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Abstract. Diamond is used as detector material in high energy physics experiments due to
its inherent radiation tolerance. The RD42 collaboration has measured the radiation tolerance
of chemical vapour deposition (CVD) diamond against proton, pion, and neutron irradiation.
Results of this study are summarized in this article. The radiation tolerance of diamond detectors
can be further enhanced by using a 3D electrode geometry. We present preliminary results of a
poly-crystalline CVD (pCVD) diamond detector with a 3D electrode geometry after irradiation
and compare to planar devices of roughly the same thickness.

1. Introduction
As high energy experiments are upgraded to operate at higher energies and larger intensities, the
innermost detector layers will be exposed to new extremes of particle fluence. As a result, there is a
flurry of research to search for detector materials and geometries that can withstand the expected
extreme conditions. Diamond is a promising candidate as detector material due to its large
displacement energy [1]. Over the last two decades, chemical vapour deposition (CVD) diamond
has been developed and characterized as detector material by the RD42 collaboration [2, 3].
Moreover, CVD diamond has been used as part of the abort system and/or luminosity system by
a number of experiments [4–7].

The RD42 collaboration has measured the radiation tolerance of CVD diamond against
protons, pions, and neutrons of various energies [8, 9]. These results are summarized in section 2.
To enhance the radiation tolerance of diamond detectors further, the RD42 collaboration has
investigated detectors with a 3D electrode geometry [10, 11]. In section 3, we present preliminary
results of a 3D device after 800MeV proton irradiation.

2. Radiation tolerance
The RD42 collaboration irradiated a series of single-crystalline CVD (scCVD) and poly-crystalline
CVD (pCVD) diamond samples with protons, pions, and neutrons to characterize the radiation
tolerance of CVD diamond [8, 9]. After each irradiation the samples were metallized to fabricate
strip detectors with a 50 µm pitch. The detectors were tested before and after irradiation in a
120 GeV/c hadron beam. A first order model was used to describe the decrease of mean drift
distance, λ, with fluence in diamond. The first order damage model is given by [12]

1

λ
=

1

λ0
+ kϕ (1)
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Table 1. Relative damage constants for 24 GeV protons, 800 MeV protons, 70 MeV protons,
200 MeV pions, and fast reactor neutrons [8, 9].

Particle species κ

24 GeV protons 1.0
800 MeV protons 1.67 ± 0.09
70 MeV protons 2.60 ± 0.29
200 MeV pions 3.2 ± 0.8
Fast neutrons 4.3 ± 0.4
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Figure 1. The 1/λ for scCVD (solid markers)
and pCVD (open markers) diamond as a
function of particle fluence [9]. Data points
of sample j are shifted by 1/λ0,j to account for
the initial collection distance of the sample.
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Figure 2. The λ for scCVD (solid markers) and
pCVD (open markers) diamond as a function
of 24 GeV proton equivalent fluence [9]. Data
points of sample j are shifted by the offset, ϕ0,j ,
of sample j in 24 GeV proton equivalent fluence
space.

where k is the radiation damage constant, λ0 represents the initial mean drift distance before
irradiation, and ϕ the particle fluence. Figure 1 shows the 1/λ damage curves for 24 GeV proton,
800 MeV proton, 70 MeV proton, 200 MeV pion, and fast reactor neutrons. The measured relative
damage constants are listed in table 1. The one-parameter description of the data lends itself to
a universal damage curve. To combine the data, the fluences were normalized by [9]

ϕ24GeV p eq = κi × ϕi (2)

where κi = ki/k24GeVp is the relative damage constant of irradiation species i. Figure 2 shows the
resulting universal damage curve. At a fluence of 1017/cm2 a mean drift distance of λ ≈ 16 µm is
predicted.

3. 3D detectors
The mean drift distance of electrons and holes in an infinite material decreases as a function
of particle fluence [12]. After a fluence of 1017/cm2 all detector materials will be trap limited
and diamond has a predicted mean drift path approximately 20 µm in the present 50 µm × 50 µm
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Figure 3. Relative signal response of 3D (blue)
and planar (red) pCVD diamond detectors as a
function of 800 MeV proton fluence. The signal
response is normalized to the signal response of
the unirradiated detectors.

cells. In a detector device with a 3D electrode geometry, the electrodes are located in the bulk
material [13]. This electrode geometry reduces the necessary drift path of an electron-hole pair
created by a minimum ionizing particle (MIP) to create the same signal compared to an equally
thick planar detector but with roughly 1/20th the drift distance to the readout electrode. The
RD42 collaboration has successfully demonstrated the feasibility of the 3D diamond detector
concept in 2015 [10,11]. In this work we present the preliminary results of a 3D detector based
on pCVD diamond irradiated with 800 MeV protons.

A femtosecond laser was used to fabricate the column electrodes in the diamond bulk [14]. The
columns were drilled in a pattern to form 50 µm × 50 µm cells. A cell consists of four bias columns
and one readout column in the centre. The bias columns were connected to the metallization on
the bottom and the readout columns to the metallization on the top.

The 3D detector was tested in a 120 GeV/c hadron beam and compared to planar devices
of the same thickness from section 2. The measured signal was normalized to the signal before
irradiation for the 3D and the planar device, respectively. In figure 3 the relative signal response
of a 3D and planar device as a function of 800 MeV proton fluence is shown. We note that
an unirradiated 3D device in diamond has roughly twice the signal size of an equally thick
planar device and this factor has been removed in the present comparison. After a fluence of
3.5 × 1015 p/cm2 a reduction in signal of (45 ± 5) % was observed for the planar detector, while
the signal of the 3D detector was reduced by (5 ± 10) %. In addition to the smaller reduction of
signal the extra observed unirradiated charge can also be viewed as additional radiation tolerance
for the 3D devices compared to planar devices.

4. Summary and future plans
The mean drift path of diamond after a fluence of 1017/cm2 was estimated and is roughly
comparable with the drift distance in a 25 µm × 25 µm 3D cell. Preliminary results of a 3D
diamond detector after irradiation were presented. The results are very promising in comparison
to planar devices. Further measurements with larger fluences in both 50 µm × 50 µm 3D cells and
25 µm × 25 µm 3D cells are planned to derive the appropriate damage curves necessary for more
precise predictions.
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