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Abstract: Quantile regression provides a convenient framework for analyzing the impact of covari-
ates on the complete conditional distribution of a response variable instead of only the mean. While
frequentist treatments of quantile regression are typically completely nonparametric, a Bayesian formu-
lation relies on assuming the asymmetric Laplace distribution as auxiliary error distribution that yields
posterior modes equivalent to frequentist estimates. In this paper, we utilize a location-scale mixture of
normals representation of the asymmetric Laplace distribution to transfer different flexible modelling
concepts from Gaussian mean regression to Bayesian semiparametric quantile regression. In particular,
we will consider high-dimensional geoadditive models comprising LASSO regularization priors and
mixed models with potentially non-normal random effects distribution modeled via a Dirichlet process
mixture. These extensions are illustrated using two large-scale applications on net rents in Munich and
longitudinal measurements on obesity among children. The impact of the likelihood misspecification
that underlies the Bayesian formulation of quantile regression is studied in terms of simulations.

Key words: Quantile Regression; Geodditive Regression; MCMC; LASSO Regularization; Dirichlet
Process

Received February 2012; revised January 2013; accepted February 2013

1 Introduction

Quantile regression allows to determine the influence of covariates on the conditional
quantiles of the distribution of a dependent variable. Therefore, one of the main
advantages over mean regression is that quantile regression permits to supply detailed
information about the complete conditional distribution instead of only the mean. In
addition, outliers and extreme data are usually less influential in quantile regression
due to the inherent robustness of quantiles.
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For classical linear quantile regression as introduced by Koenker and Bassett
(1978), estimation of the quantile-specific regression coefficients βτ relies on mini-
mizing the sum of asymmetrically weighted absolute deviations (AWADs)

min
βτ

n∑
i=1

ρτ (yi − x′
iβτ ),

where (yi , xi ), i = 1, . . . , n are the observed response and covariate values for n
observations, the check function

ρτ (yi − x′
iβτ ) =

{
τ |yi − x′

iβτ | if yi ≥ x′
iβτ

(1 − τ )|yi − x′
iβτ | if yi < x′

iβτ

defines asymmetrically weighted absolute residuals and τ ∈ (0, 1) is the quantile
of interest. This approach is completely nonparametric and does not require the
assumption of a specific response distribution. No closed form solution for the min-
imization problem exists and quantile regression estimates are typically obtained
based on linear programming (see Koenker, 2005, for details).

Recent interest in quantile regression has focused on broadening the scope of
supported model specifications. For example, additive quantile regression models
have gained considerable attention. Oh et al. (2011) propose differentiable approx-
imations to the AWAD criterion that allow to employ different types of smoothing
approaches while Li et al. (2010) and Wu and Liu (2009) show ways to incorpo-
rate regularization on fixed effects into linear quantile regression, the first one in
the Bayesian context, the second in a frequentist framework. Fenske et al. (2011)
propose boosting approaches for flexible, additive quantile regression models, where
penalized least squares estimates are utilized as base-learners. Koenker et al. (1994)
added an L1-norm penalty to the AWAD criterion that allows to still use linear
programming techniques in the context of quantile smoothing splines. Koenker and
Mizera (2004) extend this approach to surface estimation based on triograms.

In this paper, we will introduce yet more flexible types of quantile regression
models motivated by two large-scale applications on rents for flats in the city of
Munich and on longitudinal childhood growth measurements. The German tenancy
law puts restrictions on the increase of rents and forces landlords to keep the price in
a range defined by flats which are comparable in size, location and quality. To make
it easier for tenants and owners to assess if the rent is appropriate for a flat, so-called
rental guides are derived based on large samples of flats. In the following, we will
use data from the 2007 Munich rental guide with about 3000 observations and 250
covariates. Kneib et al. (2011) suggested a high-dimensional geoadditive model

yi = x′
iβ + f1(sizei ) + f2(yeari ) + fspat(si ) + εi (1.1)

for analyzing the expectation of the net rent per square metre yi in terms of nonlinear
effects f1 and f2 of the size of the flat in square metres and the year of construc-
tion, a spatial effect fspat based on district information si and a high-dimensional
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vector of mostly categorical covariates xi (such as presence of a fridge, attic, garden
or balcony) with linear effects β. While penalized splines and a Gaussian Markov
random field have been employed for the nonlinear and spatial effects, respectively,
least absolute shrinkage and selection operator (LASSO) and ridge penalization have
been applied to the vector β to achieve regularization. It turned out that, for mean
regression, a geoadditive model with LASSO regularization outperforms a model of
moderate dimension resulting from expert knowledge and has slight advantages over
a comparable model with ridge regularization. We therefore aim at extending the
high-dimensional geoadditive model to quantile regression, to enable a more detailed
view on the conditional distribution of the net rents. In particular, quantile regres-
sion allows to determine flexible bounds for the net rent based on, for example,
the 5% and the 95% quantiles without imposing strong assumptions on the error
distribution.

The second application deals with longitudinal measurements on the natural
course of growth of children in the LISA (Influences of Life-style factors on the
development of the Immune System and Allergies in East and West Germany) study.
The objective of the study is to analyze the variations in individual body mass in-
dex (BMI) patterns while simultaneously determining the impact of factors driving
the growth of children, such as the breast-feeding behaviour or maternal BMI. Since
there is considerable variation in the highly nonlinear individual profiles, Heinzl et al.
(2012) suggest a flexible additive mixed model

yit = f (t) + x′
i tβ + z′i tbi + εi t, (1.2)

where t = 1, . . . , Ti , denotes the time, i = 1, . . . , n, the individual, f (t) represents
the overall trend in the BMI measurements, x′

i tβ contains parametric, fixed effects
common to all children and the random effects term z′i tbi contains individual-specific
deviations from the overall trend. Since there appear to be different groups of children
with specific patterns in their individual-specific deviations and to account for po-
tential non-normality of the random effects distribution, Heinzl et al. (2012) utilized
a Dirichlet process mixture (DPM) in mean regression as random effects distribu-
tion which allows for very flexible random effects distributions and model-based
clustering of the random effects. The presented data set was also already treated by
Mayr (2010), who introduced a boosting approach to model quantile-based predic-
tion intervals and Fenske et al. (2008), who also used boosting for additive quantile
models. Random effects in quantile regression were, for example, treated in Kim and
Yang (2011). In this paper, we show a combination of the mentioned works, which
includes the clustering features of the DPMs as well as the fact that the Bayesian
framework renders available credible intervals for the parameters. The choice of ad-
ditional arguments, such as smoothing parameters, is conducted automatically in the
Bayesian context.

In summary, our aim is to make flexible components in semiparametric regres-
sion models, such as nonlinear effects, spatial effects, LASSO regularized coefficient
blocks or non-normal random effects, applicable in the context of quantile regres-
sion. These are typically difficult to combine with linear programming or other direct
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maximization approaches. Instead, we rely on a Bayesian formulation of quantile
regression based on the asymmetric Laplace distribution as an auxiliary error distrib-
ution as suggested in Yu and Moyeed (2001). Therefore, we consider the alternative
representation of the quantile regression problem as

yi = ηi,τ + εi,τ ,

where ηi,τ is the predictor of the τ th quantile in the regression model and εi,τ is an
appropriate error term. Instead of assuming zero mean for the errors as in mean
regression, one then imposes the restriction that the τ th-quantile of the error distri-
bution is zero. In the Bayesian framework, we have to assume a specific distribution
for the errors (or equivalently the responses) to be able to set up a likelihood. The
asymmetric Laplace distribution yi ∼ ALD(ηi,τ , δ2, τ ) with location parameter ηi,τ ,
precision parameter δ2, asymmetry τ and density

p(yi |ηi,τ , δ2, τ ) = τ (1 − τ )δ2 exp(−δ2ρτ (yi − ηi,τ )) (1.3)

is particularly useful since it yields posterior mode estimates that are equivalent to
the minimizers of the AWAD criterion. Obviously, the assumption of an asymmetric
Laplace distribution for the error terms will usually be a misspecification such that
we actually abuse the asymmetric Laplace distribution likelihood to make quantile
regression accessible in a Bayesian formulation. In addition to the heuristic argu-
ment that posterior modes with the asymmetric Laplace distribution coincide with
the AWAD minimizers and that, asymptotically, the posterior mean obtained with
Markov chain Monte Carlo (MCMC) simulations is equivalent to the posterior mode,
we will study the impact of the misspecification in terms of a simulation study. It
will turn out that the point estimates obtained from Bayesian quantile regression are
usually close to their frequentist analogues and to the true effects while confidence
intervals have to be interpreted with care especially for extreme quantiles.

To actually make Bayesian inference for the asymmetric Laplace distribution
computationally feasible, Kozumi and Kobayashi (2011) and Reed and Yu (2009)
introduced a location-scale mixture representation that allows to rewrite Bayesian
quantile regression as a conditionally Gaussian regression with offset and weights.
As a consequence, Bayesian inferential schemes developed for Gaussian regression
models can then (at least conceptually) be easily transferred to quantile regression.
Amongst others Yue and Rue (2011) and Lum and Gelfand (2012) use this repara-
metrization. However, Yue and Rue (2011) observed severe mixing and conver-
gence problems in their approach to sampling-based Bayesian quantile regression
and therefore had to resort to an approximate solution based on integrated nested
Laplace approximations. We propose a different updating scheme (based on basis
coefficients of nonparametric effects instead of function evaluations) that overcomes
the difficulties encountered by Yue and Rue (2011). Moreover, we embed Bayesian
semiparametric quantile regression in a generic framework that enables the flexible
inclusion of hyperprior structures on the variance (and mean) parameters of the con-
ditional Gaussian priors of the regression effects. Such hyperprior structures can be
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used to re-cast extensions of semiparametric regression such as LASSO regulariza-
tion or DPMs in the context of conditionally Gaussian Bayesian quantile regression.
Some work on regularization in quantile regression context has also been done by
Alhamzawi et al. (2012), Li and Zhu (2008), Wang et al. (2007) and Alhamzawi and
Yu (2013).

The rest of this paper is organized as follows: In Section 2, we first introduce
the location-scale mixture representation of the asymmetric Laplace distribution and
present a generic MCMC simulation algorithm for Bayesian quantile regression with
conditionally Gaussian priors. In a simulation study, we compare Bayesian additive
quantile regression to frequentist total variation penalization splines to assess the
impact of the misspecified likelihood in the Bayesian formulation. Afterwards, we
introduce different special cases of the generic Bayesian model and the correspond-
ing hyperprior specifications. Section 3 presents the applications based on a high-
dimensional geoadditive regression model in case of the Munich rental guide and a
nonparametric random effects model for the longitudinal growth measurements.

2 Bayesian semiparametric quantile regression

2.1 Generic Bayesian quantile regression with auxiliary error distribution

While the asymmetric Laplace distribution (1.3) provides a convenient way to express
quantile regression in a Bayesian framework based on an auxiliary error distribu-
tion, it complicates inference based on MCMC simulations due to the inherent non-
differentiability of the check function ρτ . We therefore follow Yue and Rue (2011)
and utilize a scale mixture of Gaussians representation of the asymmetric Laplace
distribution. Let Z ∼ N(0, 1) and W ∼ Exp(δ2) be two independent random vari-
ables following a standard normal and exponential distribution with rate parameter
δ2, respectively. Then

Y = η + ξW + σ Z

√
W
δ2

with ξ = 1−2τ
τ (1−τ ) and σ 2 = 2

τ (1−τ ) follows the ALD(η, δ2, τ ) distribution. As a conse-
quence, the Bayesian quantile regression problem can be reformulated as a condi-
tionally Gaussian regression with offsets ξW and weights σ

√
W/δ2 after imputing

W as a part of the MCMC sampler.
To be more specific, we assume that n independent realizations yi ∼ ALD(ηi , δ2, τ )

are given with generic semiparametric predictor

ηi =
J∑

j=1

f j (vi ).
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The predictor comprises various functions f j that are defined on the complete vector
of covariates vi . For example, specific components may be given by (i) linear functions
f j (vi ) = x′

iβ where xi is a subvector of vi , (ii) univariate nonlinear functions f j (vi ) =
f (xi ) where xi is a single continuous element of vi , (iii) spatial effects f j (vi ) = fspat(si )
where si is a spatial location variable or (iv) random effects f j (vi ) = xi bci , where xi
is some covariate (potentially including a constant for random intercepts) and ci is
a cluster variable that groups the observations; see Fahrmeir et al. (2004) or Kneib
et al. (2009) for similar generic model specifications.

In matrix notation, we can always write the generic model as

η = Z1γ 1 + . . . + ZJ γ J

where the design matrices Z j are obtained by suitable basis expansions and γ j contain
the corresponding basis coefficients.

Our assumptions imply the observation model

y | γ 1, . . . , γ J , w, δ2 ∼ N(η + ξw, σ 2/δ2 D)

where y = (y1, . . . , yn)′ and η = (η1, . . . , ηn)′ are the vectors of response observa-
tions and predictors, respectively, w = (w1, . . . , wn)′ is the vector of i.i.d. Exp(δ2)
distributed weights implied by the scale mixture, and D = diag(w1, . . . , wn) is a
corresponding diagonal matrix of the weights.

In order to enforce specific properties of the basis coefficients such as (e.g., spatial)
smoothness, we assume conditionally Gaussian, possibly partially improper priors

γ j |m j , θ j , δ2 ∝ exp

(
−1

2
(γ j − m j )

′K j (θ j )(γ j − m j )

)
(2.1)

where the prior precision K j (θ j ) may depend on a vector of further hyperparameters
θ j for which additional hyperpriors have to be defined depending on the specific
type of effect. A term f = Zγ (e.g., P-spline, LASSO component) is then specified by
defining

• a design matrix Z,
• a precision or penalty matrix K(θ),
• a prior p(m) for m,
• a prior p(θ) for the hyperparameter(s) θ .

We will give specific examples in Sections 2.2–2.4.
Since the location-scale mixture representation and the conditionally Gaussian

prior structure yield a conjugate model hierarchy, the full conditionals for the re-
gression coefficients are again Gaussian γ j |· ∼ N(μ j , � j ) with expectation and
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covariance matrix

μ j = �−1
j

(
δ2

σ 2 Z′
j D−1(y− ξw − η− j ) + K j (θ j )m j

)
,

� j =
(

K j (θ j ) + δ2

σ 2 Z′
j D−1 Z j

)−1
,

(2.2)

where η− j = η−Z jγ j is the partial predictor without the jth effect. When comparing
the full conditionals with those arising from mean regression, where

μ j = δ2�−1
j (Z′

j (y− η− j ) + K j (θ j )m j ) and � j = (K j (θ j ) + δ2 Z′
j Z j )

−1

we find only minor differences corresponding basically to the imputed weights and
the offset.

Resulting from the scale mixture representation of the asymmetric Laplace dis-
tribution, the weights wi are a priori i.i.d. exponentially distributed given the prior
precision δ2, i.e., wi | δ2 ∼ Exp(δ2). This implies that the full conditionals for imputing
the inverse of the weights are inverse Gaussian:

w−1
i |· ∼ InvGauss

(√
ξ2 + 2σ 2

(yi − ηi )2
,
δ2(ξ2 + 2σ 2)

σ 2

)
. (2.3)

If the prior for the precision parameter δ2 is chosen to be the conjugate gamma
distribution Ga(a0, b0), the resulting full conditional is also gamma:

δ2|· ∼ Ga

(
a0 +

3n
2

, b0 +
1

2σ 2

n∑
i=1

w−1
i (yi − ηi − ξwi )

2 +
n∑

i=1

wi

)
. (2.4)

Since the prior for the weights also depends on δ2, these are also part of the updated
gamma parameters in the full conditional, yielding a slight change compared to the
corresponding full conditional in mean regression.

In summary, we obtain the prior structure shown in Figure 1 that induces the
following algorithm for generic Bayesian quantile regression:

i. for j = 1, . . . , J sample γ j from the Gaussian distribution with parameters
(2.2),

ii. for j = 1, . . . , J sample θ j and m j from the corresponding hyper full condi-
tional (as detailled in the following sections),

iii. for i = 1, . . . , n sample wi from the inverse Gaussian distribution (2.3),
iv. sample δ2 from the gamma distribution (2.4).

Note that our MCMC sampler for geoadditive quantile regression differs from the
one proposed in Yue and Rue (2011) in the update related to nonparametric effects.
While Yue and Rue (2011) update the vector of function evaluations f j , our sampler
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Optional prior structure
for K−1

j (θ j )
(see Section 2.3)

�

�
�

�
��

Optional prior structure
for m j

(see Section 2.4)

δ2 ∼ Gamma(a0, b0)

�

γ j ∼ N(m j , K−1
j (θ j ))

�

wi ∼ Exp(δ2)

�

y|γ 1, . . . , γ J , δ2, w ∼ N(Z1γ 1 + . . . + ZJ γ J + ξw, σ 2W2

δ2 )

Figure 1 Structure of a simple quantile regression model

is based on the corresponding basis coefficients γ j . This has two major advantages:
On the one hand, the dimensionality of the parameter vector is considerably smaller,
inducing a tremendous reduction in computing time. On the other hand, it avoids
the severe mixing and convergence problems observed by Yue and Rue (2011) and
therefore renders estimation of models with more than one nonparametric effect
possible.

In the following sections, we present specific examples for modelling the functions
f j and updating the corresponding hyperparameters θ j and m j . For notational sim-
plicity the index j will be suppressed, as there will be always a focus on one special
class of effects.

2.2 Geoadditive quantile regression

Continuous covariates. For approximating potentially nonlinear effects, Bayesian P-
splines can be used, see Eilers and Marx (1996) and Brezger and Lang (2006) for
full details. Here the n × K design matrix Z is composed of B-spline basis functions
evaluated at the observations xi . Assuming a first or second order random walk for
γ , i.e.,

γk | γk−1, θ2 ∼ N

(
γk−1,

1
θ2

)
, k = 2, . . . , K
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or

γk | γk−1, γk−2, θ2 ∼ N

(
2γk−1 − γk−2,

1
θ2

)
, k = 3, . . . , K

as smoothness prior with diffuse priors for initial values yields the penalty matrix
K(θ ) = θ2 R′R where R is a first or second order difference matrix. The prior also
implies m = 0. The vector of additional parameters θ collapses to a single precision
parameter θ2 that governs the trade off between fidelity to the data and smoothness.
The standard prior is θ2 ∼ Ga(a, b) implying the full conditional

θ2 | · ∼ Ga(a + 0.5rank(K(θ )), b + 0.5γ ′K(θ)γ ). (2.5)

Spatial effects. For data observed on a regular or irregular lattice as in our case study
on rents in Munich, a common approach for the spatial effect is based on Markov
random fields (see Rue and Held, 2005). Let si ∈ {1, . . . , K} denote the spatial
index or region of the ith observations. Then we assume fspat(si ) = γsi , i.e., separate
parameters γ1, . . . , γK for each region are estimated. The n × K design matrix Z is
an incidence matrix whose entry in the ith row and kth column is equal to one if
observation i has been observed at location k and zero otherwise.

The most simple Markov random field prior for the regression coefficients γs is
defined by

γs | γu, u =/ s, θ ∼ N

(∑
u∈∂s

1
Ns

γu,
1

Nsθ
2

)
,

where Ns is the number of adjacent regions of s, and ∂s denotes the regions which
are neighbours of region s. This implies the penalty matrix K(θ ) with elements

K(θ)[k, u] =
1
θ2

{−1 k=/ u, k ∼ u,
0 k=/ u, k � u,
|N(k)| k = u

and m = 0. Again the vector θ of additional parameters collapses to a single precision
parameter θ with gamma prior θ2 ∼ Ga(a, b) and corresponding full conditional
(2.5).

Impact of the likelihood misspecification. As the ALD obviously is a misspecification
of the true error structure, we conducted some simulations to analyze the validity
of Bayesian credible intervals obtained with the auxiliary ALD error distribution in
terms of coverage probabilities in nonlinear effects. The results were compared to the
confidence intervals developed in Koenker (2011) for quantile regression smoothing
splines with total variation penalization and implemented in function rqss of the
R-package quantreg. We considered the following four model set-ups:

• M1: y = 2 + 5 sin(2/3x) + ε, ε ∼ N(0, .3 + (2x − 1)2)
• M2: y = sin(2(4x − 2)) + 2 exp((−162)(x − .5)2) + ε, ε ∼ N(0, .3 + (2x − 1)2)
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• M3: y = 5 sin(2/3x1) + 1.5 log(x2) + ε, ε ∼ N(0, 1.5(x1 − 1.5)2 + 0.5)
• M4: y = sin(2(4x − 2)) + 2 exp((−162)(x − .5)2) + ε, ε ∼ Gamma(4, 2/(3x))

In all four situations, the error distributions are heteroscedastic. While the first
two models represent situations with only one nonlinear effect and either rather low
(M1) or high (M2) curvature of the quantile curves, the third model comprises two
nonlinear effects with only one covariate affecting the variability. The fourth model
has the same predictor as (M2), but the error is assigned a gamma distribution. As
the effect of this change was rather small, we only show the results of (M2). Adding
more effects made the computational time of rqss rise immensely, while for MCMC
time rises only linearly with the number of effects.

For each model, we simulated 100 data sets with sample sizes n = 500 and n = 750.
Since rqss does not allow to extrapolate outside the convex hull of observed covari-
ate values in prediction, we evaluated the function estimates and their confidence
intervals on a 400 point equidistant grid within the intervals of observed covariate
values.

The most interesting results of this simulation exercise can be summarized as
follows:

• For extreme quantiles in the outer range of the response distribution, confidence
intervals obtained from Bayesian quantile regression tend to underestimate
uncertainty while rqss tends to be right on average (see Figure 2 for an example
in M1).

• For more central parts of the response distribution, the coverage rates are
much closer to the nominal level, in particular if the functions to be estimated
are smooth (see Figure 3). In the simulations, the results for 20% and 80%
quantiles have been close enough to the nominal level to consider them a helpful
tool in applied analyses.

• In contrast, confidence intervals obtained with rqss tend to be much too wide
for central parts of the response distribution. In these situations, the confidence
intervals are therefore much too conservative and the empirical coverage is very
close to 100%. This overestimation of uncertainty is particularly expressed in
case of M3 comprising two nonlinear effects (see Figure 4). In model M3, we
also experienced some numerical problems when computing the confidence
intervals within rqss that required manual fine-tuning of several optimization
parameters.

• Both approaches have difficulties in reaching the nominal coverage level when
functions have abrupt changes or peaks (see Figure 3).

• When considering single function estimates, rqss occasionally produced very
wiggly confidence intervals (see Figure 2). While the coverage is still right on
average, such confidence intervals still seem hard to justify in applied work.
Although Figure 2 presents an exceptional example, this kind of estimation
occurs from time to time especially for extreme quantiles.
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Figure 2 Upper panel: Coverage probabilities of the 80% and 95% intervals for the estimation of the 5% quantile
of M1. The horizontal lines display the 80% and the 95% mark, and the dark grey and the light grey vertical
lines the coverage over all 100 calculated models in each point x of the 80% and the 95% interval, respectively.
Lower panel: Theoretical function with the two different confidence bands, M1

• We also repeated the analyses for Bayesian quantile regression and larger sam-
ple sizes (n = 2000) to study the changes due to increased information. How-
ever, the impact of varying sample size was rather small with some very mod-
erate tendency to improved performance for the confidence intervals obtained
with Bayesian quantile regression so that we do not present details here.

• The point estimates of the regression effects did not really differ for the two
methods (see Figure 5).
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Figure 3 Coverage probabilities of the 80% and 95% intervals for the estimation of the 80% quantile of M2.
The horizontal lines display the 80% and the 95% mark, and the dark grey and the light grey vertical lines the
coverage over all 100 calculated models in each point x of the 80% and the 95% interval, respectively

We also calculated simultaneous confidence bands in the Bayesian set-up as suggested
by Krivobokova et al. (2010). These led to broad intervals, close to those estimated
by rqss and are therefore not described in detail here.

In summary, although the confidence bands obtained with Bayesian quantile re-
gression are based on a misspecified model, they still provide a reasonable reflection
of estimation uncertainty provided that the considered quantiles are not too extreme.
One explanation for the deteriorated behaviour for extreme quantiles is the increas-
ing asymmetry of the asymmetric Laplace distribution for very large or small values
of the quantile τ . This asymmetry has the consequence that the spike at the corre-
sponding quantile gets larger and larger which will usually be in contradiction to the
true data likelihood. In contrast, for central quantiles, the asymmetric Laplace distri-
bution gets more and more symmetric and fits better to the asymptotically expected
normal likelihood in case of not too small sample sizes.

2.3 LASSO regularization

In this section, we will show how the concept of the LASSO (Tibshirani, 1996) can
be adapted to Bayesian quantile regression by specifying suitable hyperpriors for θ
following the ideas presented in Park and Casella (2008). Suppose that the regression
coefficients in a K-dimensional vector γ shall be subject to LASSO regularization.
Then a prior structure that yields posterior mode estimates which can be interpreted
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Figure 4 Coverage probabilities of the 80% and the 95% intervals for the estimation of the 50% quantile of the
first effect (upper panel) and second effect (lower panel) of the model (M3). The horizontal lines display the 80%
and the 95% mark, and the dark grey vertical lines the coverage of the 80% interval and the light grey vertical
lines the coverage of the 95% interval over all 100 calculated models in each point x

as the Bayesian analogue to LASSO-regularized penalized maximum likelihood esti-
mates is given by the Laplace prior

p(γ ) =
K∏

k=1

λ2 exp
(
−λ|γk|

)
,

To enable the inclusion of Bayesian LASSO regularization in the basic geoadditive
quantile regression sampler outlined in the previous section, we again rely on a
scale-mixture representation of the Laplace prior yielding γ |θ ∼ N(0, K−1(θ) =
diag(1/θ2

1 , . . . , 1/θ2
K )) and hyperpriors θk ∼ Exp(λ2), k = 1, . . . , K and λ2 ∼ Ga(a, b).
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Figure 5 Estimates of the 5% quantile for (M1) chosen according to their quantile in the MSE distribution
obtained from the 100 simulation replications

The full conditionals for the LASSO-specific parameters are

θ−2
k |· ∼ InvGauss

(
|λ|
γk

, λ2

)
and λ2|· ∼ Ga

(
a + K, b + 0.5

K∑
k=1

1/θ2
k

)
.

According to Park and Casella (2008) the LASSO prior specified so far may result
in a multimodal posterior. We can avoid this problem with the scale-dependent prior
γ |θ ∼ N(0, 1

δ2 K−1(θ) = diag(1/θ2
1 , . . . , 1/θ2

K )) where the prior covariance is scaled by
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the inverse of δ2. Then all full conditionals have to be slightly modified accordingly
in analogy to Park and Casella (2008).

2.4 Dirichlet process mixtures for random effects

A further extension of the predictor for Bayesian quantile regression results when
considering random effects with potentially non-normal random effects distribution
specified via a DPM prior (see Ghosh and Ramamoorthi, 2010, for a recent review).
The latter allows to specify a hyperprior on the space of all random effects distribu-
tions while simultaneously enabling model-based clustering of the random effects to
retrieve groups of observations with similar random effects profiles. In the following
γi will denote the random effects vector for individual i , referred to as bi in equation
(1.2).

Our prior specification and implementation of DPMs is based on the stick-
breaking representation introduced by Sethuraman (1994). Let G denote the random
effects distribution and assume that a Dirichlet hyperprior is specified for G, i.e.,

γi ∼ G, G ∼ DP(ν0, G0),

where G0 is a base distribution and ν0 > 0 specifies a concentration parameter that
determines a priori expected deviations of G from the base distribution G0. Then it
follows from the stick-breaking representation of Dirichlet processes that

G(·) =
∞∑

k=1

πkδφk
(·),

where δφk
(·) are Dirac measures (i.e., point masses) located at cluster-specific para-

meter vectors φk drawn from a base distribution G0, i.e.,

φk
i.i.d.∼ G0,

independently from the (random) weights πk. The weights are generated through the
stick-breaking process

π1 = v1, πk = vk

⎛
⎝1 −

k−1∑
j=1

(1 − π j )

⎞
⎠ = vk

k−1∏
j=1

(1 − v j ), k = 2, 3, . . . ,

with vk
i.i.d.∼ Be(1, ν0), where Be denotes the beta distribution. As a consequence,

realizations of the Dirichlet process can be constructed as infinite mixtures of point
masses at locations generated as i.i.d. draws from a base measure. The weights πk are
generated by first breaking the part π1 = v1 from a stick of the length 1 = π1 +π2 + . . .,
then breaking off the part π2 = v2(1− π1) from the remaining stick of length 1− π1,
and so on.
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The stick-breaking representation of Dirichlet processes enables an intuitive inter-
pretation since it may be considered an infinite extension of finite mixture models.
However, it also reveals that realizations from a Dirichlet process are almost surely
discrete with all probability mass concentrated on the locations φk, k = 1, 2, . . ..
To overcome this limitation, we do not specify the Dirichlet process directly for the
random effects distribution but for the hyperparameters of this distribution, yielding
DPMs with the following prior hierarchy:

γi
ind.∼ p(γ i |φi ),

φi
i.i.d.∼ G,

G ∼ DP(ν0, G0).

Here, the random effects are assumed to be realized independently from distribu-
tions p(γi |φi ) with individual-specific parameters φi . These are generated according
to a probability measure obtained from a Dirichlet process with concentration pa-
rameter ν0 and base distribution G0. Since the realization of the Dirichlet process
is almost surely discrete, ties among the individual-specific parameters φi will arise
and therefore there will be groups of individuals sharing the same random effects
distribution.

Specific choices we make for the prior specification in case of random effects are

γi
ind.∼ N(mi , K(θ)−1),

mi
i.i.d.∼ G,

G ∼ DP(ν0, G0),

i.e., the random effects are independent Gaussian distributed with a common
covariance matrix K(θ)−1 but differing means mi following a Dirichlet process
prior.

We will choose G0 to be Gaussian and assign ν0 a Gamma distribution. The
hyper-prior structures of μγ i

and K(θ ) are visualized in Figure 6.
For the random effects γi we need to take into account the data distribution and

the prior with the parameters generated via the DPM. The fact, that we are using
DPMs does not change the equation in comparison to what we would get in a normal
mixed model approach. The full conditional of m is of the same structure as (2.2).

As the stick-breaking process can obviously not be conducted to infinity, the
standard approach is to truncate the process in a certain N—see Ishwaran and James
(2001)—and only take into account the first N terms of the sum. In our example, N
is chosen to be 100.

A common way to implement the DPM—also Ishwaran and James (2001)—is to
introduce a vector of latent classification variables c of the length n, which consists in
each iteration of the Gibbs sampler of m different values of 1, . . . , n. The subvector
c∗ denotes the vector comprising only the distinct values corresponding to non-empty
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ν0 ∼ Gamma(a, b)

�
�

��

G0 = N(μ0, �0)

�
G ∼ DP(ν0, G0),

�

mi ∼ G

�
mi

σγ r
∼ Gamma(ar , br ), r = 1, . . . , q

�
K−1(θ ) = diag(σγ 1

, . . . , σγ q
)

Figure 6 Hyperprior structure for the mean in the DPM context

clusters. The auxiliary variables φk (k ∈ 1, . . . , N) are drawn from two different types
of distributions depending on the fact if k ∈ c or not.

For the k which are not one of the different values in the set of ci , φk is drawn
from the base distribution:

φk|μ0, �0 ∼ N(μ0, �0).

If k ∈ c∗, φk is drawn as follows:

φk|σ 2
γr

, μ0r , σ 2
0r

, γ , c ∼ N(μ∗
0r

, σ 2∗
0r

),

for the different k

μ∗
0r

=

(
nh

σ 2
γr

+
1

σ 2
0r

)−1 (
nh

σ 2
γr

b̄r,h +
μ0r

σ 2
0r

)
and σ 2∗

0r
=

(
nh

σ 2
γr

+
1

σ 2
0r

)−1

.

The σ 2
0r

, r = 1, . . . , q are the diagonal elements of �0 and their priors are, again,
gamma distributions. The latent classification variables are drawn from a mixture of
the likelihood for the different φ, weighted with different πk, which are drawn via
the stick-breaking representation of the Dirichlet distribution:

ci |π , φ, γi , �γ ∼
N∑

h=1

πk p(γi |φk, �γ )δk(·)

with δk(·) being the Dirac measure in k.
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As a next step, the πk are constructed in a stick-breaking step using an auxiliary
variable vk, which is beta distributed, as already described. The πk are then obtained
through the above-mentioned product

πk = vk

∏
l<k

(1 − vl).

Finally the precision, which was assigned a gamma distribution as prior, for the
DP is drawn from a gamma distribution

ν0|π ∼ Gamma

(
N− 1 + aα, bα −

N−1∑
h=0

log(1 − Vk)

)
.

The mi themselves are estimated by using mi = φci . As c contains only m different
values (with m ≤ n) the clustering mechanism follows directly from the construction.

It is obvious that, if this algorithm is repeated many times in an MCMC simulation,
due to the randomness of each step we get different values for each individual and
furthermore different clusters. Therefore, we will use a nearest neighbour approach
to get a clustering which is valid over all iterations.

3 Applications

3.1 High-dimensional geoadditive regression for the Munich rental guide

As a first application of semiparametric Bayesian quantile regression, we consider
the high-dimensional geoadditive regression model (1.1) but extended to conditional
quantile specifications. We chose to model the 5%, 20%, 50%, 80% and 95%
quantiles to give a detailed summary on both the central part of the distribution and
the boundaries. This reveals information not only about the expected rent for a flat
but also about the span, the rent is supposed to be in.

Due to the high dimensionality of the vector of parametric covariates (238 covari-
ates in total), we will consider Bayesian LASSO regularization for all components
(except the intercept). For the nonlinear effects of the size of the flat and the year of
construction, we consider cubic P-splines with second order random walk prior and
20 equidistant knots. The spatial effect was calculated with a Markov random field
where two subquarters were treated as neighbours if they share a common boundary.
For all gamma type priors, we chose hyperparameters a = b = 0.001. The number
of iterations for the MCMC sampler was fixed at 35000 with a burn in period of
5000 iterations and a thinning parameter of 30 (yielding 1000 samples for deter-
mining posterior means). A graphical analysis of mixing and convergence showed no
inadequacies.

If we look at the results, we see that in fact most of the effects differ over the
quantiles (see, e.g., the nonlinear effects in Figures 7 and 8). The pictures show the
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Figure 7 Munich rent index: nonlinear effect of size of the flat. Solid line: effect on the noncentral quantiles,
dashed lines: effect on the median and 95%-posterior interval, light grey lines in background: concentration of
data

centred curves for the noncentral quantiles in comparison to the posterior interval of
the median regression. The grey stripes in the background indicate the concentration
of the data for the corresponding values. For reasons of lucidity and because the
figures have the aim to compare the effects, the posterior intervals are only plotted
for the median regression. The first thing which has to be mentioned is that the
posterior interval is broader in the parts with less observations. Another obvious fact
is that smoothing works better for the central quantiles than for the extreme ones.
This might be caused by the sparsity of data in these areas. As for the differences of
the impact on the different quantiles we see a tendency of the functions to tilt over
for both effects. The effect of the size of the flat seems to be less expressed for the
lower quantiles, as especially in the low price segment the size of the flat does not
really have any influence at all and increasing variability is observed as τ grows. It
is the other way round for the year of construction: there is no pronounced effect of
the age of the building on the highest quantile. Another effect which shows in the
latter is that the positive impact of old buildings does not exist for lower quantiles.

In the spatial effect, the most noticeable fact is the higher number of significant
effects for the outer quantiles (see Figure 9). While for the 95% quantile, 93 subquar-
ters are selected to be significant, there are only 54 subquarters, which have significant
impact on the median. Furthermore, we see a tendency towards more subquarters
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Figure 8 Munich rent index: nonlinear effect of year of construction. Solid line: effect on the noncentral quan-
tiles, dashed lines: effect on the median and 95%-posterior interval, light grey lines in background: concentration
of data

which have positive effect on the price in the higher quantiles (50 subquarters with
significant positive influence versus 43 with significant negative influence in the 95%
quantile) and the opposite effect for lower quantiles (52 subquarters with significant
negative influence versus 29 with significant positive influence in the 5% quantile).
The second fact we can see in the graphics is that, just as in the nonlinear effects, the
estimation for the regression on the outer quantiles is less smooth than for the ones
in the middle, indicating more variability in extreme quantiles.

Selection of the LASSO-regularized covariates with parametric effects via 95%
posterior credible intervals led to a whole of 103 variables aggregated over all five
models. The quantile for which the least effects were recognized as significant was the
median with 47, while the highest number was 58 for τ = 0.95. Analyzing posteriors
of these parameters, different compartments can be detected. There are covariates,
which show very similar effects over all five quantiles, while others are only selected
for parts of them. In most of the cases, we can see the same direction of effect, while in
some the sign changes over the different quantiles (see Figure 10 for some exemplary
effects).

In some cases, the reason for covariates not to be selected is obviously the lack of
data (e.g., the fact that sauna, just as high class facilities, is only selected to have an
influence on the 95% quantile, while no modernizations at all only appears in the
lowest quantile), while others just seem to be selected due to inner correlation. The
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Figure 9 Munich rent index: spatial effects on the median (in the middle) and the outer quantiles (τ = 0.05
on the top and τ = 0.95 at the bottom). On the left: centralized effects, on the right: quarters with significant
negative effect in white, quarters with significant positive effect in black and quarters with nonsignificant effects
in grey
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Figure 10 Munich rent index: examples for regularized linear effects with different behaviour in different
quantiles; the grey boxes represent significant effects and the white ones nonsignificant effects

latter is not surprising as the LASSO is known for only selecting a few or even one
representative for highly correlated covariates.

To compare the results of the high-dimensional geoadditive model with those of
an expert model with a restricted set of covariates and with quantiles calculated from
a Gaussian mean regression model results, we performed a ten-fold cross valida-
tion comparing the empirical risk on the test data. The quantiles for each flat were
estimated as the quantiles of the distribution:

N(η̂i , ε̂Tε̂),

where η̂i denotes the prediction for the ith flat and ε̂ is the vector of the residuals.
Thus, the quantiles are obtained by the underlying Gaussian distribution, using the
prediction as mean and the squared residuals as variance. The empirical risk is
obtained by evaluating the quantile loss function ρ(yi − ηi,τ ) at the posterior mean
estimates in the test set. It turns out that the empirical risk is lower for the LASSO as
compared to the expert model for nearly all quantiles; see Table 1 for average risks

Statistical Modelling 2013; 13(3): 223–252

 at SUB Goettingen on September 9, 2014smj.sagepub.comDownloaded from 

http://smj.sagepub.com/


May 30, 2013 15:19 SM12-HF305

Bayesian semiparametric additive quantile regression 245

Table 1 Munich rent index: mean risk for the high-dimensional
geoadditive model, the expert model and the mean regression
model, averaged over the ten cross validation folds

Quantile LASSO Model Expert Model Mean Regression

τ = 0.05 0.2285 0.2304 0.2146
τ = 0.20 0.5043 0.5476 0.5516
τ = 0.50 0.7100 0.7317 0.7339
τ = 0.80 0.5005 0.5089 0.5168
τ = 0.95 0.2301 0.2224 0.2039

Risk for τ = 0.05
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Figure 11 Munich rent index: parallel coordinate plots of risk functions for LASSO, expert and mean regression
model

over the folds. In comparison to the mean regression model both quantile regression
models, expert and LASSO, perform better. These results are also illustrated in
Figure 11 in terms of a parallel coordinate plot.

Geoadditive quantile regression including LASSO regularization is implemented
in BayesX (Lang et al., 2005) and will be published in the next version of the software.

3.2 Nonparametric random effects for longitudinal childhood growth study

As an application involving the specification of individual-specific random effects, we
consider the childhood growth data described in the introduction. These longitudinal
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data were collected for 3097 healthy neonates over 60 months at nine mandatory
medical examinations (birth, 2 weeks, 1, 3, 6, 12, 24, 48 and 60 months). We
restricted attention to complete cases, yielding a final sample size of 2043 individuals.
In order to make the outcomes comparable we used the BMI of the children as the
dependent variable, even though it is not a perfect measurement of growth, because
of the problems of measuring very young children’s height. Collected covariates are
sex (gender), diet (nutrition until the age of 4 months, 0 = bottle-fed or mixture of
bottle-fed and breast-fed, 1 = breast-fed only), mSmoke (maternal smoking during
pregnancy, 0 = no, 1 = yes), area (0 = rural: region of Wesel and Bad Honnef,
1 = urban: Munich and Leipzig), ageY (age in years), mBMI (maternal BMI at the
beginning of pregnancy) and mDiffBMI (maternal BMI gain during pregnancy). The
latter two variables were used in centered form.

We consider a quantile-specific version of model equation (1.2), where the tempo-
ral trend is specified as a cubic P-spline with 20 inner knots and second order random
walk prior. The random effects comprise subject-specific intercepts, a random slope
for a linear time trend and an additional random slope for the nonlinear time trans-
formation log(t + 1)/(t + 1)2. The prior for the precision of the DPM was a gamma
distribution with a = 0.5 and b = 10; the rest of the priors was handled in the same
way as in the analysis of the Munich rental guide. The analysis was performed for
the same five quantiles (5%, 20%, 50%, 80% and 95%) as in the Munich rental
guide while the number of MCMC iterations had to be higher to achieve satisfactory
results for mixing and convergence. Due to high autocorrelations especially in the
estimation for the nonlinear trend function, we used a burn in period of 100 000 iter-
ations, a thinning parameter of 200 and did a total of 300 000 iterations in order to
obtain posteriors of the size of 1000 samples. Note that the mixing performance of all
parameters (in particular the random effects) except the time trend was satisfactory
already after a much smaller number of iterations.

To account for correlations arising from the longitudinal arrangement of the data
while allowing for potential non-normality of the random effects distribution, we
included random effects using the DPMs as explained in Section 2.4. Since we as-
sume quantile-specific random effects, the random effects distribution and therefore
the correlations may vary across the different quantiles considered. More specifi-
cally, when assuming a common random effect across quantiles, the quantile refers
to a population quantile while quantile-specific random effects allow us to study
individual-specific quantiles in a conditional model. One particular advantage of the
latter approach is that with the DPM prior for random effects the clustering of in-
dividuals may vary with the chosen quantile. This is perfectly reasonable in practice
since children may be similar in terms of, for example, the upper part of their BMI
distribution but may differ with respect to the lower part of the distribution. In
our application, the resulting number of clusters varies between 8 and 10 clusters
for the different quantiles so that, in fact, children belong to different groups for
different parts of the BMI distribution. This fact would not have been detected by
using common random effect quantile regression, neither by a DPM mean regression
model. The estimated random effects as well as the clustering of the children can be
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Figure 12 Growth study: effect of the age on the BMI in 50%-quantile (on the left) and 95%-quantile regression
(on the right). Triangles: observations of four different individuals (one grey tone for each), dashed lines: esti-
mations for the four different individuals (colours corresponding to the triangles), solid line: overall estimation

interpreted as reflecting the amount and structure of unobserved heterogeneity in the
BMI distribution that cannot be captured by the covariates at hand.

The results for median regression are quite similar to those of mean regression
obtained by Heinzl et al. (2012), with the obvious difference in robustness. Figure 12
shows the BMI conditional on time for four different individuals for median regres-
sion (on the left side) and 95%-quantile regression on the right. The observations
are depicted by triangles in different tones of grey, the estimations in dashed lines
in the corresponding colour and the overall estimation as a solid black line. While
the outlier for the children shown in the lighter grey tones are ignored in the median
regression, they are obviously taken into account in the curve on the right side. The
same effect arises for the clustered version, which shows that the different quantiles
as well as the different clusters are only affected by extreme values if the quantile we
are looking at is an extreme one and the child with the extreme values belongs to the
corresponding cluster.

The linear effects are presented in Table 2 and Figure 13. In the latter, significant
effects, i.e., the ones which did not contain zero in their 95% posterior credible
interval, are marked in grey. The most interesting result is the observation that
breastfeeding have a significant effect on the lowest quantile only.

The calculated models were compared to two simpler models via the deviance
information criterion (DIC). The DIC was calculated as

DIC = 2
B∑

b=1

dev(θb) − dev(θ̄ ),
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Figure 13 Growth study: boxplots of the different effects on the different quantiles; the grey boxes represent
significant effects and the white ones nonsignificant effects

i.e., as the difference of two times the mean over the deviance in each sample and the
deviance which is calculated with the sample mean of the parameters where b indexes
the MCMC iterations. The DPM-Model outperformed a model without random
effects with high difference in all quantiles (the mean difference was 6447.81). Using
a normal Gaussian prior for the random effects performed worse than the more
complex DPM-Model over all quantiles too (mean difference: 1141.272). For an
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Table 2 Growth study: linear effects for the five different quantiles

0.05 0.2 0.5 0.8 0.95

sex 0.2260 0.2254 0.1915 0.1977 0.2177
diet 0.0874 0.0752 0.0557 0.0526 0.0696
mSmoke 0.0367 0.0097 −0.0123 0.0166 0.0163
area −0.0120 −0.0341 −0.0757 −0.0752 −0.0868
mBMI 0.0468 0.0454 0.0453 0.0485 0.0491
mDiffBMI 0.0712 0.0755 0.0828 0.0871 0.0895

Table 3 Growth study: DIC for different models

τ DPM Gaussian random effects No random effects

0.05 15296.03 16586.32 23031.73
0.20 32957.19 34246.35 38377.08
0.50 34665.83 35774.21 39813.83
0.80 34379.04 35301.70 40103.93
0.95 16636.18 17732.05 24846.75

overview of the different DICs see Table 3. These results can, however, only be
accepted with reservation, since the DIC calculations are based on the auxiliary
assumption of the asymmetric Laplace distribution for the error terms.

The MCMC algorithm for the DPM random effects model was implemented in
C++ and R. Just like the scheme itself the program was based on work by Heinzl
et al. (2012).

4 Conclusions and discussion

The presented possibilities of modelling quantiles are useful extensions for the re-
gression toolbox. Obviously the mixture representation of the asymmetric Laplace
distribution allows for considerable flexibility and, in particular, other Bayesian
approaches from mean regression can easily be incorporated. Especially the combi-
nation of different effects is rendered possible and seems to be nearly unlimited when
using latent Gaussian model formulations. In future work, this concept could be
transferred to variational approximations (Ormerod and Wand, 2010), which have
the advantage to avoid simulation-based inference and therefore to reduce computa-
tion times.

One principal difficulty with Bayesian quantile regression is that the asymmetric
Laplace distribution is only a working model that yields a likelihood misspecification.
Therefore significance and uncertainty statements or quantities derived from the
samples, like the DIC, have to be interpreted with care. We evaluated the impact of the
likelihood misspecification in simulations and found that uncertainty in the estimates
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is well represented for central quantiles while for extreme quantiles coverages of
confidence intervals tend to be too small. On the other hand, for models of the
complexity considered here, no alternative inferential principle is available so far so
that we would still consider Bayesian quantile regression to be a valuable approach.
In particular, point estimates derived with the misspecified likelihood will usually be
very close to the corresponding frequentist estimates.

A possible alternative for applying asymmetric Laplace distribution for the error
terms is to include the estimation of the error density in the MCMC algorithm, for
example, via mixtures—see, for example, Kottas and Krnjajic (2009), Dunson and
Taylor (2005) and Taddy and Kottas (2010). If these mixture approaches are also
based on Gaussian mixture components, similar updating schemes as in this paper
can be used if the mixture indicators are imputed as additional unknowns in the
MCMC algorithm. However, the computational burden is still considerably higher
due to the necessity to update the mixture component parameters and the mixture
indicators in each iteration of the MCMC sampler.
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