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Abstract: Primate simplexviruses are closely related neurotropic herpesviruses, which are largely
apathogenic in their respective host species. However, cross-species transmission of Macacine
alphaherpesvirus 1 (McHV1, also termed herpes B virus) from rhesus macaques to humans can cause
fatal encephalomyelitis. In contrast, closely related viruses, such as Cercopithecine alphaherpesvirus 2
(CeHV2, also termed simian agent 8) or Papiine alphaherpesvirus 2 (PaHV2, also termed herpesvirus
papio 2), have not been linked to human disease and are believed to be largely apathogenic in humans.
Here, we investigated whether McHV1, PaHV2 and CeHV2 differ in their capacity to infect human
and non-human primate (NHP) cells. For comparison, we included the human simplexviruses HSV1
and HSV2 in our analyses. All five viruses replicated efficiently in cell lines of human and African
green monkey origin, and McHV1 and PaHV2 also showed robust replication in rhesus macaque cell
lines. In contrast, the replication of CeHV2 and particularly HSV1 and HSV2 in cell lines of rhesus
macaque origin were reduced or inefficient. Similarly, McHV1, but not CeHV2, efficiently infected
rhesus macaque brain organoids. These results point towards the previously unappreciated partial
resistance of certain rhesus macaque cells to HSV1/HSV2/CeHV2 infection and reveal similarities
between the cell tropism of McHV1 and PaHV2 that might be relevant for risk assessment.

Keywords: herpes simplex virus type 1; Macacine alphaherpesvirus 1; Cercopithecine alphaherpesvirus 2;
Papiine alphaherpesvirus 2; tropism; rhesus macaque; non-human primate; iPS cell; neural aggregate

1. Introduction

Simplexviruses of primates co-evolved with their respective hosts [1,2]. They share
a common genome structure, which is essentially collinear with human herpes simplex
virus type 1 (HSV1; Human alphaherpesvirus 1), the best-characterized species of this
group. Several simplexviruses from non-human primates (NHP) have been isolated,
including Macacine alphaherpesvirus 1 (McHV1, herpes B virus) [3], Cercopithecine
alphaherpesvirus 2 (CeHV2, simian agent 8) [4], Papiine alphaherpesvirus 2 (PaHV2, her-
pesvirus papio 2) [5] and Panine alphaherpesvirus 3 (chimpanzee herpesvirus) [6]. Genome
sequencing has revealed the conservation of all genes among these viruses, with the notable
lack of the RL1 (γ34.5) gene in the genomes of McHV1, CeHV2 and PaHV2 [5,7–10].

The biology of the simplexvirus infection of NHP is believed to be similar to the
infection of humans with HSV1, with a largely asymptomatic primary infection followed
by lifelong viral latency in sensory neurons and occasional lesions due to reactivation [11].
This notion is mostly supported by studies analyzing McHV1 infection of macaques kept
in captivity [12,13]. In addition to intraspecies transmission, cross-species transmission has
been documented, especially when different NHP species were cohoused. In many cases,
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such transmission events (e.g., for McHV1) have been recognized because of apparent or
fatal disease [14,15], but asymptomatic infections have also been documented [16]. Notably,
the transmission of McHV1 from rhesus macaques to humans leads to encephalomyelitis
with a high case-fatality rate [17]. In contrast, the transmission of CeHV2 and PaHV2 to
humans has not been reported, despite these viruses being 79–86% identical to McHV1
on the genome level [10], and it is the general assumption that these viruses do not cause
disease in humans.

Cell culture and animal studies highlight the potential of primate simplexviruses
for cross-species transmission. Thus, HSV1 has been reported to replicate in cell lines
from species as diverse as humans, NHP, hamsters and mice [18]. In addition, several
mammalian species served as animal models for primate simplexviruses. Infection of mice
is a common model to study the neuropathogenicity of primate simplexviruses [19–22], and
rabbits and guinea pigs have been employed to study latency by HSV1 and McHV1 [23,24].
Recently, the use of rhesus macaques as an animal model for HSV1 [25–28] and HSV2 [29]
infection has been reported. In contrast, older studies did not detect appreciable replication
of HSV2 in macaques [30] and reported poor replication of HSV1 and HSV2 in macaque
cell lines [31–33]. However, a systematic comparison of virus replication in cell lines of
different primate origins is lacking. Therefore, we investigated the capacity of CeHV2,
PaHV2 and McHV1 to infect cell lines of NHP and human origin. We report that McHV1
and PaHV2 replicated robustly in rhesus macaque cell lines, while the replication of HSV1,
HSV2 and CeHV2 was inefficient.

2. Materials and Methods
2.1. Cell Culture

Cell lines 293T (DSMZ ACC 635) [34], A549 (ATCC CCL-185) [35], U251 (U373 MG)
(ATCC HTB-17; kind gift by T. Stamminger) [36], LLC-MK2 (ATCC CCL-7) [37], sMAGI
(NIH ARP5033) [38], TeloRF (kind gift by S. Voigt) [39,40], Vero76 (ATCC CRL-1587; kind
gift by A. Maisner) [41] and Cos7 (ATCC CRL-1651) [42] were cultivated in DMEM supple-
mented with 10% FCS and Pen/Strep. Human cell lines were authenticated by STR typing
following a published protocol [43]. The species identity of primate cell lines was authenti-
cated by sequencing part of the mitochondrial CytB gene after PCR amplification [44].

Rhesus macaque induced pluripotent stem cell lines (iPSC lines) used as input cells
for the neural aggregates were reported by Stauske et al. [45] and maintained as described.
The pluripotent state and identity of the iPSC lines were regularly controlled.

2.2. Rhesus Macaque Neural Aggregate Generation and Culture

Neural aggregates were generated in stationary conditions following a protocol
adapted from Lancaster et al. and Mansour et al. [46,47]. In brief, iPSCs were dissoci-
ated into single cells using Accutase, and 10,000 cells per well were transferred into 96-well
ultra-low attachment plates in UPPS culture medium [45]. The medium was supplemented
with 5 µM of pro-survival compound (ROCK2 inhibitor; Calbiochem DDD00033325) for the
first 24 h. On day 3, embryoid bodies were transferred to Neural Induction Medium (NIM)
(DMEM/F-12 (1:1), N2 Supplement, 20% KnockOut Serum, 3% Fetal Bovine Serum, 1% non-
essential amino acids, and 2 mM GlutaMAX). The NIM was supplemented with 1 µg/mL
heparin, 200 µM L-Ascorbic acid, 10 ng/mL of bFGF2, 10 µM SB431542, 2.5 µM dorso-
morphine, and 1 mM sodium pyruvate for the first 4 days; and without heparin, bFGF,
and sodium pyruvate for the subsequent 4 days with medium change every other day.
On day 11, the neurospheres were embedded in Matrigel (10 mg/mL). After removing
the culture medium, 50 µL of Matrigel drops were added on top of the neurospheres
and allowed to polymerize for 20 min at 37 ◦C. After incubation, the Matrigel-embedded
neurospheres were transferred to 48-well plates coated with anti-adherent rinsing solution
in cerebral differentiation medium I (CDM I) (DMEM/F12: Neurobasal Medium (1:1), N2
supplement, B27 supplement without vitamin A, 1% non-essential amino acids, 2 mM
GlutaMAX, and 2.8 ng/mL insulin). The CDM I was supplemented with 20 ng/mL bFGF
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and 20 ng/mL EGF and the medium was changed every other day. After 5 days, B27
supplement was added for the subsequent 7 days (CDM II) with medium change every
other day. From day 22 onwards, EGF and FGF2 were replaced with 20 ng/mL BDNF
and 20 ng/mL NT3 (CDM III). The medium was changed every other day. After genera-
tion, neural aggregates were used for characterization and infection experiments between
days 70 and 100 of differentiation.

2.3. Viruses

HSV1 strain 17syn* and HSV2 strain 333 were a kind gift by Wali Hafezi (Institute of
Virology, University Hospital Münster). CeHV2 (SA8) strain B264 and PaHV2 (HVP2) strain
X313 were a kind gift by David Brown and Matthew Jones (Public Health England). McHV1
(herpes B virus) was a kind gift by Christiane Stahl-Hennig (German Primate Center). The
viruses were propagated on Vero76 cells by infection at MOI 0.01 and harvested after the
extensive cytopathic effect had developed.

2.4. Viral Replication Kinetics and Titration

For one-step growth curves, Vero76, A549, LLC-MK2 and TeloRF cells were seeded in
24-well plates at 60,000 cells/mL. On the next day, cells were infected with MOI 1 of the
respective viruses. For this, the medium was replaced with 500 µL inoculum. After 1 h
incubation at 37 ◦C, the inoculum was removed, cells were washed with PBS and finally
incubated with 500 µL culture medium. At certain time points after infection, cell culture
supernatant was harvested and centrifuged at 4000× g rpm for 5 min to pellet floating
cells, and the cleared supernatant was frozen at −80 ◦C. To quantify cell-associated virus,
infected cells were detached with Accutase, centrifuged at 4000× g rpm for 5 min, and the
cell pellets were resuspended in 500 µL culture medium. The virus was released from cells
with three freeze–thaw cycles followed by the removal of cellular debris by centrifugation
at 4000 rpm for 5 min. The resulting supernatant was used for titrations.

Virus titrations were uniformly carried out on Vero76 cells, which were seeded in
24-well plates at 100,000 cells/well. On the next day, the culture medium was removed,
and cells were infected with virus supernatant in 10-fold dilutions for 1 h at 37 ◦C. There-
after, inoculum was removed and replaced with Avicel overlay medium (2 vol. culture
medium mixed with 1 vol. 3% Avicel; FMC, Philadelphia, PA, USA) [48]. After incubation
for 2–4 days, depending on the virus, the medium containing Avicel was removed, cells
were washed two times with PBS and then fixated by using cold methanol for 15 min
at −20 ◦C. For the visualization of plaques, cells were stained with a crystal violet solution
(1 g crystal violet, 100 mL ethanol in a final volume of 500 mL water), followed by one
wash with water.

2.5. Infection of Neural Aggregates

The infection of neural aggregates was performed in 24-well plates in a volume
of 500 µL CDMIII medium containing the virus. Based on a mean surface area of 11–13 mm2

(diameter 1.9–2.1 mm), we estimated that there would be approximately 2–3000 cells on
the surface of the neural aggregates. Therefore, we chose to infect with 2000 pfu of either
McHV1 or CeHV2, reflecting an MOI 0.5–1. The inoculum was diluted in CDMIII medium.
For mock control, neural aggregates were incubated with fresh CDMIII medium without
the virus. After an incubation of 1 h in a cell culture incubator (37 ◦C, 80% humidity, 5%
CO2), the inoculum was removed, and neural aggregates were washed in 500 µL DMEM,
followed by the addition of 500 µL CDMIII medium. At defined time points post-infection
(1, 24, 48 and 72 h), culture supernatant was removed and replaced with fresh CDMIII
medium and stored for subsequent virus titration. After titration, the cumulative titer was
calculated for each neural aggregate for each time point.
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2.6. Microscopy

For McHV1 infected samples, brightfield images were taken at 10×magnification on
an Olympus IX70 using CellˆF software. For all other viruses, brightfield images were taken
at 10×magnification using the ESID detector of a LSM800 (Zeiss, Oberkochen, Germany)
microscope and ZEN software (version 2.3). Images were adjusted in ImageJ [49] to cover
the same area.

2.7. Immunohistochemistry

Neural aggregates (70–100 days old) were fixed in a 4% paraformaldehyde (PFA)
solution for 20 min and washed 3 times with DPBS. Each fixed neural aggregate was then
embedded in 2% agarose liquefied at 50 ◦C in 2 mL reaction tubes. Then agarose was
chilled on ice for 5 to 10 min to allow the agarose to solidify. Embedded neural aggregates
were transferred to 4% PFA in 2 mL reaction tubes for a second fixation and incubated
overnight on a shaker. After three washes in DPBS, the neural aggregates were embedded
in paraffin and sectioned at 3 µm.

For immunohistochemistry, neural aggregates were deparaffinized and rehydrated
using xylol and progressively decreasing concentrations of ethanol. Antigen retrieval
was performed by microwaving the sections in 10 mM sodium citrate buffer (pH 7.6)
for 10 min. Endogenous peroxidase activity was inhibited by the peroxidase-blocking
reagent. Anti-HSV1 + 2 polyclonal rabbit antibody (1:800) (DS-PB-00984, RayBiotech,
Peachtree Corners, GA, USA), which recognized both CeHV2 and McHV1 in infected
cell cultures [50], was used for the detection of viral proteins in McHV1-, CeHV2-, and
mock-infected neural aggregates. Anti-βIII-tubulin monoclonal mouse antibody (1:50)
(T8660; Sigma Aldrich, St. Louis, MO, USA) was used as a neuron marker. Anti-Rabbit
IgG isotype was used for control stainings. The detection of the primary antibodies was
carried out using Envision FLEX/HRP secondary antibody (GV80011-2; DAKO, Hamburg,
Germany). 3,3′-diaminobenzidine (DAB) chromogen was used as the substrate for the
HRP, and Mayer’s hemalum solution was used as the counterstain. Images of sections
were taken using Aperio CS2 Slide Scanner and analyzed using Aperio ImageScope (Leica,
Wetzlar, Germany) software.

For immunofluorescence staining, deparaffinization and antigen retrieval steps were
performed as described above. The neural aggregate sections were blocked in 1% BSA
in DPBS for 20 min at room temperature. After washing three times in DPBS, the sec-
tions were incubated (1 h at room temperature or overnight at 4 ◦C) with Anti-HSV1
+ 2 (1:200) (NB120-9533; Novus Biologicals, Wiesbaden, Germany), which recognized
McHV1 in infected cell cultures [50], and anti-βIII-tubulin (1:50) antibodies. Subsequently
and after washing with PBS, secondary antibody incubation (1 h) was performed using
AlexaFluor488™ goat anti-mouse IgG (Invitrogen, 1829920) (1:1000) and AlexaFluor555™
donkey anti-rabbit IgG (Invitrogen, 2180682) (1:1000). Incubation with DAPI (10 min, room
temperature) (0.1 µg/mL) was used for nuclear stain. Stained sections were imaged using
Zeiss Observer Z1 (Zeiss, Oberkochen, Germany) inverted fluorescence microscope and
analyzed using ImageJ software (version 1.53t) [49].

3. Results

For a systematic analysis of the replication of human and NHP simplexviruses, we
used two well-characterized human viruses, HSV1 and HSV2, as well as the primate
simplexviruses McHV1, PaHV2 and CeHV2. Replication of these viruses was studied in
cell lines generated from their respective host species, rhesus macaque (McHV1), African
green monkey (CeHV2) and human (HSV-1 and HSV2), and all cell lines chosen had
previously been used in infection experiments with different primate simplexviruses.

For the first experiment, we performed one-step growth curves to gain information on
the replication kinetics in four cell lines. Vero76 epithelial cells, which were derived from the
kidney of an African green monkey, were used as a positive control since all viruses tested
are routinely propagated in these cells [5,9,10,25,28,29,51]. In addition, we used the human
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A549 epithelial lung adenocarcinoma cell line, which has been used for virus isolation
and functional studies of HSV1 and HSV2 [52–55] and was reported to be permissive to
CeHV2 infection [56]. Finally, we employed two cell lines from rhesus macaques, LLC-MK2
(epithelial kidney) [37] and TeloRF (TERT-immortalized skin fibroblast) [39]. LLC-MK2 cells
were previously reported to support the replication of CeHV2 [57], while a CeHV2 reporter
virus generated by us hardly grew in this cell line and also failed to grow efficiently in
TeloRF cells [56]. To monitor virus replication, supernatants and cells from infected cultures
were harvested over the course of 72 h, and virus titers were determined by plaque assay.

Vero76 and A549 cells supported the efficient replication of all five simplexviruses,
regardless of whether the supernatant or cell-associated virus was analyzed (Figure 1A,B).
The highest titers were measured for McHV1 and HSV1, while CeHV2 titers were still
increasing at 72 h post-infection (hpi). The two rhesus macaque cell lines, LLC-MK2 and
TeloRF, supported efficient replication of McHV1 and PaHV2, although the replication of
PaHV2 on LLC-MK2 cells was reduced relative to the other cell lines tested. In contrast,
the replication of HSV1 and HSV2 was inefficient on both cell lines (Figure 1). CeHV2
replicated poorly on LLC-MK2 cells, while replication on TeloRF cells was robust, but titers
at 72 h post-infection (hpi) were reduced as compared to PaHV2 and McHV1. Finally, titers
determined from virus-containing culture supernatants and cell-associated viruses were
comparable. Thus, the simplexviruses studied could be grouped into viruses that replicated
well on both rhesus macaque cell lines tested (McHV1), viruses that failed to replicate
efficiently in these cell lines (HSV1, HSV2), and viruses with an intermediate phenotype
(PaHV2 and CeHV2), with PaHV2 showing a somewhat increased replicative capacity in
rhesus macaque cell lines relative to CeHV2.

Next, we investigated whether replication efficiency correlated with the formation of
cytopathic effects (CPE). The typical morphologies of the cell lines are shown in Figure 2U–X.
Cell rounding, detachment and syncytia formation were detected as early as 24 hpi and in-
creased up to 72 hpi (Figure 2 and data not shown) and were dependent on the virus and cell
line. McHV1 induced the formation of large syncytia in all cell lines tested (Figure 2I–L), in
keeping with robust replication (Figure 1). HSV2 also induced the formation of large syncy-
tia in Vero76 and A549 cells (Figure 2E,F) but not in rhesus macaque cell lines (Figure 2G,H),
again in keeping with its replicative potential in these cell lines. Similar findings were made
for HSV1, although mainly cell rounding and detachment rather than syncytia formation
was observed (Figure 2A–D). Finally, CeHV2 and PaHV2 caused detachment and cell
rounding to a similar extent in all cell lines tested, with the exception of Vero76 cells, in
which PaHV2 but not CeHV2 induced large syncytia (Figure 2M–T). In sum, CPE induction
largely matched the replicative capacity of the primate simplexviruses tested.

Next, we extended our analysis to a larger panel of cell lines in order to determine
whether our initial observations could be corroborated. For this, we included the human cell
lines 293T (epithelial kidney) and U251 (U373 MG, glioblastoma) in our analyses, which are
both established in simplexvirus research [58,59]. In addition, we analyzed African green
monkey-derived Cos-7 kidney fibroblast-like cells and rhesus macaque-derived sMAGI
cells (epithelial mammary gland) as additional NHP cell lines. In this experiment, analysis
was performed at 72 h post-infection since our initial experiment (Figure 1) revealed
that the titers of most viruses reached their plateau at this time point regardless of the
cell line used. We found that HSV1 and HSV2 were unable to replicate in sMAGI cells
while replication in all cell lines of human and African green monkey origin was efficient
(Figure 3A–D), consistent with diverse rhesus macaque cell lines being partially resistant
against HSV1 and HSV2 infection. In contrast, McHV1 infected all cell lines with high
efficiency (Figure 3I,J). Further, CeHV2 and PaHV2 continued to show an intermediate
phenotype regarding the infection of rhesus macaque cell lines, which represent different
cell types and originated from different tissues, with sMAGI cell infection by PaHV2 being
more efficient than infection by CeHV2 (Figure 3E–H). Finally, no major differences were
observed when analyzing cell-free and cell-associated viruses. These results confirmed
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that rhesus macaque cell lines might be partially resistant against HSV1, HSV2 and likely
CeHV2 infection.
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Figure 1. Comparison of primate simplexvirus replication in primate cells lines. Cell lines of
human (A549), rhesus macaque (LLC-MK2, TeloRF) and African green monkey (Vero76) origin were
infected with five primate simplexviruses at MOI1: Herpes simplex viruses type 1 (HSV1) and
type 2 (HSV2), Macacine alphaherpesvirus 1 (McHV1), Papiine alphaherpesvirus 2 (PaHV2) and
Cercopithecine alphaherpesvirus 2 (CeHV2). Virus titers from supernatant (SN, panel (A)) or infected
cells (CA, cell associated; panel (B)) harvested at the indicated time points were determined by
plaque assay on Vero76 cells. The average of two independent experiments carried out with triplicate
samples are shown. Error bars indicate standard error of the mean, SEM.
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were infected with five primate simplexviruses at MOI1: Herpes simplex viruses type 1 (HSV1) (A–
D) and type 2 (HSV2) (E–H), Macacine alphaherpesvirus 1 (McHV1) (I–L), Papiine alphaherpesvi-
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Figure 2. Morphology of infected cells. African green monkey Vero76 (A,E,I,M,Q,U), human A549
(B,F,J,N,R,V) and rhesus macaque LLC-MK2 (C,G,K,O,S,W) and TeloRF (D,H,L,P,T,X) cell lines
were infected with five primate simplexviruses at MOI1: Herpes simplex viruses type 1 (HSV1) (A–D)
and type 2 (HSV2) (E–H), Macacine alphaherpesvirus 1 (McHV1) (I–L), Papiine alphaherpesvirus 2
(PaHV2) (M–P) and Cercopithecine alphaherpesvirus 2 (CeHV2) (Q–T) Brightfield images of infected
or mock (U–X) cultures were taken at 72 hpi at 10×magnification. The scale bar indicates 100 µm.

Finally, we investigated whether the suspected reduced permissiveness of rhesus
macaque cells for CeHV2 as compared to McHV1 infection could be confirmed in a more
relevant cell system. For this, we infected neuronal cells in a rhesus macaque 3D neural
aggregate model. The model was based on rhesus macaque induced pluripotent stem cells
(iPSCs). The 3D differentiation protocol was established according to published reports
for human brain organoid generation [46,47] (Figure 4A). Successful neural induction was
assessed in the neural aggregates after 70–100 days of differentiation by staining with
general markers for neurons and glia cells (Figure 4B). The aggregates contained neuron-
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and glia-like cells, assessed by immunostaining for cell-specific markers TUJ1 (for neurons)
and GFAP (for glial cells), respectively (Figure 4B).

Microorganisms 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 3. Comparison of virus production in a panel of primate cell lines. Herpesviruses HSV1 
(A,B), HSV2 (C,D), CeHV2 (E,F), PaHV2 (G,H) and McHV1 (I,J) were used to infect human (A549 
epithelial lung adenocarcinoma, U251 (U373 MG) glioblastoma, 293T epithelial kidney), rhesus ma-
caque (LLC-MK2 epithelial kidney, TeloRF skin fibroblast, sMAGI epithelial mammary gland) and 
African green monkey (Vero76 epithelial kidney, Cos7 fibroblast kidney) cell lines with MOI1. Virus 
titers from supernatants (A,C,E,G,I) and infected cells (B,D,F,H,J) were determined by plaque assay 
on Vero76 cells. The results of two to four independent experiments carried out with triplicate sam-
ples are shown. Error bars indicate standard error of the mean, SEM. 

Figure 3. Comparison of virus production in a panel of primate cell lines. Herpesviruses HSV1
(A,B), HSV2 (C,D), CeHV2 (E,F), PaHV2 (G,H) and McHV1 (I,J) were used to infect human (A549
epithelial lung adenocarcinoma, U251 (U373 MG) glioblastoma, 293T epithelial kidney), rhesus
macaque (LLC-MK2 epithelial kidney, TeloRF skin fibroblast, sMAGI epithelial mammary gland)
and African green monkey (Vero76 epithelial kidney, Cos7 fibroblast kidney) cell lines with MOI1.
Virus titers from supernatants (A,C,E,G,I) and infected cells (B,D,F,H,J) were determined by plaque
assay on Vero76 cells. The results of two to four independent experiments carried out with triplicate
samples are shown. Error bars indicate standard error of the mean, SEM.
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Figure 4. Comparison of McHV1 and CeHV2 infection of rhesus macaque neural cell aggregates.
(A) Schematic representation of the neural aggregate generation protocol. Neural aggregates were
derived from rhesus macaque iPSCs and cultured for up to 100 days. Representative images of neural
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aggregates on day 17 and day 70 are shown. Scale bars: 100 µm, 200 µm, and 500 µm, respectively.
(B) Neural aggregates were positive for a neuronal (TUJ1) and a glial marker (GFAP) at day 70.
Scale bars: 200 µm; inset, 20 µm. (C) Rhesus macaque neural aggregates were infected in triplicates
with 2000 pfu of McHV1 or CeHV2, respectively, or mock treated. Virus titers from supernatants
of neurospheres were titrated on Vero76 cells. Dots show titers for individual organoids, while
lines show the mean of three organoids. The results were confirmed in an independent experiment.
(D) Immunohistochemical staining of the mock-treated and CeHV2- or McHV1-infected neural
aggregates using an HSV1/2 reactive rabbit polyclonal serum (RayBiotech) that detects CeHV2
and McHV1 in infected cell cultures. Infected cells were found only in the McHV1-infected neural
aggregates (inset images). Scale bars: 400 µm; inset, 200 µm. (E) Fluorescence imaging of McHV1-
infected neural aggregates for TUJ1 (neuronal marker) and viral antigen, using rabbit polyclonal
(Novus), which recognizes McHV1 in infected cell cultures, depicting viral proteins localized in
nuclei of TUJ1+ cells. Scale bars: 20 µm.

Notably, McHV1 productively infected the neurospheres, while CeHV2 did not
(Figure 4C). Immunohistochemical staining indicated that numerous individual cells were
infected with McHV1 throughout the neurosphere at 72hpi, as evidenced by intense stain-
ing of compact cells (Figure 4D). In CeHV2-infected neurospheres, we observed some
background staining but no staining as seen for McHV1, in agreement with infection exper-
iments (Figure 4C) showing that CeHV2 was unable to infect neurospheres. Fluorescence
imaging of the McHV1-infected neural aggregates confirmed the presence of McHV1 pro-
teins in the nuclei of TUJ1+ neurons within the neural aggregates (Figure 4E). Thus, McHV1,
but not CeHV2, seems to have a high capacity to infect rhesus macaque neural cells.

4. Discussion

Simplexviruses exhibit a broad species tropism, being able to infect many mam-
malian species, from mice to humans [18]. Thus, when we established reporter viruses
for CeHV2 and tested replication in cell lines from different species, it came as a surprise
that only very limited virus production was detected in several cell lines derived from
rhesus macaques [56]. Although an older report using wildtype CeHV2 came to conflicting
conclusions [57], several publications have also reported limited or no replication of HSV1
and HSV2 in rhesus macaque cells [31–33]. However, a comparative analysis has been
lacking so far. Our comparison of five human and NHP simplexviruses in cell lines of
human and NHP (rhesus macaque and African green monkey) origin shows that HSV1,
HSV2, and, to some degree, CeHV2 have a limited capacity to infect rhesus macaque cell
lines. Importantly, the cell lines tested represent different cell types (epithelial, fibroblast)
and tissues (kidney, mammary gland, skin), making it likely that differential infection
reflects differential species tropism. In contrast, PaHV2 and particularly McHV1 infected
these cell lines efficiently, a finding that confirms and extends previous studies [32,60,61].
Importantly, studies with a rhesus macaque neural cell aggregate model demonstrated
that the reduced capacity of CeHV2 to infect rhesus macaque cell lines extended to neural
cells grown in a 3D culture system. In contrast, McHV1 replicated efficiently in this cell
system, in agreement with observations for HSV1 in human brain organoids [62,63]. Col-
lectively, we observed a differential capacity of primate simplexviruses to infect rhesus
macaque cells.

We note a minor difference between our present and previous findings. Using wild-
type CeHV2, we did not observe the strongly reduced replication in rhesus macaque cell
lines that we had previously recorded for a CeHV2 reporter virus [56]. These differences
can be related to the fusion of ICP4 with a reporter gene [50], which leads to reduced
virus production, most likely due to impaired ICP4 expression. Regardless of the reasons
for this discrepancy, it should be noted that replication of CeHV2 was still reduced by
roughly 2–4 log compared to McHV1 and PaHV2 in rhesus macaque cell lines, underlining
the differences in the capacity of NHP herpesviruses to replicate in rhesus macaque cells.
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All viruses showed CPE in permissive cell lines, while the extent of syncytia formation
differed between the individual viruses. For human simplexviruses, the extent of syncytia
formation was strain dependent and mostly reflects a cell culture adaption, which may also
be cell line-dependent [64]. Thus, syncytia-forming viruses are rapidly selected for in cell
culture, while this phenotype does not impact virus titers [65]. Thus, propagation in cell
culture can lead to adaption due to the selection of preexisting variants. Earlier studies
suggested that HSV1 and HSV2 may become adapted to rhesus monkey or baby hamster
kidney cells upon continued propagation [33]. However, the underlying molecular reason
for these adaptions is not yet known [66]. All viruses in our study have been extensively
passaged on Vero cells [5,9,10,51] and likely have adapted to these cells. However, despite
this common adaption, these viruses show clear differences in their ability to infect cells
derived from rhesus macaques. We are therefore convinced that differences in the tropism
for macaque cells cannot be explained by adaption to Vero cells.

The nature of the block to efficient infection of rhesus macaque cell lines with HSV1,
HSV2 and CeHV2 remains to be elucidated. The entry of HSV1 into target cells is well
studied [67,68] and encompasses the interaction of two glycoproteins, gD and gB, with
multiple cellular receptors. Presently, little is known about the receptor usage of primate
simplexviruses, although it has been shown that McHV1 can use human Nectin-1 but
not the herpesvirus entry mediator or immunoglobulin-like type 2 receptor alpha for
entry [69,70]. In the absence of knowledge on species-specific glycoprotein-receptor inter-
actions, it is difficult to judge whether glycoprotein-receptor interactions are responsible
for the differential susceptibility of rhesus macaque cell lines to infection with primate
simplexviruses. Apart from glycoprotein receptor interactions, restriction factors of the
innate immune system might also modulate permissiveness to infection. In fact, TRIM5α
of rhesus macaque origin has been reported to reduce infection by HSV1 and HSV2 [71].
However, similar effects were also reported for African green monkey TRIM5α, making
TRIM5α an unlikely candidate to explain the relative resistance of rhesus macaque cells to
CeHV2 and particularly HSV1 and HSV2 infection, and a yet unidentified restriction factor
might be responsible.

McHV1 can cause severe disease in humans and requires handling in BSL3 laboratories
in Germany and BSL4 laboratories in the US. In contrast, CeHV2 and PaHV2 are believed to
constitute a moderate threat to humans. The present study does not provide evidence that
this concept should be changed. However, our finding that PaHV2 more closely resembles
McHV1 than CeHV2 regarding the infection of rhesus macaque cells might hint towards
biological similarities between McHV1 and PaHV2. Indeed, for both McHV1 and PaHV2,
neurovirulence in mice has been demonstrated, while CeHV2 was avirulent [21,22,72],
suggesting that risk assessment for PaHV2 at some point might need to be revisited.
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