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A combined cryo-EM and molecular dynamics
approach reveals the mechanism of
ErmBL-mediated translation arrest
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Andrea C. Vaiana2 & Daniel N. Wilson1,6

Nascent polypeptides can induce ribosome stalling, regulating downstream genes. Stalling

of ErmBL peptide translation in the presence of the macrolide antibiotic erythromycin leads

to resistance in Streptococcus sanguis. To reveal this stalling mechanism we obtained

3.6-Å-resolution cryo-EM structures of ErmBL-stalled ribosomes with erythromycin.

The nascent peptide adopts an unusual conformation with the C-terminal Asp10 side chain in

a previously unseen rotated position. Together with molecular dynamics simulations,

the structures indicate that peptide-bond formation is inhibited by displacement of the

peptidyl-tRNA A76 ribose from its canonical position, and by non-productive interactions of

the A-tRNA Lys11 side chain with the A-site crevice. These two effects combine to perturb

peptide-bond formation by increasing the distance between the attacking Lys11 amine and the

Asp10 carbonyl carbon. The interplay between drug, peptide and ribosome uncovered here

also provides insight into the fundamental mechanism of peptide-bond formation.
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R
ibosomes are the protein-synthesizing machines of the
cell. The active site for peptide-bond formation, the
peptidyl-transferase centre (PTC), is located on the large

ribosomal subunit1. During translation elongation, peptide-bond
formation occurs when a peptidyl-tRNA is located at the P-site
and an aminoacyl-tRNA at the A-site of the PTC. The a-amino
group of the aminoacyl-tRNA makes a nucleophilic attack on the
carbonyl carbon of the peptidyl-tRNA, transferring the peptidyl
moiety on the A-tRNA and prolonging the nascent polypeptide
chain by one amino acid1. As the nascent polypeptide chain is
synthesized, it passes through a tunnel located on the large
ribosomal subunit and emerges on the solvent side where protein
folding occurs2. A growing body of evidence has revealed that the
ribosomal tunnel is not a passive conduit for the nascent
polypeptide chain but rather plays an important role in protein
folding, co-translational targeting and translation regulation2.

Translation can be regulated by intrinsic properties of the
nascent chain, such that the amino-acid sequence of the
polypeptide is sufficient to modulate its rate of synthesis, and in
some cases even induce translation arrest3. Well-characterized
bacterial examples include the MifM and SecM leader peptides,
which interact with the ribosomal tunnel to induce translational
stalling and thereby regulate expression of a downstream
gene in the operon3. Nascent polypeptide-mediated translation
regulation can also require the presence of an additional ligand or
cofactor3–5. Well-characterized examples include the TnaC leader
peptide, which requires the presence of free tryptophan for
stalling to occur3, and the Erm leader peptides, which induce
translation stalling in the presence of the macrolide antibiotics4,5.

In the case of Erm peptides, translational arrest on the leader
peptide leads to expression of the downstream macrolide
resistance determinant, usually a methyltransferase that confers
resistance by methylating A2058, a 23S ribosomal RNA (rRNA)
nucleotide that comprises part of the macrolide-binding site
within the ribosomal tunnel. For example, in Streptococcus
sanguis the expression of the ErmB methyltransferase is
controlled by programmed arrest during translation of the
upstream ermBL leader peptide6,7 (Fig. 1a). In the absence of
erythromycin (ERY), ErmB expression is repressed because the
ribosome-binding site (RBS) and AUG start codon of the ermB
mRNA are sequestered in a stem–loop structure (Fig. 1a).
However, in the presence of sub-inhibitory concentrations of
ERY, ribosomes translating the ErmBL leader peptide become
stalled, leading to an alternative stem–loop structure in the
mRNA that exposes the RBS and start codon of the ermB gene
and thus allows ribosome binding and induction of ErmB
expression (Fig. 1a). The drug-dependent nature of the stalling
ensures that expression only occurs when the drug is present,
which is critical for survival because of the fitness cost associated
with the methylation of A2058 (ref. 8).

Previous studies demonstrated that polymerization of the
ErmBL nascent chain halts because the ribosome is unable to
catalyse peptide-bond formation between the 10 amino-acid-long
ErmBL-tRNAAsp (codon 10) in the ribosomal P-site and
Lys-tRNALys (codon 11) in the A-site9 (Fig. 1a). The ErmBL-
dependent translational arrest occurs with both macrolides
(for example, ERY) and ketolides (for example, telithromycin)9,
which contrasts with other leader peptides, such as ErmCL, where
stalling is specific for macrolides5,10. Mutagenesis studies
identified four residues within ErmBL (Arg7 and Val9-Lys11)
that are critical for stalling9 and two of which (Arg7 and Asp10)
play a role in determining the antibiotic specificity of ErmBL11.
Interestingly, the compromised stalling efficiency of the
ErmBL-R7A mutant can be rescued by compensatory mutations
of 23S nucleotide U2586, located within the ribosomal tunnel, but
not by mutations in the neighbouring tunnel nucleotide A2062

that impair ErmCL stalling10,12. The first structural insights into
how the ErmBL leader peptide, the macrolide antibiotic and
the ribosomal tunnel cooperate to inactivate the PTC of the
ribosome were derived from a cryo-electron microscopy
(cryo-EM) structure of the ErmBL-stalled ribosomal complex
(ErmBL-SRC) at 4.5–6.6-Å resolution9. On the basis of
this structure, it was suggested that peptide-bond formation
cannot occur because the ErmBL nascent chain stabilizes a
non-productive state of the ribosome that prevents
accommodation of Lys-tRNA at the A-site.

Here we present cryo-EM structures of the ErmBL-SRC in the
presence and absence of A-tRNA at 3.6-Å resolution, which were
used as a basis to perform extensive molecular dynamics (MD)
simulations. Our analyses revealed a complex network of
hydrogen-bonding interactions between the C-terminal region
of ErmBL and nucleotides of the 23S rRNA, consistent with
the importance of these residues for translational stalling.
Unexpectedly, the C-terminal Asp10 residue of ErmBL was
observed in a rotated conformation, promoting a unique path of
the nascent chain such that it bypasses the tunnel-bound
macrolide. In the cryo-EM structure, the unusual conformation
of ErmBL appears to distort the terminal A76 ribose of the
P-tRNA, which is supported by MD simulations performed after
removal of ERY, showing that the ribose distortion is alleviated as
the ErmBL nascent chain moves into the volume previously
occupied by the drug. In addition, MD simulations predict that
the presence of ERY also influences the position of the aminoacyl
moiety of the A-tRNA via a cascade of 23S rRNA rearrangements.
Thus, our results illustrate how ErmBL and ERY cooperate to
perturb both the A- and P-tRNA positions at the PTC to inhibit
peptide-bond formation and induce translational arrest.

Results
Cryo-EM structures of the ErmBL-SRC. The ErmBL-SRCs were
generated by translation of a dicistronic 2XermBL mRNA in the
presence of 20mM ERY using an Escherichia coli lysate-based
in vitro translation system. The ErmBL-SRC disomes were then
isolated by sucrose gradient purification, converted to
monosomes and analysed using single-particle cryo-EM
(see Methods). In silico sorting of cryo-EM images yielded
two major homogeneous subpopulations of ribosomes bearing
P-tRNA and E-tRNAs, but differing in the presence
(termed ErmBL-APE-SRC; 85,393 particles, 33%) or absence
(termed ErmBL-PE-SRC; 75,839 particles, 30%) of A-tRNA
(Fig. 1b and Supplementary Fig. 1). Both subpopulations could be
refined to an average resolution of 3.6 Å (using a Fourier shell
correlation (FSC) cutoff of 0.143; Supplementary Fig. 2), with
local resolution calculations indicating that the ribosomal core
reaches towards 3.1 Å (Fig. 1c and Supplementary Fig. 2). At this
resolution, base separation is clearly observed for rRNA
nucleotides (Fig. 1d), as is the density for the majority of the
amino-acid side chains in ribosomal proteins (Fig. 1e). Density is
also observed for the lysyl moiety attached to the CCA end of the
A-tRNA as well as for the ErmBL leader peptide attached to CCA
end of the P-tRNA (Fig. 1f).

A molecular model for the ErmBL nascent chain. The ErmBL
nascent chains of both ErmBL-SRCs were well resolved within the
ribosomal tunnel, as indicated by local resolution (Supplementary
Fig. 3). Moreover, the electron density for ErmBL in the
ErmBL-PE-SRC was essentially identical to that in the ErmBL-
APE-SRC (Supplementary Fig. 3), indicating that the presence of
the A-tRNA does not significantly influence the conformation
of the ErmBL nascent chain. With the exception of the side chain
of Asn8 for which we observe no density, we are able to present a
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complete model for the ErmBL nascent chain residues
Val3–Asp10 (Supplementary Table 1). In contrast, the
N-terminus of ErmBL appears to be flexible, consistent with
the reduced local resolution of this region, thus preventing the
N-terminal Met1 residue from being modelled and allowing only
the backbone for Leu2 to be tentatively assigned (Fig. 2a and
Supplementary Fig. 3). The overall backbone trace of the ErmBL
nascent chain within the ribosomal tunnel reported here is similar
to the path reported previously for ErmBL based on a 4.5–6.6-Å
cryo-EM map9 (Supplementary Fig. 4). Specifically, ErmBL
adopts a unique conformation that enables it to bypass the
macrolide ERY bound within the tunnel without even contacting
it (Fig. 2a). This finding is consistent with biochemical studies
demonstrating that ErmBL stalling occurs with a variety of
macrolides and thus appears insensitive to the chemical nature of
the drug9,11. The ErmBL path is distinct from that reported for
the drug-dependent ErmCL-stalling peptide13, which establishes
intimate interactions with the drug (Fig. 2b), consistent with the
findings that ErmCL stalling occurs with macrolide antibiotics
containing a C3-cladinose sugar, such as ERY, but not with
ketolides, such as telithromycin that lack the C3-cladinose5,10.
This structure contrasts with the available structures of other
polypeptide chains within the ribosomal tunnel14–20, which
revealed paths that would be sterically obstructed by the
presence of the macrolide, as exemplified here by the TnaC
nascent chain14 (Fig. 2c). As noted9, the path of ErmBL illustrates
the principle as to how specific amino-acid sequences allow
translation of a subset of proteins, even in the presence of a
macrolide-obstructed tunnel21,22.

MD simulations of the ErmBL-SRC. To capture the structural
behaviour and energetics of the ErmBL peptide in the ribosome
and to understand how these are influenced by ERY, all-atom
explicit-solvent MD simulations were carried out. The simula-
tions were started from two initial structures: (i) the ErmBL-APE-

SRC structure (referred to as þ ERY) and (ii) the ErmBL-APE-
SRC structure after computational removal of ERY (� ERY).
From each of these structures, two independent simulations were
started. All simulations of the fully solvated complexes were set
up using a previously established protocol23,24 and carried out
using GROMACS25, the amber99sb force field26 and the SPC/E
water model27. The root mean square deviation (r.m.s.d.) of the
simulations from the cryo-EM structure remained low
(r.m.s.d.o5.2 Å; Supplementary Fig. 5, total simulation time
B12 ms) in comparison with other, shorter MD simulations of
ribosomes started from high-resolution X-ray structures (r.m.s.d.
6–10Å)23,28. This underscores the quality of our simulation set-
up and force field as well as that of the starting structure. Removal
of ERY leads to increased dynamics and flexibility of the ErmBL
nascent chain, in particular the N-terminal residues 2–5 of the
ErmBL peptide (Fig. 2d), as seen by the root mean square
fluctuations (r.m.s.f.’s; Fig. 2e). The absence of the drug allows the
ErmBL nascent chain to explore the lumen of the tunnel, and to
move into the volume otherwise occupied by the drug (Fig. 2d–f),
consistent with the idea that ERY promotes the unique
conformation of the ErmBL nascent chain.

Interactions of ErmBL within the ribosomal tunnel. In contrast
to the previous reconstruction of ErmBL9, the significantly higher
resolution of the ErmBL-SRCs reported here permits a detailed
analysis of the interactions of ErmBL with components of the
ribosomal tunnel (Fig. 3a). The majority of the interactions are
localized within the last four C-terminal amino acids of ErmBL,
namely Arg7–Asp10, which collectively establish a total of nine
potential hydrogen-bond interactions with nucleotides of the 23S
rRNA: Asp10 can form three hydrogen bonds, one from the
backbone carboxyl oxygen with the N3 of U2585 and two from
the Asp10 side chain oxygen atoms with the N1 and/or N2 of
G2061 as well as the N3 of U2506 (Fig. 3b). These interactions are
likely to be important since most mutations of Asp10 abolish
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translational stalling9,11. All these interactions were also observed
throughout the MD simulations. In particular, the hydrogen
bonds between Asp10 and G2061 were very stable in all the
simulations (62% average occupancy; Supplementary Fig. 6), with
the formation of additional hydrogen bonds also being seen
between the amide group of Asp10 and 23S rRNA nucleotide
C2063 (74% average occupancy; Supplementary Fig. 6). The
backbone carboxyl of Asn8 is within hydrogen-bonding distance
of the ribose 20OH of A2062, whereas no density is observed for
the side chain, consistent with the report that Asn8Ala mutations
do not affect ErmBL stalling9. In this respect, we note that the
most favoured rotamers for the Asn side chain would sterically
clash with the desosamine sugar of ERY. In addition, in the
simulations with ERY, although the backbone dihedral angles of
Asn8 remain almost constant (Supplementary Fig. 7), the side
chain of Asn8 is more mobile than the neighbouring residues
(Fig. 2e). Indeed, the Asn8 side chain adopts multiple
conformations with transient hydrogen bonding to U2506,
A2062 and C2063 (Supplementary Fig. 6), thus explaining the
lack of density for this side chain (Fig. 3c).

The well-resolved density (Fig. 3d) and low mobility (Fig. 2e)
for the Arg7 side chain can be explained by the multiple
interactions that this positively charged residue establishes by
protruding into a negatively charged rRNA pocket of the tunnel
wall (Fig. 3d and Supplementary Fig. 6). Specifically, two
hydrogen bonds are possible with the two terminal amino groups
of Arg7, namely to the phosphate oxygen atoms of C2063 and

U2441 (Fig. 3d), which were also observed in the MD simulations
(with an average occupancy of 13% and 87%, respectively,
Supplementary Fig. 6). Additional hydrogen bonding is possible
to the bridging ribose oxygen of A2439 and the ribose 20OH of
U2586 as well as between the backbone of NH of Arg7 and
the O2 of U2586, although these interactions were not seen in the
MD simulations (Supplementary Fig. 6). While an Arg7Ala
mutation abolishes stalling9,11, compensatory mutations of
U2586 were shown previously to restore stalling9, supporting
the intimate association between these two entities. What is
unclear from the structure is why the Val9Ala mutation also
abolishes ErmBL-stalling activity9. In the ErmBL-SRC, the side
chain of Val9 is well resolved, yet it does not appear to come into
close proximity of any components of the ribosomal tunnel
(Fig. 3e). We speculate that the Val9 side chain may, therefore, be
important for indirectly promoting the correct conformation of
the ErmBL nascent chain: one possibility is that Val9 provides
some steric constraints that are necessary for the Arg7 side chain
to be optimally oriented, since these two residues are close to each
other within the ribosomal tunnel. Interestingly, in the absence of
ERY, all the other peptide residues exhibit larger fluctuations than
those seen in the simulations with ERY. The only exception is
Arg7, the fluctuations of which are unchanged. This observation,
together with the fact that the interaction enthalpies of Arg7 with
the tunnel wall remain essentially unchanged upon removal of the
antibiotic, suggests that the free energy barrier for detaching the
Arg7 from the tunnel-bound conformation might be rate-limiting
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for full detachment of the peptide from the tunnel wall.
Apparently, this barrier is too high to be overcome on the
microsecond simulation timescale.

In contrast to the C terminus, the N-terminal half of ErmBL
(residues Leu2–Met6) is not critical for stalling and each residue
can be individually mutated to alanine without loss of activity9.
This observation is consistent with both the decreased local
resolution in this region (Supplementary Fig. 3) as well as
with the large fluctuations of these residues observed in the
MD simulations (Fig. 2e), indicating that the N terminus of
ErmBL is flexible and does not adopt a single defined
conformation. In addition, the sequence of the N-terminal
MLVFQM is very hydrophobic and therefore provides few
possibilities for hydrogen-bonding interactions. Instead, the Phe4
and Met6 side chains appear to pack against the U2609-A752 and
U1782-U2586 base pairs, respectively (Fig. 3f).

Rotation of Asp10 and an alternate path for ErmBL. To
understand how interactions of ErmBL within the ribosomal
tunnel lead to translational arrest by preventing peptide-bond
formation with the incoming Lys-tRNA in the A-site, we
compared the ErmBL-SRC with available X-ray crystallography
structures of ribosomal states with aminoacylated-tRNAs in the
P-site. To date, these comprise structures of the Haloarcula
marismortui 50S subunits bearing CC-puromycin (CC-pmn)
or CC-Phe-caproic-acid-biotin tRNA analogues29–31 and of
Thermus thermophilus 70S ribosomes bearing fMet-tRNA32 or
Phe-tRNA33. In every single structure, the side chain of the Phe
or fMet has the same orientation relative to the P-tRNA
(Fig. 4a,b), namely pointing towards the direction of A2062.
Unexpectedly, the Asp10 side chain attached to the P-tRNA in
the ErmBL-SRC is rotated by 180� around the ester bond that
links it to the 30OH of A76, relative to the Phe/fMet side chains in
the crystal structures (Fig. 4a,b). This unusual orientation might
of course simply be due to the different respective tRNAs—a

peptidyl-tRNA for the ErmBL structure versus an aminoacyl-
tRNA in the other crystal structures. To investigate this
possibility, we also compared the ErmBL-SRC with structures
of other ribosomal states bearing peptidyl-tRNAs in the P-site.
There are currently four such cryo-EM structures available, the
resolutions of which allow the orientation of the amino acid
attached to the P-tRNA to be determined: TnaC-SRC14,
ErmCL-SRC13, Sec61beta20 and MifM-SRC18. In all four
structures, the amino-acid side chain attached to the P-tRNA is
oriented similar to the Phe/fMet side chain in the crystal
structures (Fig. 4c–f). This finding suggests that the difference is
not due to different peptides on the P-tRNA. In addition,
differences in species are likely to be irrelevant here, since
the ErmCL- and TnaC-SRC were also formed using E. coli
ribosomes13,14. Finally, the rotation is also unlikely to be due to
the nature of the amino acid because the residue that is attached
to the P-tRNA in the MifM-SRC is also an Asp18. These findings
lead us to conclude that the 180� rotation of the Asp10 residue in
the ErmBL-SRC is likely to be a consequence of its context within
the ErmBL nascent chain. It would therefore seem logical to
assume that the interactions that stabilize the ErmBL in a specific
conformation cooperatively stabilize the rotated state of Asp10.

A-tRNA accommodation at the PTC of the ErmBL-SRC. To
understand in more detail how the unorthodox pathway of the
ErmBL nascent chain could lead to inhibition of peptidyl-
transferase activity, we compared the PTC of the ErmBL-SRC
with crystal structures of the ribosome in different states of
peptide-bond formation29–32. Initially, we focused on the
A-tRNA, since it was previously proposed that ErmBL
stabilized an unaccommodated Lys-tRNA at the A-site of the
PTC9. In contrast to the previous study, the higher resolution
achieved here enables us to more accurately place the CCA end of
the A-tRNA and also to model the lysyl moiety (Fig. 5a), which
was not visible before9. Comparison of the position of the CCA
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end of the Lys-tRNA in ErmBL-SRC with the unaccommodated
C-pmn and accommodated CC-pmn on the H. marismortui 50S
subunit29–31, as well as with accommodated CCA end of the
Phe-tRNA in the T. thermophilus pre-attack complexes32,33,
suggests that the Lys-tRNA in the ErmBL-SRC is in a fully or
near-fully accommodated state (Fig. 5b–e). The A-tRNA is shifted
by 1.3 Å between the unaccommodated and accommodated
states, when measuring the displacement using the ribose O40

atom. In contrast, the Lys-tRNA in the ErmBL-SRC is shifted by
only 0.9 and 0.6 Å relative to the unaccommodated and
accommodated states, respectively.

Accommodation of the A-tRNA is accompanied by
corresponding conformational changes within the 23S rRNA
nucleotides of the PTC; specifically, shifts in U2506 and
U2584-U2585 are thought to be diagnostic for A-tRNA
binding29–31. In the ErmBL-PE-SRC, there is no clear density
for U2506 (Fig. 5f). However, upon binding of Lys-tRNA to the
A-site, as in the ErmBL-APE-SRC, U2506 adopts a well-defined
conformation (Fig. 5g), which is similar to that observed in the
accommodated state (Fig. 5h). In both the ErmBL-SRC structures,
the density for U2585 is weaker than other PTC nucleotides, but
appears to predominantly adopt an intermediate position
between the accommodated and unaccommodated U2585
states (Fig. 5i), hinting that the Lys-tRNA is not fully
accommodated as suggested previously9. We note however that
regardless of whether the Lys-tRNA is fully or near-fully
accommodated, in the refined model of the Lys-tRNA in the
ErmBL-APE-SRC a-amino group is shifted by 1.5 Å compared
with the accommodated pre-attack A-tRNAs (arrowed in Fig. 5e).
The presence of the lysyl moiety on the A-tRNA indicates that the

nucleophilic attack has not occurred, consistent with the previous
biochemical evidence indicating that the lysine amino acid does
not get incorporated into the ErmBL nascent chain9.

Perturbation of the P-tRNA prevents peptide-bond formation.
Comparison of the CCA end of the P-tRNA in the ErmBL-SRC
(Fig. 6a,b) with the accommodated position of CC-pmn30,
Phe-tRNA33 or fMet-tRNA32 reveals a significant shift by 1–2Å
of the ribose and nucleobase of A76 (Fig. 6c,d), which was also
seen at lower resolution9. We note that the distance for the
nucleophilic attack of the a-amino group of the Lys-tRNA on the
carbonyl carbon of the P-tRNA is 4.1 Å in the ErmBL-SRC
(Fig. 6e), whereas the equivalent distances in the pre-attack
complexes are 3.2–3.3 Å (refs 32,33; Fig. 6f), which may
contribute to the inhibition of peptide-bond formation observed
in the ErmBL-SRC. Consistently, the conformation of the
P-tRNA A76 ribose was most similar to that of the pre-attack
state32 in the MD simulations where ERY was absent
(green traces in Fig. 6g), as compared with when the antibiotic
was present (red traces in Fig. 6g). This finding suggests that
the conformation of ErmBL induced by the presence of ERY in
the ribosomal tunnel is responsible for the perturbed position of
the P-tRNA.

The most recent model for peptide-bond formation, based on
high-resolution X-ray crystallography structures, suggests that
for the nucleophilic attack to proceed, a proton needs to be
transferred from the attacking nucleophile to a water molecule
(W1) via a proton wire formed by the 20 OH of the P-site A76
ribose and the 20OH of A2451 (ref. 32; Fig. 6h and Supplementary

4QCM4QCM4QCMA-tRNAA-tRNAA-tRNA

P-tRNAP-tRNAP-tRNA

4.1Å

3.2Å

ErmBLErmBLErmBLA-tRNAA-tRNAA-tRNA

CCarb

CCarb

Nα

Nα

P-tRNAP-tRNAP-tRNA

W1W1W1

C2063C2063C2063

U2585U2585U2585

U2584U2584U2584

A2602A2602A2602

L27L27L27

A76A76A76

C75C75C75

C74C74C74

P-tRNAP-tRNAP-tRNA

P-tRNAP-tRNAP-tRNA

A76A76A76

C75C75C75

C74C74C74

P-tRNAP-tRNAP-tRNA

A76A76A76

1VQN1VQN1VQN
4QCM4QCM4QCM

2WDK2WDK2WDK

A76A76A76

0

2

4

6

+ERY

0

2

4

6

0 500 1,000 1,500

Time (ns)

a

b d

c e

f

g

h

–ERY

R
m

sd
 o

f P
-A

76
 r

ib
os

e 
fr

om
 p

re
-a

tta
ck

co
nf

or
m

at
io

n 
(Å

)

Figure 6 | Perturbation of the P-tRNA by ErmBL prevents peptide-bond formation. (a–d) Atomic model for the CCA end of the P-site tRNA (green) and

(a,c,d) electron density (grey mesh) in the ErmBL-APE-SRC compared with (b) P-tRNAs in the pre-peptide-bond formation state (brown; PDB4QCM32;

blue, PDB2WDK33), with (c,d) zoom onto the ribose of A76. (e,f) Relative orientation of the A-site a-amino group and the P-site carbonyl carbon in

(e) ErmBL-APE-SRC and (f) the pre-catalysis state32. (g) Deviation of the ribose of A76 from the pre-attack state as a function of simulation time.

(h) Conformation of the PTC in the ErmBL-SRC overlayed with the network of hydrogen bonds, creating a proton wire that enables peptide-bond formation.

Cryo-EM map (grey mesh) with models for 23S rRNA (blue), L27 (brown) and P-tRNA (green).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12026 ARTICLE

NATURE COMMUNICATIONS | 7:12026 | DOI: 10.1038/ncomms12026 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications


Fig. 8). In the pre-attack complexes, nucleotide A2602 and the
N-terminal regions of L27 become ordered32,33, which, together
with the non-bridging phosphate-oxygen (OP1) of A76 of the
A-tRNA and the 20 OH of A2451, coordinate W1 (ref. 32; Fig. 6h
and Supplementary Fig. 8). In the ErmBL-SRC, we observed no
density for A2602 nor for the N terminus of L27, both of which
undergo large fluctuations in the MD simulations, suggesting that
the W1 is not firmly coordinated (Fig. 6h). Stabilization of the
very N-terminus of L27 has only been observed in the pre-attack
structures because of interaction of the side chain of His3 of L27
with the OP1 of C75 of the A-tRNA and the backbone carboxyl of
Ala2 of L27 with the N6 of A76 of the P-tRNA32,33. Such
simultaneous interaction of L27 with the A- and P-tRNA would
be prohibited in the ErmBL-SRC by the shifted A76 nucleobase of
the P-tRNA (Fig. 6h and Supplementary Fig. 8). We note however
that previous studies have demonstrated that ribosomes lacking
L27 are not impaired for peptide-bond formation34 and that
mutations of A2602 affect predominantly peptidyl-tRNA
hydrolysis rather than peptide-bond formation35. Since the
position of the ribose 20-OH of the A76 of the P-tRNA is also
critical for the proposed proton shuttles36–38, it is perhaps more
plausible that the perturbed P-tRNA ribose orientation seen in
ErmBL plays a more direct role in the impairment of the
ribosomal peptidyl-transferase activity.

ERY affects positioning of the A-site amino group. During
analysis of the MD simulations we noticed that the presence and
absence of ERY differentially influenced the conformational
dynamics of the neighbouring 23S rRNA nucleotides
U2504–U2506. Previous MD simulations on ERY bound to
empty ribosomes also observed an allosteric influence of the drug
on nucleotides at the PTC, but identified more distant effects on
nucleotides U2585 and A2602 (ref. 39). In our study, principal
component analysis (see Methods) was performed on the
backbone atoms to capture their collective motion, which
revealed that, in presence of ERY, the conformation of
U2504–U2506 stayed close to that observed in the cryo-EM
structure (with an average r.m.s.d. over the simulation of 1.3 Å,
red trace in Fig. 7a, see also Supplementary Fig. 9). In contrast, in
the simulation performed without ERY (green trace in Fig. 7a),
these nucleotides markedly depart from the conformations
observed in the simulations with ERY, and, after B1.5 ms, these
nucleotides attained a new conformation (average r.m.s.d. 2.3 Å).
Analysis of the structure suggests that it is the desosamine and
cladinose sugars of ERY that mediate this conformational change
via direct interactions with the backbone and base of G2505
(Fig. 7b). The nucleotides U2504, U2506 together with C2452
comprise the A-site crevice into which the aminoacyl moiety of
the A-tRNA is accommodated during peptide-bond formation. In
the simulations, the long charged side chain of Lys11, which is
sandwiched between the crevice and the P-site, interacts with the
crevice nucleotides. In the new conformation adopted in the
absence of ERY, the crevice nucleotides are closer to the P-site
than in the presence of the antibiotic (Fig. 7b, and distance d1 in
Fig. 7c). As a consequence, the A-site Lys11 also moves closer
to the P-site. This movement reduces the distance d2 between the
a-amino group of the A-tRNA and the carbonyl carbon of
the P-tRNA, while in the presence of ERY both the crevice
nucleotides (d1) and the Lys11 (d2) are further away from the
P-site (Fig. 7b and upper panel in Fig. 7d). We assume that the
rate of the chemical step of peptide-bond formation is faster than
the rate of reaching conformations where this chemical step is
possible. Therefore, simulations that more closely approach these
conformations (that is, smallest d2 values) are assumed to
represent the complexes with the fastest peptide-bond formation

rates. Importantly, the short d2 distances observed in the
pre-attack complexes32 are approached only in the simulations
without the antibiotic (green trace in Fig. 7d), suggesting that
ERY can influence the efficiency of peptide-bond formation by
restricting the mobility of the A-site crevice and thereby
preventing the movement of the aminoacyl moiety of the
A-tRNA towards the P-site.

In light of our findings that the motion of the positively charged
Lys11 side chain of the A-tRNA is coupled to the negatively
charged nucleotides within the A-site crevice, we rationalized that
the reduction in stalling efficiency of a Lys11Ala mutation in
ErmBL9 may be because of the loss of interaction between the
A-tRNA and the A-site crevice. To test this idea, we extended the
MD simulations of the ErmBL-SRC in the presence and absence of
ERY by 1ms following in silico mutation of Lys11 to Ala
(Supplementary Fig. 5). In the presence of ERY, the Ala11
moves away from the crevice and towards the P-site (Fig. 7e,
lower panel in Fig. 7d and Supplementary Fig. 9), leading to d2
distances shifted towards those seen with Lys11 in the absence of
antibiotic (green trace in Fig. 7c). Moreover, the crevice nucleotides
retain a similar conformation as in the Lys11 simulation
(Fig. 7e, lower panels in Fig. 7a,b and Supplementary Fig. 9),
indicating that the motions of Ala11 and the crevice nucleotides
are largely uncoupled.

To investigate whether the coupling between the aminoacyl
moiety of the A-tRNA and the nucleotides of the A-site crevice is
related to the strength of their interaction with one another, we
calculated the interaction enthalpies for both Lys11 and Ala11
(see Methods). As predicted, the strongest interactions (more
negative interaction enthalpies) were observed for the simulations
with Lys11, regardless of the presence or absence of ERY (red and
green curves in Fig. 7f, respectively). In contrast, much weaker
interaction enthalpies were observed when Lys11 was substituted
with Ala11 (cyan and orange curves in Fig. 7f), consistent with
the notion that the positively charged lysine side chain is
responsible for mediating interaction with the negatively charged
nucleotides of the A-site crevice. This finding also suggests that
ErmBL-mediated stalling should be influenced by the nature of
the A-site aminoacyl moiety and should be efficient when the
A-site contains a long positively charged side chain such as
arginine. To test this hypothesis, we performed in vitro
translation of wild-type ErmBL containing Lys11 in the A-site,
or with Lys11 mutated to one of the other 19 proteinogenic
amino acids, and used the toe-printing assay to monitor the
ribosomes stalled in the presence of ERY (Fig. 7g). Translation
was performed in the absence of the amino acid isoleucine (Ile),
enabling ribosomes that readthrough the ErmBL stall site to be
captured on the subsequent Ile codon of the mRNA, as observed
in the absence of ERY (Fig. 7g). Quantitation and adjustment for
loading indicated that as expected the nature of the A-site
aminoacyl moiety had a dramatic influence on the efficiency of
stalling, with Arg11 being threefold more efficient than the
wild-type Lys11. It is important to note that for ErmBL
comprising A-site amino acids, such as Cys11, Met11 or Phe11,
where little stalling was observed, there was also no readthrough
to the Ile codon, suggesting that in these cases, ERY induces high
levels of peptidyl-tRNA drop-off, as reported previously11,40,41.

Discussion
On the basis of our cryo-EM structures and MD simulations of
the ErmBL-SRC, we propose a model for how the ErmBL nascent
chain, together with the macrolide ERY and components of
the ribosome, interplay to inactivate the PTC and induce
translational arrest (Fig. 8). In the absence of ERY, and following
accommodation of an aminoacyl-tRNA at the A-site of the PTC,
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the a-amino group of the A-tRNA is positioned to make a
nucleophilic attack on the carbonyl carbon of the peptidyl-tRNA
in the P-site (Fig. 8a). In all structures to date, the side chain of
the C-terminal amino acid, which is attached to the P-tRNA, is
oriented such that all nascent polypeptide chains follow a similar
path through the upper region of the ribosomal tunnel. This
canonical pathway, which we term Path1, is sterically occluded by
the presence of macrolide antibiotics (binding site dashed in

Fig. 8a), explaining why this class of antibiotics induces
peptidyl-tRNA drop-off for most nascent polypeptide chains40,41.
In the presence of ERY, we observed a non-canonical path for the
ErmBL nascent chain in the cryo-EM structure, which we termed
Path2 (Fig. 8b). In the MD simulations, we observe that it is
the presence of ERY that restricts the ErmBL conformations
towards Path2. These restricted conformations in turn promote
interaction of critical residues, such as Arg7 (R7) of ErmBL, with
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23S rRNA nucleotides on one side of the ribosomal tunnel
(Fig. 8b). In addition, we observe that Asp10 (D10) of ErmBL
adopts an unusual rotated conformation, which together with the
R7 interaction, stabilizes the ErmBL nascent chain in the
alternative Path2 conformation, rather than the canonical
Path1. Path2 is directed away from the tunnel-bound drug,
thus preventing direct peptide–drug interactions and explaining
why ErmBL stalling occurs with both macrolides and ketolides9.
Our findings are consistent with a recent study demonstrating
that mutations of R7 and D10 not only have a dramatic effect on
ErmBL stalling but can also alter the antibiotic specificity,
for example, D10G/E or D10P/Y mutations restrict stalling to
ERY or Tel, respectively11. In addition, it was possible to change
the ERY dependency of ErmCL to also include Tel by substituting
the Ile9/Ser10 with Asp/Lys combination as in ErmBL11.

Presumably as a consequence of the unusual rotation of D10
and conformation of the ErmBL nascent chain, we observe that
the A76 ribose of the P-tRNA is also perturbed. The perturbed
A76 of the P-tRNA has a suboptimal geometry for nucleophilic
attack of the a-amino group of the A-tRNA (Fig. 8b), providing a
structural explanation for the reduced rate of peptide-bond
formation and increased ribosome stalling during translation of
ErmBL9. In addition, we have observed biochemically and
inferred from the MD simulations that the nature of the A-site
amino acid also influences the efficiency of translational stalling.
On the basis of the MD simulations, we propose that the
movement of the A-site crevice nucleotides (G2505-U2506/
C2452) is coupled with the movement of the A-tRNA towards the
P-tRNA during peptide-bond formation, thus allowing the
a-amino group of the A-tRNA to make a nucleophilic attack
on the carbonyl carbon of the peptidyl-tRNA in the P-site
(Fig. 8a). We propose that the coupled movement results because
of the interaction between the positively charged Lys11 (K11) of
the A-tRNA and the negatively charged environment of the A-site
crevice (Fig. 8a). In the MD simulations in presence of ERY, we
observe that the drug interacts and stabilizes a conformation of
the A-site crevice that prevents the coupled movement of the
A-tRNA towards the P-site, thus suggesting that ERY can
influence peptide-bond formation by allosterically influencing
nucleotides within the A-site of the PTC (Fig. 8b). Consistently,

uncoupling of the A-tRNA and A-site crevice is observed in the
MD simulations with Lys11Ala mutant, indicating that
the reduced interaction between Ala11 of the A-tRNA with the
A-site crevice allows the A-tRNA to move towards the P-tRNA
and undergo peptide-bond formation. Biochemically, we also
observed that stable ErmBL-SRC formation is abolished by a
Lys11Ala mutation, consistent with previous findings9, but that
also other positively charged amino acids, such as Trp, His, Gln
and especially Arg, promoted ribosome stalling (Fig. 7g).

In conclusion, this study illustrates how ERY exerts a dual
effect on the PTC to inhibit peptide-bond formation, namely, by
(i) restricting the path of the ErmBL such that orientation of the
P-tRNA is perturbed and (ii) stabilizing the A-site crevice to
prevent movement of the A-tRNA towards the P-site. Inhibition
by P-tRNA perturbation has been suggested previously for the
SecM arrest peptide16. Recent cryo-EM structures of other
arrest peptides, including the drug-dependent ErmCL-SRC13,
reveal that PTC silencing is induced by distinct allosteric
conformational rearrangements that differ to those reported
here for ErmBL. Thus, further investigations will be necessary to
ascertain the extent to which other drug-dependent stalling
systems utilize similar mechanisms to induce translational arrest
or whether further novel mechanisms will be uncovered.

Methods
Generation and purification of ErmBL-SRC. ErmBL-SRCs were generated
following the same procedure as previously described9. The 2XermBL construct
was synthesized (Eurofins, Martinsried, Germany) such that it contained a T7
promoter followed by a strong RBS spaced by seven nucleotides (nts) to the ATG
start codon of the first ermBL cistron. A linker of 22 nts separated the stop codon of
the first ermBL cistron and the start codon of the second ermBL cistron. The linker
also comprised the strong RBS 7 nts upstream of the ATG start codon of the
second ermBL cistron, enabling initiation of translation independent from the first
ermBL cistron. Each ermBL cistron encoded amino acids 1–17 corresponding to
ErmBL leader peptide (Genbank accession number K00551) present on macrolide
resistance plasmid pAM77 from S. sanguis strain a1 (ref. 42). The complete
sequence of 2XermBL construct is:

50-TAATACGACTCACTATAGGGAGTTTTATAAGGAGGAAAAAATATG
TTGGTATTCCAAAT GCGTAATGTAGATAAAACATCTACTATTTTGAAA
TAAAGTTTTATAAGGAGGAAAAAATATGTTGGTATTCCAAATGCGT
AATGTAGATAAAACATCTACTATTTTGAAATAA-30 (T7 Promoter, italics;
RBS, bold; ErmBL open reading frame (ORF), shaded grey with GAT codon in the
P-site of stalled ribosome shown in bold; annealing site for complementary DNA

A-site tRNA

C75

A76

C74

NH2

K11

C75

A76

C74

G2505

U2506

C2452

+–

D10

R7

M6

Q5

F4

V3

L2

V9

N8

NH2

K11

C75

A76

C74

NH
2K11

C75

A76A76

C74

A76

V9

N8

M6

Q5

F4

V3

L2

G2505

U2506

C2452

D10

R7

6M6

QQQQQQQQQQQ5Q5QQQQ5QQQQQQQQQQQQQ5Q5QQQQQQ

FFF4F4F4F4F4FF4F4FFF44FF4F444F4FFFFFFF

V3

L2

V9

N8

+
–

R7

D10

ERY

Path1 Path2

P-site tRNA A-site tRNA P-site tRNAa b

Figure 8 | Model for ErmBL-mediated translation arrest. (a) Canonical peptide-bond formation in absence of ERY. Here the path of the peptide (Path1)

overlaps with the binding site of the drug (broken line). (b) Stalling in the presence of ERY. The drug restrains the conformation of the ErmBL peptide

(Path2). Relative to a, the C-terminal Asp10 side chain is in a rotated position and the P-site tRNA A76 ribose is displaced. The ERY perturbs the A-site

crevice nucleotides (blue), which through electrostatic interactions keeps Lys11 away from the P-site. We propose that the increased distance between the

attacking amide group of the Lys11 and the carbonyl carbon of Asp10 hinders peptide-bond formation.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12026

10 NATURE COMMUNICATIONS | 7:12026 | DOI: 10.1038/ncomms12026 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


oligonucleotide, underlined). In vitro translation of the 2XermBL construct was
performed using the Rapid Translation System RTS 100 E. coli HY Kit (5PRIME;
Cat. No. 2401110). Translation reactions were analysed on sucrose density
gradients (10–55% sucrose in a buffer A, containing 50mM HEPES-KOH, pH 7.4,
100mM KOAc, 25mM Mg(OAc)2, 6mM b-mercaptoethanol, 10mM ERY and
1�Complete EDTA-free Protease Inhibitor cocktail (Roche)) by centrifugation at
154,693g (SW-40 Ti, Beckman Coulter) for 3 h at 4 �C. For ErmBL-SRC
purification, disome fractions were collected using a Gradient Station (Biocomp)
with an Econo UV Monitor (Bio-Rad) and a FC203B Fraction Collector (Gilson).
Purified ErmBL-SRC disomes were concentrated by centrifugation through
Amicon Ultra-0.5-ml Centrifugal Filters (Merck-Millipore) according to the
manufacturer’s protocol. To obtain monosomes of the ErmBL-SRC, a short DNA
oligonucleotide (50-ttcctccttataaaact-30 , Metabion) was annealed to the linker
between the ermBL cistrons of the disomes, generating a DNA–RNA hybrid that
could be cleaved by RNase H (NEB) treatment in buffer A at 25 �C for 1 h. After
cleavage of the disomes, ErmBL-SRC monosomes were again purified and
concentrated by centrifugation through Amicon Ultra-0.5-ml Centrifugal Filters
(Merck-Millipore) according to the manufacturer’s protocol.

Toe-printing assay. The position of the ribosome on the mRNA was monitored
with a toe-printing assay based on an in vitro-coupled transcription–translation
system with the PURExpress in vitro Protein Synthesis Kit (NEB)43,44. Briefly, each
translation reaction consisted of 1 ml solution A, 0.5 ml Disoleucine amino-acid
mixture, 0.5 ml tRNA mixture, 1.5 ml solution B, 1 ml (0.7 pmol) DNA template
(ermBL variants): (50-attaatacgactcactatagggatataaggaggaaaacatatgttggtattcca
aatgcgtaatgtagatAAAatatctactattttgaaataagtgatagaattctatcgttaataagcaaaattcattat
aacc-30 , with start codon ATG, catch isoleucine codon ATA and stop codon TAA
in bold, Lys codon (AAA) in capital letters, the ermBL ORF underlined and
primer-binding sites in italics) and 0.5 ml additional agents (nuclease-free water,
ERY or Ths). All templates were synthetized via PCR using overlapping forward
and reverse primers containing the designated mutation in the Lys position of the
ermBL motif. Translation was performed in the absence of isoleucine at 37 �C
for 15min at 500 r.p.m. in 1.5-ml reaction tubes. Ile-tRNA aminoacylation was
further prevented by the use of the Ile-tRNA synthetase inhibitor mupirocin
(50 mM). After translation, 2 pmol Alexa647-labelled NV-1 toe-print primer
(50-GGTTATAATGAATTTTGCTTATTAAC-30) was added to each reaction and
incubated at 37 �C without shaking for 5min. Reverse transcription was performed
with 0.5 ml of AMV RT (NEB), 0.1 ml dNTP mix (10mM) and 0.4 ml Pure System
Buffer, and was incubated at 37 �C for 20min. Reverse transcription was quenched
and RNA degraded by addition of 1 ml 10M NaOH and by incubation for at least
15min at 37 �C, and then was neutralized with 0.82 ml of 12M HCl. Toe-print
resuspension buffer (20 ml) and PN1 (200 ml) buffer were added to each reaction
before treatment with a QIAquick Nucleotide Removal Kit (Qiagen). The
Alexa647-labelled DNA was then eluted from the QIAquick columns with 80 ml of
nuclease-free water. A vacuum concentrator was used to vapourize the solvent, and
the Alexa647-labelled DNA was then dissolved into 3.5 ml of formamide dye. The
samples were heated to 95 �C for 5min before being applied on a 6%
polyacrylamide (19:1) sequencing gel containing 7M urea. Gel electrophoresis was
performed at 40W and 2,000V for 2 h. The GE Typhoon FLA9500 imaging system
was subsequently used to scan the polyacrylamide gel. Toe-print intensities were
determined using Image Studio Lite Version 5.2 and the uncropped gel images are
depicted in Supplementary Fig. 10.

Negative-stain electron microscopy. Ribosomal particles were diluted in buffer
A to final concentrations of 0.5 A260 per ml up to 5 A260 per ml in order to
determine the optimal ribosome density for cryo-EM. One drop of each sample was
deposited on a carbon-coated grid. After 30 s, grids were washed with distilled
water and then stained with three drops of 2% aqueous uranyl acetate for 15 s. The
remaining liquid was removed by touching the grid with filter paper. Micrographs
were taken using a Morgagni transmission electron microscope (TEM; FEI,
Eindhoven, the Netherlands), 80 kV, wide angle 1 K charge-coupled device at direct
magnifications of 72K.

Cryo-EM and single-particle reconstruction. Four A260 per ml monosomes of
the ErmBL-SRC was applied to 2-nm pre-coated Quantifoil R3/3 holey
carbon-supported grids and vitrified using a Vitrobot Mark IV (FEI). Data
collection was performed at NeCEN (Leiden, the Netherlands) on a Titan Krios
TEM (FEI) equipped with a Falcon II direct electron detector at 300 kV with a
magnification of � 125,085, a pixel size of 1.108 Å and a defocus range of
0.7–1.2 mm. The data are provided as a series of seven frames (dose per frame of
4 e� /Å2) from which we summed frames 2–5 (accumulated dose of 28 e� /Å2)
after alignment using the Motion Correction software45. Images were processed
using a frequency-limited refinement protocol that helps prevent overfitting46,
specifically by truncation of high frequencies (in this case at 8Å). We did not refine
two half data sets independently for resolution determination; nevertheless, as
reported and expected46, we find that using this processing regime the 0.143 FSC
value provides a good indicator for the true average resolution of the map. In
addition, the local resolution of the map was calculated using ResMap47. Power
spectra, defocus values, astigmatism and estimation of micrograph resolution were

determined using the CTFFIND4 software48. Micrographs showing Thon rings
beyond 3.6 Å resolution were further manually inspected for good areas and
power-spectra quality. Data were processed further using the SPIDER software
package49, in combination with an automated workflow as described previously50.
After initial, automated particle selection based on the programme SIGNATURE51,
initial alignment was performed with 285,462 particles, using E. coli 70S ribosome
as a reference structure9. After removal of noisy particles (30,093 particles; 11%),
the data set of 255,369 particles could be sorted into two main subpopulations
using an incremental K-means-like method of unsupervised three-dimensional
sorting (Supplementary Fig. 1)52. A minor subpopulation (94,139 particles, 37%)
was obtained containing stoichiometric density for the P-tRNA, lacking E-tRNA
(L1 stalk in the ‘out’ position) and containing sub-stoichiometric density for the
A-tRNA, which was not sorted further because of the low particle numbers. The
major subpopulation (161,231 particles; 63%) was defined by the presence of
stoichiometric densities for P- and E-tRNAs and sub-stoichiometric density for the
A-tRNA. This population was further sorted into two additional subpopulations,
both containing stoichiometric densities for the P- and E-tRNAs (L1 stalk in the
‘in’ position) and differing by the presence (termed ErmBL-APE-SRC) or absence
of A-tRNA (ErmBL-PE-SRC). Both subpopulations could be refined to an average
resolution of 3.6 Å (0.143 FSC) and a local resolution extending towards 3.0 Å for
the core of the 30S and 50S subunits as computed using ResMap47 (Supplementary
Fig. 2). The final maps were subjected to the programme EM-BFACTOR53 in order
to apply an automatically determined negative B-factor for sharpening of the map.

Molecular modelling and PDB alignments. Initial models for the two
ErmBL-SRCs were obtained by combining: (i) a model of the E. coli 70S ribosome
derived from a crystal structure at 2.8 Å resolution (PDB4U27 (ref. 54);
(ii) (A)/P/E-tRNAs and mRNA extracted from the 2.55-Å crystal structure of a
pre-attack complex of the T. thermophilus 70S ribosome (PDB4QCM32, mutated
and remodelled in Coot55 to yield fully modified E. coli tRNALys, tRNAAsp and
tRNAVal and a short mRNA, respectively; and (iii) the ErmBL peptide, which was
modelled in Coot. The ErmBL-APE-SRC and ErmBL-PE-SRC models assembled in
this manner were placed into their corresponding density maps using
multifragment rigid body refinement in Situs56. The backbones for the rRNA and
tRNA molecules were then fixed using the Phenix-Erraser pipeline57, and atomic
coordinates were refined using phenix.real_space_refine58, with base pairs as
additional restraints. Model validation was carried out on the MolProbity server59,
and the final model statistics are presented in Supplementary Table 1. Alignment of
other ribosome structures to the ErmBL-SRC was performed in Chimera on the
basis of the 23S rRNA. The r.m.s.d. between the 23S rRNA of the pre-attack
complex (PDB4QCM)32 and the 23S rRNA of the ErmBL-SRC was 1.1 Å for all
atoms and 0.9 Å for all atoms within 30Å of the ErmBL nascent chain. Similarly,
the r.m.s.d. between the 23S rRNA of the accommodated and unaccommodated
states (PDB1VQN/1VQ6)29–31 and the 23S rRNA of the ErmBL-SRC was 2.3 Å for
all atoms and 0.86Å for all atoms within 30Å of the ErmBL nascent chain.

Forcefield parameters. In all MD simulations the amber99sb force field26 and the
SPC/E water model27 were used. In addition, for Kþ and Cl� ions parameters
were taken from ref. 60 and for modified nucleotides parameters were taken from
ref. 61. The set of initial coordinates of ERY from the cryo-EM model was
protonated and energy-minimized by a HF/6-31G* optimization in GAUSSIAN
09 (ref. 62). The electrostatic potential, calculated from the optimized structure at
more than 140,000 points of a molecular surface around the ERY, was fitted to
partial charges placed at the atomic positions using the ESPGEN module in the
AMBER 11 (ref. 63). All additional force field parameters for ERY were
obtained using the ANTECHAMBER module in AMBER. Parameters were
converted for use in GROMACS 5.0 using ACPYPE64. Esther bonds between
amino acids and the A76 of the A- and P-site tRNAs were treated as described
earlier23. Point charges and atom types for the backbone atoms of the uncharged
amino acids lysine and alanine attached to the A-site tRNA were derived as
described above for ERY.

System set-up. In the initial cryo-EM structure, for the A-site tRNALys,
nucleotides 16–17 were not modelled. To add the missing nucleotides, first,
coordinates of nucleotides 15–18 were extracted from the tRNAPhe in a ribosome
EF–Tu complex structure65. Next, the extracted nucleotides were rigid-body-fitted
to the cryo-EM structure using backbone atoms (P, C4’ and O3’) of nucleotides
15 and 18. The fitted nucleotide C16 was mutated to a H2U and then nucleotides
16–17 were included in the model.

In the cryo-EM structure, the tRNAVal in the E-site also lacked coordinates for
nucleotides 16–17. These were extracted from tRNAPhe (ref. 65) and rigid-body-
fitted in the same manner as described for the A-site tRNA. Here, to match the
tRNAVal, nucleotides 16 and 17 were mutated to C and 5MU, respectively. Further,
the E-site tRNA lacked coordinates for the CCA-tail nucleotides. To model these
nucleotides, first, we extracted nucleotides 1 and 72–76 of the E-site tRNAfMet from
the ribosome–EF–Tu complex structure65. The extracted nucleotides were then
rigid-body-fitted to the E-site tRNA in the cryo-EM structure using backbone
atoms (P, C40 and O30) of nucleotides 1 and 72–73. The fitted nucleotides 74–76
were then included in the model.
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The N-terminal end of protein L27 (amino acids 1–10) was not resolved in the
cryo-EM structure. To test whether the conformation of L27 in the pre-attack
complex is stable in the presence of ERY, the N terminus was modelled on the basis
of the crystal structure of a pre-attack state (T. thermophilus, PDB ID 1VY4
(ref. 32)). To that aim, first, the phosphates of rRNA nucleotides within a distance
of 5Å of L27 amino acids 1–10 were extracted from the T. thermophilus structure.
L27 amino acids 1–10 were aligned to the cryo-EM structure by rigid-body fitting
to the corresponding phosphate atoms. Finally, to match the E. coli sequence65,
amino acids G6 and L7 were mutated to A and G, respectively.

The L1 protein and 23S rRNA H38 nucleotides 886–891 were not modelled in
the cryo-EM structure. To model the L1 protein, coordinates of the L1 stalk rRNA
(nucleotides 2093–2196) and of the tip of H68 (nucleotides 1860–1883) were
extracted from the cryo-EM structure and from all trajectories from previous MD
simulations of translocation intermediates that include the L1 protein24. The
coordinates from each frame of the trajectories were compared with those extracted
from the cryo-EM structure by calculating the r.m.s.d. From the frame with the
lowest r.m.s.d. (0.38 nm), the coordinates of the L1 protein were extracted and
added to our model. To model the missing H38 nucleotides, first, nucleotides
883–885 and 892–893 as well as all residues within a radius of 1.2 nm were
extracted from the cryo-EM structure and all trajectories. As described above, from
the trajectories, the frame with the lowest r.m.s.d. (0.12 nm) was selected and the
coordinates of nucleotides 886–891 were added to our model.

MD simulations. Starting structures of three states were used for the MD simu-
lations: the model of the ribosome in complex with tRNAs, ErmBL and ERY
(þ ERY); the model of the same complex with an alternative conformation of
ErmBL (þERY’); and the model after removal of ERY (� ERY). The alternative
conformation of ErmBL (þ ERY’) was obtained by perturbing the c dihedral of
ErmBL amino acid Asp10 from 270� to 90�, as described in the following sub-
section. For each of the three starting structures, two independent simulations were
carried out.

The protonation states of amino acids were determined using WHATIF66. Each
structure was first solvated in a dodecahedron box keeping a minimum distance of
1.5 nm between the model atoms and the box boundaries. Next, the simulation
system was neutralized with Kþ ions and explicit salt (7mM MgCl2 and 150mM
KCl) was added using the programme GENION from the GROMACS suite25.

All MD simulations were carried out with GROMACS 5 (ref. 25).
Lennard–Jones and short-range electrostatic interactions were calculated within a
distance of 1 nm. Long-range electrostatic interactions, beyond 1 nm, were
calculated by particle-mesh Ewald summation67 with a 0.12-nm grid spacing. The
bond lengths were constrained using the LINCS algorithm68. The temperature of
solute and solvent was controlled independently at T¼ 300K using velocity
rescaling69 with a coupling time constant of tT¼ 0.1 ps. An integration time step of
4 fs was used, applying virtual site constraints70. The coordinates were recorded for
analysis every 5 ps.

The system was then equilibrated in four steps:

� Energy minimization using steepest decent.
� 0–50 ns: Berendsen barostat71 (tp¼ 1 ps) and position restraints on all the heavy

atoms included in the cryo-EM structure (k¼ 1,000 kJmol� 1nm� 2).
� 50–70 ns: Linearly decreasing of the position restraint force constant k to zero.
� 70–2,070 ns: Parrinello–Rahman barostat72 (tp¼ 1 ps) and no position

restraints.

To study the effects of the ErmBL Lys11Ala mutation, the final structure of one
trajectory for each state (t¼ 2,070 ns) was extracted. In this structure, the Lys11 of
ErmBL was then mutated to an alanine. To preserve the neutral charge of the
system, one randomly chosen water molecule, which was at least 2 nm away from
any ribosomal atoms, was replaced by a Kþ ion. The simulation system was
subsequently, first, energy-minimized and, second, equilibrated with Berendsen
barostat (as described above) for 20 ns (2,070–2,090 ns) and, finally, with
Parrinello–Rahman barostat for 1,980 ns (2,090–3,070 ns).

Structural deviations. To monitor the stability of the simulations, the r.m.s.d. of
all ribosome–ErmBL–tRNA complex atoms from their initial coordinates
(cryo-EM structure) was calculated for each frame after rigid-body fitting of all Ca

and P atoms (Supplementary Fig. 5).
To investigate whether, upon removal of ERY, the P-site A76 ribose moves

towards its unstalled pre-attack state conformation, for each frame and simulation,
the coordinates of the ribose and phosphate group atom of nulceotides C74–C75 of
the P-site tRNA were rigid-body-fitted to their coordinates in the pre-attack
structure32. Finally, the r.m.s.d. of the A76 ribose atoms from their pre-attack
conformation was calculated (Fig. 6g in the main text).

ErmBL peptide dihedral angles. To monitor the conformational dynamics
of the ErmBL peptide, dihedral angles for each amino acid were calculated
(Supplementary Fig. 7). In particular, the c dihedral of Asp10 was found
to spontaneously switch between the two starting conformations (þERY and
þERY’). Therefore, we consider the simulations with ERY as exploring the same

state. The results from the þ ERY’ simulations support all the conclusions drawn
from the þ ERY simulations described in the main text. For clarity, these results
are only reported as Supplementary Information.

Overlap of ErmBL with the volume occupied by ERY. To answer the question
whether ERY restricts the conformation of the ErmBL peptide for each simulation
and all frames at intervals of 1 ns, the overlapping volume between the peptide
coordinates and the coordinates of ERY from the cryo-EM structure were
calculated after alignment of the surrounding 23S rRNA phosphates. To that aim,
the vander-Waals volume of ERY alone in the starting structure Ve(0), of the
peptide alone Vp(t) and of ERY and peptide together Vep(t) were calculated for
each time t using the GROMACS programme gmx sasa25. The overlapping volume
was calculated as Vo(t)¼Ve(0)þVp(t)�Vep(t), see Fig. 2f in the main text.

Conformation of 23S nucleotides 2504–2506. In the simulations, 23S rRNA
nucleotides 2504–2506 were found to change conformation upon removal of ERY.
To quantify the conformational change, a principal component analysis73 was
carried out. First, we identified all P atoms of the 23S nucleotides located within a
distance of 8Å from the CCA tails of A- and P-site tRNAs and ErmBL amino acids
2–11 in the cryo-EM structure. Second, all trajectories were superimposed by least-
square fitting using these P atoms. Then, the coordinates of the backbone atoms of
nucleotides 2504–2506 were extracted from the superimposed trajectories,
concatenated and the atomic displacement covariance matrix was calculated.
Finally, the trajectory of each simulation was projected on the first eigenvector of
this matrix (Fig. 7a and Supplementary Fig. 9).

Distance of the crevice nucleotides from the A-site. The positively charged side
chain of the ErmBL amino acid Lys11, which is attached to the A-site tRNA in the
stalled complex, was found to interact with 23S nucleotides U2504, U2506 and
C2452. The side chain specifically interacts with certain parts of these nucleotides:
the U2504 ribose atoms, U2506 phosphate atoms and the C2452 base atoms.
To measure the width of the A-site crevice74, first, the centres of mass of these
nucleotide parts were calculated for each frame in each of the superimposed
trajectories (see section Conformation of 23S nucleotides 2504–2506).
Next, the mean position of the carbonyl atom of the ErmBL amino acid Asp10,
which is attached to the P-site tRNA, was calculated from all superimposed
trajectories. Finally, to quantify the width of the A-site crevice, the distance
between this mean position of the carbonyl atom and centre of geometry of the
three centres of mass (U2504, U2506 and C2452) was calculated (d1 in Fig. 7c and
Supplementary Fig. 9).

Interaction enthalpies of Lys11 and Ala11. To estimate the relative strength of the
interaction of the A-site tRNA amino acids Lys11 and Ala11 with 23S nucleotides
U2504, U2506 and C2452, the interaction enthalpies, that is, the sum of
electrostatic and vander-Waals interactions were calculated. The electrostatic
and vander-Waals interactions were calculated with the point charges and
Lennard–Jones parameters from the amber99sb forcefield26 using GROMACS25.
The sum of these interaction enthalpies is shown in Fig. 7f and Supplementary
Fig. 9. Note that the estimated interaction strength calculated here represents a
qualitative estimate of the free energy differences and does not include entropic
contributions.

Hydrogen bonds. Hydrogen bonds of the A76 of A-site and P-site tRNAs and
ErmBL amino acids 6–11 were monitored for all simulations using the GROMACS
programme gmx hbonds25. For all hydrogen bonds with an occupancy 420% in at
least one simulation, the hydrogen bond occupancy was averaged over windows of
20 ns (Supplementary Fig. 6).

Data availability. The cryo-EM maps and associated atomic coordinates have
been deposited in the EMDB and PDB with the accession codes EMDB-8175 and
PDB ID 5JTE (ErmBL-APE-SRC) and EMDB-8176 and PDB ID 5JU8
(ErmBL-AP-SRC). The additional MD data that support the findings of this study
are available from the corresponding author upon request.
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