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Abstract 

Background: Meta-analyses are used to summarise the results of several studies on a specific research question. 
Standard methods for meta-analyses, namely inverse variance random effects models, have unfavourable proper-
ties if only very few (2 – 4) studies are available. Therefore, alternative meta-analytic methods are needed. In the case 
of binary data, the “common-rho” beta-binomial model has shown good results in situations with sparse data or few 
studies. The major concern of this model is that it ignores the fact that each treatment arm is paired with a respective 
control arm from the same study. Thus, the randomisation to a study arm of a specific study is disrespected, which 
may lead to compromised estimates of the treatment effect. Therefore, we extended this model to a version that 
respects randomisation.

The aim of this simulation study was to compare the “common-rho” beta-binomial model and several other beta-
binomial models with standard meta-analyses models, including generalised linear mixed models and several inverse 
variance random effects models.

Methods: We conducted a simulation study comparing beta-binomial models and various standard meta-analysis 
methods. The design of the simulation aimed to consider meta-analytic situations occurring in practice.

Results: No method performed well in scenarios with only 2 studies in the random effects scenario. In this situation, 
a fixed effect model or a qualitative summary of the study results may be preferable. In scenarios with 3 or 4 stud-
ies, most methods satisfied the nominal coverage probability. The “common-rho” beta-binomial model showed the 
highest power under the alternative hypothesis. The beta-binomial model respecting randomisation did not improve 
performance.

Conclusion: The “common-rho” beta-binomial appears to be a good option for meta-analyses of very few studies. As 
residual concerns about the consequences of disrespecting randomisation may still exist, we recommend a sensitivity 
analysis with a standard meta-analysis method that respects randomisation.

Keywords: Beta-binomial model, Generalised linear mixed models, Meta-analyses, Simulation study, Few studies

Introduction
Meta-analyses (MAs) are used to summarise the results 
of studies on a specific research question. If the number 
of studies is large and the sample sizes within these stud-
ies are not too small, standard inverse variance random 
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effects models (IV-REMs) can provide valid estimates. 
However, if only a few (≤ 10) studies are included in 
the MA, the IV-REMs perform poorly [1–3]. The Der-
Simonian-Laird (DSL) method leads to too narrow 95% 
confidence intervals (CIs) with poor coverage probabili-
ties below 95%, especially in the case of few studies. The 
Hartung-Knapp-Sidik-Jonkman (HKSJ) method generally 
holds the type I error, but frequently results in extremely 
wide 95% CIs in the case of very few (2 – 4) studies.

The worse performance in the case of few studies is a 
particular challenge, because such MAs are frequently 
performed in systematic reviews of interventions. For 
example, in an analysis of 14,886 MAs from the Cochrane 
Library, the median number of studies in MAs was 3 and 
the 3rd quartile was 6 [4].

In the case of binary data, alternatives to IV-REM 
methods have been proposed. Because outcome (suc-
cess, failure) and study arm (treatment, control) for 
each patient can be reconstructed from studies’ four-
fold tables, the generalised linear mixed model (GLMM) 
framework (and generally speaking all logistic regression 
models accounting for dependent data) can be applied to 
MAs [5]. The “common-rho” beta-binomial model (BBM) 
showed good results when pooling data of randomised 
controlled trials (RCTs), especially in the case of very 
few studies and/or rare events in the MA [6, 7]. How-
ever, there are some concerns about the model because 
it ignores the fact that each treatment arm is paired with 
a respective control arm, both originating from the same 
study (disrespecting the randomisation to a study arm of 
a specific study).

Therefore, we conducted a simulation study to compare 
existing BBMs and extensions with established models, 
such as GLMMs, HKSJ and DSL, especially in situations 
with very few (2 – 4) studies and for a wide range of risks, 
including rare events. Our focus was on BBM extensions 
that accounted for the pairing of a treatment arm with a 
control arm of the same study by implementing a random 
effect for the study or conditioning on the study in the 
maximum likelihood estimation.

The outline of the paper is as follows. In the 2nd chap-
ter, we describe the statistical models for MAs that were 
included in the comparison (Models section) and explain 
how the simulation study was conducted (Simulation 
study section). In the 3rd chapter, we present the results 
of the simulation study. In the 4th chapter, we discuss the 
results, and in the 5th chapter, we conclude with final 
remarks and recommendations for practice.

Methods
We consider situations where K studies compare a binary 
outcome between two study arms (i = 1 [or T for treat-
ment] and i = 0 [or C for control]). For each study k 

(k = 1, …, K), nkT and nkC denote the sample size for the 
treatment and control arm, ykT and ykC the number of 
events in the treatment and control arm, and θk the treat-
ment effect with a specific within-study variance σ 2

k  . We 
are interested in the estimation of the overall treatment 
effect θ and use the effect measures odds ratio (OR) and 
relative risk (RR) to quantify the effect between the treat-
ment and control arm.

Models
We compared the following meta-analytic models and 
methods in our simulation study:

• Beta-binomial models (BBMs)

◦ Standard (“common-rho”) beta-binomial model 
(BBST)
◦ Standard beta-binomial model with an additional 
random treatment effect (BBFR)

◦ Two “common-beta” beta-binomial models (BBCB1 
and BBCB2)

• Generalised linear mixed models (GLMMs)

◦ Generalised linear mixed model with a fixed inter-
cept and random treatment effect (GLFR)
◦ Generalised linear mixed model with a random 
intercept and random treatment effect (GLRRI)

• Inverse variance random effects model (IV-REM)

◦ DerSimonian-Laird (DSL) method
◦ Hartung-Knapp-Sidik-Jonkman (HKSJ) method

• Mantel-Haenszel (MH) method
• Peto odds ratio (POR) method
• Collapsed table (COLL)

and describe them in the following sections.

Beta‑binomial models

Standard beta‑binomial model The standard beta-bino-
mial model (BBST) [6, 7] assumes that the observed num-
ber of events in the control arm ykC (k = 1, …, K) follows a 
binomial distribution Bin(πkC, nkC), where the event prob-
ability πkC is not fixed, but beta distributed with param-
eters αC and βC. These parameters are assumed to be con-
stant over all control arms of the studies. The individual 
binary event zkCj (j = 1, …, nkC; ykC = nkC

j zkCj ) is sam-
pled with a different πkC. The expected value and variance 
of πkC are:
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and

with

and

and ykC is beta-binomially distributed with the expected 
value

and variance

Because the probabilities for two individual binary events 
in the control arm are sampled from the same beta distri-
bution, these events are correlated. The intraclass correla-
tion ρC = corr

(

zkCj1 , zkCj2
)

 between two individual binary 
events in the control arm k (k = 1, …, K; j1, j2 = 1, …, nkC; 
j1 ≠ j2) is

and is assumed to be equal over all ykC (k = 1, …, K). Fur-
ther, it is assumed that individual binary events from 
different control (and treatment) arms are uncorrelated, 
corr

(

zk1Cj1 , zk2Cj2
)

= 0 for k1 ≠ k2.

The log likelihood of the beta-binomial distribution of all 
control arms can be written in closed form as

with

where Γ denotes the gamma function,

and

E(πkC) = µC

Var(πkC) = µC × (1− µC)× νC/(1+ νC)

µC = αC/(αC + βC)

νC = 1/(αC + βC)

E
(

ykC
)

= nkC × µC

Var
(

ykC
)

= nkC × �C ×
(

1 − �C

)

×
[

1 +
(

nkC − 1
)

× �C∕
(

1 + �C

)]

.

ρC = 1/(αC + βC + 1)

ℓC(αC ,βC) =
K
∑

k=1

ℓkC(αC ,βC)

�kC

(

�C , �C
)

= log
(

Γ
(

nkC + 1
))

+ log
(

Γ
(
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))

+ log
(

Γ
(
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))

+ log
(

Γ
(

�C + �C

))

− log
(

Γ
(

ykC + 1
))

− log
(

Γ
(

nkC − ykC + 1
))

− log
(

Γ
(

nkC + �C + �C

))

− log
(

Γ
(

�C

))

− log
(

Γ
(

�C

))

αC = µC × (1− ρC)/ρC

βC = (1− µC)× (1− ρC)/ρC .

The same formulas hold true for the number of events in 
the treatment arm ykT (k = 1, …, K) with nkT, πT, αT, βT, 
μT, νT and ρT. The log likelihood for the treatment arms 
ℓT(αT, βT) is given accordingly.

Importantly, in the BBST it is assumed that ρC = ρT = ρ, 
which is equivalent to αC + βC = αT + βT. In other words, 
all individual binary events within a study arm are cor-
related with the same ρ, regardless of therapy.

The treatment effect θ = bT = g−1(μT)/g−1(μC) is modelled 
via the link function

where b0 denotes the risk of an event in the control arm 
and i the study arm (1 = treatment; 0 = control). In our 
simulation study, the link functions are the logit and the 
natural log to measure the treatment effect as log OR and 
log RR.

Because g(μC) = b0, g(μT) = b0 + bT and αC + βC = αT + βT, 
one can write

Therefore, only three parameters (αT, αC, βC) have to be 
estimated in this model.

One advantage of the BBST is that no continuity correc-
tion has to be used if there are studies with no events in 
one study arm (single-zero studies). Furthermore, studies 
without any events in both study arms (double-zero stud-
ies) are not ignored in the analysis and contribute to the 
overall effect estimation [6]. The only situations where the 
BBST cannot estimate the OR and RR (but can estimate 
the risk difference) are situations where no events occur 
in one study arm (e.g. the treatment arm) over all studies.

In the BBST, the event probability in the control arm 
πkC is random but the treatment effect is considered to 
be fixed across all studies. Thus, although the BBST is a 
true random effects model, from a meta-analytic point of 
view, it is a model with a fixed treatment effect.

Furthermore, the BBST estimates the treatment effect 
via μT and μC. Therefore, the fact that the treatment and 
control arm originate from the same study is ignored 
in the process of parameter estimation. Thus, the BBST 
disrespects the randomisation to a study arm of a spe-
cific study. According to Senn [8] and Piepho et al. [9] it 
is unlikely that this property is detrimental in situations 

g(µi) = b0 + bT × i

bT = g
(

�kT

)

− g
(

�kC

)

= g
(

�T∕
(

�T + �T
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where the same treatments are evaluated across trials, 
because the effects are comparable between the studies. 
This was indicated by recent simulation results, where 
the BBST performed well [6, 7].

Standard beta‑binomial model with additional random 
effect To deal with the aforementioned properties of 
BBST as a fixed effect model that disrespects randomi-
sation, we implemented another BBM (BBFR) where the 
treatment effect θ = bT = g−1(μT)/g−1(μC) is modelled as

with γk ∼ N
(

0, σ 2
BBFR

)

 . By adding a random effect to the 
treatment effect, this model respects the randomisation 
to a study arm of a specific study.

Like the BBST, the BBFR takes the information of all 
studies into account and therefore needs no continu-
ity correction when single- or double-zero studies are 
included in the MA.

When constructing the 95% CI for the treatment effect 
bT, Mathes and Kuss [7] showed that using the t-distribu-
tion rather than the normal distribution led to better per-
formance of the BBST. Therefore, for both models (BBST, 
BBFR) we calculated 95% CIs for the treatment effect bT 
using the t-distribution

where b̂T (BB) is the estimated treatment effect of BBST or 
BBFR, σ̂BB the corresponding estimated standard error 
and tdf; 0.975 the 0.975 quantile of the t-distribution with 
df degrees of freedom. We chose two different numbers 
of degrees of freedom: df = K − 1, which are the degrees 
of freedom for the HKSJ method, and df = 2K − 2, which 
is a reasonable compromise between the 2K and 2K − 3 
degrees of freedom that were used by Mathes and Kuss 
[7] and that led to too narrow and too wide intervals, 
respectively.

Common‑beta BBM In the BBST it is assumed that 
the intraclass correlation ρ is equal for all treatment and 
control arms implying that αC + βC = αT + βT holds true. 
Therefore, this model is sometimes called the “common-
rho” model. Another possibility is to assume that β is 
equal in all groups (βC = βT = β). We call this model the 
“common-beta” BBM. Similar to the BBST, the likeli-
hood function of the “common-beta” BBM can be writ-
ten in closed form. Guimaraes [10], and more recently 
in the meta-analytic context Mathes and Kuss [11], were 
able to show that a negative binomial regression model 

g(µi) = b0 + (bT + γk)× i

b̂T (BB) ± tdf ;0.975 × σ̂BB,

for count panel data can be interpreted as this “common-
beta” BBM.

We considered two versions of the “common-beta” BBM 
in our simulation. BBCB1, which disrespects the ran-
domisation to a study arm of a specific study by con-
ditioning on study group, while BBCB2 respects the 
randomisation to a study arm of a specific study by con-
ditioning on the study.

As for BBST and BBFR, we constructed 95% CIs using 
the t-distribution for the treatment effect bT

where b̂T (BBCB) is the estimated treatment effect of 
BBCB1 or BBCB2, σ̂BBCB the corresponding estimated 
standard error, and tdf; 0.975 the 0.975 quantile of the t-dis-
tribution with df = K − 1 or 2K − 2 degrees of freedom.

Generalised linear mixed models
Generalised linear mixed models (GLMMs) [5] are 
probably the most common alternatives to standard 
MA methods (Inverse variance random effects models 
section) with binary data because of their flexibility. A 
GLMM with random treatment effect θk = θ + ϵk can be 
expressed as

where g(∙) is the link function for the OR (logit) or RR 
(log), πki the probability of an event in study arm i (i = 1: 
treatment; i = 0: control) of study k (k = 1, …, K), γk 
the intercept (baseline risk of an event) of study k and 
ϵk~N(0, τ2).

We included two GLMMs in our simulation. The first 
model has a fixed intercept and a random treatment effect 
(GLFR) (similar to model 2 in Jackson et al. [5] originally sug-
gested by Simmonds and Higgins [12]). The second GLMM 
included has a random intercept ( γk ∼ N

(

γ , σ 2
GLRRI

)

 ) and 
an uncorrelated random treatment effect (GLRRI), similar 
to model 3 in Jackson et al. [5].

Like the BBST, the GLMM is a random effects model. 
But as the treatment effect is random it is more compara-
ble to meta-analytic REMs than the BBST.

Like BBMs, GLMMs take the information of all studies 
into account and therefore do not need a continuity cor-
rection for single- or double-zero studies.

We calculated 95% CIs for log OR and log RR using 
normal approximation, therefore

b̂T (BBCB) ± tdf ;0.975 × σ̂BBCB,

g(πki) = γk + i × θ + i × ǫk

θ̂GLMM ± 1.96× σ̂GLMM ,
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where �̂�GLMM
 is the estimated overall effect (log OR or log 

RR) in the analysed model (GLFR or GLRRI) and σ̂GLMM 
the corresponding standard error.

Inverse variance random effects models
The meta-analytic random effects model (REM) assumes 
no common effect for all studies but instead assumes that 
the mean of all study effects is the mean of the distribu-
tion of the true effect [13]. The study effects are usually 
assumed to follow a normal distribution. The treatment 
effect in study k can be expressed as θ̂k = θk + εk with 
θk = θREM + δk, δk~N(0, τ2) and εk ∼ N

(

0, σ 2
k

)

.
The overall effect θREM of this REM can be estimated by 

the inverse variance approach

where wk(REM) = 1/
(

σ 2
k + τ 2

)

 are the study-specific 
weights, σ 2

k  is the within-study variance, and τ2 is the 
between-study variance (heterogeneity).

In the case of binary data and for OR and RR as the 
effect sizes, θ̂k and θ̂REM are generally analysed on the 
logarithmic scale, thus representing the log OR and the 
log RR. A continuity correction is applied to single-zero 
studies by adding 0.5 to the number of events in both 
groups. Double-zero studies are ignored for parameter 
estimation.

DerSimonian‑Laird method The DerSimonian-Laird 
(DSL) method [14] was regarded as the gold standard 
for performing MAs until it was criticized in recent 
years for being anti-conservative (i.e., producing too 
narrow CIs) [15].

The DSL estimator θ̂DSL uses weights 
wk(DSL) = 1/

(

σ 2
k + τ 2DSL

)

 where

is estimated using the method-of-moments principle [14, 
16]. Q is the heterogeneity statistic 
Q =

∑K

k=1
wk(FEM) ×

�

�̂�k − �̂�FEM

�2 and θ̂FEM is the pooled effect of 
a fixed effect model with weights wk(FEM) = 1/σ 2

k .

The 95% CI for θREM is given by

The standard error is given by

θ̂REM =
∑K

k=1 wk(REM) × θ̂k
∑K

k=1 wk(REM)

,

τ 2DSL = max















0,
Q − (K − 1)

�K
k=1 wk(FEM) −

�K
k=1 w

2
k(FEM)

�K
k=1 wk(FEM)















θ̂DSL ± 1.96× σ̂DSL.

We included the DSL method in our simulation because 
it is still in use and is important, at least for sensitivity 
analyses [17].

Hartung‑Knapp‑Sidik‑Jonkman method using the 
Paule‑Mandel heterogeneity variance estimator For 
the method of Hartung-Knapp-Sidik-Jonkman (HKSJ) 
[18, 19] different weights wk(HKSJ) can be applied to cal-
culate the overall estimator θ̂HKSJ , depending on what 
estimator for the between-study variance (heterogene-
ity) is used. For the analysis presented here, we used 
wk(HKSJ ) = wk(PM) = 1/

(

σ 2
k + τ 2PM

)

 , where τ 2PM is the 
Paule-Mandel (PM) estimator of τ2 [20–22]. The PM esti-
mator of τ2 is derived from the generalised Q statistic

by setting Q
(

τ 2PM

)

 to its expected value K − 1 with 
wk(PM) = 1∕

(

�
2

k
+ �

2

PM

) and �̂��𝜏2
PM

�

=
�

∑K

k=1
wk(PM) × �̂�k

�

∕
�

∑K

k=1
wk(PM)

�

 . 
The equation is solved by iterating τ 2PM until convergence 
is reached. If no solution exists, τ̂ 2PM is set to 0.

The 95% CI for θREM is given by

where tK − 1; 0.975 is the 0.975 quantile of the t-distribution 
with K − 1 degrees of freedom,

and

In general, this CI tends to be wider than the 95% CI of 
the DSL method. However, in very homogeneous data 
situations, this is not always the case. Therefore, Knapp 
and Hartung [23] suggested an ad hoc modification of 
q, q∗ = max {1, q}. If the ad hoc modification is used, the 
95% CI of the HKSJ method is always wider than the 
95% CI of the DSL method. In the simulation study, we 
followed the recommendations of the literature to carry 
out sensitivity analyses using a fixed effect model or the 
DSL method to decide on whether the modification is 
needed [17, 24]. If the 95% CI of HKSJ was narrower 

σ̂DSL =

√

√

√

√1/

(

K
∑

k=1

wk(DSL)

)

.

Q
(

τ 2PM

)

=
K
∑

k=1

wk(PM) ×
(

θ̂k − θ̂

(

τ 2PM

))2

θ̂HKSJ ± tK−1;0.975 ×
√
q × σ̂HKSJ

q = 1

K − 1

K
∑

k=1

wk(HKSJ ) ×
(

θ̂k − θ̂HKSJ

)2

σ̂HKSJ =

√

√

√

√1/

(

K
∑

k=1

wk(HKSJ )

)

.
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than the 95% CI of DSL, the ad hoc modification was 
used.

We included the HKSJ method in our simulation because 
it is well-established that it performs better than the 
DSL method [17] and is recommended as the standard 
approach in the Cochrane Handbook in combination with 
the PM estimator for τ2 [25]. Furthermore, it is the IQWiG 
standard method for MAs with five or more studies [26]. It 
is well-known that for MAs with less than five studies, 95% 
CIs of the HKSJ method tend to be too wide but in general, 
the method does not lead to increased type I errors.

Other models

Mantel‑Haenszel method The Mantel-Haenszel (MH) 
method [27] assumes a fixed effect model which is based 
on the assumption that all studies in the MA have a com-
mon effect θFEM. The resulting estimate is a weighted aver-
age of the study-specific risk ratios or risk differences.

The MH odds ratio of the overall effect is given by

where ÔRk(MH) = ykT×(nkC−ykC)
(nkT−ykT )×ykC

 is the estimated odds 
ratio, wk(MH) = (nkT−ykT )×ykC

nk

 the weight, and 

nk = nkT + nkC the sample size of study k (k = 1, …, K).

No continuity correction was applied. Therefore, single- 
and double-zero studies were ignored during the analysis. 
We estimated 95% CIs using normal approximation.

We included the MH method in our analysis because it is 
the standard fixed effect model for binary data in Cochrane 
Reviews and performs better than the standard (inverse var-
iance) fixed effect model in the case of sparse data [25].

Peto odds ratio method The Peto odds ratio (POR) 
method [28] was introduced as the effect estimator 
for the real underlying OR in the data situation of rare 
events. Later it was shown that POR is an independent 
effect measure and cannot be used as approximation of 
the true OR in all (rare event) data situations [29].

The pooled log POR is estimated as

ORMH =
∑K

k=1 wk(MH) × ÔRk(MH)
∑K

k=1 wk(MH)

log(POR) =
∑K

k=1 (Ok − Ek)
∑K

k=1 Vk

,

where Ok is the observed number of events in the treat-
ment arm, Ek the expected number of events in the treat-
ment arm under the assumption of no treatment effect, 
and Vk the variance of their difference.

No continuity correction was applied. Single-zero studies 
are included in the analysis by definition, whereas dou-
ble-zero studies are ignored. We estimated 95% CIs using 
the normal approximation.

Although this method has major limitations [29, 30], we 
considered the POR in our analysis because according to 
the Cochrane Handbook, it is the standard MA method 
for small intervention effects or very rare events [25].

Collapsed table This method (COLL) ignores the fact 
that data were collected from different studies and aggre-
gates them in one single four-fold table. The effect is esti-
mated using standard methods for 2 × 2 tables [31]. The 
procedure assumes a constant underlying risk of an event 
across all studies, which is rarely given, and therefore the 
method is vulnerable to Simpson’s paradox [32, 33].

Because of its simplicity and because the differences in 
event rates across studies might be negligible in scenarios 
with few events and studies, we included the method in 
our analysis.

We applied a continuity correction if necessary and esti-
mated 95% CIs using normal approximation.

Simulation study
We performed a simulation study using SAS/STAT® 
software Version 9.4 (SAS Institute Inc., Cary, NC, 
USA) for Microsoft Windows 10 to compare the statis-
tical properties of the different meta-analytic methods. 
In an attempt to investigate the methods in realistic 
scenarios, the values of the design factors in the simula-
tion study were chosen from MAs actually performed. 
For this purpose, we used the review by Turner et al. [4] 
The review included 1991 systematic reviews from the 
Cochrane Database of Systematic Reviews and analysed 
14,886 MAs of dichotomous outcomes from 77,237 sin-
gle studies.

Design of simulations
In our simulation study, we varied the following param-
eters: the number of studies in the MA, the sample size 
of a single study, the event probability in the control arm, 
the heterogeneity between studies in the MA, and the 
effect size in the MA.
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We chose 2, 3, 4, 5 and 10 as the number of studies in 
the MA. Ten studies were chosen in addition to gain an 
impression of how the models perform in rather uncriti-
cal scenarios. For each number of studies in the MA, we 
simulated 10,000 data sets each under the null  (H0) and 
under the alternative hypothesis  (H1). In each data set, we 
sampled the values of the other parameters from distribu-
tional functions based on the data from Turner et  al. [4] 
For example, the sample size nk for a single study in the 
MA was sampled using a log-normal distribution with μND 
= 4.615 and σND = 1.1, resulting in a mean overall sample 
size of 185.7 (median: 102.0; 1st quartile: 50.0; 3rd quartile: 
213.0). Table 1 shows the distributional assumptions and 
the resulting data values. The data were simulated accord-
ing to the REM from the Inverse variance random effects 
models section. The simulation process was as follows:

1. For each MA, we sampled the true risk πC, true in the 
control arm and the heterogeneity τ2 between the 
studies in the MA from the distributional functions 
given in Table 1. Under  H1, we did the same for the 
effect size θ = log OR and log RR. Under  H0, the 
effect size was set to zero (i.e. OR = 1 and RR = 1).

2. For the kth study in the MA, we

a. sampled the study size nk and the size of the 
treatment (nkT) and control arm (nkC) using the 
distributional functions given in Table 1

b. sampled the number of events in the control 
arm ykC using a binomial distribution with πC, 

true as event probability and nkC as number of 
experiments

c. sampled an individual heterogeneity variance τ 2k  
using the sampled true heterogeneity and assum-
ing that it follows a normal distribution within 
the kth MA

d. calculated the true risk in the treatment arm πkT, 

true using πC, true, θ, τ 2k  and the following formula: 
�kT ,true = exp

(

logit
(

�C ,true

)

+ � + �
2
k

)

∕
(

1 + exp
(

logit
(

�C ,true

)

+ � + �
2
k

))

e. sampled the number of events in the treatment 
arm ykT using a binomial distribution with πkT, true 
as event probability and nkT as number of experi-
ments.

Overall, we simulated 5 (number of studies in the MA 
2, 3, 4, 5, 10) × 2 (under  H0 and under  H1) × 10,000 data 
sets = 100,000 MAs each for the OR and for the RR.

We performed a sensitivity analysis to assess the 
robustness of the results regarding heterogeneity. For 
each MA, we calculated Cochran’s Q test [13] in order 
to gain an impression of whether the results depend on 
homogeneity of the data situations. Although we are 
aware that this dichotomisation is somewhat arbitrary, 
we used the Cochran’s Q test for the purpose of sensitiv-
ity analyses because in practical applications, MAs will 
frequently not be performed, at least when the test for 
heterogeneity is statistically significant.

Parameter estimation in the models
For parameter estimation, we used the SAS/STAT® 
software procedure NLMIXED for BBST and BBFR, 
COUNTREG for BBCB1 and BBCB2, GLIMMIX for 
GLFR and GLRRI, and FREQ for MH and COLL. For 
HKSJ, DSL and POR, we programmed our own syntax 

Table 1 Description of the simulation study

OR odds ratio, SD standard deviation, Q1: 1st quartile; Q3: 3rd quartile

Parameter Distributional assumption and parameter 
specification

Description of resulting data set

Sample size of single study nk Generated from a log-normal distribution with 
μND = 4.615 and σND = 1.1

Q1 = 50.0, median = 102.0, mean = 185.7, 
Q3 = 213.0

Sample size of treatment (control) arm of single 
study nkT (nkC)

For nkT: Generated from a binomial distribution 
with event probability 0.5 (1:1 randomisation) and 
nk as number of experiments
For nkC: nk − nkT

Event probability in control group πC, true Generated from a beta distribution with α = 0.42 
and β = 1.43

Q1 = 0.024, median = 0.129, mean = 0.230, 
Q3 = 0.369

Variation σ2 within study Is implicitly given by random sample size of single 
study and event probability in control group

Heterogeneity τ2 between the studies (for θ = 
log OR)

Generated from a log normal distribution with 
μND = −1.47, σND = 1.65 and skewness = − 0.55 
using Fleishman’s power transformation to gener-
ate the skewed distribution [34, 35]

τ2:
Q1 = 0.079, median = 0.273, mean = 0.621, 
Q3 = 0.802

Effect size of θ = log OR under  H1 Generated from a log normal distribution with 
μND = − 0.59, σND = 0.61, skewness = − 1.28 and 
kurtosis = 3.68 using Fleishman’s power transfor-
mation [34, 35]

OR:
Q1 = 0.527, mean = 0.673, median = 0.694, 
Q3 = 0.838
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that was validated using R 3.3 [36] and the metafor 
package [37].

Because we used the COUNTREG procedure for 
parameter estimation, we were only able to estimate the 
OR but not the RR. In the GLIMMIX procedure, we used 
maximum likelihood estimation based on adaptive quad-
rature (METHOD = QUAD) with 1 quadrature point 
(QPOINTS = 1), which is equivalent to the Laplace approx-
imation. We decided to use the Laplace approximation 
because we assumed that this would be most robust [38].

Performance measures
To assess the performance of the methods we calculated 
the following measures:

• Number of converged simulation runs with estimated 
effect and standard error (R): Sometimes the proce-
dures converged and an effect was estimated but no 
standard error was given (most notably when using 
the NLMIXED procedure). Because such results 
would cause problems of interpretation, we counted 
these runs as non-converged. All other measures 
were based on R, the number of converged simula-
tion runs with an estimated effect and standard error.

• (Absolute) bias θ̂r − θr : Difference between the esti-
mated ( ̂θr ) and true effect (θr); r = 1, …, R.

• Percentage bias under  H1
(

100×
(

θ̂r − θr

))

/θr : 

Ratio of the bias ( ̂θr − θr ) and true effect (θr); r = 1, 
…, R.

• Coverage probability: Proportion of converged simu-
lation runs where the 95% CI included the true effect 
θr; r = 1, …, R.

• Length of 95% CI: Difference (CIU, r − CIL, r) of upper 
(CIU, r) and lower (CIL, r) confidence limit of the 95% 
CI for θr; r = 1, …, R.

• Power under  H1: Proportion of converged simulation 
runs under  H1 where the 95% CI excluded the null 
effect.

Bias, percentage bias and length of 95% CI were calcu-
lated on the corresponding log scale, i.e. log OR or log 
RR. For these measures, the median as well as the 1st and 
3rd quartile are presented.

The simulation code containing the data generation, 
parameter estimation, and the calculation of the perfor-
mances measures is available in the Supporting Information.

Results
In the following sections, we describe the results for the 
OR of all methods under the null hypothesis (Results for 
the odds ratio under the null hypothesis section), and 
alternative hypothesis (Results for the odds ratio under the 

alternative hypothesis section). In the  Direct comparison 
of results for beta-binomial models section, we compare 
the results of the BBMs, especially BBST and BBFR. The 
results of the RR are discussed in the Results for the rela-
tive risk section. The results of the sensitivity analysis are 
presented in the Sensitivity analysis section and the main 
results are summarized in the Summary of results section.

Although the results of all methods are described in 
this chapter, in tables and figures we focused on the 
BBST, BBCB1, BBCB2, GLFR, HKSJ and DSL. As BBST 
and BBFR yielded almost identical results (Direct com-
parison of results for beta-binomial models section 
and Discussion), we refrained from showing them both 
in tables and figures. The results of all methods can be 
found in the Supporting Information.

For the BBMs, the results for coverage probability, length 
of 95% CI and power, with CIs using 2K − 2 degrees of 
freedom, are presented and discussed. Results for the 
CIs with K − 1 degrees of freedom, which were generally 
worse, can be found in the Supporting Information.

Results for the odds ratio under the null hypothesis
Number of converged simulation runs
The methods HKSJ, DSL, COLL and POR were only mar-
ginally affected by convergence problems (< 0.5% for all 
scenarios) due to their construction. The same held true 
for GLFR (R ≥ 9988 for all scenarios). The BBMs (BBST, 
BBFR, BBCB1, BBCB2) converged in more than 95% of 
the simulation runs. The number of converged runs was 
lower for MH in scenarios with 2 studies (R = 9394) but 
increased up to 10,000 in scenarios with 10 studies. The 
GLRRI had the lowest number of converged runs, with 
8469 (2 studies) to 6896 runs (10 studies) (see Fig. 1 and 
Table S1 in the Supporting Information).

Bias
For all methods, the median bias was similar, mainly 
positive, increased with an increasing number of stud-
ies, and was low (< 0.04 on log OR scale). Because bias 
was calculated on the log OR scale (bias 
= log

(

ÔR
)

− log(OR) = log
(

ÔR/OR
)

 ), this could be 
interpreted as relative effect of the ORs. Therefore, 
the estimated OR increased up to 4% in median if 
compared to the true OR (see Table 2 and Table S2 in 
the Supporting Information).

Coverage probability
Coverage probabilities were at or above 95% for the BBMs 
(BBST, BBFR, BBCB1, BBCB2) and HKSJ for all scenarios. 
Coverage probability for GLFR was at or above 95% for 2, 
3 and 4 studies and fell below 95% for 5 (93.9%) and 10 
studies (90.4%). All other methods had coverage probabil-
ities below 95% for all scenarios (GLRRI: ≤ 85.7%; DSL: ≤ 
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93.3%; MH: ≤ 81.6%; POR: ≤ 80.6%; COLL: ≤ 82.2%) (see 
Fig. 2 and Table S3 in the Supporting Information).

BBMs (BBST, BBFR, BBCB1, BBCB2), HKSJ and GLFR 
had coverage probabilities ≥97.3% in scenarios with 2 

studies. In scenarios with 3, 4, 5, and 10 studies, BBMs 
(BBST, BBFR, BBCB1, BBCB2) were closer to 95% than 
HKSJ (≥ 96.2% in all scenarios). The same applied to the 

Fig. 1 Number of converged simulation runs (out of 10,000) for the OR under the null hypothesis

Table 2 (Absolute) bias for the log OR under the null hypothesis

Q1: 1st quartile; Q3: 3rd quartile

Number of studies BBST BBCB1 BBCB2 GLFR HKSJ DSL

Median Median Median Median Median Median

Q1 Q1 Q1 Q1 Q1 Q1

Q3 Q3 Q3 Q3 Q3 Q3

2 0.0004 −0.0090 − 0.0000 0.0112 0.0065 0.0065

−0.3857 −0.3957 −0.2880 −0.3846 −0.3692 −0.3692

0.3907 0.3652 0.2877 0.4325 0.3880 0.3880

3 0.0109 −0.0098 −0.0000 0.0239 0.0184 0.0186

−0.2994 −0.3262 −0.2476 −0.2965 −0.2783 −0.2765

0.3497 0.3253 0.2515 0.3963 0.3405 0.3388

4 0.0119 −0.0058 − 0.0000 0.0229 0.0144 0.0148

−0.2522 − 0.2772 −0.2151 − 0.2466 −0.2346 −0.2335

0.2943 0.2657 0.2179 0.3326 0.2905 0.2890

5 0.0167 −0.0074 0.0000 0.0250 0.0196 0.0200

− 0.2099 − 0.2468 − 0.1815 − 0.2097 −0.2049 −0.2022

0.2640 0.2345 0.1894 0.3066 0.2654 0.2666

10 0.0176 −0.0051 0.0000 0.0293 0.0221 0.0230

−0.1438 −0.1815 −0.1293 −0.1336 −0.1297 −0.1293

0.1883 0.1571 0.1336 0.2248 0.1935 0.1934
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GLFR in scenarios with 3 and 4 studies (see Fig.  2 and 
Table S3 in the Supporting Information).

Coverage probabilities of the BBMs were closer to 95%, 
i.e., less conservative, if confidence intervals with 2K − 2 
degrees of freedom were used compared to the use of K 
– 1 degrees of freedom (see Table S3 in the Supporting 
Information).

Length of 95% CI
The length of the 95% CI for log OR was largest and 
approximately the same for HKSJ and GLFR in the sce-
nario with 2 studies. The length was far shorter for 
BBMs. With an increasing number of studies in the MA, 
the length of the 95% CIs converged between the meth-
ods, but HKSJ always had the widest CIs (see Table 3 and 
Table S4 in the Supporting Information).

Results for the odds ratio under the alternative hypothesis
The results under the alternative hypothesis were quite 
similar to the results under the null hypothesis for all per-
formance measures investigated. Therefore, for the num-
ber of converged simulation runs, bias, squared error, 
coverage probability and length of 95% CI, only impor-
tant differences between null and alternative hypothesis 
are mentioned.

Number of converged simulation runs
The number of converged runs for GLRRI increased by 
about 100 runs up to between 8590 (2 studies) and 7083 
runs (10 studies). GLRRI still had the lowest convergence 
rate (see Table S5 in the Supporting Information).

Bias
The median absolute bias of log OR was higher than 
under the null hypothesis and mainly positive, but still 
small (< 0.05), for most methods. The most notable 
exception was BBCB2 with a median bias > 0.10 for all 
scenarios (see Table  4 and Table S6 in the Supporting 
Information).

Percentage bias
The percentage bias of log OR was defined as 
(

100×
(

log
(

ÔR
)

− log(OR)
))

/ log(OR) and because 
log OR < 0, a negative percentage bias means an over-
estimation of the log OR. The median percentage bias 
was low (about − 6 and 0%) for the BBMs (BBST, 
BBFR, BBCB1), except for BBCB2, and the GLMMs 
(GLFR, GLRRI). The median values for HKSJ, DSL, 
MH, POR and COLL were higher, with values between 
− 14 and − 7%. BBCB2 had much worse median values, 
about − 30% (see Table 5 and Table S7 in the Support-
ing Information).

Fig. 2 Coverage probability (%) for the OR under the null hypothesis (95% CI with 2K − 2 degrees of freedom for BBST, BBCB1 and BBCB2)
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Table 3 Length of 95% CI for the log OR under the null hypothesis (95% CI with 2K − 2 degrees of freedom for BBST, BBCB1 and 
BBCB2)

Q1: 1st quartile; Q3: 3rd quartile

Number of studies BBST BBCB1 BBCB2 GLFR HKSJ DSL

Median Median Median Median Median Median

Q1 Q1 Q1 Q1 Q1 Q1

Q3 Q3 Q3 Q3 Q3 Q3

2 4.4403 4.3872 3.6847 12.4947 14.1601 2.5465

2.6654 2.6242 2.0261 7.5389 7.7049 1.4191

7.9314 7.7574 6.9888 23.3022 25.3066 4.2315

3 2.4496 2.4603 2.0577 3.4106 4.3827 2.0281

1.4494 1.4500 1.0987 2.0936 2.5054 1.1865

4.2823 4.2821 3.7885 6.3203 6.8549 3.2792

4 1.8850 1.9022 1.5594 2.1652 2.8089 1.7153

1.1225 1.1241 0.8478 1.3430 1.6347 1.0198

3.1821 3.2001 2.8554 3.8901 4.3356 2.7188

5 1.6165 1.6338 1.3294 1.6974 2.1806 1.5158

0.9599 0.9652 0.7283 1.0538 1.2838 0.9046

2.6942 2.7002 2.3815 3.0376 3.3875 2.3956

10 1.0760 1.0796 0.8550 0.9788 1.2340 1.0463

0.6320 0.6351 0.4707 0.6012 0.7326 0.6255

1.7404 1.7336 1.5407 1.7447 1.9143 1.6381

Table 4 (Absolute) bias for the log OR under the alternative hypothesis

Q1: 1st quartile; Q3: 3rd quartile

Number of studies BBST BBCB1 BBCB2 GLFR HKSJ DSL

Median Median Median Median Median Median

Q1 Q1 Q1 Q1 Q1 Q1

Q3 Q3 Q3 Q3 Q3 Q3

2 0.0203 0.0224 0.1378 0.0251 0.0478 0.0478

−0.4137 −0.3925 −0.2316 −0.4195 −0.3418 −0.3418

0.4385 0.4287 0.4747 0.4758 0.4699 0.4699

3 0.0225 0.0131 0.1327 0.0283 0.0608 0.0620

−0.3057 −0.3130 −0.1817 −0.3117 −0.2443 −0.2392

0.3762 0.3609 0.4300 0.3990 0.4080 0.4067

4 0.0215 0.0081 0.1258 0.0220 0.0545 0.0553

−0.2610 −0.2798 − 0.1505 − 0.2676 − 0.2060 − 0.2029

0.3136 0.2917 0.3761 0.3335 0.3499 0.3516

5 0.0209 0.0065 0.1187 0.0227 0.0535 0.0545

−0.2298 −0.2563 −0.1278 −0.2384 −0.1639 −0.1634

0.2830 0.2595 0.3606 0.3057 0.3232 0.3252

10 0.0207 0.0011 0.1073 0.0235 0.0525 0.0532

−0.1409 −0.1684 −0.0698 −0.1486 −0.0984 −0.0984

0.2119 0.1779 0.2858 0.2244 0.2556 0.2582
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Coverage probability
Only HKSJ had coverage probabilities at or above 95% 
for all scenarios. BBCB2 had coverage probabilities 
< 95% for scenarios of 3 or more studies. The other BBMs 
(BBST, BBFR, BBCB1) had coverage probabilities at, 
above, or marginally below 95% for all scenarios. Cov-
erage probabilities for GLFR were at or above 95% only 
for scenarios with 2, 3 or 4 studies. All other methods 
had coverage probabilities below 95% for all scenarios 
(GLRRI: ≤ 86.6%; DSL: ≤ 92.5%; MH: ≤ 82.2%; POR: ≤ 
82.1%; COLL: ≤ 83.3%) (see Fig.  3 and Table S8 in the 
Supporting Information).

Length of 95% CI
Results for the length of the 95% CI were similar to results 
under the null hypothesis, with HKSJ and GLFR having 
the broadest intervals in all scenarios (see Table S9 in the 
Supporting Information).

Power
Power for methods with coverage probability of ≥95% 
under the null hypothesis (BBST, BBFR, BBCB1, BBCB2, 
and HKSJ in all scenarios and GLFR in scenarios with 2, 
3 and 4 studies) was quite low (still < 40% in scenarios 
with 10 studies). Power for BBMs (BBST, BBFR, BBCB1, 
BBCB2) was higher than for HKSJ in all scenarios. In 
scenarios with 2 studies, none of these methods showed 

a power > 5%, that is, no method yielded satisfactory 
results. In scenarios with 3 and 4 studies, power was still 
low (maximum 21.0% for BBCB1) but the differences in 
the methods became visible. Power was highest for BBST, 
BBFR and BBCB1, followed by BBCB2 and HKSJ with the 
lowest power (see Fig. 4 and Table S10 in the Supporting 
Information).

Methods with coverage probabilities < 95% under the 
null hypothesis (GLRRI, DSL, MH, POR, COLL) had 
higher power up to 55% (see Table S10 in the Supporting 
Information).

The small power values were to be expected due to the 
fact that the true ORs were near 1 (> 0.83) for about 25% 
of the simulations, the moderate sample sizes (mean: 
185.7; median: 102.0), and only few studies in the MAs.

Direct comparison of results for beta‑binomial models
BBST and BBFR showed almost identical results. We 
assumed that one reason could be the maximum likeli-
hood approximation method. Therefore, we tried to use 
another approximation method, the Gauss-Hermite 
quadrature with two quadratic points (QPOINTS = 2). 
However, in the case of a higher number of quadrature 
points, a floating point exception error occurred at one 
point, stopping the whole simulation. Therefore, we 
could not run the complete simulation using more quad-
rature points. We tried to reanalyse the simulated data 

Table 5 Percentage bias (%) for the log OR under the alternative hypothesis

Q1: 1st quartile; Q3: 3rd quartile

Number of studies BBST BBCB1 BBCB2 GLFR HKSJ DSL

Median Median Median Median Median Median

Q1 Q1 Q1 Q1 Q1 Q1

Q3 Q3 Q3 Q3 Q3 Q3

2 −5.11 −5.19 −36.47 −6.08 −11.18 −11.18

− 123.48 − 121.31 −108.22 − 134.08 −129.21 −129.21

129.70 120.92 71.37 131.63 95.25 95.25

3 −5.15 −3.16 −35.18 −6.79 −14.07 −13.90

−109.29 − 104.89 −100.79 − 120.90 − 113.60 −113.90

88.72 91.03 53.83 90.55 67.96 66.87

4 −4.71 −1.71 −32.30 −5.23 −12.62 −12.57

−88.62 −82.00 −99.91 −96.81 −95.54 −96.22

77.02 82.45 47.71 78.32 57.25 56.93

5 −5.07 −1.44 −31.51 − 5.24 −12.35 −12.74

−81.65 −72.16 −91.35 −91.15 −89.98 −90.59

65.71 74.12 38.30 66.97 47.04 45.97

10 −5.11 −0.26 −28.08 −5.71 −12.83 −12.84

−55.87 −47.14 −71.48 −62.81 −66.42 −66.33

40.20 48.89 20.74 41.06 27.47 27.21
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Fig. 3 Coverage probability (%) for the OR under the alternative hypothesis (95% CI with 2K−2 degrees of freedom for BBST, BBCB1 and BBCB2)

Fig. 4 Power (%) for the OR under the alternative hypothesis (95% CI with 2K−2 degrees of freedom for BBST, BBCB1 and BBCB2)
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using the Gauss-Hermite quadrature with 2 quadrature 
points for the BBFR. From the few existing results, it 
appears that BBST and BBFR vary the most if the ORs in 
the studies are very heterogeneous. Of notice, these were 
mainly data situations with strong heterogeneity (P value 
of Q test < 0.05).

The coverage probability of the BBCB2 was below the 
nominal level under the alternative hypothesis in sce-
narios with 3 or more studies. In contrast, BBCB1 per-
formed well and very similarly to BBST considering all 
performance measures.

Results for the relative risk
For the RR, we only considered BBST, GLFR, HKSJ, DSL 
and COLL in our simulation study. Because the results of 
BBST and BBFR were almost identical, we focussed on 
BBST. As mentioned earlier, it was not possible to com-
pute RRs for BBCB1 and BBCB2. GLRRI and MH per-
formed quite poorly considering the OR. Thus, we saw no 
need to reconsider them again. DSL and COLL also per-
formed quite poorly, but we considered them due to their 
simplicity and as “benchmark” methods.

Results for RR were comparable to OR, except for the 
fact that BBST and GLFR struggled with convergence 
problems. BBST converged only in about 82% of each 
scenario (about 98% for OR) and GLFR between 90 and 
95% (> 99% for OR). Noticeably, coverage probability for 

GLFR was higher and nearer the 95% level than that for 
OR (see Tables S11 – S20 in the Supporting Information).

Sensitivity analysis
The sensitivity analysis considering only data situations 
with no statistically significant heterogeneity (P value 
of Q test > 0.05) did not fundamentally alter the simula-
tion results of the performance measures. The biggest 
influence was seen in coverage probabilities. Coverage 
probabilities below 95% increased and approached 95%. 
Coverage probabilities above 95% remained more or less 
stable. The biggest improvement was seen in MH, POR 
and COLL, but their coverage probabilities were still far 
below 95% (e.g. OR under  H0 in scenarios with 4 studies: 
MH: 88.9%, POR: 88.4%, COLL: 88.9%). The most rele-
vant improvement was shown in the GLFR, where cover-
age probabilities were far more near 95% in scenarios of 
5 and 10 studies than in data situations where the appro-
priateness of pooling was not considered (see Fig. 5 as an 
example).

Summary of results
The beta-binomial models BBST and BBCB1 (BBCB1 
only for OR) performed well in scenarios with 3, 4, 5 and 
10 studies. HKSJ was the only standard MA method that 
had adequate performance measures in these scenarios, 
although the coverage probability was very high (> 98%) 

Fig. 5 Coverage probability (%) for the OR under the null hypothesis in scenarios with no statistically significant heterogeneity (P value of Q test > 
5%; 95% CI with 2K−2 degrees of freedom for BBST, BBCB1 and BBCB2)



Page 15 of 18Felsch et al. BMC Medical Research Methodology          (2022) 22:319  

for scenarios < 5 studies. In scenarios with only 2 stud-
ies, no method showed coverage probabilities near 95%; 
especially HKSJ and GLFR were far too conservative. 
Power was very low in this scenario; therefore, for 2 stud-
ies no method appeared appropriate. In scenarios with 3 
and 4 studies, BBST, BBCB1 (BBCB1 only for OR), GLFR 
and HKSJ performed best, with the first two methods 
having higher power than the last two. In scenarios with 
5 and 10 studies, BBST, BBCB1 (BBCB1 only for OR) and 
HKSJ performed best, with the first two methods having 
higher power than the last one.

Discussion
We conducted a simulation study to compare BBMs with 
various standard meta-analytic methods in the case of 
very few studies. The BBST and the BBCB1 (BBCB1 only 
for OR) showed good results in the given data situations 
that were based on realistic data situations of Cochrane 
Reviews. The only standard MA method that showed 
acceptable results was HKSJ [39].

The attempt to extend the BBST by a random treat-
ment effect term for the study, due to concerns about 
disrespecting the randomisation, failed. From the few 
results we obtained from the BBFR Gauss-Hermite quad-
rature, it could be seen that the 2 models varied the most 
in  situations where a lot of heterogeneity between the 
study effects was present. As BBFR uses a random effect 
attached to the treatment effect in addition to the random 
intercept, this behaviour is to be expected, because only 
then “enough” additional heterogeneity remains to be 
estimated, i.e. not all heterogeneity goes into the random 
intercept. In practice, pooling will often not be appro-
priate in situations where even in the case of few studies 
there is such strong heterogeneity in the data. Thus, there 
is probably little benefit in using other approximation 
methods than Laplace in the case of sparse data, because 
either it has no impact on results, or it has only an impact 
in  situations where there is a lot of heterogeneity. Our 
finding is in agreement with a recent study that assessed 
different approximations methods to perform meta-anal-
yses using GLMMs in the case of rare events. This study 
found that the Gauss-Hermite quadrature is not superior 
to the Laplace approximation [38]. Thus, there seems to 
be no benefit in using BBFR in practical applications for 
meta-analyses of few studies. However, further research 
is necessary to obtain findings that are more conclusive.

Disrespecting the randomisation to a study arm of a 
specific study had no strong influence on the results of 
BBST and BBCB1. This was already pointed out more 
than 10 years ago [8] and is in line with a recent publi-
cation on arm-based (disrespecting randomisation) 
and contrast-based models (respecting randomisation) 
in network MA, where the authors conclude that both 

models are suitable for network MAs [40]. One reason 
for this is presumably that, especially in the case of few 
studies, heterogeneity cannot be estimated properly. As 
our simulation mirrors real MA situations, the problem 
may not be important in practice, as probably only a few 
data situations occur where this critical aspect of BBST 
and BBCB1 actually has negative consequences.

A very important point to keep in mind is the fact that 
we used adequate data situations based on RCT data. 
Our conclusions could be flawed when there is doubt 
about randomisation. Therefore, using another method 
respecting the randomisation to a study arm of a spe-
cific study as sensitivity analysis seems to be a reasonable 
approach. One could try a BBFR with more quadrature 
points than 1, but this might not work because of conver-
gence problems. Thus, we recommend the use of stand-
ard procedures such as HKSJ in these situations. If the 
results and especially the point estimates are quite differ-
ent, we would refrain from using BBST as a final method, 
because there probably is a problem with disrespecting 
the randomisation to a study arm of a specific study.

Surprisingly, BBCB2, which strictly respects randomi-
sation, performed very badly regarding coverage prob-
ability under the alternative hypothesis. The narrow 95% 
CIs suggest that the standard errors are underestimated. 
This may be because only half of observations, concrete 
each study instead of each single group, contribute to the 
estimation of the parameters compared to BBCB1, where 
each arm of a study contributes to the estimation. More-
over, the assumption of homogeneity within one study 
may lead to overdispersion.

Although GLMMs are an intuitive alternative to the 
standard MA methods, GLFR and GLRRI performed 
quite poorly in many of our investigated scenarios. In 
Jackson et  al. [5] both models (labelled as model 2 and 
3) and their reparametrized versions were examined. In 
contrast to our results, the performance of GLFR was 
worse than that of GLRRI. Apart from this, the coverage 
probabilities for both models were below 95% for almost 
all 15 investigated scenarios, including 2 scenarios with 
3 and 5 studies. The authors used maximum likelihood 
estimation based on adaptive quadrature with 7 (GLFR) 
and 1 quadrature point (GLRRI), whereas we used 1 
quadrature point for each model. We do not think that 
the different number of quadrature points for GLFR can 
fully explain the differences in results. The noticeable dif-
ference in the simulation studies might be the difference 
in heterogeneity. Jackson et al. [5] simulated data with a 
median true τ for log OR of 0.024, whereas our median 
τ was 

√
0.273 = 0.52 , that is, considerably larger. As 

seen in setting 15 in Jackson et al. [5], both models per-
formed worse if a lot of heterogeneity was present (cov-
erage probabilities below 90%). Therefore, in scenarios 
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with higher heterogeneity, the GLFR with 1 quadrature 
point can be more robust than with 7 points, leading to 
better performance measures. The opposite is true for 
the GLRRI. The greater the heterogeneity, the lesser the 
assumption of one random effect for the intercept may 
be justified, resulting in worse performance measures. 
In agreement with this assumption, the GLRRI often did 
not converge in the case of large heterogeneity, i.e. large 
values of τ2. As heterogeneity in the data is better detect-
able with an increasing number of studies in the MAs, 
this could also explain why, counterintuitively, the con-
vergence of GLRRI decreases with an increasing number 
of studies. The partly differing results of these models in 
different simulation studies indicate how important the 
parameter settings in simulation studies could be, and 
thus stress the necessity of (independent) replications of 
results from simulation studies [41].

Some problems exist when using the RR in MAs [42, 
43]. The problems arise from using the log link for the 
RR while the event probability π is bound to [0, 1] and 
are more pronounced if the event probabilities are large. 
Apart from problems with convergence, BBST and GLFR 
showed quite satisfactory results. A post-hoc analy-
sis revealed that the main reason for the worse conver-
gence were large baseline probabilities, namely values of 
πkC > 0.5. In addition, in the case of πkC < 0.5, high het-
erogeneity between the studies and small RRs led to non-
converged simulations. Therefore, the log link affects the 
usability of these methods and further research is needed 
to improve the performance of these models.

An exact method for combining the effect sizes of the 
studies has recently been proposed [44]. This method 
was originally proposed for continuous data but could be 
easily implemented for binary data when using the logit 
or log link. Unfortunately, this method does not solve the 
problem of studies with no events in one or both study 
arms, because the effect size estimates of the studies are 
used to construct the 95% CI of the overall effect. There-
fore, the same drawbacks exist with a continuous correc-
tion as with standard MA methods (HKSJ, DSL, MH for 
OR and RR).

Günhan et  al. [45] investigated a Bayesian BBST. In a 
simulation study this model showed inappropriate cover-
age probabilities for very low OR (log OR < − 2), suggest-
ing that BBMs are not suitable in  situations where very 
large effects are expected. Because we tried to investigate 
realistic scenarios, such extreme values occurred in only 
a few simulations (≤ 10 in 10,000 simulations), which 
might be an explanation why no problems regarding cov-
erage probability of the BBST were observed in our simu-
lation study.

Our study has some limitations. As for all simulation 
studies, our results are only valid for data constellations 
we investigated. Because we based our simulation data on 
MAs actually performed in Cochrane Reviews, i.e. rather 
realistic scenarios, this is probably not a big problem. 
Another limitation is that we only investigated studies 
with balanced (1:1) randomisation schemes in the MA. In 
the case of a mixture of different randomisation schemes 
(1:1, 2:1, 3:1) the result of the BBST could be affected by 
the fact that the model disrespects randomisation. This 
highlights the importance of a sensitivity analysis using a 
method that respects randomisation.

Concerns could exist about the interpretability of the 
results with varying effect sizes under the alternative 
hypothesis. Therefore, we re-analysed the data by clas-
sifying the true effect sizes into four groups (< 1st quar-
tile, between 1st quartile and median, between median 
and 3rd quartile, > 3rd quartile; data not shown). As 
expected, this had no impact on coverage probability. 
Likewise, for all other performance measures the values 
were bigger (smaller) for high effect size categories and 
smaller (bigger) for lower effect size categories. Thus, the 
given results can be interpreted as the mean/median of 
the different simulated effect sizes.

By chance, there were no double-zero studies in our 
MAs, but only single-zero studies. The number of MAs 
with at least one single-zero study varied from about 
36% (2 studies) to 58% (10 studies). In an additional 
analysis (data not shown), the exclusion of MAs with 
single-zero studies led to similar results. However, this 
could be different if the number of single- and double-
zero studies increases, which would require further 
investigation.

Conclusion
In the case of very few (2 – 4) studies, the beta-binomial 
models BBST and BBCB1 (BBCB1 only for odds ratio) 
are valuable alternatives to standard random effects 
meta-analytic models, if the corresponding 95% confi-
dence intervals for BBST and BBCB1 are constructed 
using the t distribution with 2K − 2 degrees of freedom.

For meta-analyses with 2 studies, no general recom-
mendation for a specific model can be given due to very 
conservative coverage probabilities and very low power 
of all investigated methods. The application of a fixed 
effect model, if appropriate, or a qualitative summary of 
the study results could be a solution. For meta-analyses 
with 3 and 4 studies, the BBST and BBCB1 can be rec-
ommended in conjunction with a sensitivity analysis 
using HKSJ or another adequate method for a random 
effects model. For meta-analyses with 5 or more studies, 
the use of HKSJ is recommended. BBST and BBCB1 are 
useful methods for sensitivity analyses in this case.
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