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Impact of the Euro 2020 championship on
the spread of COVID-19

Jonas Dehning 1,6, Sebastian B. Mohr 1,6, Sebastian Contreras 1,
Philipp Dönges 1, Emil N. Iftekhar 1, Oliver Schulz 2, Philip Bechtle 3 &
Viola Priesemann 1,4,5

Large-scale events like the UEFA Euro 2020 football (soccer) championship
offer a unique opportunity to quantify the impact of gatherings on the spread
of COVID-19, as the number and dates of matches played by participating
countries resembles a randomized study. Using Bayesian modeling and the
gender imbalance in COVID-19 data, we attribute 840,000 (95% CI: [0.39M,
1.26M]) COVID-19 cases across 12 countries to the championship. The impact
depends non-linearly on the initial incidence, the reproduction number R, and
the number of matches played. The strongest effects are seen in Scotland and
England, where asmuch as 10,000 primary cases permillion inhabitants occur
from championship-related gatherings. The average match-induced increase
in R was 0.46 [0.18, 0.75] on match days, but important matches caused an
increase as large as +3. Altogether, our results provide quantitative insights
that help judge and mitigate the impact of large-scale events on pandemic
spread.

Passion for competitive team sports is widespread worldwide. How-
ever, the tradition of watching and celebrating popular matches
together may pose a danger to coronavirus disease 2019 (COVID-19)
mitigation, especially in large gatherings and crowded indoor settings
(see, e.g., refs. 1–6). Interestingly, sports events taking place under
substantial contact restrictions had only a minor effect on COVID-19
transmission7–11. However, large events with massive media coverage,
stadium attendance, increased travel, and viewing parties can play a
major role in the spread of COVID-19—especially if taking place in
settings with few COVID-19-related restrictions. This was the case for
the UEFA Euro 2020 Football Championship (Euro 2020 in short),
staged from June 11 to July 11, 2021. While stadium attendance might
only have a minor effect12–14, it increases TV viewer engagement15–17,
and encourages additional social gatherings18. These phenomena and
previous observational analyses19 suggest that the Euro 2020’s impact
may have been considerable. Therefore, we used this championship as
a case study to quantify the impact of large events on the spread of

COVID-19. Counting with quantitative insights on the impact of these
events allows policymakers to determine the set of interventions
required to mitigate it.

Two facts make the Euro 2020 especially suitable for the quanti-
fication. First, the Euro 2020 resembles a randomized study across
countries: The time-points of the matches in a country do not depend
on the state of the pandemic in that country and how far a team
advances in the championship has a random component aswell20. This
independencebetween the time-points of thematch and theCOVID-19
incidence allows quantifying the effect of football-related social gath-
eringswithout classical biasing effects. This is advantageous compared
to classical inference studies quantifying the impact of non-
pharmaceutical interventions (NPIs) on COVID-19 where implement-
ing NPIs is a typical reaction to growing case numbers21–23. Second, the
attendance atmatch-related events, and thus the cases associatedwith
each match, is expected to show a gender imbalance24. This was con-
firmed by news outlets and early studies25–28. Hence, the gender
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imbalance presents a unique opportunity to disentangle the impact of
the matches from other effects on pathogen transmission rates.

Here we build a Bayesian model to quantify the effect large-scale
sports events on the spread of COVID-19, using the Euro 2020 as case
study. In the following, we use “case” to refer to a confirmed case of a
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infec-
tion in a human and “case numbers” to refer to the number of such
cases. Not all infections are detected and represented in the cases and
cases comewith a delay after the actual infection. Ourmodel simulates
COVID-19 spread in each country using a discrete renewal process22,29

for each gender separately, such that the effect of matches can be
assessed through the gender imbalance in case numbers. This is
defined as “(male incidence − female incidence)/total incidence”, and
through the temporal association of cases to match dates of the
countries’ teams. Regarding the expected gender imbalance at
football-related gatherings, we chose a prior value of 33% (95% per-
centiles [18%, 51%]) female participants, which is more balanced than
the values reported for national leagues (about 20%)24. However, this
agrees with the expected homogeneous and broad media attention of
events like the Euro 2020. For the effective reproduction number Reff
we distinguish three additive contributions; the base, NPI-, and
behavior-dependent reproduction number Rbase, a match-induced
boost on it ΔRfootball, and a noise term ΔRnoise, such that
Reff =Rbase +ΔRfootball +ΔRnoise. We assume Rbase to vary smoothly over
time,while the effect of singlematchesΔRfootball is concentratedonone
day and allows for a gender imbalance. The term ΔRnoise allows the
model to vary the relative reproduction number for each gender
independent of the football events smoothly over time. We analyzed
data fromall participating countries in the Euro 2020 that publish daily
gender-resolved case numbers (n = 12): England, the Czech Republic,
Italy, Scotland, Spain, Germany, France, Slovakia, Austria, Belgium,
Portugal, and the Netherlands (ordered by resulting effect size). We
retrieved datasets directly from governmental institutions or the

COVerAGE-DB30. See Supplementary Section S1 for a list of data sour-
ces. Our analyses were carried out following FAIR31 principles; all code,
including generated datasets, are publicly available (https://github.
com/Priesemann-Group/covid19_soccer).

Results
The main impact arises from the subsequent infection chains
We quantified the impact of the Euro 2020 matches on the repro-
duction number for the 12 analyzed countries (Fig. 1a) and for every
single match (Supplementary Fig. S8). On average, a match increases
the reproduction number R by 0.46 (95% CI [0.18, 0.75]) (Fig. 1a and
Supplementary Table S4) for a single day. In other words, when a
country participated in amatch of the Euro 2020 championship, every
individual of the country infected on average ΔRmatch extra persons
(see Supplementary Section S2 for more details). The cases resulting
from these infections occurring at gatherings on the match days are
referred to as primary cases.

However, primary cases are only the tip of the iceberg; any of
these cases can initiate a new infection chain, potentially spreading for
weeks (see Supplementary Section S2 for more details). We included
all subsequent cases until July 31, which is about two weeks after the
final. As expected, subsequent cases outnumber the primary cases
considerably at a ratio of about 4:1 on average (Supplementary
Table S3). As a consequence, on average, only 3.2% [1.3%, 5.2%] of new
cases are directly associated with the match-related social gatherings
throughout that analysis period (Fig. 1b). This surge of subsequent
cases highlights the long-lasting impact of potential single events on
the COVID-19 spread (see Supplementary Table S2).

We find an increase in COVID-19 spread at the Euro 2020matches
in all countries we analyzed, except for the Netherlands. In the Neth-
erlands, a “freedom day" coincided with the analysis period32 and was
accompanied by the opposite gender imbalance compared to the
football matches, thereby apparently inverted the football effect.

Fig. 1 | Quantifying the impact of the Euro 2020 on COVID-19 spread. a Using
Bayesian inference and an SEIR-like model, we infer the mean increase on the
reproduction number associated with Euro 2020 matches, ΔRmean

match, in each ana-
lyzed country (n = 12 countries). Almost all countries show a median of the mean
increase larger than zero (cf. SupplementaryTable S4). Note that in theNetherlands
(★) a complete lifting of restrictions was implemented on June 26 2021 (“freedom
day”). Apparently, its impact also had the opposite gender imbalance, making it
hard for themodel to extract the Euro2020’s effect (Supplementary Fig. S31).bThe
ΔRmean

match enables us to quantify the primary cases, i.e., cases associated directly with
the match days (as percentage of all cases from June 11 to July 31 2021). c Any

primary infection at a match can start an infection chain. The total number of
primary and subsequent cases that were inferred to be causally related to the Euro
2020 from its start until 31 July depend on the COVID-19 prevalence and the base
spread during the analysis period. In parentheses are the number of matches
played by the respective team. White dots represent median values, black bars and
whiskers correspond to the 68% and 95% credible intervals (CI), respectively, and
the distributions in color (truncated at 99% CI) represent the differences by gender
(Supplementary Table S2). TheNetherlands is left out from the average calculations
and subsequent analyses.
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Therefore, we exclude the Netherlands from general averages and
correlation studies, but still display the results for completeness.

The primary and subsequent cases on average amounted to 2200
(95% CI [986, 3308]) cases per million inhabitants (Fig. 1c and Sup-
plementary Table S2). This amounts to about 0.84 million (CI: [0.39M,
1.26M]) cases related to the Euro 2020 in the 12 countries (cf. Sup-
plementary Table S3). With the case fatality risk of that period, this
corresponds to about 1700 (CI: [762, 2470]) deaths, assuming that the
primary and subsequent spread affects all ages equally.Most likely this
is slightly overestimated since the age groupsmost at risk fromCOVID-
19-related death are probably underrepresented in football-related
social activities and thus more unlikely to be affected by primary
championship-related infections. However, the overall number of
primary and subsequent cases attributed to the championship is
dominated by the subsequent cases, and the mixing of individuals of
different age-groups then mitigates this bias. Individually, three
countries, England, the Czech Republic, and Scotland showed a sig-
nificant increase in COVID-19 incidence associatedwith the Euro 2020,
and Spain and France show an increase at the one-sided 90% sig-
nificance threshold. In other countries such as Germany, only a rela-
tively small contribution of primary cases was associatedwith the Euro
2020 championship, and a small gender imbalance was observed. Low
COVID-19 incidence during the championship or imprecise temporal
association between infection and confirmation of it as a case can lead
to a loss of sensitivity and hinder the detection of an effect, as can be
seen from the large width of several posterior distributions (e.g., Italy
and Slovakia, which had particularly low incidence).

The strongest effect is observed in England and Scotland
Overall, the effect of the Euro 2020 was quite diverse across the par-
ticipating countries, ranging from almost no additional infections to
up to 1% of the entire population being infected (i.e., from Portugal to
England, Fig. 1). To illustrate this diversity, the comparison between
England, Scotland, and the Czech Republic is particularly illustrative

(Fig. 2). For all countries,wedisentangled the cases that are considered
to happen independently of the Euro 2020 (Fig. 2a, gray), the primary
cases directly associated with gatherings on the days of the matches
(red), and the subsequent infection chains started by the primary cases
(orange; see Supplementary Figs. S24–S36 for all countries).

England, being the runner-up of the championship and thus
played themaximumnumber ofmatches, displays the strongest effect
over the longest duration, with a substantial increase in reproduction
number ΔRmatch towards the last matches of the championship. This
reflects the increasing popularity of the later matches, as e.g., quanti-
fied by the increase of the search term on Google (Supplementary
Fig. S20). Scotland shows a particularly strong effect of a single match
(Scotland vs England) staged in London during the group phase, with
ΔRmatch = 3.5 [2.9, 4.2] (Fig. 2c). This means that on average over the
total Scottish population, every single person infected additional 3.5
persons at or around that single day. These are very strong effects. As a
consequence, in Scotland the subsequent cases from the single match
accounted for about 30% of the cases in the following weeks, illus-
trating the impact of such gatherings on public health.

Low overall incidence prevents large match-related spread
In theCzechRepublic, the situationwasdifferent compared to England
and Scotland, although the analyses point to similarly strong gather-
ings on thematchdays (i.e., largeΔRmatch, Fig. 1a).However, becauseof
theoverall low incidencemuch fewer peoplewere infected throughout
the championship. The advantage of low incidence or fewer games is
illustrated in two counterfactual scenarios. Even under the assumption
that the Czech team had continued to the final and the population had
gathered exactly like the English (i.e., showing the same ΔRmatch in the
matches they played), the total number of cases (per million) would
have been more than 40 times lower than in England, owing to the
lower base incidence and a lower base reproduction number (Fig. 2d).
Assuming, as a counterfactual scenario, that England had dropped out
in the group stage, the number of cases associated with the Euro 2020

Fig. 2 | Example cases illustrate that the spread associated with the Euro 2020
can encompass a substantial fraction of the observed cases. a The model
enables one to split the observed incidence (black diamonds) into: cases inde-
pendent of Euro 2020matches (gray area), primary cases (directly associated with
Euro 2020 matches, red area), and subsequent cases (additional infection chains
started by primary cases, orange area). See Supplementary Information for all
countries (Supplementary Figs. S24–S36).Here and in all following figures, the light
blue shaded area signifies the time span of the Euro 2020. b Football-related
gatherings, and hence the case numbers, show a gender imbalance. This facilitates
the inference of the football-related increase in COVID-19 spread. Here the tur-
quoise shaded areas correspond to 95% CI. c The effect of social gatherings at
match days is modeled as a single additive increase in the reproduction number

ΔRmatch concentrated on the day of each match. For example, ΔRmatch = 2 means
that, on the day of the match, each infected individual on average infected two
additional persons (on top of the base trend). d, e The counterfactual scenario
assumes that England would not have reached the knockout phase (d, Scen. 1), or
that the Czech fans and matches would have been equal to the English (i.e.,
reaching the final, and Czech people doing the same football-related gatherings as
the English by their impact on disease spread; e, Scen. 2). f In the counterfactual
scenarios, the Euro 2020 would have hadmuch smaller impact with fewermatches
(Scen. 1), or with an overall more favorable pandemic situation as in the Czech
Republic (Scen. 2). White dots represent median values, bars and whiskers corre-
spond to the 68% and 95% credible intervals (CI).
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would have been much lower. This suggests that both the success in
the championship and the base incidence and behavior in a country
influence the public health impact of such large-scale events.

To better understand the impact of the Euro 2020, we quantified
the determinants of the spread across countries. From theory, we
expect the absolute number of infections generated by Euro 2020
matches to depend non-linearly on a country’s base incidence N0,
which determines the probability to meet an infected person, and on
the effective reproductionnumber prior to the championshipRpre, as a
gauge for the underlying infection dynamics generating the sub-
sequent cases, which determines how strongly an additional infection
spreads in the population.We can then define the potential for COVID-
19 spread as the number of COVID-19 cases that would be expected
during the time T a country is playing in the Euro 2020 (N0 � RT=4

pre ),
assuming a generation interval of 4 days. Indeed, we find a clear cor-
relation between the observed and the expected incidence Fig. 3a,
R2 = 0.77 (95% CI [0.39,0.9]), p <0.001, with a slope of 1.62 (95% CI [1.0,
2.26]). The strong significance of this correlation relies mainly on
England and Scotland. However, the observed slope in an analysis
without these two countries (0.76, 95% CI: [−1.46, 3.04]), while not
significant at the 95% confidence level, is consistent with the findings
including all countries. This is shown in Supplementary Fig. S7.

Furthermore, quantifying correlations between N0 and Rpre and
the number of primary and subsequent cases related to the Euro 2020,
we see a trend for each (Supplementary Fig. S6a, b).However, these are
weak and statistically significant only for Rpre. Altogether, our data
suggest that a favorable pandemic situation (low Rpre and low N0)
before the gatherings, and low Rbase during the period of gatherings
jointly minimize the impact of the Euro 2020 on community con-
tagion. A prerequisite for this is that the known preventive measures,
such as reducing group size, imposing preventive measures, and
minimizing the number of encounters remain encouraged.

Independently on the epidemic situation, Euro 2020’s effect might
be influenced by people’s prudence and the team’s popularity and suc-
cess during the championship. While we do not observe any obvious
effect of local mobility as a measure of the prudence of people (Fig. 3b,
R2 = 0.06 (95%CI [0.00, 0.34]), p=0.54, and Supplementary Fig. S4), the
potential popularity—representedby thenumberofmatchesplayedand
hosted by a given country—had a more notable trend (Supplementary
Fig. S6c). Still, this correlation was not statistically significant. Moreover,
we found no relationship between the effect size and the Oxford gov-
ernmental response tracker33 (Supplementary Fig. S5).

Discussion
Large international-scale sports events like the Euro 2020 Football
Championshiphave thepotential to gather people like noother typeof
event. Our quantitative insights on the impact of such gatherings on
COVID-19 spread provide policymakers with tools to design the port-
folio of interventions required for mitigation (using, e.g., results of
refs. 22,23,34). Thereby, our quantification can support society in
carefully weighing the positive social, psychological, and economic
effects of mass events against the potential negative impact on public
health35. Our analysis attributes about 0.84 million (95% CI: [0.39M,
1.26M]) additional infected persons to the Euro 2020 championship.
Assuming that the primary and subsequent spread affects all ages
equally, this corresponds across the 12 countries to about 1700 (CI:
[762, 2470]) deaths. Thus, the public health impact of the EURO 2020
was not negligible.

To prevent the impacts of these events, measures, such as pro-
moting vaccination, enacting mask mandates, and limiting gathering
sizes, can be helpful. Besides, the effectiveness of such interventions
has already been quantified in different settings (e.g., refs. 22,23) so
that policymakers can weigh them according to specific targets and
priorities. Furthermore, focusedmeasures that aim tomitigate disease
spread in situ, such as testing campaigns and requiring COVID pass-
ports to attend sport-related gatherings and viewing parties, present
themselves as helpful options. In addition, one could encourage par-
ticipants of a large gathering to self-quarantine and test themselves
afterward. Moreover, the championship distribution of matches every
4–5 days coincides with the mean incubation period and generation
interval of COVID-19. This means that individuals who get infected
watching a match can turn infectious by the subsequent while poten-
tially pre-symptomatic. Such resonance effects between gathering
intervals and incubation time can increase the spread considerably34. It
thus depends on the design of the championships, on the precau-
tionary behavior of individuals, and on the basic infection situation
how much large-scale events threaten public health, even if the
reproduction number is transiently increased during these events.

Previous studies that evaluated the impact of sports events on the
spread of COVID-19 and considered the spectator gatherings at match
venues were not conclusive7,8,36. This agrees with our results as we find
the impact of hosting a match to be small to non-existent (Supple-
mentary Fig. S9). However, location having little effect may well be
specific to the Euro 2020, where matches were distributed across
different countries. In the traditional settings of the UEFA European

Fig. 3 | Which variables can predict the extent of the impact of Euro 2020
matches? a The potential for spread, i.e., the number of COVID-19 cases thatwould
be expected during the time T a country is playing in the Euro 2020 (N0 � RT=4

pre ), is
strongly correlated with the number of Euro 2020-related cases. Therefore, pol-
icymakers should simultaneously consider the initial incidence N0, reproduction
number prior to the event Rpre, and expected duration of an event T to assess
whether it is pertinent to allow it (The correlation is not significant if England and

Scotland are left out, but the slope is still consistent with this result.). b Mobility
changes from baseline during the Euro 2020 are not correlated with the number of
COVID-19 cases associated with the championship in each country. Furthermore,
the direction of the effect ofmobility per se in this context is unclear. The gray line
and area are the median and 95% CI of the linear regression (n = 11 countries; The
Netherlands was excluded for this analysis). Whiskers denote one standard
deviation.
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Football Championship or the FIFA World Cup, a single country or a
small group of countries hosts the entire championship, and the
championship is accompanied by elaborate supporting events, public
viewing, and extensive travel of international guests. Hence, for other
championships, such as, e.g., the FIFA World Cup 2022 in Qatar or the
Euro 2024 in Germany, the impact of location might be considerably
larger.

Our model accounts for slow changes in the transmission rates
that are unrelated to football matches through the gender-
independent reproduction number Rbase. We find Rbase to increase at
least transiently during the championship in all 12 countries except for
England and Portugal (Supplementary Figs. S24–S35). The above may
suggest that our estimate of the match effect ΔRmatch is conservative:
The overall increase of COVID-19 spreadmight in part be attributed to
Rbase, but will not be incorrectly associated with football matches. Our
results might further be biased if the incidence and the teams’ pro-
gression in the Euro 2020 are correlated. It is conceivable that high
incidencewould negatively correlatewith teamprogression through ill
or quarantined team members. However, there were only few such
cases during the Euro 202037, and the correlation might also be posi-
tive: At higher case numbers the team might be more careful. Hence,
the correlation is unclear and probably negligible.

The COVID-19 spread obviously depends on many factors. How-
ever, many of those parameters, such as the vaccination rate, the
contact behavior or motivation to be tested, are changing slowly over
time and hence can be absorbed into the slowly changing base
reproduction rate Rbase and the gender-asymmetric noise ΔRnoise;
other parameters, like social and regional differences, age-structure or
specific contact networks are expected to be constant over time and
average out across a country. To further test the robustness of our
model, we systematically varied the prior assumptions on the central
model parameters, among them the delay (Supplementary Fig. S12),
the width of the delay kernel (Supplementary Fig. S13), the change
point interval (Supplementary Fig. S14), the generation interval (Sup-
plementary Fig. S16) and a range of other priors (Supplementary
Fig. S17). Furthermore, when using wider prior ranges for the gender
imbalance, football-related COVID-19 cases remain unchanged but the
uncertainty increases (Supplementary Fig. S15), thus validating our
choice. Even for the case of prior symmetric gender imbalance
assumptions, the posterior distribution of the female participation
converges for the three most significant countries to median values
between 20 and 45%. As last cross-check, we made sure that we found
no effect when shifting the match dates by 2 weeks relative to the case
numbers (Supplementary Fig. S10) nor by shiftingmatchdates outside
the championship range, by more than ±30 days (Supplementary
Fig. S11).

Besides quantifying the impact of matches on the reproduction
number, our methodology allowed us to estimate the delay between
infections and confirmation of positive tests D without a requirement
to identify the source of each infection (Supplementary Fig. S19). Our
estimates for D in the participating countries were around 3-5 days
(England: 4.5 days (95%CI [4.3, 5]), Scotland: 3.5 days (95%CI [3.3, 3.8]),
Supplementary Figs. S24 and S33g and Supplementary Table S4). This
agrees with available literature and is an encouraging signal for the
feasibility of containing COVID-19 with test-trace-and-isolate38–42.
However, we expect that some individuals would actively get tested
right after a match, thereby increasing the case finding and reporting
rates. This can slightly affect our estimates for the delay distribution D
and would require additional information to be corrected. Altogether,
analyzing large-scale events with precise timing and substantial impact
on the spread presents a promising, resource-efficient complement to
classical quantification of delays.

Understanding how popular events with major in-person gather-
ings affect the spreading dynamics of COVID-19 can help us design
better strategies to prevent new outbreaks. The Euro 2020 had a

pronounced impact on the spread despite considerable awareness of
the risks of COVID-19. We estimate that, e.g., about 48% of all cases in
England until July 31 are related to the championship. In future, with
declining awareness about COVID-19 but potentially better immunity,
similarmass events, such as the footballworld cups, the Super Bowl, or
the Olympics, will still unfold their impact. Acute, long-COVID-19 and
post-COVID-19 will continue to pose a challenge to societies in the
years to come. Our analysis suggest that a combination of low Rpre and
low initial incidence at the beginning of the event, together with the
known preventive measures, can strongly reduce the impact of these
events on community contagion. Fulfilling these preconditions and
increasing health education in the general population can substantially
reduce the adverse health effects of future mass events.

Methods
To estimate the effect of the championship in different countries, we
constructed a Bayesian model that uses the reported case numbers in
12 countries. Ethical approval was not sought as we only worked with
openly available data. A graphical overview of the inference model is
given in Fig. 4 and model variables, prior distributions, indices,
country-dependent priors, and sampling performance are summar-
ized in Tables 1, 2, 3, 4 and 5, respectively.

Modeling the spreading dynamics, including gender imbalance
The model simulates the spread of COVID-19 in each country sepa-
rately using a discrete renewal process22,29,43. We infer a time-
dependent effective reproduction number with gender interactions
between genders g and g 0, Reff,g,g 0 ðtÞ, for each country21.

Even though participation of women in football fan activity has
increased in the last decades44, football fans are still predominantly
male24. Hence one expects a higher infection probability at the days of
thematch for themale compared to the female population. Integrating
this information into the model by using gender resolved case num-
bers, allows improved inference of the Euro 2020’s impact. In the
following, genders “male” and “female” are denoted by the subscripts
•g=1 and •g=2, respectively. Furthermore, we modeled the spreading
dynamics of COVID-19 in each country separately.

In the discrete renewal process for disease dynamics of the
respective country, we define for each gender g a susceptible pool Sg
and an infected pool Ig. With N denoting the population size, the
spreading dynamics with daily time resolution t reads as

Ig ðtÞ=
Sg ðtÞ
N

X2
g 0 = 1

Reff,g,g 0 ðtÞ
X10
τ =0

Ig 0 ðt � 1� τÞGðτÞ, ð1Þ

Sg ðtÞ= Sg ðt � 1Þ � Eg ðt � 1Þ, ð2Þ

GðτÞ=Gammaðτ;μ=4,σ = 1:5Þ: ð3Þ

We apply a discrete convolution in Eq. (1) to account for the latent
period and subsequent infection (red box in Fig. 4). This generation
interval (between infections) is modeled by a Gamma distributionG(τ)
with a mean μ of four days and standard deviation σ of one and a half
days. This is a little longer than the estimates of the generation interval
of the Delta variant45,46, but shorter than the estimated generation
interval of the original strain47,48. The impact of the choice of genera-
tion interval has negligible impact on our results (Supplementary
Fig. S16). The infected compartment (commonly I) is not modeled
explicitly as a separate compartment, but implicitly with the assumed
generation interval kernel.

The effective spread in a given country is described by the
country-dependent effective reproduction numbers for infections of
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individuals of gender g by individuals of gender g 0

Reff,g,g 0 ðtÞ=RbaseðtÞCbase,g,g 0 +ΔRfootballðtÞCmatch,g,g 0 +ΔRnoiseðtÞCnoise,g,g 0 ,

ð4Þ

where Cbase,g,g 0 , Cmatch,g,g 0 , and Cnoise,g,g 0 describe the entries of the
contact matrices Cbase, Cmatch, Cnoise respectively (purple boxes
in Fig. 4).

This effective reproductionnumber is a functionof threedifferent
reproduction numbers (yellow and orange boxes in Fig. 4):
1. A slowly changing base reproduction number Rbase (22) that has

the same effect on both genders; besides incorporating the epi-
demiological information given by the basic reproduction num-
ber R0, it represents the day-to-day contact behavior, including
the impact of non-pharmaceutical interventions (NPIs), voluntary
preventive measures, immunity status, etc.

2. The reproduction number associatedwith social gatherings in the
context of a football match Rmatch(t) (11); this number is only dif-
ferent from zero on days with matches that the respective

country’s team participates in and it has a larger effect on men
than on women.

3. A slowly changing noise term ΔRnoise(t) (31), which subsumes all
additional effects which might change the incidence ratio
between males and females (gender imbalance).

The interaction between persons of specific genders is imple-
mented by effective contact matrices Cmatch, Cbase and Cnoise. All three
are assumed to be symmetric.

Cbase describes non-football related contacts outside the context
of Euro 2020 matches (left purple box in Fig. 4):

Cbase =
1� coff coff
coff 1� coff

� �
, ð5Þ

with coff ∼Betaðα =8,β=8Þ: ð6Þ

Fig. 4 | Model overview illustrating the relationship between the chosen prior
distributions and the disease dynamics. Boxes in the flowchart are color-coded
according towhat they describe. Light blue boxes: delaymodulations. Greenboxes:
likelihoods. Redboxes: spreading dynamics. Purpleboxes: contactmatrices. Yellow

boxes: effects independent of football matches. Orange boxes: effects of the
football matches. Diamonds show prior distributions (blue) or incorporated data
(red), and gray circles denote any mathematical operation.
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Here, we have the prior assumption that contacts between women,
contacts between men, and contacts between women and men are
equally probable. Hence, we chose the parameters for the Beta dis-
tribution such that coff has a mean of 50% with a 2.5th and 97.5th
percentile of [27%, 77%]. This prior is chosen such that it is rather
uninformative. As shown in Supplementary Fig. S17, this and other
priors of auxiliary parameters do not affect the parameter of interest if
their width is varied within a factor of 2 up and down.

Cmatch describes the contact behavior in the context of the Euro
2020 footballmatches (right purplebox inFig. 4).Here,we assumeas a
prior that the female participation in football-related gatherings
accounts for≃ 33% (95% percentiles [18%,51%]) of the total participa-
tion. Hence, we get the following contact matrix

Cmatch,unnorm: =
ð1� ωgenderÞ2 ωgenderð1� ωgenderÞ

ωgenderð1� ωgenderÞ ω2
gender

 !
ð7Þ

Cmatch =
Cmatch,unnorm:

∣Cmatch,unnorm: � 0:5,0:5ð ÞT ∣2
ð8Þ

ωgender ∼Beta α = 10,β=20ð Þ: ð9Þ

The prior beta distribution ofωgender is bounded between at0 and
1 and with the parameter values of α = 10 and β = 20 has the expecta-
tion value of 1/3. The robustness of the choice of this parameter is
explored in Supplementary Fig. S15. Cmatch is normalized such that for
balanced case numbers (equal case numbers formen andwomen) and
an additive reproduction number Rmatch = 1 will lead to a unitary
increase of total case numbers. The reproduction number of women
will therefore increase by 2ωgenderΔRmatch(t) on match days whereas
the one of men will increase by 2(1 −ωgender)ΔRmatch, assuming
balanced case numbers beforehand.

Cnoise describes the effect of an additional noise term, which
changes gender balance without being related to football matches
(middle purple box in Fig. 4). For simplicity, it is implemented as

Cnoise =
1 0

0 �1

� �
, ð10Þ

whereby we center the diagonal elements such that the cases intro-
duced by the noise term sum up to zero, i.e. ∑i,jRnoise ⋅Cnoise,i,j =0.

Football-related effect
Our aim is to quantify the number of cases (or equivalently the fraction
of cases) associated with the Euro 2020, ΓEurog . To that end we assume

Table 1 | The intermediate variables of the model and their meaning

Variable Meaning Equation

Reff,g,g0 ðtÞ Effective reproduction number between genders g and g0 (4)

Sg(t) Number of susceptible persons of gender g (2)

Ig(t) Number of infected persons of gender g (1)

N Population size

G(τ) Generation interval (Gamma kernel) (3)

Rbase(t) Base reproduction number (22)

ΔRfootball(t) Time dependent additive reproduction number due to football matches (11)

ΔRnoise(t) Time dependent additive reproduction number due other non-balanced transmission (31)

ΔRmatch,m Additive reproduction number of match m (13)

Cbase Base contact matrix between genders (5)

Cmatch Contact matrix for football related gatherings (8)

Cnoise Contact matrix for other non-balanced transmission (10)

tm Day of match m

αprior Vector encoding country participation in matches

βprior Vector encoding whether country hosted matches

Δαm Difference of the effect of individual matches m (the country participated in) to mean effect of such matches (15)

Δβm Difference of the effect of individual matches m (the country hosted) to mean effect of such matches (20)

γn(t) Time-dependent base reproduction number in log-space between change point n and n + 1 (24)

Δγn Effect of the change point n (25)

~γnðtÞ Additive reproduction number due other non-balanced transmission between change point n and n + 1 (33)

Δ~γn Effect of the change point n on the non-balanced transmission (34)

Cy
gðtÞ Delayed number of infected persons of gender g (40)

�Dcountry Country dependent reporting delay Table 4

ĈgðtÞ Modeled number of cases of gender g (44)

ηt Fraction of daily delayed cases (45)

rd Average value of the fraction of delayed cases on weekday d (46)

ryd Logit-transformed average value of the fraction of delayed cases on weekday d (47)

Δrd† Deviation from the prior value of the fraction of delayed cases on weekday d (50)

Cg(t) Measured number of cases of gender g (53)

Rpre Reproduction number two weeks prior to the start of the Euro 2020 Used in Fig. 3

Iprimary Number of primary infected persons due to football matches (65)

Isubsequent Number of subsequent infected persons due to football matches (67)

Inone Number of infected persons without considering football matches (67)
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that infections can occur at public or private football screenings in the
two countries participating in the respective matchm (parameterized
by ΔRmatch,m). Note that for the Euro 2020 not a single country, but a
set of 11 countries hosted the matches. The participation of a team or
the staging of a match in a country may have different effect sizes.
Thus, we define the football related additive reproduction number as

ΔRfootballðtÞ=
X
m

ΔRmatch,m � δðtm � tÞ: ð11Þ

We assume the effect of eachmatch to only be effective in a small
time window centered around the day of a match m, tm (light orange
box in Fig. 4). Thus, we apply an approximate delta function δ(tm − t).
To guarantee differentiability and hence better convergence of the
model, we did not use a delta distribution but instead a narrow normal
distribution centered around tm, with a standard deviation of one day:

δðtÞ= 1ffiffiffiffiffiffi
2π

p exp � t2

2

� �
: ð12Þ

We distinguish between the effect size of each match m on the
spreadof COVID-19. Formodeling the effectΔRmatch,m, associatedwith
public or private football screenings in the home country, we intro-
duce one base effect ΔRmean

match and a match specific offset Δαm for a
typical hierarchical modeling approach (dark orange box in Fig. 4). As

prior we assume that the base effect ΔRmean
match is centered around zero,

which means that in principle also a negative effect of the football
matches can be inferred:

ΔRmatch,m =αprior,m ΔRmean
match +Δαm

� �
ð13Þ

ΔRmean
match ∼N 0,5ð Þ ð14Þ

Δαm ∼N 0,σα

� � ð15Þ

σα ∼HalfNormal 5ð Þ: ð16Þ

Table 2 | Prior distributions

Variable Meaning Prior distribution Equation

coff Off-diagonal term of non-football related interaction matrix Beta α =8,β=8ð Þ (6)

ωgender The fraction of female participation in football related gatherings compared to the total participation Beta α = 10,β= 20ð Þ (9)

ΔRmean
match Mean gathering-related match effect N μ=0,σ =5ð Þ (14)

ΔRmean
stadium Mean effect of hosting a match at the stadium N μ=0,σ =5ð Þ (19)

σα Prior value of the deviation from the mean match effect HalfNormal σ =5ð Þ (16)

σβ Prior value of the deviation from the mean stadium effect HalfNormal σ =5ð Þ (21)

R0 Value of Rbase(t) at t = 0 LogNormal μ= 1,σ = 1ð Þ (23)

σΔγ Prior value of the effect of the change points of the base reproduction number HalfCauchy 0:5ð Þ (26)

ln Length of the change point n log 1+ exp N 4,1ð Þð Þð Þ (27)

dn Date of the change point n 27th May 2021 + 10 � n+N 0,3:5ð Þ (29)

ΔR0,noise Value of ΔRnoise(t) at t = 0 N μ=0,σ =0:1ð Þ (32)

σΔ~γ Prior value of the effect of the change points of the reproduction number of other non-balanced transmission HalfCauchy 0:2ð Þ (35)
~ln Length of the non-balanced transmission change point n log 1+ exp N 4,1ð Þð Þð Þ (36)
~dn Date of the non-balanced transmission change point n 27th May 2021 + 10 � n+N 0,3:5ð Þ (38)

D Median of the latent period and reporting delay kernel logðN ðμ= expð�DcountryÞ,σ =σlog �DÞÞ (41)

σD Standard deviation of the delay kernel N ðμ=0:2 � �Dcountry,σ =0:08 � �DcountryÞ (43)

rybase,d Prior fraction of the logit-transformed weekday dependent delay (48), (49)

σr Prior deviation of the different weekdays from the prior of the fraction of delayed cases HalfCauchy 1ð Þ (51)

e Prior deviation of each day from the weekday dependent delay HalfCauchy 0:2ð Þ (52)

κ Overdispersion of the observed cases around the expected number of cases HalfCauchy 20ð Þ (54)

These are all the prior distributions and their meaning in our main model.

Table 3 | Indices

Index Meaning Values

⋅g Gender 1 =male; 2 = female

⋅m Match

⋅n Change point

⋅t Time (in days)

⋅d Weekday Monday, ..., Sunday

We use these standardized indices in our model.

Table 4 | Country-dependent priors on the delay structure

Country Reporting convention Prior
delay (

--
Dcountry)

Scale of prior
delay (σ

log
--
D
)

England Symptom onset 4 days 0.1

Scotland Symptom onset 4 days 0.1

Germany Reporting date 7 days 0.1

France Symptom onset 4 days 0.1

Austria Unknown 5 days 0.15

Belgium Unknown 5 days 0.15

The Czech
Republic

Unknown 5 days 0.15

Italy Unknown 5 days 0.15

The Netherlands Symptom onset 4 days 0.1

Portugal Unknown 5 days 0.15

Slovakia Unknown 5 days 0.15

Spain Unknown 5 days 0.15

These priors depend on the definition of the date in the daily case numbers, which for some
countries refers to symptom onset, sample collection or sample analysis.
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αprior,m is the m-th element of the vector that encodes the prior
expectation of the effect of a match on the reproduction number. If a
country participated in a match, the entry is 1 and otherwise 0. The
robustness of the results with respect to the hyperprior σα is explored
in Supplementary Fig. S17.

For Supplementary Fig. S9, we expand themodel by including the
effect of infections happening in stadiums and in the vicinity of it as
well as during travel towards the venue of the match. In detail, we add
to the football related additive reproduction number (Eq. (11)) an
additive effect ΔRstadium,m:

ΔRfootballðtÞ=
X
m

ðΔRmatch,m +ΔRstadium,mÞ � δðtm � tÞ: ð17Þ

Analogously to the gathering-related effect we apply the same
hierarchy to the effect caused by hosting a match in the stadium – but
change the prior of the day of the effect:

ΔRstadium,m =βprior,m ΔRmean
stadium +Δβm

� �
ð18Þ

ΔRmean
stadium ∼N 0,5ð Þ ð19Þ

Δβm ∼N ð0,σβÞ ð20Þ

σβ ∼HalfNormal 5ð Þ: ð21Þ

βprior,m encodes whether or not a match was hosted by the
respective country, i.e equates 1 if the match took place in the country
and otherwise equates 0.

Non-football-related reproduction number
To account for effects not related to the football matches, e.g., non-
pharmaceutical interventions, vaccinations, seasonality or variants, we
introduce a slowly changing reproduction number Rbase(t), which is
identical for both genders and should map all other not specifically
modeled gender independent effects (left yellow box in Fig. 4):

RbaseðtÞ=R0 exp
X
n

γnðtÞ
 !

ð22Þ

R0 ∼ LogNormal μ= 1,σ = 1ð Þ ð23Þ

This base reproduction number is modeled as a superposition of
logistic change points γ(t) every 10 days, which are parameterized by
the transient length of the changepoints l, the date of the changepoint
d and the effect of the change point Δγn. The subscripts n denotes the
discrete enumeration of the change points:

γnðtÞ=
1

1 + e�4=ln �ðt�dnÞ
� Δγn ð24Þ

Δγn ∼N ð0,σΔγÞ 8n ð25Þ

σΔγ ∼HalfCauchy 0:5ð Þ ð26Þ

ln = log
�
1 + expðlynÞ

� ð27Þ

lyn ∼N 4,1ð Þ 8n ðunit is daysÞ ð28Þ

dn =27
th May 2021 + 10 � n+Δdn for n=0, . . . ,9 ð29Þ

Δdn ∼N 0,3:5ð Þ 8n ðunit is daysÞ: ð30Þ

The idea behind this parameterization is that Δγn models the
change of R-value, which occurs at times dn. These changes are then
summed in Eq. (24). Change points that have not occurred yet at time t
do not contribute in a significant way to the sum as the sigmoid
function tends to zero for t < < dn. The robustness of the results
regarding the spacing of the change-points dn is explored in Supple-
mentary Fig. S14 and the robustness of the choice of the hyperprior σΔγ
is explored in Supplementary Fig. S17.

Similarly, to account for small changes in the gender imbalance,
the noise on the ratio between infections in men and women is mod-
eled by a slowly varying reproduction number (middle yellow box in
Fig. 4), parameterized by series of change points every 10 days:

ΔRnoiseðtÞ=ΔR0,noise +
�X

n

~γnðtÞ
�

ð31Þ

ΔR0,noise ∼N μ=0,σ =0:1ð Þ ð32Þ

~γnðtÞ=
1

1 + e�4=~ln �ðt�~dnÞ
� Δ~γn ð33Þ

Δ~γn ∼N ð0,σΔ~γÞ ð34Þ

σΔ~γ ∼HalfCauchy 0:2ð Þ ð35Þ

~ln = log 1 + expð~lynÞ
� �

ð36Þ

~l
y
n ∼N 4,1ð Þ 8n ðunit is daysÞ ð37Þ

~dn = 27
th May2021 + 10 � n +Δ~dn forn =0, . . . ,9 ð38Þ

Table 5 | Maximal R-hat values51

Country Max. R-hat of relevant
variables

Max. R-hat of all
variables

England 1.07 1.98

The Czech Republic 1.00 1.16

Scotland 1.01 1.10

Spain 1.05 2.24

Italy 1.01 1.10

Slovakia 1.00 1.15

Germany 1.01 1.42

Austria 1.00 1.15

Belgium 1.01 1.22

France 1.01 1.82

Portugal 1.00 1.14

The Netherlands 1.03 1.83

The convergence is good (≈1) for the relevant variables, which are the variables that encode the
reproduction number.
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Δ~dn ∼N 0,3:5ð Þ 8n ðunit is daysÞ: ð39Þ

Delay
Modeling the delay between the time of infection and the reporting of
it is an important part of themodel (blue boxes in Fig. 4); it allows for a
precise identification of changes in the infection dynamics because of
football matches and the reported cases. We split the delay into two
different parts: First we convolved the number of newly infected
people with a kernel, which delays the cases between 4 and 7 days.
Second, to account for delays that occur because of the weekly
structure (somepeoplemight delaygetting tested untilMonday if they
have symptoms on Saturday or Sunday), we added a variable fraction
that delays cases depending on the day of the week.

Constant delay. To account for the latent period and an eventual
apparition of symptoms we apply a discrete convolution, a Gamma
kernel, to the infected pool (right blue box in Fig. 4). The prior delay
distributionD is defined by incorporating knowledge about the country
specific reporting structure: If the reported date corresponds to the
moment of the sample collection (which is the case in England, Scotland
and France) or if the reported date corresponds to the onset of symp-
toms (which is the case in the Netherlands), we assumed 4 days as the
prior median of the delay between infection and case. If the reported
date corresponds to the transmission of the case data to the authorities,
we assumed 7 days as priormedian of the delay. If we do not knowwhat
the published date corresponds to, we assumed a median �Dcountry of
5 days, with a larger prior standard deviation σlog �D (see Table 4):

Cy
g tð Þ=

XT
τ = 1

Eg ðt � τÞ � Gammaðτ;μ=D,σ = σDÞ ð40Þ

D= log Dy� � ð41Þ

Dy ∼N �μ= exp
�
�Dcountry

�
,σ = σlog �D

� ð42Þ

σD ∼N �μ=0:2 � �Dcountry,σ =0:08 � �Dcountry

�
: ð43Þ

Here, Gamma represents the delay kernel. We obtain a delayed
number of infected persons Cy

g by delaying the newly infected number
of persons Ig(t) of gender g fromEq. (1). The robustnessof the choice of
the width of the delay kernel σD is explored in Supplementary Fig. S17.

Weekday-dependent delay. Because of the different availability of
testing resources during aweek, we further delay a fraction of persons,
depending on the day of the week (left blue box in Fig. 4). We model
the fraction ηt of delayed tests on a day t in a recurrent fashion,
meaning that if a certain fraction gets delayed on Saturday, these same
individuals can still get delayed on Sunday (Eq. (44)). The fraction ηt is
drawn separately for each individual day. However, the prior is the
same for certain days of the week d (Eq. (45)): we assume that few tests
get delayed on Tuesday, Wednesday, and Thursday, using a prior with
mean 0.67% (Eq. (48)), whereas we assume that more tests might be
delayed onMonday, Friday, Saturday and Sunday. Hence compared to
Cy
g , we obtain slightly more delayed numbers of cases Ĉg , which now

include a weekday-dependent delay:

Ĉg tð Þ= 1� ηt

� � � Cy
g tð Þ+ηt�1Ĉg t � 1ð Þ

� �
with Ĉg 0ð Þ=Cy

g 0ð Þ ð44Þ

ηt ∼Beta α =
rd
e
,β=

1� rd
e

� �
with d = Monday ,:::, Sunday ð45Þ

rd = sigmoid ryd

� �
ð46Þ

ryd = r
y
base,d +Δr

y
d ð47Þ

rybase,d ∼N �5,1ð Þ for d = Tuesday,Wednesday, Thursday ð48Þ

rybase,d ∼N �3,2ð Þ for d = Friday, Saturday, Sunday,Monday ð49Þ

Δryd ∼N 0,σr

� � ð50Þ

σr ∼HalfNormal 1ð Þ ð51Þ

e∼HalfCauchy 0:2ð Þ: ð52Þ

The parameter rd is defined such that it models the mean of the
Beta distribution of Eq. (45), whereas e models the scale of the Beta
distribution. rd is then transformed to an unbounded space by the
sigmoid f xð Þ= 1

1 + exp �xð Þ (Eq. (46)). This allows to define the hierarchical
prior structure for the different weekdays. We chose the prior of rybase,d
for Tuesday, Wednesday, and Thursday such that only a small fraction
of cases are delayed during the week. The chosen prior in Eq. (48)
corresponds to a 2.5th and 97.5th percentile of rd of [0%; 5%]. For the
other days (Friday, Saturday, Sunday,Monday), the chosenprior leaves
a lot of freedom for inferring the delay. Equation (49) corresponds to a
2.5th and 97.5th percentile of rd of [0%; 72%]. The robustness of the
other priors σr and e is explored in Supplementary Fig. S17.

Likelihood
Next we want to define the goodness of fit of our model to the sample
data. The likelihood of that is modeled by a Student’s t-distribution,
which allows for someoutliers because of its heavier tails compared to
a Normal distribution (green box in Fig. 4). The error of the Student’s
t-distribution is proportional to the square root of thenumber of cases,
which corresponds to the scaling of the errors in a Poisson or Negative
Binomial distribution:

Cg ðtÞ∼StudentTν=4 μ= Ĉg ðtÞ,σ = κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉg ðtÞ+ 1

q� �
ð53Þ

κ ∼HalfCauchyðσ = 30Þ: ð54Þ

Here Cg(t) is the measured number of cases in the population of
gender g as reported by the respective health authorities, whereas
Ĉg ðtÞ is the modeled number of cases (Eq. (44)). The robustness of the
prior κ is explored in Supplementary Fig. S17.

Average effect across countries
In order to calculate the mean effect size across countries (Fig. 1b, c),
we average the individual effects of each country. To be consistent in
our approach, we build an hierarchical Bayesian model accounting for
the individual uncertainties of each country estimated from the width
of the posterior distributions. As effect size, we use the fraction of
primary cases associated with football matches during the cham-
pionship. Then our estimated mean effect size Îg across all countries c
(except theNetherlands) for the gender g is inferredwith the following
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model:

Îg ∼Normalðμ=0,σ = 2Þ with g = fmale, femaleg ð55Þ

τg ∼HalfCauchyðβ = 10Þ ð56Þ

Iyc,g ∼Normalðμ= Îg ,σ = τg Þ ð57Þ

σ̂c,g ∼HalfCauchyðβ = 10Þ ð58Þ

Is,c,g ∼ StudentTν =4 μ= Iyc,g ,σ = σ̂c,g

� �
: ð59Þ

The estimated effect size of each country (the fraction of primary
cases) is denoted by Iyc,g and the effect sizeof individual samples s from
the posterior of the main model is denoted by Is,c,g.

We applied a similar hierarchical model but without gender
dimensions and with slightly different priors to calculate the average
meanmatcheffectΔRmean

match (Fig. 1a). Hereby reusing the samenotation:

Î ∼Normalðμ=0,σ = 10Þ ð60Þ

τ ∼HalfCauchyðβ = 10Þ ð61Þ

Iyc ∼Normalðμ= Î,σ = τÞ ð62Þ

σ̂c ∼HalfCauchyðβ= 10Þ ð63Þ

ΔRmean
match,c,s ∼ StudentTν =4 μ= Iyc ,σ = σ̂c

� �
, ð64Þ

where ΔRmean
match,c,s are the posterior samples from the main model runs

of the ΔRmean
match variable.

Calculating the primary and subsequent cases
We compute the number of primary football related infected
Iprimary,g(t) as the number of infections happening at football related
gathering. The percentage of primary cases fg is then computed by
dividing by the total number of infected Ig(t).

Iprimary,g ðtÞ=
SðtÞRfootballðtÞ

N

X
g 0

Ig 0 ðtÞCfootball,g 0 ,g ð65Þ

f g =
X
t

Iprimary,g ðtÞ
Ig ðtÞ

t 2 ½11th June, 31st July� ð66Þ

To obtain the subsequent infected Isubsequent,g(t), we subtract
infected obtained fromahypothetical scenariowithout football games
Inone,g(t) from the total number of infected.

Isubsequent,g = Ig ðtÞ � Iprimary,g ðtÞ � Inone,g ðtÞ ð67Þ

Specific, we consider a counterfactual scenario, wherewe sample from
our model leaving all inferred parameters the same expect for the
football related reproduction number Rfootball,g(t), which we set
to zero.

Sampling
The sampling was done using PyMC349. We use a NUTS sampler50,
which is a Hamiltonian Monte-Carlo sampler. As random initialization
often leads to some chains getting stuck in local minima, we run 32

chains for 500 initialization steps and chose the 8 chains with the
highest unnormalized posterior to continue tuning and sampling. We
then let these chains tune for additional 2000 steps and draw
4000 samples. The maximum tree depth was set to 12.

The quality of the mixing was tested with the R-hat measure51

(Table 5). The R-hat value measures how well chains with different
starting values mix; optimal are values near one. We measured twice:
(1) for all variables and (2) for the subset of variables encoding the
reproduction number. Variables modeling the reproduction number
are the central part of our model (lower half of Fig. 4). As such, we are
satisfied if the R-hat values is sufficiently good for these variables,
which it is (≤1.07). The highR-hat when calculated over all variables is
mostly due to the weekday-dependent delay, which we assume is not
central to the results we are interested in.

Robustness tests
In the base model for each country, we only consider the matches in
which the respective country participated. It is reasonable to ask
whether the matches of foreign countries occurring in local stadium
have an effect on the case numbers, caused by transmission in and
around the stadium and related travel. To investigate this question we
ran a model with an additional parameter (in-country effect) asso-
ciating the case numbers to the in-country matches (Eq. (17)). In some
countries the in-country effect parameter and the original fan gath-
ering effect are covariant, as a large number of matches are played by
the country at home, whereas in other countries the additional para-
meter had no significant effect (Supplementary Fig. S9).

We checked that the inferred fractions of football related cases
are robust against changes in the priors of the width σD of the delay
parameter D (see Supplementary Fig. S13) and the intervals of change
points of Rbase (Supplementary Fig. S14). The results are also, to a very
largedegree, robust against amoreuninformativeprior on the fraction
of female participants in the fan activities dominating the additional
transmission ωgender (Supplementary Fig. S15). To reduce CO2 emis-
sions, we performed fewer runs for these robustness tests:We only ran
the models for which the original posterior distributions might indi-
cate that one could find a significant effect. Each country required
eight cores for about 10 days to finish sampling.

In order to further test the robustness of the association between
individual matches and infections, we varied the dates of the matches,
i.e., shifted them forward and backward in time. The results for the
twelve countries under investigation are shown in Supplementary
Figs. S10 and S12. In the countries where sensitivity to a championship-
related case surge exists, a stable association is obtained for shifts by
up to 2 days. As shown for the examples of England and Scotland in
Fig. S19, such a shift is compensated by themodel by a complementary
adjustment of the delay parameter D. For larger shifts, the model
might associate other matches to the increase of cases, as matches
took place approximately every 4 days.

Correlations
In order to calculate the correlation between the effect size and various
explainable variables (Fig. 3 andSupplementary Figs. S4 andS6),webuilt
a Bayesian regression model, using the previously computed posterior
samples from the individual runs of each country. Let us denote the
previously computed cumulative primary and subsequent cases related
to the Euro 2020 by Ys,c, for every sample s and analyzed country c, and
the explainable variable from auxiliary data by Xc. We used a simple
linear model to check for pairwise correlation between Ys,c and Xc:

Ŷ c =β0 +β1X̂ c ð68Þ

β0 ∼Normalðμ=0,σ = 10000Þ ð69Þ
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β1 ∼Normalðμ=0,σ = 100000Þ ð70Þ

We used every sample s obtained from the main analysis to incorpo-
rate uncertainties on the variable Yc from our prior results. The aux-
iliary data Xcmight also have errors ϵc, whichwemodel using a Normal
distribution. Additionally, we allow our estimate for the effect size Ŷ c

to have an error for each country c in a typical hierarchicalmanner and
choose uninformative priors for the scale hyper-parameter τ. As prior
we considered 10k a reasonable choice for the β parameter as our data
Xc is normally in a range multiple magnitudes smaller:

X̂ c ∼Normalðμ=Xc,σ = ϵcÞ 8c ð71Þ

τ ∼HalfCauchyðβ= 10000Þ ð72Þ

Y y
c ∼Normalðμ= Ŷ c,σ = τÞ 8c: ð73Þ

Again using uninformative priors for the error, the likelihood to obtain
our results given the individual country effect size estimate Y y

c from
the hierarchical linear model is

Ys,c ∼ StudentTν =4 μ= Y y
c ,σ = σ̂c

� �
with ð74Þ

σ̂c ∼HalfCauchyðβ = 10000Þ: ð75Þ

Therefore, our regression model includes the “measurement
error” σ̂c, which models the heteroscadistic effect size of every coun-
try, and an additional model error τ which models the homoscedastic
deviations of the country effect sizes from the linear model. In the
plots, we plot the regression line Ŷ c with its shaded 95% CI, and data
points (X̂ c, Y

y
c) where the whiskers correspond to the one standard

deviation, modeled here by ϵc and σ̂c.
The coefficient of determination, R2, is calculated following the

procedure suggested by Gelman and colleagues52. Their R2 measure is
intended for Bayesian regression models as it notably uses the
expected data variance given the model instead of the observed data
variance. For our model, it is defined as

R2 =
Explained variance

Residual variance+ Explained variance
=

1
nc�1

P
cŶ

2
c

τ2 + 1
nc�1

P
cŶ

2
c

, ð76Þ

wherenc is the number of countries.With this formula, one obtains the
posterior distribution of R2 by evaluating it for every sample.

As auxiliary data, we used:
1. Mobility data: We use the mobility index mc,t provided by the

“Google COVID-19 Community Mobility Reports”53 for each
country c at day t during the Euro 2020 (t∈ [June 11 2021, July
11 2021]), whereN denotes the number of days in the interval. The
error is the standard deviation of the mean:

Xc =
1
N

X
t

mc,t ð77Þ

ϵc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N2

X
t

ðmc,t � XcÞ2
s

ð78Þ

2. Reproduction number: We use the base reproduction number
Rpre,c for each country c as inferred from our model 2 weeks prior

to the Euro 2020 (t∈ [May 28 2021, June 11 2021]).

Xc =
1
N

X
t

Rpre,cðtÞ ð79Þ

ϵc =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
t

ðRpre,cðtÞ � XcÞ2
s

ð80Þ

3. Cumulative reported cases: From the daily reported cases C(t) two
weeks prior to the Euro 2020 (t∈ [May 28 2021, June 11 2021]), we
computed the cumulative reported cases normalized by the
number of inhabitants pc in each country c. Note: We also used
reported cases without gender assignment here.

Xc =
P

tCðtÞ
pc

ð81Þ

ϵc = 0
! ð82Þ

4. Potential for COVID-19 spread: As for the cumulative casesweused
the daily reported cases C(t) two weeks prior to the Euro 2020
(t∈ [May 28 2021, June 11 2021]), and we computed the cumula-
tive reported cases normalized by the number of inhabitants pc in
each country c. Furthermore, we used the base reproduction
number Rbase(t) 2 weeks prior to the Euro 2020, as well as the
duration of a country participating in the championship Tc
(Table S5) to compute the potential for spread:

N0 =
P

tCðtÞ
pc

ð83Þ

Xc =N0 �
P

tR
Tc=4
pre,cðtÞ
N

ð84Þ

ϵc = 0
! ð85Þ

5. Proxy for popularity: To represent popularity of the Euro 2020 in
country c, we used the union of the number of matches played by
each country nmatch,c and the number of matches hosted by each
country nhosted,c (Table S5). By “union” we mean the sum without
the overlap, i.e., we take the sum of these numbers and subtract
the number of home matches nhome,c

Xc =nmatch,c +nhosted,c � nhome,c ð86Þ

ϵc = 0
! ð87Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data from our model runs, i.e., from the sampling is available on
G-node https://gin.g-node.org/semohr/covid19_soccer_data. The daily
case numbers stratified by age and gender were acquired from the
local health authorities (see also Supplementary section S1 from the
following sources: Robert Koch Institut, Germany; Santé publique,
France; National Health Service, England; Österreichische Agentur für
Gesundheit und Ernährungssicherheit GmbH, Austria; Sciensano,
BelgiumMinisterstvo zdravotnictví, Czech Republic; National
Institute for Public Health and the Environment, The Netherlands;
and COVerAGE-DB.
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Code availability
All code to reproduce the analysis and figures shown in themanuscript
as well as in the Supplementary Information is available online on
GitHub https://github.com/Priesemann-Group/covid19_soccer or via
https://doi.org/10.5281/zenodo.738631354.
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