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Stabilization through self‑coupling 
in networks of small‑world 
and scale‑free topology
Jannik Luboeinski 1,2*, Luis Claro 2, Andrés Pomi 2 & Eduardo Mizraji 2

Mechanisms that ensure the stability of dynamical systems are of vital importance, in particular in 
our globalized and increasingly interconnected world. The so‑called connectivity‑stability dilemma 
denotes the theoretical finding that increased connectivity between the components of a large 
dynamical system drastically reduces its stability. This result has promoted controversies within 
ecology and other fields of biology, especially, because organisms as well as ecosystems constitute 
systems that are both highly connected and stable. Hence, it has been a major challenge to find ways 
to stabilize complex systems while preserving high connectivity at the same time. Investigating the 
stability of networks that exhibit small‑world or scale‑free topology is of particular interest, since 
these topologies have been found in many different types of real‑world networks. Here, we use an 
approach to stabilize recurrent networks of small‑world and scale‑free topology by increasing the 
average self‑coupling strength of the units of a network. For both topologies, we find that there is 
a sharp transition from instability to asymptotic stability. Then, most importantly, we find that the 
average self‑coupling strength needed to stabilize a system increases much slower than its size. It 
appears that the qualitative shape of this relationship is the same for small‑world and scale‑free 
networks, while scale‑free networks can require higher magnitudes of self‑coupling. We further 
explore the stabilization of networks with Kronecker‑Leskovec topology. Finally, we argue that our 
findings, in particular the stabilization of large recurrent networks through small increases in the unit 
self‑regulation, are of practical importance for the stabilization of diverse types of complex systems.

Interacting systems with very high number of constituents and recurrent connectivity patterns are ubiquitous in 
both nature and technological applications. We live in a globalized world that has undergone an abrupt shorten-
ing of geographic and informational distances and an intense interdependence of economies, ecosystems, and 
production networks. Therefore, it has become vitally important to determine the conditions that guarantee 
the stability of systems with a large number of interconnected components. The stability of a dynamical system 
is particularly influenced by the connectivity between its constituents, which was first highlighted in the mid-
twentieth century by the British psychiatrist and cyberneticist W. Ross Ashby. With theoretical investigations 
and empirical evidence from his “homeostat” device, he began to study how the stability of a whole dynamical 
system depended on the stability of its interconnected parts. One of his conclusions was that increasing the 
richness of connections would lower the  stability1. Two decades later, when faster computers were available, he 
and Mark R. Gardner came up with a quantitative work showing that the probability of stability decreases with 
what they called the connectance of the  system2. Connectance denotes the ratio of existing links with respect to 
the number of all possible links (if only one pair of links between each two elements is allowed). Furthermore, 
Gardner and Ashby discovered that larger system size would lead to a sharper transition between the stable and 
the unstable connectance regime.

The complex link between the connectivity and the stability of a dynamical system finally caught the attention 
of a broad scientific audience when Robert May presented a theoretical approach in  19723. Based on Wigner’s 
theory of random  matrices4, he confirmed the aforementioned conclusion of Ashby’s that stability decreases with 
connectance, and related it to ecology. Until then, ecologists had believed—following a paradigm established 
by  Odum5,  MacArthur6, and  Elton7—that the increase in the number of species and the interactions between 
them enhanced ecosystem stability. The results of May’s work challenged the previous paradigm and opened fifty 
years of controversy in ecology. This so-called connectivity-stability debate still leads to a continuous production 
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of publications on the subject  (see8,9 for extensive reviews). Regarding ecosystems, May’s findings have been 
confirmed by mathematical models from the classical work of  Hastings10,11 up to recent  studies12,13, but at the 
same time others have demonstrated that real-world ecosystems exhibit reliably stable dynamics despite con-
stant changes in  connectivity13,14. This complex evidence has fueled the search for organizational principles and 
strategies that guarantee stability.

Stability is crucial not only for ecological systems but for any complex system, be it biological, social, or 
economic, natural or technological. The ubiquity of the connectivity-stability dilemma is reflected by exam-
ples so diverse as models of cognitive decisions in the presence of multiple uncertain  choices15, coordination 
of drone  swarms16, or the emergence of functional connectivity in the  brain17,18. Numerous studies have been 
conducted in search of stabilizing factors. Ashby had already pointed out that excessive predominance of self-
coupling over the interactions of the elements of the system can lead to individually stable but isolated  parts1. 
Based on this, Herbert A. Simon proposed so-called near-decomposable systems which exhibit self-regulation 
that is strong enough to stabilize but not strong enough to cause  isolation19. This notion relates to compartmen-
talization, a strategy widely occurring in biological systems from cellular to systemic levels, which serves to 
stabilize dynamical processes. General non-random connectivity  patterns20,21, the variability in link  strength22, 
 compartmentalization23, the abundance of weak  interactions20,24, and structured nonlinear  connectivity25,26 have 
been investigated with respect to their capability to stabilize different dynamical systems. All of these findings 
notwithstanding, the underpinnings of the stability of many real-world systems remain unknown, especially of 
such with small-world and scale-free topology.

While Gardner and  Ashby2 and  May3 studied Erdős–Rényi-type random networks, real-world networks are 
often structured. In particular since the pioneering works of Watts and  Strogatz27 on small-world connectivity 
and Barabási and  Albert28 on scale-free degree distributions, such universal topological characteristics have been 
found in many complex networks. Studies considering the dynamical stability of networks of small-world and 
scale-free topology found no critical deviation from the behavior of (fully) random  networks29–31, respective to 
the expected outcome given by the May–Wigner theorem. However, there seems to be a rather gradual transition 
to instability for networks in the small-world  regime29 and a slight reduction in stability for scale-free  networks30.

But which mechanisms lead to the stability of real-world networks? To provide an answer to this, we study 
here how structured networks can be stabilized efficiently by progressively increasing the self-coupling strength 
of their constituents. We present a systematic assessment of the stabilization of networks that have structured 
topologies as they are found in the real world, namely, small-world and scale-free topologies.

Results
The goal of this study is to evaluate the stabilization of recurrent networks through increased self-coupling of 
the nodes of the network. Particularly, we have focused on networks with small-world and scale-free topol-
ogy (examples are shown in Fig. 1). To this end, we used the algorithms proposed by Watts and  Strogatz27 and 
Barabási and  Albert28 to generate structured random interaction matrices exhibiting the respective topology. 
We then added self-coupling via the diagonal elements of these matrices. Additionally, for comparison, we have 
considered networks with Kronecker–Leskovec topology (see Supplementary Fig. S7). These are networks that 
can also exhibit small-world and scale-free properties, but are generated by a different, hierarchical algorithm 
(cf.32). In the Supplementary Information of this article, we further reproduce the results by Gardner and  Ashby2 
and thereby consider results of Erdős–Rényi-type random networks, on which much of the previous literature 
(see “Introduction”) has focused.

Please note that while our simulations are based on linear networks, our results also apply to nonlinear 
networks that can be linearized. This holds because the asymptotic stability of a linear approximation implies 
the asymptotic stability of corresponding nonlinear  systems33,34. The matrices that we consider may thus be 
interpreted as Jacobians (first order of the Taylor expansion) governing the temporal evolution of the state vec-
tor of a dynamical system.

In this study, we refer to the asymptotic stability of dynamical systems. This stability is given if all eigenvalues 
of the Jacobian matrix of the system have a strictly negative real part (see “Methods”). We study how asymptotic 
stability behaves when network nodes are subject to self-coupling, while no nodes are removed nor added.

Stabilizing small‑world and scale‑free networks by increasing self‑coupling. To study how self-
couplings can stabilize an otherwise unstable network of size N, we introduced randomly drawn self-couplings 
to each of the nodes of the network. Thus, we could investigate the probability of stability as a function of the 
mean self-coupling strength. We drew the self-coupling strength first from the interval [−1.0, −0.1] (as  in2). 
Next, we shifted this interval towards lower values while maintaining its size (the general scheme would thus 
be [x − 0.9, x] ; an example is [−1.5,−0.6] ). We repeated this beyond the point where the probability of stability 
reached 1. We used the same procedure for small-world and scale-free networks, while we ensured that for each 
network size N the number of connections matched for both topologies (cf. “Methods”). The results for N = 100 
are shown in Fig. 2a,e and those for N = 1000 are shown in Fig. 2c,g.

For each network size N, we applied a Hill function to fit the data in order to obtain the mean self-coupling 
strength x where the probability of stability P(stable | x) = 0.5 . The Hill function

proved to fit the data better than other possible functions like Weibull, Gompertz, Logistic function, and arc 
tangent.

(1)P(stable | x) =
|x|n

c + |x|n
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We call the absolute value of the wanted mean self-coupling strength the stabilization parameter µ . The stabi-
lization parameter is given by the inverse function of the probability of stability, expressed by the fit parameters 
c and n:

Our results show that the stabilization occurs abruptly around the inflection point, which equals the stabi-
lization parameter (see examples for N = 100 and N = 1000 in Fig. 2). The sudden stabilization indicates an 
essentially bistable system which is very sensitive to parameter variations in between the two fixed points.

Besides the investigations with intervals of varying position, we investigated the impact of a fixed upper 
bound for the intervals of self-coupling strengths. To this end, we considered the upper bound fixed at −0.4 and 
only varied the lower bound (the general scheme would thus be [x,−0.4] ), which led to an increasingly larger 
range of self-coupling values. We denote the stabilization parameter obtained from this different procedure µ∗ . 
Examples for N = 100 and N = 1000 are shown in Fig. 2b,d and f,h, respectively. The results show less steep 
stabilization curves compared to the intervals of varying position. This indicates that an approach with larger 
intervals entails a slower transition toward stability.

Stabilizing Kronecker–Leskovec networks by increasing self‑coupling. To corroborate our results 
on small-world and scale-free topologies generated with the algorithms by Watts and Strogatz and Barabási 
and  Albert27,28, we sought to compare them to results obtained from an alternative algorithm. To this end, we 
considered what we call Kronecker–Leskovec networks. These are self-similar networks which exhibit diameter 
conservation and, for large dimensions, acquire small-world and scale-free  properties32. Furthermore, they are 
hierarchical by construction, which may serve to describe the hierarchical features of real-world networks (cf.35). 
Besides exhibiting such real-world characteristics, Kronecker–Leskovec graphs have the great advantage that 
they are easy to describe and investigate analytically.

(2)µ =
∣

∣P
−1(stable | P = 0.5)

∣

∣ = |c1/n|.

Figure 1.  Generated small-world and scale-free networks. (a) Transition from regular to random topology: 
Watts–Strogatz clustering coefficient C and average shortest-path length L of small-world networks with 
N = 1000 and varied rewiring ratio. Both quantities are normalized with respect to the value for a regular 
network (i.e., prew = 0 , where the Watts–Strogatz clustering coefficient is 0.500 and the average shortest path 
length is 125.44). The dashed red and solid blue lines indicate, for comparison, the values of C and L for the 
scale-free network shown in (d). (b) Sample small-world network with N = 1000 and prew = 0.05 (Watts–
Strogatz clustering coefficient: 0.429, average shortest path length: 11.42). (c) Degree distribution of scale-free 
networks with N = 1000 , m0 = 0 , and m = 2 (averaged over 1000 trials). The green line shows a fit function 
as given by Eq. (10). For fitting, all values with k ≥ 5 were considered. See the main text for a discussion. (d) 
Sample scale-free network of N = 1000 (Watts–Strogatz clustering coefficient: 0.021, average shortest path 
length: 4.33; also cf. (a)). Nodes in (b) and (d) are represented by circles and node degree is indicated by circle 
size. Arrows represent links between nodes. Self-coupling of nodes has been masked for better visibility.
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Figure 2.  Examples of stabilization of small-world and scale-free networks. The stabilization parameter µ or 
µ∗ as well as the Hill fit parameters (cf. Eq. (1)) are given in the plots. Networks of sizes N = 100 and N = 1000 
are shown. For each data point, the probability was averaged over 1000 trials. Error bars indicate the standard 
deviation estimated as described in “Methods”. (a,c,e,g) The probability of stability is plotted over the mean 
self-coupling strength. The self-coupling strengths were drawn from intervals of varied position but fixed size 
0.9 (see main text). (b,d,f,h) The probability of stability is plotted against the lower bound of the self-coupling 
strength. The self-coupling strengths were drawn from an interval with lower bound varied and upper bound 
fixed at −0.4 . Small-world networks in (a–d) were generated with knn = 4, prew = 5% , scale-free networks in 
(e-h) were generated with m = 2,m0 = 0 (see “Methods”).
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Following the scheme by  Leskovec32 for the generation of real-world networks using Kronecker multiplica-
tion, we generated networks of dimensions 100 and 1000, arising from seed matrices of size 10 (cf. “Methods”). 
The resulting plots are shown in Fig. 3. We find that the steepness of stabilization curves for Kronecker–Leskovec 
networks is comparable to that for small-world and scale-free networks (cf. Fig. 2).

The nature of Kronecker–Leskovec graphs does not allow to have an arbitrary number of zeros in the final 
resulting matrices, which complicates the comparison between Kronecker–Leskovec networks and small-world/
scale-free networks. The issue is that Kronecker–Leskovec graphs originate from a seed matrix which restricts 
the possible network sizes and connectivities (see “Methods”). Hence, only certain network sizes can be stud-
ied, and even at the same size N the number of zeros cannot be matched exactly to that of small-world and 
scale-free networks. The differences in the number of zeros that we want to consider here are, however, small 
enough to enable an approximative comparison (see Table 1). Thus, we quantitatively compare our findings for 
Kronecker–Leskovec networks of size 100 and 1000 to our findings for small-world and scale-free networks, 
which we will present in the next section.

Stabilization depending on the network size. To obtain a relationship between the stabilization 
parameter and the network size N, we performed the stability analysis that we demonstrated in Fig.  2 for a 
range of network sizes. The results are shown in Fig. 4. Note that here we held the generative parameters con-
stant ( knn = 4, prew = 5% for small-world, m = 2,m0 = 0 for scale-free networks), and thus, the connectance 
is not constant across network sizes. Essentially, we found that the stabilization parameter increases sublinearly 
for both small-world and scale-free networks, and for both varied (Fig. 4a) and fixed upper bound (Fig. 4b). 

Figure 3.  Stabilization of different Kronecker–Leskovec networks. The network size in (a,b) is N = 100 , 
in (c,d) N = 1000 . The self-coupling strengths for (a,c) were drawn from an interval with fixed size 0.9 and 
varying position, and for (b,d) from an interval with varied lower bound and upper bound fixed at −0.4 . The 
stabilization parameter µ or µ∗ and the Hill fit parameters (cf. Eq. (1)) are provided next to the graphs. Each data 
point represents the average over 1000 trials. Error bars indicate the standard deviation estimated as described 
in “Methods”.

Table 1.  The number of zeros is slightly different in Kronecker–Leskovec networks compared to small-world/
scale-free networks of the same network size N. For the given results, seed matrices with 82 zeros were used.

N Seed matrix dim. Kronecker power Number of zeros in final matrix
Number of zeros in comparable small-world/
scale-free networks

100 10 2 9676 9500

1000 10 3 994,168 995,000
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Furthermore, for varied upper bound, we found quantitative differences between small-world and scale-free 
topology.

For the considered range of network sizes from N = 100 to N = 1500 , the power-law function

properly fits the course of the stabilization parameter, which is sublinear with A > 0 and p < 1 , as shown in 
Table 2. At the same time, the function does account for the constraint that for N = 1 , stabilization ought to 
happen at self-coupling strength 0. As indicated by the error values in Table 2, the fits that we obtained are very 
precise for both small-world networks and scale-free networks. Although some data points of the scale-free 
networks in Fig. 4a exhibit small visible deviations from the fit function, these remain well within the error range 
of the data points. Compared to our scale-free networks generated with the preferential attachment algorithm 
with parameters m = 2 and m0 = 0 (see Fig. 4), we obtained slightly different results for approximate scale-free 
networks generated with alternative parameters m = 4 and m0 = N/2 . The corresponding plots are shown in 
Supplementary Fig. S6.

From the results given in Fig. 4 and in Table 2, we can further evaluate the impact of the spread of the self-
coupling strength values as defined by small intervals (varied upper bound/position) versus large intervals 
(fixed upper bound). For large intervals, we find that small-world and scale-free networks become stabilized 

(3)µ(N) = A · (N − 1)p

Table 2.  Resulting parameter values for power-law fit of stabilization parameter over network size (cf. Eq. (3)). 
The upper subtable relates to the stabilization parameter µ , which means that the self-coupling strength 
was drawn from intervals with fixed size and varied position. The lower subtable relates to the stabilization 
parameter µ∗ , which means that the self-coupling strength was drawn from intervals with fixed upper 
bound. Uncertainties are given by the asymptotic standard error (computed via gnuplot, cf. “Methods”). 
Corresponding plots are shown in Fig. 4a, Supplementary Fig. S6a (upper table) and in Fig. 4b, Supplementary 
Fig. S6b (lower table).

Interval type Topology A p

Varied position

Small-world 1.045± 0.013 0.078± 0.002

Scale-free ( m = 2,m0 = 0) 0.906± 0.008 0.114± 0.002

Approximate scale-free ( m = 4,m0 = N/2) 1.098± 0.019 0.080± 0.003

 Interval type Topology A∗ p∗

Fixed upper bound

Small-world 0.537± 0.006 0.477± 0.002

Scale-free ( m = 2,m0 = 0) 0.481± 0.011 0.495± 0.004

Approximate scale-free ( m = 4,m0 = N/2) 0.559± 0.007 0.474± 0.002

Figure 4.  Stabilizing networks of different size and topology via self-coupling. The stabilization parameter 
(computed from fits to data points obtained from 1000 trials, cf. Eq. (2) and Fig. 2) is shown in relation to the 
network size for both small-world ( knn = 4, prew = 5% ) and scale-free ( m = 2,m0 = 0 ) networks. Results 
from Kronecker–Leskovec networks are shown for comparison. (a) Stabilization parameter µ , referring to the 
mean self-coupling strength. Self-coupling strengths were drawn from small intervals of fixed size and varied 
position. (b) Stabilization parameter µ∗ , referring to the lower bound of the self-coupling strength. Self-coupling 
strengths were drawn from large intervals with fixed upper bound and varied lower bound. The error bars show 
the error propagated from the fit parameters from which the stabilization parameter is computed. Different 
power-law functions fit the behavior of the stabilization parameters. See Table 2 for the fit parameters and their 
uncertainty.
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at almost the same values of the stabilization parameter (absolute values of self-coupling). For small intervals, 
however, small-world networks are stabilized with significantly lower values as compared to scale-free networks. 
The networks generated with the preferential attachment algorithm with alternative parameter values yet yield 
other results for small intervals (cf. Supplementary Fig. S6a and Table 2)—they behave more like our small-world 
networks, which may be explained by the fact that for these alternative networks the scale-free property is not as 
pronounced as for our standard scale-free networks (compare Supplementary Fig. S4a with Fig. 1c).

As pointed out in the previous subsection, we could not investigate the same number of data points for 
Kronecker–Leskovec networks as for small-world and scale-free networks. Nevertheless, for comparison, we 
provide results for Kronecker–Leskovec networks of two different sizes in Fig. 4. We see that at N = 100 , there 
is no substantial difference to the standard small-world and scale-free networks, but at N = 1000 , the Kro-
necker–Leskovec networks require much stronger stabilization than the standard small-world and scale-free 
networks. This may be due to the fact that the Kronecker–Leskovec networks exhibit a particularly high amount 
of hub nodes and low average shortest-path length. However, they do not feature scale-free characteristics entirely 
(see Supplementary Fig. S7a).

To summarize, we found a power-law dependence between the stabilization parameter and the size of small-
world and scale-free networks (within a certain range of sizes). While both topologies exhibit a power-law char-
acteristic, there are quantitative differences between the small-world and scale-free topology for small intervals 
(with varied upper bound/position). By capturing the quantitative properties of our simulation results (see 
Table 2), we provide empirical rules that can be used to predict the stability of a system given its topology and 
size. Nevertheless, further studies may investigate if deviations from the power-law description will occur at 
larger network sizes (see “Discussion”).

Application to real‑world systems. There is a wide variety of natural, social, technological, as well as 
formal systems to which we expect our results to apply. Note that although most dynamical systems in the real 
world are nonlinear, our generic results nonetheless apply to any nonlinear system that can be linearized. In this 
hypothesis subsection, we will consider three examples to demonstrate how our general results may be applied. 
The examples are summarized in Table 3.

We will start by considering the application to biological neural networks. In studies using functional mag-
netic resonance imaging (fMRI) or magnetoencephalography/electroencephalography (MEG/EEG), the func-
tional network connectivity of the human brain has been found to exhibit small-world features. At the same 
time, the anatomical structure of neural connectivity has also been found to follow a small-world  topology17,36–38. 
Besides that, truncated scale-free degree distributions have been found in functional  connectivity36,37. Despite 
these findings, much remains to be learned about the dependence of brain function on small-world and scale-
free topologies, particularly with regard to the understanding of neuropsychiatric diseases or drug effects. An 
important aspect is that a certain degree of stability is necessary for the functionality of neural dynamics, which 
is disrupted, for example, in  epilepsy39. Regarding this, the results presented here can serve to assess the stabiliza-
tion properties of a network of, for example, N neurons or N interacting brain areas.

To assess the stability of a system of N neurons or neuronal populations, we can describe their approximated 
firing rate activities by the vector r (cf.40):

Here, the timescale of the dynamics is adjusted by the constant τ . The couplings between the populations are 
described by the N × N weight matrix w. If now the matrix exhibits suitable small-world or scale-free charac-
teristics, and the weights are drawn from the interval [−1.0,+1.0] , and N does not exceed 1500, the stabilization 
properties of the approximated network dynamics can be assessed precisely by the empirical rules that we have 
presented in the previous section (Table 2).

To consider neural systems beyond this, functional or effective connectivity data (cf.38,41,42) may be assessed 
with our stability predictions in future studies. Furthermore, our results may be compared to studies targeting 
the storage capacity of attractor neural networks (cf.43,44) or to studies directly targeting the interactions between 
memory representations (cf.45–47).

Next, we want to see how our results can relate to the dynamics of smart power grids. Note that in these, 
participants can be both producer and consumer at the same time. Thus, all participants can in principle produce 

(4)τ
dr

dt
= w · r.

Table 3.  Analogies between abstract networks and real-world applications. Three examples from different 
fields (neuroscience, electrical engineering, and epidemiology) are given.

Abstract property Networks in the brain Smart power grids Infection dynamics

Nodes Neurons; populations of neurons Power plants and other participants, including 
households

Human individuals, possibly animals and inani-
mate entities

Weights Effective excitation/inhibition Effective demand/supply of electrical power Effective contribution to the infection dynamics 
by physical interaction

Negative self-coupling Effective self-inhibition/-excitation Effective self-supply/-consumption Vaccination; immune defense

Instability can lead to… Epileptic seizure (for excessive excitation); sup-
pressed activity (for excessive inhibition) Power outage; waste of energy Uncontrolled wave of infections
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energy for their own supply and beyond. In traditional power grids, however, only a few large power plants pro-
duce energy for a large number of consumers, and thus, only the power plants exhibit self-supply (self-coupling). 
The stability of power grids can be affected greatly by tuning the self-coupling of the nodes/participants (cf.48–50). 
For instance, a power plant that does not block electrical energy from entering it from outside will likely produce 
a power outage. Similarly, a small consumer not restricting their received energy can also cause instabilities, even 
though these would probably have less severe effects for the whole system in a realistic grid.

Since our results are based on self-coupling for all nodes, they cannot be applied to traditional power grids. 
However, we can consider the impact of largely decentralized, small-world, smart grids versus relatively central-
ized, scale-free, smart grids. Our results predict that the first should be stabilized more easily, whereas the latter 
should be more prone to power outages. This is supported by previous studies showing that decentralized grids 
are more likely to be stable while centralized grids are indeed more prone to power  outages48,51.

It may also be interesting to note that a different application of our results might relate to the issue of privacy 
in smart grids, where stability may be investigated in the sense of the identification of a person participating in 
the smart grid (cf.52).

Lastly, we would like to consider an example of infection dynamics. Many possible instabilities with respect 
to these have recently become empirically evident throughout the Covid-19 pandemic. To stabilize the infection 
dynamics of this disease, face  masks53, travel  restrictions54, and  vaccinations55,56 have proven to be useful means.

In the framework that we have studied here, the effect of such means may be approximated as follows: 1. 
negative self-coupling strength may correspond to the degree of protection achieved by vaccination; 2. positive 
coupling from one node to another may represent significantly enhanced risk of infection; 3. negative coupling 
from one node to another may represent lowered risk due to the presence of protection, which contributes to 
the decay of a wave of infections. Thus, the coupling between nodes (persons) can be thought to depend on the 
wearing of a face mask, the physical distance between persons, and the vaccination status.

In conclusion, our findings on the stabilization dynamics of small-world and scale-free networks indicate that 
infection-preventing measures may have a different impact depending on the topology of the social network that 
is considered. In particular, our results make the prediction that, to control the spread of infections in scale-free-
type networks like the air traffic network (cf.57), stronger measures will be required as compared to small-world 
networks like the neighborhood structure of a city or the highway traffic network (cf.58).

Taken together, our results can serve as predictions for various dynamical systems across fields. It has, nev-
ertheless, to be shown in specialized studies how well the prediction matches a particular real-world scenario.

Discussion
We have carried out a systematic study of the stabilization of recurrently connected networks through self-
coupling of the network constituents. We investigated this stabilization with respect to small-world and scale-free 
network topology. In addition, we considered the stabilization of Kronecker–Leskovec graphs of comparable 
size, and we presented hypothetical applications of our theoretical findings.

It is important to acknowledge that graphs may exhibit small-world and scale-free characteristics at the same 
time. Here, we have chosen the approach of separating the two topologies in order to demonstrate their individual 
impact. To ensure that the networks that we considered exclusively feature small-world or scale-free character-
istics, we measured the clustering coefficient and verified that it was significantly higher for small-world than 
for scale-free networks (cf. Fig. 1a). On the other hand, we also verified that the heavy-tailed degree distribution 
that is typical for scale-free networks (cf. Fig. 1c) did not occur in the small-world networks (cf. Supplemen-
tary Fig. S3). We should also note here that the degree distribution of scale-free networks offers an interesting 
opportunity for future studies, as it exhibits highly-connected nodes, so-called hubs, which are opposed to a 
majority of nodes with very low connectivity. In particular, it would be interesting to explore whether selective 
reinforcement of the self-coupling of hubs could serve to stabilize entire networks.

In the following, we shall highlight three key findings of our study. First, we found the existence of an abrupt 
transition to stability with increasing average absolute value of the elements of the main diagonal of the interac-
tion matrices. This threshold-like behavior is relatively independent of the network structure. Considering the 
asymptotic stability over the mean self-coupling strength (Figs. 2 and 3) shows that for weak self-coupling no 
stability is possible, while after a short threshold region a regime follows in which all trials are stable. In that 
regime, the network dynamics seem to be dominated by self-coupling, thus being stabilized as proposed by 
Ashby in his original paper in  19501. Note that self-coupling can be interpreted as a modification of the effective 
timescale of the respective node, where stronger negative self-coupling leads to faster inhibitory dynamics and 
thereby to stability. Due to the numerical character of our study, we had to decide for specific intervals to draw 
the self-coupling strength from. We took our choice so as to cover two relatively distinct cases (relatively small 
and large intervals). As our results show, these two kinds of intervals indeed yield distinct behavior. We further 
found that the threshold region is modeled best by a sigmoidal Hill function, although lacking some accuracy in 
the part where stability begins to rise. For some simulations with self-coupling strength drawn from an interval 
of fixed size, fitting with a Logistic function could improve accuracy, however, the Hill function was also used 
here for consistency.

Second, the stabilization parameter increases sublinearly as a function of the network size. We showed that 
in the considered range of network sizes ( N = 100 to N = 1500 ), the function can be described by a power 
law. This result is of particular interest because it demonstrates that the stabilization of larger systems can be 
achieved relatively more easily than the stabilization of smaller systems. It might be possible that (deviating 
from a power-law description) the stabilization parameter approaches a limit for large N, which would mean 
that there were one threshold for very large systems that would certainly stabilize the system. Nevertheless, such 
a particular limit seems implausible. The empirical power-law rules that we found for a range of network sizes 
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might hold, in contrast, as a general law. To solidify this hypothesis, the collection of more data will be neces-
sary. Analytical investigations may, in addition, serve to uncover a general law and to yield further interesting 
insights into the asymptotic stability behavior of complex systems (also cf.25). Existing analytical results already 
hint at a possible power-law stabilization function for linearized systems (cf.59). Furthermore, the May–Wigner 
 theorem3,10,11,60 may serve to approach the relationship between stabilization and network size, although there 
are several restrictions (cf.13,61).

Third, the topology of the network influences the magnitude of self-coupling required to stabilize the system. 
We found that scale-free networks need stronger self-coupling for stabilization than small-world networks. A 
major difference between these two topologies is that while the average shortest-path length is low for both 
small-world and scale-free networks, the clustering coefficient of small-world networks is a lot higher than that 
of scale-free networks (cf. Fig. 1). Hence, high clustering may contribute to stabilization (also cf. Supplementary 
Fig. S2). Although there is a substantial difference in magnitude, it is interesting that small-world and scale-free 
networks show very much the same qualitative behavior with respect to stabilization as a function of the net-
work size (Fig. 4). For comparison, we also considered the stabilization of Kronecker–Leskovec graphs at two 
different network sizes. From the given samples, it seems that the Kronecker–Leskovec topology may require 
even higher self-coupling to acquire stability as compared to small-world and scale-free topologies. Besides that, 
Kronecker–Leskovec networks can easily be described in an analytical manner (cf. “Methods”), and thus, the 
given results are eligible to be compared with analytical approaches in the future.

As a general conclusion, the stabilization parameter for different network topologies depends on the network 
size in a sublinear manner, which reveals an intriguing path to stability: The stabilization of large recurrent 
networks can be achieved with small increases in the self-regulation of the elements of the system because these 
yield a supralinear increase in the resilience of the whole system. This is a finding that should not be underesti-
mated. As a result of technological advances, we live in a hyper-connected world which exhibits increasing risks 
of ecological, technological, and social instability at a global level. We have most recently experienced, through 
the Covid-19 pandemic, that decreased mobility (i.e., isolation through decreased connectivity) enables to control 
the spread of infections. At the same time, it could also be controlled by self-inhibition of the infection dynamics, 
for example, through the use of face masks and vaccinations (cf.53,56).

The general idea that component self-regulation (i.e., the intrinsic stability of isolated system constituents) 
is important for the stability of a whole dynamical system has been around at least since the seminal work by 
Ashby in  19501. In the present work, we have studied the effect of reinforcing self-coupling on the elements of 
otherwise unstable complex systems. We have considered systems with structured topologies as they are found 
in very different areas of the real world, and we obtained results that suggest the importance of this path to 
stabilization. Thus, the predictions emerging from our work—mainly, that small increases in the local stability 
of the components can have a significant effect on the global stability of the system—should be important to 
researchers from various disciplines and deserve further analysis.

Methods
Determining the asymptotic system stability. The asymptotic stability of a dynamical system is evalu-
ated considering the eigenvalues of the interaction matrix that represents the first-order (i.e., linear) approxima-
tion of the system. If the real part of any of the eigenvalues is positive, the system is unstable.

The eigenvalues of the system can, in general, be determined in different ways. A first approach is to com-
pute the characteristic polynomial of the interaction matrix and to solve for its zeros using Horner’s/Newton’s 
method. A second approach is to use the characteristic polynomial to apply the Routh–Hurwitz criterion as it 
was done by Gardner and  Ashby2. Both of these approaches take very long because computing the characteris-
tic polynomial is very expensive. A third approach, which we take here, is to compute the eigenvalues directly 
from the interaction matrix employing the Francis’ QR double-shift algorithm (as implemented in the GNU 
Scientific Library). Nevertheless, to validate our implementation, we compared the results of all three methods 
and found them to be equal.

We compute the probability of stability by dividing the number of trials for which the system was asymptoti-
cally stable by the total number of trials. Given that the system is either stable or unstable, we can denote these 
cases by 1 and 0, respectively, and the outcome of a trial i is given by

The probability of stability is then

where T is the total number of trials. The uncertainty of this measure is computed as follows. The standard devia-
tion of the outcome of one trial is given by

where we have used Eqs. (5) and (6). The standard deviation of the probability of stability can then be approxi-
mated by means of Gaussian error propagation:

(5)si ∈ {0, 1}.

(6)P(stable) := �s� =
1

T

T
∑

i=1

si ,

(7)�si :=
√

�s2� − �s�2 =
√

�s� − �s�2 =
√

P(stable) · (1− P(stable)),
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where we have used Eqs. (6) and (7). We safely estimate this measure here by using its upper bound 1/
√
T .

Generation of small‑world topology. We generate small-world networks in a manner that is similar 
to the scheme presented by Watts and Strogatz in  199827. To this end, we initially create a regular network of 
N nodes, with each node having connections to its knn nearest neighbors. Then, an exact number of rewirings 
is performed. Although Watts and Strogatz used, in contrast, an average number of rewirings, the rules for 
rewiring are the same: no edge may be rewired twice, and there may only be one edge for each pair of nodes. 
The procedure leads to undirected graphs. To test the small-world property of the generated networks, we have 
plotted the averaged clustering coefficient and the average shortest-path length against the number of rewirings 
(see Fig. 1a). Finally, we turn the simple, undirected graphs obtained from the procedure described above into 
multigraphs with bidirectional (antiparallel) links. An example graph of such a small-world network is shown in 
Fig. 1b. We draw the weight of the antiparallel links—individually for each direction—from a uniform random 
distribution in the interval between −1.0 and +1.0 . This yields bidirectional but asymmetric graphs, which can 
relate to a vast variety of real-world systems. Note that the corresponding matrices are structurally symmetric 
(with respect to their values being non-zero or zero). Finally, we introduce self-coupling by adding a loop of 
negative weight to each node (more details are given in the “Results” section).

Generation of scale‑free topology. We produce scale-free networks by means of the ‘preferential attach-
ment’ algorithm described by Barabási and  Albert28. This algorithm is based on the finding that in growing scale-
free networks, highly-connected nodes receive more new connections than sparsely connected ones. To obtain 
a network of N nodes, we start from a population of m0 unconnected nodes and add N −m0 nodes, each one 
connecting with m edges to already existing nodes. In doing so, the probability of connecting to a specific node 
i is proportional to its degree ki:

The addition of unity in the above equation is necessary to avoid an initial attachment probability of zero. To 
obtain bidirectional but asymmetric connectivity, as for our small-world networks (see above), link strengths 
are individually drawn for each direction from a uniform random distribution in the interval between −1.0 and 
+1.0 . We finally introduce self-coupling by adding a loop of negative weight to each node (see the “Results” 
section for more details).

We verified the scale-free property by fitting the following power-law function to the averaged-over-trials 
degree distribution of all  nodes57:

In this equation, kmin represents the degree where the presumed maximum of the distribution occurs, while 
γ is the slope parameter. Scale-free networks typically exhibit 2 � γ � 357, which we have found is the case for 
our networks (cf. Fig. 1c). An example graph of a generated scale-world network is shown in Fig. 1d.

Generation of Kronecker–Leskovec topology. To generate Kronecker–Leskovec networks, we follow 
the scheme described by  Leskovec32 which is based on Kronecker multiplication of seed matrices. For each 
trial, we start from a randomly generated symmetric seed matrix S of dimension 10. This enables us to consider 
networks of dimensions 100 and 1000. We obtain a Kronecker–Leskovec matrix K2 of dimension 100 by the fol-
lowing Kronecker product:

To obtain a Kronecker–Leskovec matrix K3 of dimension 1000, we perform the Kronecker product once more:

We introduce self-coupling by adding a loop of negative weight to each node (see the “Results” section for 
more details).

The degree distribution of the Kronecker–Leskovec networks turns out to have certain similarity with that 
of scale-free networks, which is shown in Supplementary Fig. S7, along with an example graph of a generated 
Kronecker–Leskovec network.

Parameters for similar connectance across topologies. To be able to compare the results of small-
world networks and scale-free networks, the same connectance has to be used. For small-world networks, the 
connectance is simply given by:

(8)�P(stable) :=

√

√

√

√

T
∑

i=1

(

�si
∂p

∂si

)2

=

√

√

√

√

T
∑

i=1

(

�si

T

)2

=

√

T ·
(

�si

T

)2

=
�si√
T

≤
1

√
T
,

(9)�(ki) =
ki + 1

∑

j

(

kj + 1
) .

(10)P(k) = (γ − 1) · kγ−1

min · k−γ .

(11)K2 = S⊗ S.

(12)K3 = K2 ⊗ S.

(13)Csw =
knn · N
N2 − N

=
knn

N − 1
.
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For scale-free networks, on the other hand, the connectance is given by:

We find the parameter values that we need to achieve the same connectance for both topologies by solving 
the equation

Inserting Eqs. (13) and (14) we obtain:

which we can rearrange to obtain:

One solution of this equation is given by knn = 2m and m0 = 0 . Based on this, we chose to use the parameter 
values knn = 4 , m = 2 , and m0 = 0 primarily (also see Supplementary Fig. S2 on the impact of knn and rewiring 
for small-world networks). For these values, the preferential attachment algorithm often leads to a few ( < 10 ) 
edges less than expected. This may be due to the small number of m and the value 0 for m0 . We obtained, nev-
ertheless, typical scale-free degree distributions with only slight deviations at high degrees. An example plot is 
shown in Fig. 1c.

Another solution for Eq.  (17), yielding equal connectance values Csw = Csf  , is given by knn = m and 
m0 = N/2 . Therefore, we also considered the parameter setting m = knn = 4 to generate networks with the 
preferential attachment algorithm, which yields only approximate scale-free characteristics (see Supplemen-
tary Figs. S4, S5 and S6). This setting features a high number of initially unconnected nodes, e.g., m0 = 500 for 
N = 1000 . While the degree distribution for this setting deviates from the scale-free characteristic at low and 
high degrees, the overall slope of the distribution is in the typical range of scale-free networks (cf. Supplemen-
tary Fig. S4a). Such deviations are not unusual for networks exhibiting scale-free properties (cf.57) and could be 
caused by the high number of initially unconnected nodes. Nevertheless, both types of networks generated with 
the preferential attachment algorithm exhibited clustering coefficients and average shortest-path lengths in the 
expected regime (also cf. Fig. 1a and Supplementary Fig. S4a).

For Kronecker–Leskovec matrices to have a number of zeros comparable to our small-world and scale-free 
matrices, we fixed the number of zeros in the seed matrix S at 82, which results in the values given in Table 1.

Computational implementation and software used. We used C++ in the ISO 2011 standard to 
implement our simulations. Networks were represented by means of a matrix class. All nodes were given a self-
coupling of random strength, drawn from a uniform distribution over a specific interval (see above). Random 
numbers were generated using the generator minstd_rand0 of the C++ standard library, while the system 
time served as the seed. We implemented a loop in our code which ensured that for each distribution a unique 
seed was used. Unless stated otherwise, we ran each simulation 1000 times to obtain mean and error estimates of 
the respective quantities. To compile and link the code, we employed g++ in version 7.4.0 with boost in version 
1.65.1. For the computation of eigenvalues, we employed GNU Scientific Library (GSL) 2.5. Our code is freely 
available under the terms of the GNU General Public License v3.062.

For the creation of plots we used gnuplot 5.0.4, only for graphs we used Pajek64 in version 5.14 with the 
Kamada–Kawai Free algorithm. Pajek64 also served to compute average shortest-path lengths and Watts–Strogatz 
clustering coefficients. For fitting, we employed gnuplot as well.

Data availability
We have made our program code freely  available62. The code enables to reproduce all results presented in this 
study. Furthermore, the datasets used and analyzed for the current study are available from the corresponding 
author upon request.

Received: 8 September 2022; Accepted: 9 January 2023

References
 1. Ashby, W. R. The stability of a randomly assembled nerve-network. Electroencephalogr. Clin. Neurophysiol. 2, 471–482 (1950).
 2. Gardner, M. R. & Ashby, W. R. Connectance of large dynamic (cybernetic) systems: critical values for stability. Nature 228, 784 

(1970).
 3. May, R. M. Will a large complex system be stable?. Nature 238, 413–414 (1972).
 4. Wigner, E. P. Random matrices in physics. SIAM Rev. 9, 1–23 (1967).
 5. Odum, E. P. Fundamentals of Ecology (Saunders, 1953).
 6. MacArthur, R. Fluctuations of animal populations and a measure of community stability. Ecology 36, 533–536 (1955).
 7. Elton, C. S. The Ecology of Invasions by Animals and Plants (Chapman and Hall, 1958).
 8. McCann, K. S. The diversity-stability debate. Nature 405, 228–233 (2000).
 9. Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. Complexity and stability of ecological networks: A review 

of the theory. Popul. Ecol. 60, 319–345 (2018).
 10. Hastings, H. M. The May–Wigner stability theorem. J. Theor. Biol. 97, 155–166 (1982).
 11. Hastings, H. M. Stability of large systems. BioSystems 17, 171–177 (1984).

(14)Csf =
2m · (N −m0)

N2 − N
.

(15)Csw = Csf.

(16)
knn

N − 1
=

2m (N −m0)

N2 − N
,

(17)0 = (2m− knn)N − 2m0 m.



12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1089  | https://doi.org/10.1038/s41598-023-27809-8

www.nature.com/scientificreports/

 12. Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).
 13. Allesina, S. & Tang, S. The stability-complexity relationship at age 40: A random matrix perspective. Popul. Ecol. 57, 63–75 (2015).
 14. Jacquet, C. et al. No complexity–stability relationship in empirical ecosystems. Nat. Commun. 7, 1–8 (2016).
 15. Mizraji, E. & Lin, J. Fuzzy decisions in modular neural networks. Int. J. Bifurc. Chaos 11, 155–167 (2001).
 16. Danoy, G., Brust, M. R. & Bouvry, P. Connectivity stability in autonomous multi-level UAV swarms for wide area monitoring. In 

Proceedings of the 5th ACM Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications, 1–8 (2015).
 17. Gonzalez-Castillo, J. et al. The spatial structure of resting state connectivity stability on the scale of minutes. Front. Neurosci. 8, 

138 (2014).
 18. Wise, T. et al. Instability of default mode network connectivity in major depression: A two-sample confirmation study. Transl. 

Psychiatry 7, e1105–e1105 (2017).
 19. Simon, H. A. The architecture of complexity. Proc. Am. Philos. Soc. 106, 467–482 (1962).
 20. Neutel, A.-M., Heesterbeek, J. A. & De Ruiter, P. C. Stability in real food webs: Weak links in long loops. Science 296, 1120–1123 

(2002).
 21. Neutel, A.-M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).
 22. Gross, T., Rudolf, L., Levin, S. A. & Dieckmann, U. Generalized models reveal stabilizing factors in food webs. Science 325, 747–750 

(2009).
 23. Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl. Acad. Sci. U.S.A. 108, 3648–3652 

(2011).
 24. Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 

329, 853–856 (2010).
 25. Treur, J. Analysis of a network’s asymptotic behavior via its structure involving its strongly connected components. Netw. Sci. 8, 

S82–S109 (2020).
 26. Meena, C., Hens, C., Haber, S., Boccaletti, S. & Barzel, B. Dynamic stability of complex networks. arXiv: 2007. 04890 (2020) 

(preprint).
 27. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).
 28. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science 286, 509–512 (1999).
 29. Sinha, S. Complexity vs. stability in small-world networks. Physica A Stat. Mech. Appl. 346, 147–153 (2005).
 30. Brede, M. & Sinha, S. Assortative mixing by degree makes a network more unstable. arXiv: cond- mat/ 05077 10 (2005) (preprint).
 31. Sinha, S. From network structure to dynamics and back again: Relating dynamical stability and connection topology in biological 

complex systems. In Dynamics on and of Complex Networks, 3–17 (Springer, 2009).
 32. Leskovec, J., Chakrabarti, D., Kleinberg, J. & Faloutsos, C. Realistic, mathematically tractable graph generation and evolution, 

using Kronecker multiplication. In European Conference on Principles of Data Mining and Knowledge Discovery, 133–145 (Springer, 
2005).

 33. Lyapunov, A. M. The general problem of motion stability. Ann. Math. Stud. 17 (1892).
 34. Gantmacher, F. R. The Theory of Matrices Vol. 2 (Chelsea Publishing, 1959).
 35. Ravasz, E. & Barabási, A.-L. Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003).
 36. Bassett, D. S. & Bullmore, E. D. Small-world brain networks. Neuroscientist 12, 512–523 (2006).
 37. Sporns, O. Networks of the Brain (MIT Press, 2010).
 38. Kale, P., Zalesky, A. & Gollo, L. L. Estimating the impact of structural directionality: How reliable are undirected connectomes?. 

Netw. Neurosci. 02, 259–284 (2018).
 39. Kaiser, M. Brain architecture: A design for natural computation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 3033–3045 

(2007).
 40. Wilson, H. R. & Cowan, J. D. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 

13, 55–80 (1973).
 41. Bassett, D. S., Meyer-Lindenberg, A., Achard, S., Duke, T. & Bullmore, E. Adaptive reconfiguration of fractal small-world human 

brain functional networks. Proc. Natl. Acad. Sci. U.S.A. 103, 19518–19523 (2006).
 42. Friston, K. J. et al. Parcels and particles: Markov blankets in the brain. Netw. Neurosci. 5, 211–251 (2021).
 43. Amit, D. J. Modeling Brain Function: The World of Attractor Neural Networks (Cambridge University Press, 1989).
 44. Päpper, M., Kempter, R. & Leibold, C. Synaptic tagging, evaluation of memories, and the distal reward problem. Learn. Mem. 18, 

58–70 (2011).
 45. Kropff, E. & Treves, A. The complexity of latching transitions in large scale cortical networks. Nat. Comput. 6, 169–185 (2006).
 46. Herpich, J. & Tetzlaff, C. Principles underlying the input-dependent formation and organization of memories. Netw. Neurosci. 3, 

606–634 (2019).
 47. Luboeinski, J. & Tetzlaff, C. Organization and priming of long-term memory representations with two-phase plasticity. Cogn. 

Comput., 1–20 (2022).
 48. Rohden, M., Sorge, A., Timme, M. & Witthaut, D. Self-organized synchronization in decentralized power grids. Phys. Rev. Lett. 

109, 064101 (2012).
 49. Soltan, S., Mazauric, D. & Zussman, G. Analysis of failures in power grids. IEEE Trans. Control Netw. Syst. 4, 288–300 (2015).
 50. Montoya, O. D., Grisales-Noreña, L., González-Montoya, D., Ramos-Paja, C. & Garces, A. Linear power flow formulation for 

low-voltage DC power grids. Electr. Power Syst. Res. 163, 375–381 (2018).
 51. Rohden, M., Sorge, A., Witthaut, D. & Timme, M. Impact of network topology on synchrony of oscillatory power grids. Chaos 24, 

013123 (2014).
 52. Cavoukian, A., Polonetsky, J. & Wolf, C. SmartPrivacy for the Smart Grid: Embedding privacy into the design of electricity con-

servation. Identity Inf. Soc. 3, 275–294 (2010).
 53. Bagheri, G., Thiede, B., Hejazi, B., Schlenczek, O. & Bodenschatz, E. An upper bound on one-to-one exposure to infectious human 

respiratory particles. Proc. Natl. Acad. Sci. U.S.A. 118, e2110117118 (2021).
 54. Linka, K., Peirlinck, M., Sahli Costabal, F. & Kuhl, E. Outbreak dynamics of COVID-19 in Europe and the effect of travel restric-

tions. Comput. Methods Biomech. Biomed. Eng. 23, 710–717 (2020).
 55. Moore, S., Hill, E. M., Tildesley, M. J., Dyson, L. & Keeling, M. J. Vaccination and non-pharmaceutical interventions for COVID-

19: A mathematical modelling study. Lancet Infect. Dis. 21, 793–802 (2021).
 56. Bauer, S. et al. Relaxing restrictions at the pace of vaccination increases freedom and guards against further COVID-19 waves. 

PLoS Comput. Biol. 17, e1009288 (2021).
 57. Barabási, A.-L. The Scale-Free Property, chap. 4 (Freely available online under a CC BY-NC 3.0 license: http:// netwo rksci enceb 

ook. com/ chapt er/4, 2014).
 58. Xu, Z. & Sui, D. Z. Small-world characteristics on transportation networks: A perspective from network autocorrelation. J. Geogr. 

Syst. 9, 189–205 (2007).
 59. Wolkowicz, H. & Styan, G. P. H. Bounds for eigenvalues using traces. Linear Algebra Appl. 29, 471–506 (1980).
 60. Geman, S. The spectral radius of large random matrices. Ann. Probab. 14, 1318–1328 (1986).
 61. Érdi, P. & Tóth, J. What is and what is not stated by the May–Wigner theorem?. J. Theor. Biol. 145, 137–140 (1990).
 62. Luboeinski, J. Simulation code: random generation of networks of different topology and analysis of their asymptotic stability. 

https:// doi. org/ 10. 5281/ zenodo. 75420 25 (2022).

http://arxiv.org/abs/2007.04890
http://arxiv.org/abs/cond-mat/0507710
http://networksciencebook.com/chapter/4
http://networksciencebook.com/chapter/4
https://doi.org/10.5281/zenodo.7542025


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1089  | https://doi.org/10.1038/s41598-023-27809-8

www.nature.com/scientificreports/

Acknowledgements
We would like to thank the members of the Biophysics and Systems Biology Section at Universidad de la 
República, and the members of the Department of Computational Neuroscience at University of Göttingen, 
for fruitful discussions.

Author contributions
J.L.: conceptualization; investigation; methodology; software; data curation; formal analysis; visualization; vali-
dation; writing—original draft; writing—review and editing. L.C.: investigation; validation. A.P.: conceptualiza-
tion; investigation; methodology; validation; resources; supervision; writing—original draft; writing—review 
and editing. E.M.: conceptualization; investigation; methodology; project administration; funding acquisition; 
resources; supervision; writing—original draft; writing—review and editing.

Funding
Open Access funding enabled and organized by Projekt DEAL. We further acknowledge funding by Facultad 
de Ciencias, Universidad de la República, by Agencia Nacional de Investigación e Innovación (ANII) Uruguay, 
and by Human Brain Project SGA3 (#945539).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 27809-8.

Correspondence and requests for materials should be addressed to J.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-27809-8
https://doi.org/10.1038/s41598-023-27809-8
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Stabilization through self-coupling in networks of small-world and scale-free topology
	Results
	Stabilizing small-world and scale-free networks by increasing self-coupling. 
	Stabilizing Kronecker–Leskovec networks by increasing self-coupling. 
	Stabilization depending on the network size. 
	Application to real-world systems. 

	Discussion
	Methods
	Determining the asymptotic system stability. 
	Generation of small-world topology. 
	Generation of scale-free topology. 
	Generation of Kronecker–Leskovec topology. 
	Parameters for similar connectance across topologies. 
	Computational implementation and software used. 

	References
	Acknowledgements


