant density estimation
model is shown in Figure 3a.

2.3.1. Network Architecture

In this study, we proposed a convolutional neural network (CNN)-based DeNet to
estimate the plant density on UAV images. Two classic deep learning networks, the SegNet
and the U-Net, were employed as references to compare with DeNet [35,36]. The VGG-13
architecture was adopted as the backbone in the encoding part for three architectures [41].
Specifically, the DeNet could be treated as a successor of SegNet or U-Net with similar
architecture (Figure 3b–d). To improve the model performance, we added a global-scale
attention branch to the U-Net to compose the DeNet (Figure 3b,c). This branch aims
to promote the model’s ability to distinguish wheat plants and backgrounds in a whole
image scope, following previous studies that used the global-scale attention to capture an
overall distribution of the interested objects [42–44]. Specifically, our global-scale attention
branch has relatively shallow convolutional layers. It only contained one down-sampling
operation (with down-sampling stride = 2), because distinguishing wheat plants from
the background (e.g., soil and straw) mainly depended on pixel-level color features. In
contrast, deep convolutional neural networks, which mainly focus on spatial features,
such as texture and structure features, were not critical in this step [25]. Additionally, this
shallow global-scale attention branch would not occupy much computing power in the
prediction. In a word, the global-scale attention branch was designed to realize an efficient
separation between plant and background using limited computing power.

2.3.2. Gaussian Heatmap

The Gaussian heatmap was adopted to bridge image-scale prediction and plant count.
As a common practice in most point-based tasks, heatmaps have been widely applied in
deep learning domains, such as human pose estimation, keypoint-based object detection,
and crowd counting [45–47]. The heatmaps were generated from annotated points with
a normalized Gaussian kernel in the following steps. Firstly, the heat value around an
annotated point was generated according to the Gaussian distribution within a window
size (µ) [Equation (2)]. Then, the heat value in a specific pixel was normalized with the
total heat value within the window size [Equation (3)]. Lastly, the heatmap of the specific
point was added to the whole heatmap, and other annotated points were iterated with the
above steps. Here, the default sigma (σ) value was set at 15, and the window size was set
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as two times sigma (σ) value for generating heatmaps. Moreover, the plant count of the
image patch was obtained by integrating the predicted heatmap after model prediction
[Equation (4)].
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at the upper left of each layer represent layer channel number and down-sampling stride, respectively.
GT represents ground-truth.
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Heat =
1√
2πσ

e −
x2+y2

2 σ2 , (2)

Heatnormalized = Heat / ∑ Heatµ, (3)

Count = ∑h
j=1 ∑w

k=1 Heat(j, k), (4)

where sigma (σ) represents the scale parameter of Gaussian distribution; x and y represent
widthways and lengthways distances to the specific annotated point, respectively; Heatµ
is the heat value for pixels within the window size (µ); h and w represent the height and
width of the heatmap, respectively; and Heat (j, k) is the heat value for the specific pixel at
(j, k) on the heatmap.

2.3.3. Loss Function

The optimization of the plant density model was based on a loss function consisting
of three branches: the heatmap loss (LHM), the global-scale attention loss (LGSA), and the
plant count loss (LCT) [Equation (5)]. The heatmap loss adopted the Euclidean loss between
heatmaps from ground-truth and prediction [Equation (6)]. The global-scale attention loss
adopted the binary cross-entropy between global-scale attention maps from ground-truth
and prediction [Equation (7)]. The plant count loss adopted the relative error of plant
count between ground-truth and prediction [Equation (8)]. Here, the heatmap loss played
a prominent role in model optimization, whereas the global-scale attention loss and plant
count loss were axillaries. Notably, the global-scale attention loss was only adopted for the
DeNet, but was not feasible for SegNet and U-Net.

Loss = ∂ LHM + β LGSA + γ LCT , (5)

LHM =
1

2n ∑n
i=1(xi − yi)

2, (6)

LGSA =
1
n ∑n

i=1[li × log pi + (1− li)× log pi], (7)

LCT =
|CPre − CGT |

CGT
, (8)

where the α, β, and γ are used to control the relative weights of the three losses with the
default value of 1000, 1, and 0.1, respectively; n represents the total pixel number in maps; xi
and yi represent heat value on the annotated heatmap and predicted heatmap, respectively;
li and pi represent target classes (plant or background) for specific pixels on the annotated
heatmap and global-scale-attention-based map, respectively; and CGT and CPre represent
plant count from annotation and prediction for each image, respectively.

2.3.4. Evaluation Criteria

Three metrics were adopted to evaluate the plant density estimation results: the
coefficient of determination (R2), the mean absolute error (MAE), and the root-mean-
squared error (RMSE), as expressed in Equations (9)–(11), respectively, wherein R2 is a
non-dimensional value located in [0,1], with a higher value representing the better model
performance in plant density estimation. MAE and RMSE had the unit of ‘plant/patch’
or ‘plant/quadrat’ in this study, with the smaller value representing the better model
performance in estimation.

R2 = 1− ∑n
i=1(PRi − GTi)

2

∑n
i=1
(

PRi − PRi
)2 , (9)

MAE =
∑n

i=1|PRi − GTi|
n

, (10)
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RMSE =

√
∑n

i=1(PRi − GTi)
2

n
, (11)

where n represents the total number of evaluated predictions; PRi and GTi represent the
plant count from prediction and ground-truth, respectively.

2.3.5. Running Environment

The experiments were performed on a graphics workstation with an NVIDIA GeForce
RTX 3090 graphics card, an Intel Core i9-10920X CPU, and 64 GB memory capacity. The
deep learning models were implemented on the deep learning framework Keras [48].
During model training, the Adam algorithm was adopted for network optimization with
the learning rate set at 1 × 10−5 [49].

3. Experiments and Results
3.1. Model Validation

This study proposed a DeNet to estimate wheat plant density. Before the model test
on the field-sampling-based dataset, the model was validated with three aspects on the
validation dataset. First, the DeNet was compared with the U-Net and SegNet to verify
the model performance. Second, a sensitivity analysis was executed on the sigma value
for Gaussian heatmap generation to select the optimal value for wheat plant identification.
Third, the performance of different image-assembling techniques was validated.

3.1.1. Comparison of Different Networks

DeNet, U-Net, and SegNet were developed using the training dataset with 350 epochs,
respectively (Figure 4). Overall, the three models reached stable convergences. Specifically,
the training results indicated that the complexity of networks (from SegNet to U-Net, and
then DeNet) could improve loss performance after convergence. However, the convergence
time for SegNet, U-Net, and DeNet gradually increased, with convergence appearing at
the 130th, 160th, and 220th epochs, respectively. At last, the training time was increased
along with the complex model architecture, with a time-cost of 8.8, 9.1, and 9.5 min/epoch
for SegNet to U-Net, then DeNet, respectively (Table 2).
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Figure 4. The loss changes in model training of three models with the blue, purple, and black circles
indicate the general locations of model convergence for SegNet, U-Net, and DeNet, respectively.
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Table 2. The prediction results of three models assessed on the validation dataset.

Model Time GT PR MAE RMSE R2

SegNet 8.8 35,435 30,386 18.28 21.12 0.72
U-Net 9.1 35,435 32,789 14.05 20.38 0.75
DeNet 9.5 35,435 35,961 12.63 17.25 0.79

Time: training time per epoch (minute), GT: total number of ground-truth, PR: total number of predictions. The
unit of MAE and RMSE was ‘plants/patch’.

The model evaluation on the validation dataset showed that the estimation accuracy
was in the order of SegNet < U-Net < DeNet (Table 2). Here, the DeNet obtained the
best performance among the three models, indicating that the proposed global-scale at-
tention channel benefited model performance. The outperformance of U-Net over the
SegNet proved that the concatenate pass mechanism added in the U-Net (Figure 3c,d) also
benefited model performance. Moreover, the predicted heatmaps from the three models
were remarkably different (Figure 5). The background area was gradually cleared up,
whereas the heated area was gradually agminated from SegNet to U-Net, then DeNet.
Such a phenomenon revealed that the global-scale attention was effective in plant and
background separation.
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Figure 5. Examples of model prediction from three models. (a) An example of an original image
patch in the validation dataset. (b) Original image patch with annotations. (c) Heatmap generated
from annotations. (d) Heatmap predicted by SegNet. (e) Heatmap predicted by U-Net. (f) Heatmap
predicted by DeNet. The number in the upper image indicates plant density in the image patch
(ground-truth or prediction).

3.1.2. Sensitivity Analysis on Sigma

The sigma (σ) was a critical variable for generating the heatmaps of ground-truth
[Equation (2)], significantly influencing the model performance in plant density estimation.
In this section, a quantitative analysis was carried out to verify the influence of different
sigma values on model performance on the validation dataset. The experiments compared
models of different sigma values in two rounds with the backbone of DeNet (Table 3). In
the first round, a set of integers as multiples of 4 was validated to make a fuzzy diagnosis
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for the sigma value. In the second round, the integers near the optimal sigma value from
the first round were further validated to make a precise diagnosis for the sigma value.

Table 3. The sensitivity analysis results of the sigma values evaluated using the validation dataset.

Round Sigma Value GT PR MAE RMSE R2

First round

4 35,435 27,699 21.94 26.88 0.73
8 35,435 28,429 20.26 25.30 0.76

12 35,435 33,423 13.19 18.34 0.78
16 35,435 35,387 12.11 16.21 0.82
20 35,435 35,538 15.48 19.78 0.74
24 35,435 39,621 17.67 22.74 0.72

Second
round

14 35,435 35,727 13.04 17.24 0.73
15 35,435 35,961 12.63 17.25 0.79
17 35,435 35,592 12.34 16.78 0.78
18 35,435 36,259 23.37 27.67 0.73

GT: the total number of ground-truths; PR: the total number of model predictions. The unit of MAE and RMSE
was ‘plants/patch’.

For the first round of sensitivity analysis on the sigma value, the model harvested the
best performance when the sigma value was 16 (MAE = 12.11, RMSE = 16.21, R2 = 0.82).
As the sigma value increased or decreased from 16, the model performance degraded. In
the second round of sensitivity analysis, all models with various sigma values did not
surpass the model performance with a sigma value of 16. To sum up, the sensitivity analysis
experiment revealed that the sigma value at 16 was the optimal choice for plant density
estimation. On the other hand, the predicted heatmaps showed significant differences
along with the change in sigma values (Figure 6). Generally, smaller sigma values predicted
more centralized heatmaps, while larger ones predicted more fused heatmaps.

3.1.3. Heatmap Assembling

The predicted heatmaps need to be assembled to present the results integrally since the
full UAV images were split into image patches before the model execution (as mentioned in
Section 2.2.2). The averaging and NIDW techniques were adopted to derive the heat values
in the overlapped area. Here, the DeNet and sigma values at 16 were deployed to the plant
density model.

The model prediction results showed that the assembling procedure slightly improved
the model performance for both assembling techniques (averaging or NIDW heat value)
(Table 4). This phenomenon could be explained by the fact that the overlay area could
suppress the errors brought in by padded pixels at the image edge in convolutional opera-
tions. Specifically, the NIDW technique performed better than the averaging technique in
suppressing this error. Moreover, fissures were easy to find on the assembled heatmaps
using the averaging technique when the cut-off line passed through the wheat plants in the
image splitting (Figure 7c). However, such issues were handled on the assembled heatmaps
using the NIDW technique (Figure 7d).

Table 4. The model performance with different assembling techniques on the validation dataset.

Assembling Techniques GT PR MAE RMSE R2

Averaging 26,582 26,512 11.87 16.13 0.82
NIDW 26,582 26,562 11.34 15.94 0.83

Not assembled 35,435 35,387 12.11 16.21 0.82
NIDW: normalized inverse distance weighted.
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Figure 6. Examples of DeNet predictions with different sigma values in sensitivity analysis (4, 8, 12,
14, 15, 16, 17, 18, 20, and 24). (a) An example of an original image patch in the validation dataset.
(b) The image patches with annotations. (c,e,g,i,k,m,o,q,s,u): heatmap generated from ground-truth
with different sigma values. (d,f,h,j,l,n,p,r,t,v): heatmap predicted from the plant density model with
different sigma values. GT: ground-truth; pre: predicted plant density.
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Figure 7. Heatmap assembling results in different assembling techniques. (a) A full image in the
validation dataset. (b) The heatmap from annotated points. (c) The assembled heatmap using the
averaging technique with the predicted heatmap. (d) The assembled heatmap using the NIDW
technique with the predicted heatmap.

3.2. Model Test

This section assessed the performance of plant density estimation models using the
test dataset. Here, the model predictions were evaluated by two sets of ground-truthing,
i.e., the annotation-based and the sampling-based ground-truths. This section deployed a
sigma value of 16 and an architecture of DeNet on the plant density models.

3.2.1. Field-Sampling-Based Plant Density Estimation

Comparisons were made among the sampled ground-truth, annotated ground-truth,
and predictions using the test dataset (Figure 8). The comparison between sampled ground-
truth and annotated ground-truth reached a high consistency, with MAE, RMSE, and R2

values of 7.9, 10.1, and 0.95, respectively. This result indicated that the annotated points
could well capture wheat plants on UAV images even after the tillering stage. However,
the plant densities were underestimated on most image patches, especially for images with
high plant density (Figure 8a). In addition, the model performance on the test dataset
was comparable to this on the validation dataset (Table 2 and Figure 8b), with slight
improvements in the MAE and RMSE and a slight degradation in R2. Moreover, the
model performance obtained a minor improvement in the sampled ground-truth from the
annotated ground-truth, with the MAE and RMSE reduced to 9.94 and 12.21 from 11.94
and 14.86, respectively. As a result, the plant density estimation results tested equally well
on both the annotated ground-truth and sampled ground-truth, demonstrating that the
model is feasible to be applied in the practical field.
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Figure 8. The plant density comparison between (a) sampled GT and annotated GT, (b) annotated GT
and prediction, and (c) sampled GT and prediction on the test dataset. GT represents ground-truth.

3.2.2. Density Level Impact on Model Performance

The plant suffered from salinity and drought stresses, so the plant density was hetero-
geneous in the study area (Section 2.1.1). To quantitatively analyze how the plant density
level affected the model performance, the test dataset was divided into three levels: low
density (plant density < 70 plants/quadrat), moderate density (70 plants/quadrat ≤ plant
density < 100 plants/quadrat), and high density (plant density ≥ 100 plants/quadrat),
according to the sampled ground-truth.

The model results showed that plant density level was critical to the model perfor-
mance (Table 5). Specifically, the model degraded from the low- to high-density levels for
both the sampled and annotated ground-truths. It is worth noting that the model presented
a better performance on annotated ground-truth than sampled ground-truth at moderate
or high plant density levels. This phenomenon could be mainly explained by the fact
that plant densities were mostly underestimated on images with high plant density in the
annotation (Section 3.2.1). The predicted heatmaps of different density levels also presented
remarkable discrepancies (Figure 9). With higher plant density, the heatmaps would tend to
include more noise in the background area. Therefore, an increase in plant density would
degrade the model’s performance.

Table 5. The model performance on different density levels.

Evaluation Matrix Density Level GT PR MAE RMSE R2

Sampled GT
Low 7002 6474 9.35 11.51 0.29

Moderate 6300 5190 12.68 14.93 0.25
High 7749 7088 15.38 18.87 0.22

Annotated GT
Low 6590 6474 9.40 11.50 0.33

Moderate 5758 5190 10.76 12.91 0.30
High 6788 7088 11.85 18.87 0.17

3.2.3. Impacts of Zenith Angle on Model Performance

With the low altitude of the UAV flight, the pixels on the UAV images had various
zenith angles. For each quadrat, the UAV image was repeated nine times at nine specific
locations to analyze the effect of the zenith angle (Section 2.1.3). According to the zenith
angles, the image patches in the test dataset were divided into four parts with quadrat
locations at Z1, Z2, Z3, and Z4 (with zenith angles Z1 > Z2 > Z3 > Z4).
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Figure 9. Examples of wheat plant density estimation on the test dataset with different density levels:
(a) low, (b) moderate, and (c) high plant density levels.

The model results with various zenith angles presented significant differences (Table 6).
Specifically, the model performance remarkably degraded with the zenith angle decrease
for both the sampled and annotated ground-truths. The model reached a solid performance
(MAE = 6.63, RMSE = 8.61, and R2 = 0.91) when the quadrat was located at the image
center (location Z1) for the sampled ground-truth. However, the model performance was
also remarkably degraded (MAE = 19.13, RMSE = 22.39, and R2 = 0.74) when the quadrat
was located at the image corner (location Z4) for sampled ground-truth. The above results
suggested that the zenith angle could significantly affect the model performance, and the
large zenith angle boosted the model’s accuracy.

Table 6. The influences of zenith angle on model performance.

Evaluation Matrix Quadrat Location GT PR MAE RMSE R2

Sampled GT
Z1 2339 2052 6.63 8.61 0.91
Z2 4678 4356 12.50 13.15 0.86
Z3 4678 4324 14.80 17.89 0.84
Z4 9356 7786 19.13 22.39 0.74

Annotated GT
Z1 2047 2052 7.17 8.82 0.88
Z2 4230 4356 10.10 11.88 0.86
Z3 4327 4558 14.13 18.36 0.83
Z4 8532 7786 18.23 21.05 0.78
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4. Discussion
4.1. Research Contributions

This study presented a deep learning model for wheat plant density estimation. Unlike
traditional research that estimated wheat plant density before tillering [1,13], this study
challenged the wheat density after tillering when wheat plants were highly clustered.
Specifically, this study’s main research contributions are as follows. First, the results
showed that the proposed DeNet was robust with the global-scale attention, outperforming
the typical SegNet and U-Net network architectures. Second, this study adopted a key-
point-based algorithm on plant density estimations with distinct advantages. Compared
to the commonly used object detection algorithm that draws bounding-boxes around
targeted plants, the key-point-based algorithm can reduce labor-cost in image annotation.
Moreover, the key-point-based algorithm has the superiority in tracking dense plants
in density estimation, unlike object detection algorithms mainly applied to individually
presented plants on the image. Third, this study analyzed the impact of different sigma
values, heatmap-assembling techniques, density levels, and zenith angles on wheat plant
density estimation, providing valuable insights to future research in this domain. Fourth,
the plant density estimated in this study has potential in two practical implications. Plant
density after the tillering stage is a better proxy than that before the tillering stage for yield
estimation, since tillers are also crucial to yield [34]. Moreover, the spatial distribution
of plant density can provide guidance to precise fertilization with explicit intraspecific
competition [33,50].

4.2. Potential Future Works

Although this study presented the robustness of the DeNet for wheat plant density
estimation after tillering, four aspects still need further exploration for the model’s ap-
plication in extensive scenarios. First, the model inheritance to a descendant or other
varieties of wheat plants is still unclear since this study was limited to datasets from one
year and one cultivar of wheat plants. We will collect more datasets on different cultivars
in the next step to verify the model inheritance. Second, the model performance on wheat
plants before tillering was not explored. It would be valuable work to comprehensively
estimate wheat plant density before and after tillering, bringing more insights into the
tillering mechanism [51]. Third, the plant row is meant to be extracted from the wheat
heatmaps. Plant row is a significant variable in precise agricultural management [15,52].
The model-predicted heatmaps already presented an excellent distribution of plant row and
are promising to be extracted in future works. Fourth, the model is essential to be applied
to the field scale, as implemented in [13]. With a predefined flight path, UAVs can obtain
orthomosaic images [53]. Based on the orthomosaic image, our model can potentially be
applied to wheat plant density estimation on the field scale.

5. Conclusions

Unlike previous studies that generally estimated wheat plant density before tillering,
this study developed a DeNet to estimate plant density after tillering. To validate the
model robustness of the DeNet, the SegNet and U-Net were adopted as benchmarks to
compare to the DeNet. Moreover, a sensitivity analysis was executed on the sigma value
to generate ideal heatmaps. At the same time, heatmap patches were assembled based on
averaging and NDIW techniques to find a better means to obtain integral heatmaps. The
model evaluation on the test dataset revealed that the DeNet-estimated plant density could
also well match the field-sampling-based plant density. Our test results also revealed that
the plant density level and zenith angle could significantly affect the model performance.
Overall, the DeNet is feasible to estimate wheat plant density after tillering on low-altitude
UAV images.
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