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Abstract
We experimentally investigate the transient recoil dynamics of a colloidal probe particle in a
viscoelastic fluid after the driving force acting on the probe is suddenly removed. The
corresponding recoil displays two distinct timescales which are in excellent agreement with a
microscopic model which considers the probe particle to be coupled to two bath particles via
harmonic springs. Notably, this model exhibits two sets of eigenmodes which correspond to
reciprocal and non-reciprocal force conditions and which can be experimentally confirmed in our
experiments. We expect our findings to be relevant under conditions where particles are exposed to
non-steady shear forces as this is encountered e.g. in microfluidic sorting devices or the
intermittent motion of motile bacteria within their natural viscoelastic surrounding.

1. Introduction

The mechanical response of small objects which are driven with external forces or self-propel through
viscoelastic fluids, e.g. micelles, networks of (bio)polymers or colloidal suspensions is of central importance
for many natural phenomena and applications. Since typical relaxation times of the microstructure
of viscoelastic materials can be on the order of several seconds, this leads to non-trivial behaviors for
microscopic probes when sheared through such systems. Typically, probe particles are driven either by
constant or oscillating external forces which then allows to obtain insights into the non-linear mechanical
response of such systems [1–6]. However, so far hardly any theoretical description exists for driving
conditions which may be relevant in non-steady flows within microfluidic devices or the intermittent motion
of living organisms. Several experimental and theoretical studies reported a rich transient recoil dynamics
when the driving force of colloidal particles sheared through different types of complex fluids is suddenly
removed [7–11]. Because similar recoil behaviors have been found in wormlike micelles, polymer solutions,
and entangled λ-phage DNA, this suggests a general, material-independent description which, however, is
currently not available.

In this work we experimentally investigate the relaxation (recoil) of a colloidal bead after driving
it through a wormlike micellar solution with an optical tweezers and then suddenly turning it off
(particle release). Independent of the shearing protocol, we observe that the recoil always proceeds via a
double-exponential relaxation process. Notably, the timescales during relaxation are not identical compared
to those characteristic under shearing conditions which are also accessible in our experiments. Our results
are in quantitative agreement with a generic microscopic model where the response of the fluid is described
with two bath particles connected by linear springs to the probe. The characteristic timescales on which
micro particles respond to viscoelastic fluids strongly depend on the specific choice of the shearing protocol,
partial loading or relaxation of the system will strongly suppress the long and short timescale respectively.
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Lastly, this model naturally has two sets of eigenmodes, corresponding to reciprocal (trap off) and
nonreciprocal forces (trap on) and which are both confirmed in our experiments.

2. Experimental setup

In our experiments we used a viscoelastic solution of 5mM equimolar cetylpyridinium chloride
monohydrate (CPyCl) and sodium salicylate (NaSal) to which we added a small amount of silica probe
particles with diameter 2r= 2.73µm. The solution was contained in a sealed sample cell with 100µm height
being kept at a temperature of 25 ◦C. Under such conditions, the fluid forms an entangled network of giant
worm-like micelles with pronounced viscoelastic properties [12]. In this semi-dilute regime (the critical
micellar concentration is∼4mM), they act as ‘equilibrium polymers’ and are known to be well described by
a Maxwell model being characterized by a single relaxation time [13, 14]. We note, however, that the
relaxation process can be more complex at higher concentrations [15, 16] and in other systems [17–20]. The
colloidal probe was optically trapped in the focus of a Gaussian laser beam λ= 1064 nm using a high
magnification microscope objective (100× oil immersion, NA= 1.45). This yielded a rather stiff trap with
trapping strength κOT = 32± 1µNm−1. To avoid possible interactions with the sample walls, the trap was
located at least 30µm away from any surface. Motion of the probe relative to the fluid has been achieved by
translating the sample cell with constant velocity using a computer controlled piezo-driven stage. This
motion has been synchronized with the laser intensity to realize different shearing protocols as described in
detail below. Pictures of the probe particles have been recorded by video microscopy with a frame rate of
100Hz. Using a custom Matlab [21] algorithm, the particle position has been resolved with an accuracy of
±6 nm. For further details regarding the experimental setup, we refer to the supplementary material (SM).

Figure 1(a) shows a schematic of the experimental protocol used in our study. A probe particle is first
trapped by an optical tweezers and dragged with constant velocity v through the solution for a time tsh. At
time t= 0 s, the optical trap is turned off and the particle experiences a recoil opposite to the direction of v
along the x-axis. Note that this corresponds to a strong perturbation of the system, which is quite different
from previous studies which have been conducted within the linear response regime (e.g. [2, 4, 22]). In
figure 1(b) we plotted the results of such an experiment with v= 3µms−1. The shear time was set to tsh = 8 s
which is sufficiently long that the system approaches a non-equilibrium steady state and the recoil amplitude
weakly depends on tsh. Note that due to particle sedimentation the particles eventually disappear of the
imaging focal plane which limits individual recoil experiments to about∼10 s. Because of thermal noise, the
individual trajectories (colored thin lines) scatter around the corresponding mean value which has been
obtained from about 100 repetitions of the protocol (black open symbols). As shown in figure 1(b) and (in)
agreement with previous studies, the mean recoil ⟨x(t)⟩ is well described by a superposition of two
exponential (red plain line) relaxation processes [9]

⟨x(t)⟩= Atot −Ase
− t

τs −Ale
− t

τl , (1)

where τ s and τ l are two timescales with amplitudes As and Al respectively, and where Atot = As +Al is the
total recoil amplitude. The presence of two timescales is better highlighted in the inset of figure 1(b), where
we plotted x̃(t) = Atot −⟨x(t)⟩ in a log-normal scale. Before discussing the recoil dynamics in more detail, we
note that the appearance of a further (in addition to that of the Maxwell model) relaxation time is not
entirely unexpected due to the finite friction of the colloid coupled to the viscoelastic bath.

3. Steady state recoils

To phenomenologically describe the observed recoil behavior we consider a simple model which is shown in
figure 1(c). Here, the probe particle with friction coefficient γ is coupled via linear springs with stiffness κs

and κl, respectively, to two bath particles with friction coefficients γs and γ l. Such model corresponds to an
extension of the well-known Maxwell model where a single harmonically coupled bath particle is considered,
and which is known to provide a good description for the equilibrium properties of viscoelastic fluids
[12–14, 23–25].

To rationalize the assumption of a harmonic coupling of the bath particles to the probe, we investigated
how Atot varies with v. Within our model, a variation of the shear velocity leads to changes in the elastic
forces between the probe and the bath particles, therefore such experiments allow to investigate the
properties of the considered springs. From our experiments we observe that all recoil amplitudes As, Al, Atot

are proportional to v (figure 2). Notably, the corresponding relaxation times are independent of v (inset of
figure 2). As discussed further below, these observations suggest the choice of a linear model, in particular
the assumption of linear springs in accordance to figure 1(c).
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Figure 1. (a) Sketch of a typical recoil protocol. The colloidal probe is first driven by an optical tweezers through the fluid along
the x-axis for a time tsh and at a constant velocity v. At t= 0 s the optical trap is turned off and the probe is released. Because of
accumulated strain in the fluid, the particle performs a recoil opposite to the direction of shear. (b) Typical recoil curves (colored
lines) obtained for tsh = 8 s and v= 3µms−1 and the mean value ⟨x(t)⟩ (black circles). The red solid line is a double-exponential
according to equation (1) (red line). Inset: x̃(t) = Atot −⟨x(t)⟩ (Atot corresponds to the total recoil amplitude, see equation (1))
in log-normal scale highlights the two timescales. (c) Sketch of the two-bath particle model where the probe with friction
coefficient γ is linearly coupled to two bath particles.

Figure 2. Recoil amplitudes Atot (black), As (red), and Al (blue) as a function of the shear velocity v, for tsh = 8 s. The
experimental data (squares) are obtained by fitting the individual recoil curves (see figure 1(b)) with equation (1). Theoretical
curves (lines) are calculated from equation (9). Inset: relaxation times τ s (red) and τ l (blue) extracted from the recoil curves.
Square symbols correspond to experiments, and lines to theoretical predictions according to equation (8).

Clearly, the validity of our model is limited to small shear velocities since it does not describe the
saturation of Atot at large v, which has been observed in previous studies where shear velocities up to
v= 30µms−1 were applied [9]. Such saturation results from the finite amount of elastic energy which can be
stored in the solvent, an effect which cannot be captured using linear springs. The corresponding linear
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Langevin equations describing the dynamics of the probe (at position x(t)) and the two bath particles (at
positions xi(t)) according to figure 1(c), are given by (i ∈ {s, l})

γẋ(t) =−κ(t) [x(t)− x0(t)]−
∑
i

κi [x(t)− xi(t)]+ ξ(t) (2)

γi ẋi(t) =−κi [xi(t)− x(t)]+ ξi(t). (3)

The first term on the r.h.s. of equation (2) describes the interaction of the probe with the harmonic optical
trap at position

x0(t) =


−vtsh , t<−tsh
vt ,−tsh ⩽ t⩽ 0
0 , t> 0

(4)

which is constant for t<−tsh, such that the system is equilibrated at t=−tsh. From t=−tsh to t= 0 the trap
is driven with constant velocity v. The time dependent laser trap stiffness κ(t) equals κOT when the trap is on
(t< 0) and zero when the trap is off. ξ, ξs, and ξl are independent Gaussian white noises, i.e. for
((ξi, ξj) ∈ {ξ,ξs, ξl}),

⟨ξi(t)⟩= 0 ,
⟨
ξi(t)ξj(t

′)
⟩
= δij2kBTγiδ(t− t ′). (5)

We calculate the mean recoil by solving the set of equations (2), (3) and (5) for the mean positions for times
t > 0 when the probe is released from the optical trap (κ(t) = 0). The process of shearing the particle through
the solvent determines the initial conditions. Due to the large experimental trap stiffness of
κOT = 32µNm−1 we approximate it as fixed-velocity perturbation (hence x(t) = x0(t)). Integrating out
equation (3) we obtain for i ∈ {s, l}

xi(t) = x(t)−
ˆ t

−∞
dt ′ẋ(t ′)e

t ′−t
τ̃i +

1

γi

ˆ t

−∞
dt ′ξi(t

′)e
t ′−t
τ̃i , (6)

where τ̃i = γi/κi denote the individual relaxation times of the bath particles. After averaging we can insert
the protocol of shearing (equation (4)) and find

⟨xi(0)⟩− ⟨x(0)⟩= vτ̃i
(
1− e−tsh/τ̃i

)
. (7)

These conditions are inserted into the Mathematica differential equation solver to yield an expression for the
mean recoil ⟨x(t)⟩.

As a first encouragement, we note that the set of equations (2) and (3) reproduces the experimentally
observed dynamics of the probe during the recoil shown in equation (1). The two timescales take the forms

τ−1
s,l =

1

2γ

[
ζs + ζl ±

√
(ζs + ζl)2 + 4(κsκl − ζsζl)

]
, (8)

where ζi = (γ+ γi)κi/γi. The positive and negative signs correspond to the shorter τ s and longer τ l

timescales, respectively. Because the two bath particles are mechanically coupled across the probe particle,
these timescales depend on the combination of both stiffnesses κs,l. The theoretical expressions for the recoil
amplitudes are obtained from ⟨x(t)⟩ and read

As

v
=

γsτ̃s

(
1− e−

tsh
τ̃s

)
2(γ+ γs + γl)

[
1+

τ̃l [ζl(τ̃l − τ̃s)+ γs + γl]

(γ+ γs + γl)(τl − τs)

]

+
γlτ̃l

(
1− e

− tsh
τ̃l

)
2(γ+ γs + γl)

[
1− τ̃s [ζs(τ̃s − τ̃l)+ γs + γl]

(γ+ γs + γl)(τs − τl)

]
. (9)

Al follows from As by changing indices s↔ l. Note that equation (9) also holds for finite trap stiffness κ if the
shear time tsh is infinitely long.

Fitting the experimental data with equation (1), the extracted experimental recoil timescales τs,l and
amplitudes As,l/v are compared to the analytical expressions (8) and (9), which yields the parameters
γs/γ = 1.1, γl/γ = 0.88, κs/γ = 1.5 s−1, and κl/γ = 0.2 s−1. In the following, these five parameters are kept
constant when we compare theory and experiments, for all the different protocols we applied on the system.
Note, that while parameters scale with γ, the absolute parameter values can be obtained through an
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independent flow curve experiment (see example in SM) that measures the fluids’ viscosity µ, which can then
be linked to the total friction in the system: γ+ γs + γl = 6πµr. Lastly, we also compared the mean-square
displacement (MSD) of particles passively diffusing in the viscoelastic fluid with the theoretical prediction
from our model (obtained from the recoils), and report a very good agreement (see figure 6(a)).

4. Transient regime

To get a deeper understanding on the timescales appearing in transient dynamics of a particle in the
viscoelastic fluid, we analyzed the characteristic eigenmodes of the microscopic model (see SM for the full
analysis). Interestingly, depending on the presence or absence of the trap, different relaxation modes can arise
corresponding to non-reciprocal or reciprocal processes respectively. Indeed, during tsh the probe’s position
is only determined by the optical tweezers moving at fixed velocity v and not affected by the bath particles. As
a result, the interaction between the probe and the bath particles is nonreciprocal: the two bath particles are
then fully decoupled leading to their individual relaxation times τ̃s,l (upper panel in figure 3). Once the trap
is turned off, reciprocity and thus force equilibrium between all three particles must apply, resulting in more
complex eigenmodes characterized by the timescales τs,l (lower panel in figure 3). These complex timescales
are thus the ones we measured in the recoils, which correspond to a reciprocal relaxation of the system.

To confirm the presence of these non-reciprocal relaxation modes experimentally, we have repeated the
above experiments for constant v= 3µms−1, but with tsh being systematically increased. The corresponding
recoil amplitudes are shown as a function of tsh in figure 3 (circles). Opposed to the dynamics of the recoil
itself which proceeds again via τs = 0.34 s and τl = 3.2 s, the characteristic timescales of the saturation
behavior of the amplitudes vs. tsh are given by the relaxation times of the two uncoupled bath particles,
i.e. for a spatially fixed probe particle, i.e. τ̃s = γs/κs = 0.7 s and τ̃l = γl/κl = 4.4 s, different from τs,l. Such
behavior confirms our eigenmode analysis, and is in perfect agreement with the prediction of our model
(solid line). Equation (9) also confirms the experimentally observed tsh-dependence of the amplitudes on τ̃s,l
(see factors in large round brackets) as shown in figure 3. Notably, Al is smaller than As at small shear time
because Al contains a negative contribution, causing the curve to be rather flat at short time and inflected at
later shear times. As a result, in this regime the recoil is largely dominated by just one timescale τ s.

For an even more direct experimental demonstration of the different relaxation behaviors depending on
whether the probe is confined to the trap or not, we have changed our protocol: instead of turning off the
optical trap immediately after tsh = 8 s (v= 3µms−1), it remained on for an additional waiting time tw but
with v= 0. This allows the bath particles to relax independently towards the fixed probe particle, prior to the
recoil where the confined probe provides a coupling between both bath particles (similar to what was done in
e.g. [4, 11, 22]). Thus, this process is expected to be fully symmetric to the above loading experiments
(figure 3) with the decoupled timescales of the bath particles τ̃i (i ∈ {s, l}). Indeed, the measured (triangles)
tw-dependent amplitudes of the recoil are in good agreement with the theoretical prediction (solid lines as
shown in figure 4). A sketch of the full experimental protocol, with the addition of the waiting time, and the
corresponding theoretical derivations and expressions are available in SM.

Because the motion of the bath particles is accessible via equations (2) and (3), for numerical simulations
we can also compute the elastic energies stored in the two springs using Ei =

1
2κi(xi − x)2. The corresponding

values are shown in the inset of figure 4 for the above protocol during tw and for the subsequent recoil. As
expected, the decay of El and Es is very different during tw compared to the recoil. Opposed to El which
decreases monotonically, Es shows a non-monotonic behavior with a minimum around 0.3 s. This is a result
of the coupling of the two bath particles (via the probe) during the recoil which leads to a partial exchange of
elastic energies between the two relaxation modes.

How can we rationalize the presence of two-time scales in the recoil dynamics? We previously mentioned
that the finite coupling between the probe particle and the fluid could be the origin of this additional short
timescale. To confirm this hypothesis, we also repeated our experiments for 6 and 7mM equimolar
CPyCl/NaSal concentrations which show a qualitatively identical behavior. As shown in figure 5, when
extracting the model parameters, we found that only the properties of one bath particle (κl, γ l) exhibits a
strong dependence (more than one order of magnitude) on the micellar concentration while the other model
parameters remain rather constant. This observation suggests, that one bath particle describes the coupling
of the probe to the network formed by the wormlike micelles, whose mechanical properties strongly depend
on the micellar concentration. On the opposite, the other bath particle (κs, γs) describes the coupling
at much smaller displacements of the probe where the network itself is hardly deformed. Under such
conditions, only a weak dependence of the parameters on the concentration is expected as confirmed by the
weak short-time dependence of the MSD under equilibrium conditions (see figure 6(a)).
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Figure 3. Recoil amplitudes as a function of the shear time tsh, for v= 3µms−1 for experiments (circles) and theory (lines). For
short shearing (small values of tsh), the short timescale dominates the recoil dynamics, i.e. As > Al. This behavior reverses for long
times where As < Al, with a cross-over at tsh ∼ 3 s. Inset: comparison between the eigenmodes associated with τ̃s,l (upper panel)
when the probe is trapped at a fixed position and with τs,l (lower panel), when the probe is free. Since the shearing process is
nonreciprocal, there is no coupling between the two bath particles, thus the dynamics for the short and long timescales follow τ̃s,l.

Figure 4. Recoil amplitudes as a function of the waiting time tw and initial conditions v= 3µms−1 and tsh = 8 s. Experiments
and theory are shown as symbols and lines, respectively. Al always prevails in the recoil behavior, and becomes more dominant
when increasing tw. Inset: computed (normalized) energy Es,l/E0s,l values associated with the stiff (κs, red lines) and weak (κl, blue
lines) springs during an experiment with tw = 0.5 s. During the time tw the probe is kept at fixed position, and the interactions
with the bath particles are nonreciprocal: the relaxation modes thus follow τ̃s,l. At t= 0 s the probe is released in a force-free
environment, and the system thus relaxes according to τs,l. All curves were normalized by E0s,l, the energy associated with each
spring prior to the release. Thin dashed lines show a full τ̃s,l relaxation process, to better highlight the differences with τs,l.
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Figure 5. Friction coefficients γ, γs, γ l and coupling strengths κs, κl in the two-bath particle models fitting experiments at
different concentrations c. The parameters associated with the probe and the first bath particle (γ, γs, κs) stay fairly constant with
the fluid concentration. Conversely the parameters associated with the second bath particle (γ l, κl), strongly increase with the
fluid concentration.

Figure 6. Comparison between one- and two-bath particle models at equilibrium. (a) Mean squared displacement for a freely
diffusing particle for experiments (at 5mM) and theory (see SM for analytical expressions). The experimental data is well
described within both models. (b) Power spectral density PSD( f ) = ⟨|x( f )|2⟩eq for simulations (using the parameters obtained
from the experiments) of a confined particle. Again the one- and two-bath particle models show nearly identical dynamics at
equilibrium.

5. Summary and discussion

As a final remark, we want to mention that recoil experiments provide advantages compared to equilibrium
studies when analyzing the properties of viscoelastic materials. Due to the sudden release of accumulated
stress acting on the colloidal particle, its motion is less affected by thermal fluctuations which allows to
resolve features that could otherwise be easily obscured by (experimental) noise. As an example we have
measured the MSD of a passively diffusing probe in our micellar system, and compared it with analytical
expressions (see figure 6(a)). While the data is best fitted with our two-bath particle model, a good
agreement can also be achieved when only a single-bath particle model is considered (corresponding to a
Maxwell model) [17, 26–29]. When looking at the analytical curves, we see that both models exhibit nearly
identical MSDs, whereas the additional timescale is clearly observed in the recoil curves. This highlights that
such passive measurements are not very sensitive to the system’s timescales but are much better resolved (and
measured) applying recoil protocols. Similar observations can be made when considering the power spectral
density of a trapped particle (see figure 6(b)), where one cannot distinguish between a one- and two-bath
particle model.

In summary, we have analyzed the recoil dynamics of a colloidal particle after it was dragged inside an
optical trap, through a viscoelastic fluid. For long driving times, when the system has reached its steady state,
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we observed the onset of two time scales in the experimental recoil dynamics, which are in excellent
agreement with the two eigenmodes of a linearly coupled two-bath particle model. Such linear behavior
holds for a remarkably large range of driving velocities, where the measured timescales remain constant.
Remarkably, our experiments are also in very good agreement with the model predictions outside of steady
state regime, i.e. for partial loading and relaxation. Depending on the specific protocol, either the short or
long timescale can be largely suppressed which may explain why single- and double-exponential recoils have
been previously observed in different experiments. Additionally, in this study we highlighted the distinction
between reciprocal and non-reciprocal protocols, which lead to separate relaxation modes with two sets of
timescales. As a result, a particle under free recoil (reciprocal) or trapped inside a strong trap
(non-reciprocal) exhibits different relaxation time scales, as was confirmed in our experiments. Yet most
experiments using optical tweezers usually lie between these two ideal protocols, in such a situation we thus
expect to observe a more complex combination of relaxation modes.
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