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Abstract

Molecular biodiversity surveys have been increasingly applied in hyperdiverse tropical

regions as an efficient tool for rapid species assessment of partially undiscovered fauna and

flora. This is done by overcoming shortfalls in knowledge or availability of reproductive struc-

tures during the sampling period, which often represents a bottleneck for accurate speci-

mens’ identification. DNA sequencing technology is intensifying species discovery, and in

combination with morphological identification, has been filling gaps in taxonomic knowledge

and facilitating species inventories of tropical ecosystems. This study aimed to apply morpho-

logical taxonomy and DNA barcoding to assess the occurrence of Lamiaceae species in con-

verted land-use systems (old-growth forest, jungle rubber, rubber, and oil palm) in Sumatra,

Indonesia. In this species inventory, we detected 89 specimens of Lamiaceae from 18 spe-

cies distributed in seven subfamilies from the Lamiaceae group. One third of the species

identified in this study lacked sequences in the reference database for at least one of the

markers used (matK, rbcL, and ITS). The three loci species-tree recovered a total of 12 out of

the 18 species as monophyletic lineages and can be employed as a suitable approach for

molecular species assignment in Lamiaceae. However, for taxa with a low level of interspe-

cific genetic distance in the barcode regions used in this study, such as Vitex gamosepala

Griff. and V. vestita Wall. ex Walp., or Callicarpa pentandra Roxb. and C. candidans (Burm.

f.) Hochr., the use of traditional taxonomy remains indispensable. A change in species com-

position and decline in abundance is associated with an increase in land-use intensification

at the family level (i.e., Lamiaceae), and this tendency might be constant across other plant

families. For this reason, the maintenance of forest genetic resources needs to be considered

for sustainable agricultural production, especially in hyperdiverse tropical regions. Addition-

ally, with this change in species composition, accurate species identification throughout

molecular assignments will become more important for conservation planning.
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Introduction

Lamiaceae is the sixth-largest angiosperm family [1] with 236 genera encompassing over 7,000

species [2]. The family consists of both culturally and economically important species, for

example used as flavour additives, in cosmetics and as anti-herbivory compounds. This family

displays anti-microbial and pollinator attraction functions, which can play an important role

in human health and for agricultural purposes [1].

Li et al. [3] and Zhao et al. [4] identified 12 strongly supported primary clades within

Lamiaceae. Phylogenetic studies of angiosperms [5] and Lamiales [6, 7] have also placed

Lamiaceae within a large clade known as the “core Lamiales” [6], in which Lamiaceae are sister

to a well-supported clade made up of Orobanchaceae and other small families such as Maza-

ceae and Phrymaceae [3]. Lamiaceae can usually be recognized through a combination of

traits, which include opposite leaves, bilaterally symmetric flowers with four stamens, and ova-

ries that consist of two fused carpels that have been divided into a one-seeded chamber [3].

Verbenaceae also display similar traits [3], and it has previously been thought that Lamiaceae

had evolved from Verbenaceae-like ancestors [4]. This highlights the importance of molecular

phylogenetic studies in distinguishing plant species so that the distinction between similar

plant families can be made and any further confusion in classification avoided. Monophyly of

clades within Lamiaceae, as well as Lamiaceae’s monophyly itself, has been consistently sup-

ported through various molecular phylogenetic studies [1, 3, 6–8].

For this study, the samples were obtained from Jambi Province, Sumatra, Indonesia, located

in southeast Asia. Sumatra has been reported to be one of the global centers of vascular plant

diversity, with 3,000 to 5,000 species per 10,000 km2 [9]. Southeast Asia has higher rates of

deforestation when compared to Latin America and Africa [10]. By the year 2100, up to three-

quarters of Southeast Asia’s original forests and up to 42% of its biodiversity may be lost [11].

In Indonesia, large amounts of forestland have been converted into oil palm plantations over

the last few decades, with the emergence of these plantations considered to be a driving force

of deforestation [12–15].

Accurately identifying species on a molecular basis, in addition to morphological classifica-

tion, could become more important with biodiversity loss modelled under certain future sce-

narios, as in e.g., Sharma et al. [16]. DNA barcoding is a method that can be utilized for species

identification and makes use of short DNA regions, often referred to as DNA barcodes [17,

18]. It can be used to distinguish cryptic species [19–21], and in conservation [22, 23]. These

DNA barcodes contain variations that can be used to differentiate species [24]. DNA barcod-

ing holds some advantages for species identification over morphological classification, such as

its ability to identify organisms regardless of the stage of development [25–27], or a particular

gender, as described in e.g., Elsasser et al. [28]. However, one of the limitations of this method

is its application to specimen vouchers from herbaria with lower sequence recovery for older

specimen material [29]. Additionally, it has been noted in CBOL Plant Working Group et al.

[30] that no single locus meets CBOL’s data standards and their guidelines for locus selection.

Therefore, a combination of loci has been recommended by the CBOL Plant Working Group

et al. [30].

The markers used in this study includedmatK, rbcL, and ITS.MatK is known to have an

optimal size, with a high substitution rate and a low transition/transversion ratio [31]. For cer-

tain plant speciesmatK has been seen to display higher sequence divergence than rbcL, how-

ever, it can be difficult to amplify by PCR [32]. The advantages of the rbcLmarker can be seen

in its easy amplification and sequencing for many terrestrial plants. It is also an adequate DNA

barcoding region for plants at both the family and genus levels [33]. However, rbcL has the

lowest level of divergence of any of the plastid regions used in Kress et al. [34], but has been
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noted to have good, but not excellent discriminatory power [30]. rbcL, in combination with

various plastid or nuclear loci, can help to make accurate identifications [30, 33, 35]. Accord-

ing to the CBOL Plant Working Group et al. [30], a two-marker combination of the plastid

markers rbcL andmatK was recommended as the standard plant barcode [30] with the nuclear

ribosomal ITS marker recommended in other studies, such as in Chen et al. [36] and Yao et al.

[37]. The ITS marker has been shown to display relatively high universality for angiosperms

[38], it displayed the highest overall discriminatory power in comparison with the commonly

used chloroplast barcode markers [38]. However, one disadvantage of this marker is that it

may also amplify fungal DNA [39].

In this study we conducted a species inventory focusing on the Lamiaceae family in order

to generate DNA barcodes as reference sequences for molecular species identification. These

were taken from species sampled in four land-use systems (forest, jungle rubber, rubber, and

oil palm plots) in Jambi Province, Sumatra. Two DNA chloroplast markers,matK and rbcL,

and the nuclear marker, ITS, were utilized, and thereby the efficiency of these barcode regions

for species delimitation in Lamiaceae was evaluated. Due to the high rates of deforestation cur-

rently occurring in Indonesia’s forests [12–15], the resulting biodiversity loss indicates the

urgent need for accurate species identification and reliable reference sequences, in particular

for conservation efforts, and thus highlights the significance of this study.

Materials and methods

Study site, collection of samples, and taxonomic identification

The Lamiaceae samples were obtained from 32 plots of 50 x 50 m established in four land-use

systems (forest, jungle rubber, rubber, and oil palm plantations) located in two landscapes,

Bukit Duabelas National Park and the Harapan Rainforest in Jambi province, Sumatra, Indo-

nesia. These sampling sites are made up of the remaining fragments of the tropical lowland

rainforests of Sumatra that were once widespread [40] and consist of primary and secondary

forests, logged-over forests, including conservation reserve sites in some of the regions, as well

as formerly forested areas now converted into agricultural systems.

For species that had previously been identified as Lamiaceae in the field, herbarium speci-

mens were sampled and then mounted to carry out a detailed morphological identification at

the Herbarium Borogiense, SEAMEO-BIOTROP Herbarium in Indonesia and at the Univer-

sity of Göttingen in Germany. Fresh leaf tissue was obtained from each sample. This was then

dried in silica gel for DNA analysis and transported in sealable bags containing silica gel. In

total, 82 leaf samples of 18 species of Lamiaceae were collected and then shipped to the Univer-

sity of Göttingen in Germany for DNA barcoding.

The samples were collected under the approval of the Ministry of Research and Technology

and Higher Education of the Republic of Indonesia / National Agency for Research and Inno-

vation, license numbers: 207/SIP/FRP/SM/VI/2012, 25/EXT/SIP/FRP/SM/III/2013, 434/SIP/

FRP/E5/Dit.KI/XI/2015, and 42/EXT/SIP/FRP/Dit.KI/VII/2016.

Extraction, amplification and DNA sequencing

The molecular analysis was employed using one or more samples per species. The DNeasy 96

Plant Kit (Qiagen GmbH, Hilden, Germany) was used for this study, and the DNA was

extracted by following the protocol provided by the manufacturer. 20 mg of the dried and

healthy leaf tissue of each sample was utilized. These DNA samples were then used for the next

steps of the experimental procedure.

The PCR master mix was prepared with a total of 15 μl of the reaction mixture, made up of

1.5 μl PCR-Buffer, 1.5 μL MgCl2 (25mM), 1.0 μl dNTPs (2.5 mM of each dNTPs), 1 μL of

PLOS ONE Molecular and morphological survey of Lamiaceae in converted rainforest

PLOS ONE | https://doi.org/10.1371/journal.pone.0277749 December 15, 2022 3 / 16

https://doi.org/10.1371/journal.pone.0277749


forward primer (5 pM/μL), 1 μL of reverse primer (5 pM/μL), 0.2 μl (5 U/μL) Hot FIREPol

Taq (Solis BioDyne, Estonia) and 6.8 μL H20 with 1μL of the respective DNA sample. The reac-

tion cycle was carried out using a program of 95˚C for 15 minutes, 94˚C for one minute, 50˚C

for one minute, 72˚C for one minute (go to step two and repeat 34 times) in a Biometra TPro-

fessional thermocycler (Jena, Germany). The samples were then electrophoretically separated

on an 1% agarose gel for further quality control. The PCR products were cleaned up prior to

sequencing using GENECLEAN Kit (MP Biomedicals). The PCR products were then

sequenced using the Big DyeTM Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems).

Sequence data analysis

Codon Code Aligner software was used to visualise both the forward and reverse sequences for

each sample (https://www.codoncode.com/aligner). The sequences were manually checked

and then trimmed and edited, where necessary, by checking each electropherogram to exam-

ine the quality of the sample at that site. For each sample, consensus sequences were generated,

and these were then used for multiple sequence alignments in MEGA7 [41]. BLAST searches

were carried out for each consensus sequence generated to find the best matches in the

National Centre for Biotechnology Information (NCBI) GenBank [42] and in the Barcode of

Life Data system (BOLD) databases [43]. The sequences with a confirmed match were added

to the multiple sequence alignments. Representatives of each of the available Lamiaceae tribes

[4], as well as representatives of each species were also added. In the case that there was no

sequence at the species level present, the corresponding sequences at genus level were added.

These compiled sequences were then aligned with MEGA7 [41]. Variable sites, parsimony-

informative sites, and the G-C content were calculated following the complete deletion of any

missing/gap sites from all sequences [44]. Low-quality sequences and those not assigned to the

Lamiaceae family were not used for further analyses or alignments.

The similarity between the obtained sequences and the sequences available in the NCBI

Genbank [42] and Barcode of Life Data Systems (BOLD) databases [43] was verified using the

BLAST algorithm. Morphological-based identification and molecular assignment were com-

pared to evaluate the efficiency of DNA barcodes through the utilization of reference

sequences available in the GenBank and BOLD databases. The percentage of correspondence

between morphological and molecular identification results was subdivided into four taxo-

nomic ranks: that of family, tribe, genus, and species.

Genetic distances and species-tree inference

The calculation of inter- and intraspecific genetic distances was carried out with characteriza-

tion of Tamura2-Parameter + Gamma in MEGA7 [41] for each single marker (matK, rbcL,

and ITS). The T92 + G model was estimated as the best substitution model formatK, rbcL, and

ITS using MEGA7 [41], with the differences in the transitional and transversional changes and

the biased content of G + C [45] taken into account, whereas the speed of evolution between

them was modeled by the distribution of gamma (G) [46].

The sequences of each morphologically defined species were grouped to calculate inter-

and intraspecific genetic distances. Testing the discriminatory power of each marker was car-

ried out based on the intra-and interspecific divergences of all sequences following previous

studies by Wati et al. [24] and Chen et al. [36]. When the minimum value of the interspecific

divergence was higher than the maximum level of intraspecific divergence, the barcode was

considered informative [47]. The significance of the discriminatory power of each marker was

investigated through an unpaired two-samples Wilcoxon test. The Kruskal-Wallis test was
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utilised to estimate the significance of the mean differences in intra- and interspecific diver-

gences between the markers (α = 0.05).

The individualmatK, rbcL, and ITS trees were generated using the Maximum Likelihood

phylogenetic approach in MEGA7 [41]. The parameters set for the tree in MEGA7 included

the bootstrap method with 1000 bootstrap replications. The substitutions type used was

‘Nucleotide’ and the model/method used was a general time reversible model. The rates

among sites selected were Gamma distributed with invariant sites (G+I) with 4 discrete

gamma categories. All sites were used. For the heuristic ML method, the nearest-neighbour

interchange was utilized. A very strong branch swap filter was applied, as well as one thread.

Alignments were concatenated using BioEdit version 7.0.5.3 [48] to estimate a dual-loci tree

with the chloroplast markers and a three-loci species tree. Maximum likelihood trees using the

concatenated alignments were estimated as previously mentioned. The Interactive Tree of Life

(iTOL) [49] was used to annotate final trees.

Results

Molecular and morphological taxonomic inventory of Lamiaceae

A total of 18 species belonging to seven subfamilies of Lamiaceae were identified via DNA bar-

coding and morphological identification: Nepetoideae (N = 1), Callicarpoideae (N = 2), Sym-

phorematoideae (N = 1), Viticoideae (N = 6), Peronematoideae (N = 1), Lamioideae (N = 1),

and Ajugoideae (N = 6) (Figs 1 and 2). The highest number of Lamiaceae species was observed

in forest (N = 10) and jungle rubber (N = 10). In contrast, a sharp decline in species number

was observed in land-use systems with a higher level of agricultural intensification, particularly

oil palm plantations (N = 3) (Fig 1A). Interestingly, high interspecific genetic distance was

observed in all land-use types, however in forest, the interspecific genetic variation was distrib-

uted across a large range, species closely to distantly related were detected in forest plots,

Fig 1. Overview of molecular and morphological inventory of Lamiaceae. A- Surveyed Lamiaceae species and their

respective occurrence in the four land-use types (forest, jungle rubber, rubber, and oil palm plantations). B-

Interspecific genetic distance based onmatK among Lamiaceae taxa encountered in the four land-use types. C-

Lifeform distribution of Lamiaceae specimens sampled in the four land-use types.

https://doi.org/10.1371/journal.pone.0277749.g001
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which reflects the occurrence of species with several degrees of phylogenetic relationships. In

contrast, only three species belonging to distinct Lamiaceae subfamilies were found in oil palm

plots. One of the three taxa detected in oil palm, Hyptis capitata Jacq., is an introduced species

in Southeast Asia (Figs 1B and 3). The two more natural systems hold similar species composi-

tion, although the number of specimens observed in forest plots (N = 33) was slightly higher

than in jungle rubber (N = 28), while rubber plots (N = 20) and oil palm (N = 8) presented

lower specimens’ numbers and less diversity in life forms (Fig 1A–1C).

The proportion of monophyletic clades and node support increased considerably by com-

bining the datasets as observed in the two-loci and three-loci based species trees (Fig 4 and S1–

S4 Figs). Both two-loci and three-loci trees retrieved a similar number of monophyletic clades

with 12 resolved species. Clerodendrum disparifolium Blume and C.myrmecophilum, as well as

Fig 2. Morphological variation of Lamiaceae species sampled for this study. a, bHyptis capitata Jacq.

(Nepetoideae), c, d Callicarpa pentandra Roxb. (Callicarpoideae), e Sphenodesme trifloraWight var. triflora
(Symphorematoideae), f Teijsmanniodendron coriaceum (C.B.Clarke) Kosterm. (Viticoideae), g Vitex quinata (Lour.)

F.N.Williams (Viticoideae), h Vitex vestitaWall. ex Walp. (Viticoideae), i Peronema canescens Jack (Peronematoideae),

j Gomphostemma cf. parviflorumWall. ex Benth. (Lamioideae), k Clerodendrum disparifolium Blume (Ajugoideae), l

Clerodendrummyrmecophilum Ridl. (Ajugoideae).

https://doi.org/10.1371/journal.pone.0277749.g002
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Vitex gamosepala and V. vestita, and Callicarpa candicans and C. pentandra were found as

paraphyletic by the used dataset (Fig 4 and S4 Fig). Juvenile specimens of Clerodendrum
(KR0625, KR0626, and KR0627) identified as C. disparifolium via conventional morphological

identification, clustered within C.myrmecophilum by DNA barcoding using phylogenetic

assignments (Fig 4). After reverification of the specimens due to potential misidentification,

the specimens’ IDs were corrected to C.myrmecophilum. This highlights how DNA barcoding

can improve species identification, especially for juvenile plant specimens. The dataset

employed in this study is not robust enough to derive conclusions about the phylogenetic rela-

tionship of the Lamiaceae family, and the species tree was employed to highlight the applicabil-

ity of phylogenetic approaches to molecular species assignment. The efficiency of the

phylogenetic approaches for taxonomic assignment might vary according to the level of inter-

specific genetic distance of the barcode markers for closely related organisms.

Characteristics of DNA barcoding markers. A total of 73 sequences were successfully

obtained for thematKmarker, 72 sequences for the rbcLmarker, and 34 sequences for the ITS

marker. The ITS dataset displayed the highest proportion of variability (52%), followed by

matK (39%) and lastly the rbcL dataset (18%). The parsimony informative sites showed the

same pattern, with ITS having the highest proportion (34%), followed bymatK (23%), and

lastly by rbcL (10%), with alignment lengths of 838 base pairs (ITS), 755 base pairs (matK) and

finally 589 base pairs (rbcL) (S1 Table). A total of one-third of the species identified in this

study lacked sequences in the reference database for at least one of the markers analysed

(matK, rbcL, and ITS) (S2 Table).

The discriminatory power of the markersmatK and rbcL was effective, with the percentage

of identifications at the species level based on the NCBI GenBank BLAST database of 30.8%

formatK, 22.5% for ITS, and 15.8% for rbcL. The percentage of identifications at the species

level based on the BOLD BLAST database at the species level was 19.23% formatK and 11.53%

for rbcL. No data for ITS is available in the BOLD database. At the genus level in NCBI,matK
assigned 89.7% of samples to the correct genus. For rbcL, the numbers were similar, with

84.6% of samples assigned to the correct genus in NCBI. For the ITS marker, the numbers

were lower, with only 53.75% of samples assigned to the correct genus in NCBI. In the BOLD

database, the figures were slightly lower at the genus level, with rbcL assigning 79.5% of sam-

ples to the correct genus, andmatK having a slightly lower value than that observed in NCBI,

with 76.9% of samples assigned to the correct genus. The markersmatK and rbcL were able to

distinguish a large number of taxa at family level (NCBI:matK = 93.6%, rbcL = 89.7%,

Fig 3. Heat maps of interspecific genetic distances between Lamiaceae species sampled in Sumatra, Indonesia. A- Interspecific genetic distances estimated

usingmatK, B—rbcL and C- ITS regions. Scale bar is adjusted to the maximum genetic distance value of each marker.

https://doi.org/10.1371/journal.pone.0277749.g003
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ITS = 53.75%), (BOLD:matK = 93.6%, rbcL = 89.7%). Reference sequences were available for

all genera, except for Sphenodesme genus for the ITS marker which displayed no results, even

at the genus level. There was a lack of reference sequences available in NCBI GenBank and

BOLD databases for the species Clerodendrum cf. haematolasiumHallier f., Clerodendrum
myrmecophilum, Clerodendrum ridleyi King & Gamble, Sphenodesme triflora var. triflora, and

Vitex gamosepala for all markers. Other species only displayed a lack of reference sequences

for certain markers (S2 Table).

Fig 4. Maximum likelihood tree of the concatenated sequences of the matK, rbcL, and ITS markers. The tips of the

tree display the species IDs, with the samples collected for this study highlighted in bold. The subfamilies of the

Lamiaceae family are highlighted in different colours. � Highlights juvenile specimens.

https://doi.org/10.1371/journal.pone.0277749.g004
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Intraspecific genetic distances were significantly lower than the interspecific genetic dis-

tances for all markers (matK: Kruskal-Wallis chi-squared = 25.996, df = 1, p-value = 3.421e-07;

ITS: Kruskal-Wallis chi-squared = 7.0148, df = 1, p-value = 0.008084; and rbcL: Kruskal-Wallis

chi-squared = 38.735, df = 1, p-value = 4.853e-10). This non-overlap between the two types of

genetic distances (intra- and interspecific) confirms the suitability of these barcode markers

for molecular species distinction in Lamiaceae. The highest overall mean interspecific genetic

distance was observed for the ITS marker, with an overall mean value of 0.142, followed by

matK with a mean value of 0.06, and then by rbcL with a mean value of 0.023. For mean intra-

specific genetic distance values, the lowest value was observed for rbcL (0.003), thenmatK
(0.0084), and finally, ITS (0.082) (Fig 3).

Conservation status

The conservation status of the species of the Lamiaceae family assessed in our study reported

10 species listed as Least Concern (LC), while eight species were Data Deficient (DD) to cate-

gorise their conservation status. Species that are of least concern in the Lamiaceae family make

up 48.5% of the Lamiaceae family, with only 4.9% of the family members being near threat-

ened. However, 18% of the family is classified as vulnerable, 14.5% are considered endangered

and 10% are classified as being critically endangered. Almost 4% of the species in the present

study cannot be accounted for due to data deficiency, as showcased in S3 Table. Despite of

that, none of the species assessed in this study is legally protected based on Ministry Regulation

of Environment and Forestry of the Republic of Indonesia N˚ 106/2018. Threats to this plant

family come from many different sources, such as agriculture and mining practises [50].

Discussion

A dataset of Lamiaceae samples from Sumatra was used to explore the utilisation of DNA bar-

coding for species identification in this relatively poorly sampled tropical region and for

groups that can be difficult to distinguish. This is due to phenotypic traits that can differ based

on environmental factors and development stages [51]. The results obtained in this study indi-

cate that the applicability of DNA barcoding is dependent on both the marker used and the

clades analysed. As can be seen in the results listed above, the success of assigning an accurate

species identity relies heavily on the presence and availability of reference sequences. One-

third of the species used in this study had no reference sequence available in the NCBI Gen-

Bank and the BOLD database. The number of reference sequences available also relied heavily

on the marker used. The lack of available reference sequences for some of the species used in

this study made species delimitation more difficult as a correct assignment at the species level

was not possible.

The NCBI RefSeq database has been established as an important resource for genomic,

genetic, and proteomic research and the collection provides explicitly linked genome, tran-

script, and protein sequence records [52]. The level of reference sequence availability will

hopefully increase even more in the future and so improve the accuracy of species identifica-

tion against reference sequences. Herein, we contributed to the NCBI GenBank reference data-

base with 179 sequences from 18 species belonging to the Lamiaceae family, which will

facilitate future molecular plant inventories in Sumatra and other distribution areas of the

species.

The availability of sequences for certain Lamiaceae species used in this study highlights the

importance of effective species identification and will add to the reference databases. In this

study, the level of successful assignments was similar between the NCBI GenBank and the

BOLD databases, with some differences visible between assignments at the different taxonomic
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levels. A lack of reference sequences for certain species, e.g., Clerodendrum myrmecophilum, C.

haematolasium, Vitex gamosepala, and several other species has affected the accuracy of taxo-

nomic assignment, as the correct identification of the sequences against reference sequences

was not possible. Certain species appeared to be misidentified when searched against the

NCBI GenBank and the BOLD databases. As can be seen in the results section, the success rate

of an accurate assignment was heavily dependent on the marker used and the database

accessed. This highlights the dependency of an accurate result on both the marker used and

the number of available reference sequences. NCBI GenBank had a higher number of hits

when compared to the BOLD database. We recommend a combined approach of the two data-

bases for the most accurate result, especially considering ITS’ absence from BOLD. The

increased addition of sequences would greatly add to the information already available.

An optimal barcode can be resolved by a barcoding gap, which arises when the minimum

value of the interspecific divergence is higher than the maximum level of intraspecific diver-

gence [47]. One of the most important issues facing DNA barcoding is that of accuracy. The

accuracy depends particularly on the degree of, and the separation between intraspecific varia-

tion and interspecific divergence in the chosen marker [47]. The results obtained in this study

displayed significant results which indicated that the mean interspecific genetic distance was

higher than the mean intraspecific genetic distance. This highlights the ability of each of the

three barcode markers to differentiate among species of the Lamiaceae family.

Despite difficulties in the processing of samples for DNA barcoding on site, due to the fact

that many ecosystems of conservation importance are remote and not easily accessible, and

often have no laboratories on site [53], DNA barcoding, through species delineations and iden-

tification, has been suggested to improve the effectiveness of conservation planning in e.g.,

Francis et al. [54] and can also provide information on phylogenetic diversity, as seen in e.g.,

Gonzalez et al. [55]. DNA barcoding has also displayed a great potential to provide a more effi-

cient biodiversity assessment through the assessment of richness and turnover determined

using DNA barcode variability, as shown in e.g., Smith et al. [56]. DNA barcoding as an exclu-

sive method has been shown to be as effective as traditional field identifications in determining

species in poorly known floras [57]. With the number of studies on DNA barcoding increasing

over the past few years, one can hope that the practicality and accessibility of this research will

improve. Increased funding in biodiversity hotspots, many of which are under threat from cli-

mate change [58] could vastly improve species identifications and improve conservation

efforts in areas facing threats to their biodiversity.

According to the IUCN conservation list, the species used in this study with information

available on them are all on the least concern list [50]. However, forest loss and degradation

have resulted in Sumatra’s primary forest cover loss amounting to 7.54 million hectares (Mha)

from 1990 to 2010 with 2.31 Mha primary forest degraded by the year 2010 [59] which could

potentially result in an increased rate of species extinction due to increasing deforestation rates

[60]. Moreover, many of the species used in this study were declared as data deficient. This

highlights the importance of greater numbers of reference sequences and the correct identifi-

cation of plant species, so that accurate and future estimations of plant species numbers world-

wide can be as precise as possible. The misidentification of Lamiaceae species samples based

on morphological identification is indicative of the problems caused using a single identifica-

tion method. Accurate identification of Lamiaceae will greatly aid the conservation efforts of

this plant family.

A turnover in species composition linked to the increase in land-use intensification was

observed in our study for Lamiaceae. Effects of land-use change may vary across taxonomic

groups, favoring generalist species. In this study, the number of Lamiaceae species detected

decreases significantly with the reduction of forest cover. Ecological traits which would
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provide data to clarify quantitatively if the taxa are indeed ecologically similar is often incom-

plete or lacking. Consequently, we recommend for further studies the incorporation of eco-

logical trait data to investigate phylogenetic niche conservatism, as a community constituted

by closely related species may occupy in sympatry different ecological niches to reduce

resource competition, and therefore, the interpretation of phylogenetic composition without

ecological data is often mere speculation [61].

Previous studies at the community level in the same study sites revealed a lack of significant

intraspecific genetic distances of plant taxa detected in the four land-use systems, however,

slightly higher genetic diversity was observed in less intensified land-use systems at plot level

[62]. Still, in this study more intensified systems such as rubber and oil palm plantation plots

had only a few Lamiaceae tree specimens detected, while less intensified systems i.e., forest and

jungle rubber sustained a larger variety of species and abundances in life forms.

Conclusion

This study highlights the importance of accurate reference sequences. One-third of the species

used in this study had no reference sequences available in either of the databases used. 44% of

all species used in this study were classified as Data deficient in IUCN’s red list. This lack of

data is worrying and indicates, once again, the significance of an increased number of

sequences that are available in reference databases. The provision of increased reference sam-

ples may aid in the conservation effort of Lamiaceae species in Sumatra. An increased number

of reference sequences for this study area can aid species identification, can be used to subside

conservation plans, act as a model for other studies, and provide additional reasoning for plans

to reduce deforestation. Moreover, this study indicated the effect of land-use intensification on

Lamiaceae species, with greater species diversity and abundance observed in less intensified

systems, such as forest and jungle rubber, and a reduced number of Lamiaceae species in more

intensified systems, i.e., rubber and oil palm plantations. These results highlight the negative

impact that land-use change can have on species variety and may provide information that

could assist conservation planning.

In this study, species-tree inferences of Lamiaceae provided a good alternative for species

assignment using a combination of barcode markers, which could be utilized as an extra tool

for tropical species delimitation and therefore assist in species identification.
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highlighted in different colours. � Highlights juvenile specimens.

(TIF)

S3 Fig. Maximum likelihood tree of the ITS sequences of Lamiaceae. The tips of the tree

labels display the species IDs. The subfamilies of the Lamiaceae family are highlighted in differ-

ent colours.

(TIF)

S4 Fig. Maximum likelihood tree based on the chloroplast loci matK and rbcL of Lamia-

ceae. The tips of the tree labels display the species IDs. The subfamilies of the Lamiaceae family

are colour highlighted. � Highlights juvenile specimens.

(TIF)
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