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Abstract
Terahertz tomographic imaging as well as machine learning tasks represent two 
emerging fields in the area of nondestructive testing. Detecting outliers in measure-
ments that are caused by defects is the main challenge in inline process monitor-
ing. An efficient inline control enables to intervene directly during the manufactur-
ing process and, consequently, to reduce product discard. We focus on plastics and 
ceramics, for which terahertz radiation is perfectly suited because of its character-
istics, and propose a density based technique to automatically detect anomalies in 
the measured radiation data. The algorithm relies on a classification method based 
on machine learning. For a verification, supervised data are generated by a measur-
ing system that approximates an inline process. The experimental results show that 
the use of terahertz radiation, combined with the classification algorithm, has great 
potential for a real inline manufacturing process. In a further investigation additional 
data are simulated to enlarge the data set, especially the variety of defects. We model 
the propagation of terahertz radiation by means of the Eikonal equation.

Keywords Terahertz radiation · Terahertz tomography · Inline monitoring · 
Anomaly detection · Learned defect detection · Machine learning · Nondestructive 
testing · Supervised learning · Gaussian distribution · Eikonal equation

 * Anne Wald 
 a.wald@math.uni-goettingen.de

 Clemens Meiser 
 meiser@num.uni-sb.de

 Thomas Schuster 
 thomas.schuster@num.uni-sb.de

1 Department of Mathematics, Saarland University, Saarbrücken, Germany
2 Institute for Numerical and Applied Mathematics, University of Göttingen, Göttingen, Germany

http://orcid.org/0000-0001-8558-6554
http://orcid.org/0000-0001-6149-8576
http://orcid.org/0000-0002-2667-8691
http://crossmark.crossref.org/dialog/?doi=10.1007/s11220-022-00402-5&domain=pdf


 Sensing and Imaging (2022) 23:30

1 3

30 Page 2 of 16

1 Introduction

Terahertz (THz) radiation is a part of the electromagnetic spectrum with wave-
lengths between 30 µm to 3 mm . The corresponding frequencies from 0.1 to 
10 THz are located between microwaves and infrared radiation. Due to the spe-
cial position in the electromagnetic spectrum, THz radiation is characterized by 
ray and wave character. It is possible to obtain information about the amplitude 
from measurements of the absorption of the radiation whereas the phase can be 
identified using time-of-flight measurements. The radiation is non-ionizing and 
therefore not dangerous to health. It can penetrate many materials, especially 
non-conductive ones such as many ceramics, does not require a medium to couple 
with [7] and is thus used as a non-contact technique. Furthermore, the radiation 
achieves a better resolution compared to microwaves because of its shorter wave-
length [21]. In spite of this wide range of advantages the so called ’THz gap’, 
referring to a lack of effective transducer and detectors [29, 30], prevented an 
extensive application. This gap has only recently been closed. Until a few years 
ago the costs were not yet competitive, but during the last three decades the tech-
nique has improved and the high costs have been reduced [5]. The field of THz 
inspection has expanded rapidly and has nowadays the chance to compete with 
X-ray, ultrasonic and microwaves. Consequently, THz radiation has become an 
interesting and powerful tool for many applications. The radiation is utilized, for 
example, in body scanners for security purposes [27], car painting control, com-
posite materials and for the pharmaceutical industry [29]. In particular, the radia-
tion receives increasing attention in the field of nondestructive testings (NDT), 
where many techniques have been adopted and adapted from competing technolo-
gies like computerized tomography (CT) or ultrasound [12, 25, 28, 30]. While we 
observe a fast progress in the offline control of NDT, THz systems are currently 
too slow for inline inspection, and hence only a few selected applications were 
demonstrated in the past. Recommendations indicate that the systems have to tre-
ble their acquisition speed [5]. This is especially relevant for the surveillance of 
the inline manufacturing, where defects such as cracks, voids and inclusions are 
mostly produced in the course of the process [29]. To avoid short-cycle products 
and to be able to intervene directly, a fast and reliable method to evaluate THz 
radiation data is necessary. First investigations of a contactless and nondestruc-
tive inline control with THz radiation, for instance, were shown in [16]. An over-
view of THz tomography techniques is presented by Guillet et al. [10].

A second emerging field in the last years, driven by increasing computer 
power, are machine learning (ML) techniques. ML is a subsection of artificial 
intelligence (AI) and includes many algorithms and techniques like regression, 
classification, and prediction, or deep learning (DL) [9, 13]. Generally speak-
ing, an ML algorithm is trained by observing large data sets, which refers to the 
learning process, in order to be able to make predictions from unobserved data. 
One usually distinguishes between supervised and unsupervised learning. In the 
supervised context, algorithms learn from pairs of labeled input and output data 
[11], whereas unsupervised learning is able to cope with unlabeled data. Such 
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trained algorithms are thus able to interpret structure or statistical properties of 
data sets, and they have become the most powerful tool for data analysis. Appli-
cations can in particular be found in almost all sectors of industry and economy 
(see [22] or [17]).

In our work, we evaluate measurements of THz radiation scans from an inline 
process with an ML technique called anomaly detection (AD) in order to test its 
applicability in inline monitoring, and, more precisely, the detection of defects in 
the product. An example is the extrusion of plastics, which are particularly suited 
for THz radiation-based testing techniques [7]. The algorithm is based on learning a 
multivariate Gaussian distribution that reflects the properties of measurement data. 
Considering the definition of an anomaly as a significant variation from typical val-
ues [19], the detection of such outliers is perfectly suited for our targeted applica-
tion: We aim to detect defects and deviations in an inline manufacturing process 
of plastics from their impact on the measured data. In a first study we use training 
data from a real-time measurement generated by a measuring system that approxi-
mates an inline process. We obtain a large set of data encoding intensity, refraction 
and reflection and temporal information. These supervised data are used for learn-
ing whether an inline measurement lies inside a certain norm and, subsequently, for 
detecting deviations from this norm. To complete our investigation, we test our AD 
algorithm on an unknown object. In a second step, we restrict ourselves to a single 
feature that encompasses temporal information. Importantly, we include simulated 
data from a suitable mathematical model in order to enlarge our set of data for this 
feature without conducting further time-consuming measurements, and to simulate 
the diversity of defects. For this purpose, we introduce the Eikonal equation to cal-
culate time-of-flight data. Finally, we compare the AD trained on the hybrid data set 
with the AD just based on non-simulated data.

The article is structured as follows: In Sect. 2 we introduce the basics for AD as 
well as the resulting algorithm. The THz measuring system as well as the measured 
data are discussed in Sect. 3. In Sect. 4, we present our numerical results for purely 
measured data sets. Our model-based data set augmentation strategy is explained 
and evaluated in Sect. 5, and our findings are summarized and discussed in Sect. 6. 
This article is further development of the research done in [20].

2  A Classification Algorithm for Inline Monitoring

The idea of AD to trigger alarm if a measurement is inconsistent with the 
expected behavior is a typical ML task. Applications can be found in fields like 
fraud detection, insurance, health care and cyber security [2], or, as in our case, in 
the monitoring of an inline manufacturing process. The starting point of the algo-
rithm is a set of training data {x(1), x(2),… , x(m)} ⊂ ℝ

n . We assume that the train-
ing set contains only measurements from an intact object. Each single data point 
consists of n attributes, called features, which are represented by real numbers. 
Assuming that the data x(i) are realizations of a real-valued random variable with 
probability density function p(x), it is appropriate to identify typical data from 
intact objects with large values p(x(i)) , whereas anomalies can be characterized by 
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small values p(x(i)) . For a given training data set, we first estimate a probability 
density function p ∶ ℝ

n
→ ℝ . Subsequently, we decide, depending on a threshold 

parameter �∗ , whether a new data point xtest is an anomaly or not. The threshold 
parameter is also learned. For this purpose, we use a cross validation set and a 
decision function. The algorithm is inspired by [18, 26].

In order to estimate the probability density function p, we assume that the data 
and, more precisely, its features follow a Gaussian distribution, which is on the 
one hand motivated by our own measured data, see Fig. 4, on the other hand it 
is a common procedure to describe the scattering of measurements as normally 
distributed, see [6].

By using a univariate set of data ( n = 1 ) with x(i) ∈ ℝ as a realization of an 
N(�, �2)-distributed random variable X with mean � ∈ ℝ and variance �2 ∈ ℝ , 
we receive the probability density function of the univariate Gaussian distribution

The parameters � and �2 are estimated by the training data using the formulas

In case of a multivariate set of data x(i) ∈ ℝ
n ( n > 1 ) as a realization of an N(�,Σ)

-distributed random variable X we compute the expected value � ∈ ℝ
n and the 

covariance matrix Σ ∈ ℝ
n×n , obtaining the probability density function of the multi-

variate Gaussian distribution

with

where |Σ| represents the determinant of Σ . The inverse of a matrix A is indicated by 
A−1 , its transpose by AT.

In a second step, we learn the threshold parameter �∗ . To this end we need a 
labeled cross validation set

with labels y(i)
CV

∈ {0, 1} , where y(i)
CV

= 1 means that x(i)
CV

 is anomalous, whereas 
y
(i)

CV
= 0 indicates a defect-free measurement x(i)

CV
 . For any � ≥ 0 we compute the 

decision function f by
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By means of f we compute the confusion matrix

for a fixed threshold parameter � , where the entries represent the number of data 
points correctly labeled as positive (true positives, TP), data points falsely labeled 
as positive (false positives, FP), data points correctly labeled as negative (true nega-
tives, TN), and data points incorrectly labeled as negative (false negatives, FN) (cf. 
[4]). The confusion matrix � characterizes the quality of the classification given � 
and ideally resembles a diagonal matrix. From its entries we deduce the two val-
ues prec = prec(�) (precision) and rec = rec(�) (recall), which both depend on the 
threshold � , by

If the classifier works accurately, we have prec = rec = 1 , and it performs poorly if 
both values are close to zero. Finally we compute the F1-score F1(�) as the harmonic 
mean of prec and rec,

The threshold �∗ is then determined as the value maximizing the F1-Score,

Here, the parameter pmax represents the maximum value of the probability density 
function p. We iterate through the interval [0, pmax] with a given step size and take 
the value of � resulting in the highest F1-score as the maximizer. We choose the 
number of grid points depending on pmax.

Finally we evaluate the algorithm by means of a test set

The test set usually consists of measured and, if it is possible, of simulated data, 
and contains as many normal and anomalous data as the cross validation set. If the 
evaluation fails, then the set of training data should be enhanced by acquiring more 
measurement data or adding simulated data. After the parameters have been learned, 
a classification can be used to indicate whether an irregularity exists for an unknown 
data set: If the value of the probability density function falls below the optimal 
threshold parameter �∗ , then the inline process should be intervened. A summary of 
the density-based AD and classification algorithm is given by Algorithm 1.

(2.4)f
(
x
(i)

CV
, 𝜖
)
=

{
1, if p

(
x
(i)

CV
;𝜇,Σ

)
< 𝜖
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)
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3  The THz Measuring System and the Data Set

The THz measuring system that simulates the procedure of an inline monitoring 
process for our studies has been set up at the Plastics Center (SKZ) in Würzburg, 
Germany. All real measured data used for our AD algorithm have been recorded at 
the SKZ, the system is displayed in Fig. 2. The emitter and the receivers are placed 
on a turntable which rotates around the object under investigation. It is possible to 
shift the turntable vertically, while at the same time the observed object is fixed. 
The emitter sends electromagnetic radiation of a frequency between 0.12 and 0.17 
THz and, simultaneously, measures reflection data. One receiver is located oppo-
site the emitter to register deviations in the transmission process. A second one is 
placed close to the first one to collect information on the refraction of the radiation. 
Figure 1 illustrates this setup of the actual THz tomograph from Fig. 2. We receive 
data x(i[k,z]) , k = 1,… ,K , z = 1,… , Z , for the two-dimensional slice of the object in 
step k, in which a complete 360◦ rotation in Z steps of the measuring system is per-
formed; the entire three-dimensional object is then scanned by shifting the measur-
ing system in K steps, such that we obtain K scans of slices of the object.

During an inline process, however, the emitter—and accordingly the receivers—
describe a slightly different trajectory. For example, in an extrusion process, the 
material moves through a horizontally and vertically fixed measuring system that 
rotates around the object. Since the investigated object continuously moves through 
the measuring system instead of step-wise, the measuring system moves on a helical 
trajectory relative to the object. In this case, we thus acquire 3D data, but since the 
object is not shifted but moved along, there are only few data points per slice.



1 3

Sensing and Imaging (2022) 23:30 Page 7 of 16 30

For our investigations we used solid pipes made of polyethylene with a diam-
eter of 10 cm and various lengths. The material has a refractive index of about 
n = 1.53 and an absorption coefficient of about � = 0.06 cm−1 . After scanning 
the pipes without defects, we manufactured horizontal and vertical holes in some 
pipes to generate defects. Furthermore, we filled some holes with materials like 
oil and metal. This way we obtain a data set consisting of 220400 measurements 
from intact samples and 105965 anomalous data points from defect samples. We 
split it into three subsets: a training set, a cross validation set and a test set. The 
cross validation set and the test set each are composed of 50% of the anomalous 
data and 20% of the typical data, while the training set just includes 60% of the 
unaffected elements. One single data point x(i) = x(i[k,z]) is composed of five fea-
tures: In each position [k, z], where k = 1,… ,K refers to the shift and z = 1,… , Z 

Fig. 1  Schematic THz tomograph

Fig. 2  THz tomography system at the Plastics Center (SKZ) in Würzburg
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to the angle position, the receivers R1 and R3 measure absorption and phase infor-
mation, while receiver R2 only registers the absorption information since no 
reference signal is available that is required for the phase information. Figure 3 
illustrates a measured horizontal shift (i.e., the phase shift) and a vertical shift 
(i.e., the absorption loss) of the amplitude (red) compared to the reference signal 
(blue).

Figure  4 shows the distribution of a normal set of data measured by the 
receiver R1 opposite the emitter. We see that, indeed, the measurements resemble 
a Gaussian distribution concerning both the absorption data as well as the phase 
shifts. We find similar results for receiver R3 and receiver R2 , whereas the latter 

Fig. 3  Horizontal and vertical shift of the amplitude [24]

Fig. 4  Distribution of the measured data in transmission
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only provides useful data about the amplitude due to the lacking reference signal 
from the calibration measurement, where refraction does not occur.

We work with the K × Z-matrices represented in Fig.  5. The angle position is 
illustrated on the x-axis, while the vertical shift is shown on the y-axis. In the case 
shown, Z = 380 measurements are made per rotation and the system is shifted in 
K = 120 steps of 1 mm . We see a time-of-flight measurement of the receiver oppo-
site the emitter illustrated by the path difference on the left side and its amplitude 
ratio an the right side.

4  Numerical Results

In this section, we present the computational results of our investigations. By using 
the data set described in Sect.  3, we evaluate the algorithm and, more generally, 
determine whether the application of terahertz radiation for the inline monitoring of 
plastics is suitable. Based on this, we investigate an unknown pipe with the learned 
algorithm to resolve the locations of the defects. We use the software MATLAB for 
the implementation.

By including the measured values of receivers R1 , R2 and R3 , we integrate infor-
mation about transmission, reflection and refraction, respectively, of the terahertz 
radiation in our setting. The multivariate Gaussian distribution is estimated as

with

p(x;�,Σ) =
1

(2�)
5

2 |Σ| 1

2

e−
1

2
(x−�)TΣ−1(x−�)

Fig. 5  Data points of a normal solid pipe in transmission
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We obtain the learned threshold parameter �∗ = 2.260130 and the corresponding 
confusion matrix

The respective F1-score is given by F1(�
∗) = 0.995921 , which is an impressive 

result. Only 434 out of 96682 data points are predicted positive though being nega-
tive and all anomalous data points are found.

We finally apply the AD process to investigate an unknown solid pipe that poten-
tially contains defects. We use scanning data with the above mentioned five features 
to calculate values of the probability density function with estimated expected val-
ues and covariance matrix. Figure 6 visualizes the results Y =

(
y(i[k,z])

)
k,z

 according 
to Algorithm 1: The anomalous data with y(i[k,z]) = 1 are marked yellow. Two defects 
are detected by our algorithm, which both appear twice in the plot since they are 
scanned in intervals of 180◦ when the system is rotated. The plot is read from top to 
bottom: The first horizontal yellow lines represent the transition between air and 
pipe. They are followed by an area of about 40 mm which includes a defect. After a 
small section with no defects, a second damage of about 10 mm follows. The last 
measurements are unaffected.

By comparing our results with the exact dimension of the pipe, we note that again 
promising results are achieved: The solid pipe was built with two damaged areas, a 

� =

⎛
⎜⎜⎜⎜⎝

53.601002

1.015691

0.139608

0.010417

83.159275

⎞
⎟⎟⎟⎟⎠
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.

Fig. 6  Anomaly detection of an unknown pipe
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vertical hole of 4 cm from above and a lateral hole with a diameter of 8 mm . Note 
that the aim of our investigation was not to determine the exact dimensions of the 
defects and to characterize them, but to localize the approximate anomalous areas 
which was completely achieved.

Considering the computational time of Algorithm 1, the second step is the most 
expensive one, since an optimization problem is solved. The total time depends on 
the amount of data and, in our case (Intel Core i7-8565U processor), it amounts to 
about three seconds. Furthermore, the performance of the algorithm increases by the 
number of correct measurements that are used for the training process. Addition-
ally, we found that using less anomalous data worsens the performance. We used 
the maximal amount of the available data. The partition of the correct data into the 
training set, the cross validation set and the test set does not influence the gener-
alizability significantly, e.g., we tested a split of 80/10/10 for the correct data and 
obtained a comparable result.

5  Learned Anomaly Detection Based on Partly Simulated Data Sets

In a further investigation we include simulated data into our data set. For this pur-
pose, we model the propagation of terahertz radiation, more precisely the space-
dependent travel time T and propagation velocity v, by the Eikonal equation

with a suitable constraint

for an initial value (x0, y0) ∈ �Ω on the boundary �Ω of the domain Ω . The Eikonal 
equation can be regarded as a high frequency approximation of the Helmholtz equa-
tion and, more generally, of the wave equation taking into account time harmonic 
waves [3, 8, 15]. The solution of this nonlinear partial differential equation is the 
(travel) time T(x, y) the terahertz wave needs to reach the point (x, y) in the domain 
Ω and depending on the propagation velocity v. The latter is directly related to the 
refractive index n of the object via

where c is the speed of light in vacuum. The point (x0, y0) on the boundary repre-
sents the position of the emitter and therefore the source of the radiation.

By solving the Eikonal equation for known refractive indices n resp.  propaga-
tion times v, we enlarge the data set and, more precisely, the feature ’travel time’ 
of receiver R1 . The Eikonal equation is solved by the Fast Marching Method [1, 
14], which had been introduced by Sethian in [23]. We implement the algorithm in 
MATLAB paying attention to the usual geometry of a terahertz beam, encompassing 
in particular a Gaussian intensity profile and a Rayleigh zone whose length depends 

|∇T(x, y)|2 = 1

v2(x, y)
for all (x, y) ∈ Ω ⊂ ℝ

2

T(x0, y0) = 0

n(x, y) =
c

v(x, y)
,
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on the lenses in our measuring system (see also [25, 28]). A simulation of the travel 
time of the THz radiation emitted from a point source is presented in Fig. 7.

We validate the physical model by comparing the simulated data with real 
measurements for a solid pipe with a diameter of 10 cm and refractive index 
n = 1.53 . Figure 8 shows the path differences on the y-axis as a function of the 
angle position for one rotation. The simulated data are plotted in blue while the 
measured ones are illustrated by the red line. We added a uniform noise of 3% to 
the simulated data. Since the scanned object is a rotationally symmetric solid pipe 

Fig. 7  Numerical calculation of the travel time for a Gaussian terahertz beam

Fig. 8  Path difference of the simultated (blue) and real (red) data in comparison
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with homogeneous refractive index and the beam is directed at the rotation axis, 
we expect to obtain the same travel time for all angular positions of the measure-
ment setup. Indeed, both simulated and real measurement series yield compara-
ble results. Due to the specific setup of this experiment, the mean value of the 
travel time is a good benchmark to compare the simulation with the experiment: 
The mean value of the simulated travel time is computed as ssim = 53.119081 mm 
and the one of the measured travel time as sreal = 53.602705 mm . In addition, we 
determine the relative deviation Δrel of the mean values via

which yields Δrel = 0.9022 % , indicating a good consistency of simulation and 
experiment.

The main advantage of the simulation is that we can easily extend the set of 
investigated objects by varying the number and types of defects. The manufac-
turing of representative objects and materials - such as the pipes from our first 
experiments - can thus be limited or entirely omitted in order to create suitable 
data sets for the learning process. As a consequence, such a virtual object design 
and the respective generation of simulated data can provide a basis for a more 
economic application of AD algorithms in practice. In particular, by combining 
simulated data and real measurements, not every single defect has to be created 
and included in the real material. For complex inline products, such as window 
frames for instance, this would have huge advantages. In our case, we purely aug-
ment our training data by means of simulations for the Eikonal equation, so that 
we only simulate one of the five measured features, which defines a one-dimen-
sional setting.

We now illustrate the performance of our hybrid data sets in practice: We use the 
feature travel time of our simulated and the real data from receiver R1 and perform a 
one-dimensional AD. For this, we supplement the data set of Sect. 3 with simulated 
data calculated from the solution of the Eikonal equation. According to the previ-
ous investigations, we learn the parameters of a one-dimensional Gaussian distri-
bution and the threshold parameter �∗ . We then perform the respective trained AD 
method for the unknown pipe. The calculated Gaussian distribution p(x;�, �2) (see 
also (2.1)) is given by the learned parameters � = 53.546907 and �2 = 0.282028.

As described in Sect.  2, we calculate the confusion matrix � for a varying 
threshold � and compute a maximal F1-score of 0.489209 for the optimal thresh-
old parameter �∗ . Here, as expected, the F1-score is significantly lower than in our 
first experiment due to the reduced number of available features. The resulting 
plot of the output of our algorithm, which indicates whether a defect has been 
detected (value 1) or not (value 0), is shown in Fig. 9 on the left-hand side.

In order to show an added value of the simulated data, we also learn the one-
dimensional parameters only with the real measured data and neglect the simu-
lated data. Figure  9 illustrates the result: It is obvious that by using both sim-
ulated and measured data, the defect areas can be resolved and detected more 
reliably than without simulated data.

Δrel =
sreal − ssim

sreal
⋅ 100 %,
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Relating the results shown in Fig. 9 to the one from Fig. 6, we conclude that the 
best results were achieved by the multidimensional setting. However, a tendency to 
over-sensitivity can be seen at this point, which would result from a further increase 
in features. For a multi-dimensional approach with simulated data, other models 
need to be investigated for the simulation of refraction and absorption data. How-
ever, the increased accuracy gained by using simulated data from the Eikonal equa-
tion indicates the potential of simulated data in ML applications.

6  Discussion and Conclusion

In this article we evaluated THz tomographic measurements with an AD algorithm 
to investigate its use in the inline process monitoring of plastics and ceramics. We 
introduced the algorithm and tested it on a real data set measured at the Plastics 
Center (SKZ) in Würzburg, Germany. The computational results show that our pre-
sented technique has great potential for the inline monitoring and for applying it in a 
real time system. A good detection of defects and anomalous data was demonstrated.

In a further experiment we restricted ourselves to using data with only a single 
feature, i.e., travel time data, which reduced our investigation to a one-dimensional 
setting. We simulated the propagation of the THz radiation by using the Eikonal 
equation as a physical model, taking into account the beam profile of THz radiation. 
We combined simulated data with real measured data and performed a one-dimen-
sional AD. For the considered case, again, promising results were demonstrated. In 
this setting the simulation of data by the Eikonal equation improves the detection of 
anomalies.

It is a future challenge to transfer the results to further materials and production 
processes. This includes finding physical models that are able to serve as a basis 
for simulations of the remaining features of the measuring system, in particular the 
reflection and the absorption data. A possibility for simulating the intensity is given 
by Tepe et al. [25], where a modified Algebraic Reconstruction Technique has been 
developed and used to identify the refractive index and the absorption coefficient. 

Fig. 9  One-dimensional anomaly detection of the unknown pipe. Left-hand side: using a hybrid data set 
comprising simulated and real measured data; right-hand side: using only measured data
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Regarding the use of our technique in industry, our methods shall be extended in 
such a way that, in addition to defect detection, a defect classification is possible to 
enable a more detailed diagnostic of the production process and to simplify a tar-
geted intervention. To this end, we aim at extending the AD algorithm towards a 
deep learning based technique that is trained to classify defects and their proper-
ties (shape, size, material properties in the case of impurities). For the generation of 
simulated data, it will be vital to investigate the nature of typical defects in practical 
applications.
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