
https://doi.org/10.1007/s10664-022-10257-9

What really changes when developers intend to
improve their source code: a commit-level study of
static metric value and static analysis warning changes

Alexander Trautsch1 · Johannes Erbel2 · Steffen Herbold1 · Jens Grabowski2

© The Author(s) 2023

Abstract
Many software metrics are designed to measure aspects that are believed to be related to
software quality. Static software metrics, e.g., size, complexity and coupling are used in
defect prediction research as well as software quality models to evaluate software quality.
Static analysis tools also include boundary values for complexity and size that generate
warnings for developers. While this indicates a relationship between quality and software
metrics, the extent of it is not well understood. Moreover, recent studies found that com-
plexity metrics may be unreliable indicators for understandability of the source code. To
explore this relationship, we leverage the intent of developers about what constitutes a qual-
ity improvement in their own code base. We manually classify a randomized sample of
2,533 commits from 54 Java open source projects as quality improving depending on the
intent of the developer by inspecting the commit message. We distinguish between perfec-
tive and corrective maintenance via predefined guidelines and use this data as ground truth
for the fine-tuning of a state-of-the art deep learning model for natural language processing.
The benchmark we provide with our ground truth indicates that the deep learning model
can be confidently used for commit intent classification. We use the model to increase our
data set to 125,482 commits. Based on the resulting data set, we investigate the differences
in size and 14 static source code metrics between changes that increase quality, as indicated
by the developer, and changes unrelated to quality. In addition, we investigate which files

Communicated by: Xin Xia

� Alexander Trautsch
alexander.trautsch@uni-passau.de

Johannes Erbel
johannes.erbel@cs.uni-goettingen.de

Steffen Herbold
steffen.herbold@uni-passau.de

Jens Grabowski
grabowski@cs.uni-goettingen.de

1 University of Passau, Passau, Germany
2 Institute of Computer Science, University of Goettingen, Göttingen, Germany

Empirical Software Engineering (2023) 28:30

Accepted: 2 November 2022 /Published online: 14 January 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-022-10257-9&domain=pdf
http://orcid.org/0000-0001-5236-7953
https://orcid.org/0000-0001-9765-2803
mailto: alexander.trautsch@uni-passau.de
mailto: johannes.erbel@cs.uni-goettingen.de
mailto: steffen.herbold@uni-passau.de
mailto: grabowski@cs.uni-goettingen.de

are targets of quality improvements. We find that quality improving commits are smaller
than non-quality improving commits. Perfective changes have a positive impact on static
source code metrics while corrective changes do tend to add complexity. Furthermore, we
find that files which are the target of perfective maintenance already have a lower median
complexity than files which are the target of non-pervective changes. Our study results pro-
vide empirical evidence for which static source code metrics capture quality improvement
from the developers point of view. This has implications for program understanding as well
as code smell detection and recommender systems.

Keywords Static code analysis · Quality evolution · Software metrics · Software quality

1 Introduction

Software quality is notoriously hard to measure (Kitchenham and Pfleeger 1996). The main
reason is that quality is subjective and that it consists of multiple factors. This idea was
formalized by Boehm and McCall in the 70s (Boehm et al. 1976; McCall et al. 1977).
Both introduced a layered approach where software quality consists of multiple factors. The
standard ISO/IEC 9126 (2001) and successor ISO/IEC 25010 (2011) also approach software
quality in this fashion.

All these ideas contain abstract quality factors. However, the question remains what
concrete measurements can we perform to evaluate the abstract factors of which soft-
ware quality consists, i.e., how do we measure software quality. Some software quality
models recommend concrete measurements, e.g., ColumbusQM (Bakota et al. 2011) and
Quamoco (Wagner et al. 2012). Defect prediction researchers also try to build (machine
learning) models to find a function that can map measurable metrics to the number of defects
in the source code. This can also be thought of as software quality evaluation, that tries to
map internal software quality, measured by code or process metrics, to external software
quality measured by defects (Fenton and Bieman 2014). The internal and external qual-
ity categories can also be mapped to perfective and corrective maintenance categories after
Swanson (1976). Perfective maintenance should increase internal quality while corrective
maintenance should increase external quality. Both categories should increase the overall
quality of the software. To ease the readability, we adopt the perfective and corrective terms
defined by Swanson for the rest of the paper when referring to the categories. For general
assumptions, we adopt the internal and external quality terms. Internal quality represents
what the developer sees, e.g., structure, size, and complexity while external quality what the
user sees, e.g., defects.

Software quality models and defect prediction models use static source code metrics
as a proxy for quality (Hosseini et al. 2017). The intuition is that complex code, as mea-
sured by static source code metrics, is harder to reason about and, therefore, is more prone
to errors. However, recent research by Peitek et al. (2021) showed that measured code
complexity is perceived very differently between developers and does not translate well to
code understanding. A similar result was found by Scalabrino et al. (2021) although their
work is focused on readability measured in a static way. Both studies, due to their nature,
observe developers in a controlled experiment with code snippets. To supplement these
results, it would be interesting to measure what developers change in their code “in the

30 Page 2 of 40 Empir Software Eng (2023) 28:30

wild” to improve software quality and if their intent matches what we can measure, e.g., if
complexity is reduced in a change that intends to improve quality.

While there are multiple publications on maintenance or change classification after
Swanson (1976), e.g., Mockus (2000), Mauczka et al. (2012), Levin and Yehudai (2017) and
Hönel et al. (2019), we are not aware of publications that investigate differences between
multiple software metrics for corrective and perfective maintenance as well as their coun-
terparts, i.e., non-perfective and non-corrective. The inclusion of these counterparts results
in computational effort as we need every metric for every file in every commit. However,
we are able to provide this data via the SmartSHARK ecosystem (Trautsch et al. 2017,
2020b). This additional effort allows us to infer if categories of changes are different when
regarding all changes of a software project. Most recent work focuses on certain aspects
instead of a generic overview, e.g., how software metric values change when code smells
are removed (Bavota et al. 2015) or refactorings are applied (Bavota et al. 2015; Alshayeb
2009; Pantiuchina et al. 2020).

However, we believe that taking a step back from focused approaches and investigating
generic quality improvements is worthwhile. A generic overview has the advantage of miti-
gating possible problems that can occur for narrow meaning keywords of topically focused
approaches while at the same time providing a cohesive overview. Moreover, it allows
for generic statements about software quality evolution based on this information and can
complement focused approaches.

In this work, we find changes that increase the quality, while we measure current, previ-
ous and delta of common source code metric values used in a current version (Bakota et al.
2014) of the Columbus quality model (Bakota et al. 2011). We use the commit message
contained in each change to find commits where the intent of the developer is to improve
software quality. This provides us with a view of corrective and perfective maintenance
commits.

Within our study, we first classify the commit intent for a sample of 2,533 commits from
54 open source projects manually. The manual classification is provided by two researchers
according to predefined guidelines. According to the overview of previous research in this
area provided by AlOmar et al. (2021) our study would be the largest manual classifica-
tion study of commits. We use this data as ground truth to fine-tune a state-of-the-art deep
learning model for natural language processing that was pre-trained exclusively on software
engineering data (von der Mosel et al. 2022). After we determine the performance of the
model, we classify all commits, increasing our data to 125,482 commits.

We use the automatically classified data to conduct a two part study. The first part is
a confirmatory study into the expected behavior of metric values for quality increasing
changes. Expected behaviour, e.g., complexity is reduced in quality increasing changes, is
derived as hypothesis from existing quality models and the related literature.

In case our data matches the expected behavior from the literature, we can confirm the
postulated theories and provide evidence in favor of using the measurements. Otherwise, we
try to establish which metrics may be unsuitable for quality estimation, including the poten-
tial reasons. Even further, we determine whether metrics used in software quality models are
impacted by quality increasing maintenance, therefore providing an evaluation for software
quality measurement metrics.

The second part of our study is of exploratory nature. We investigate which files are
the target of quality improvements by the developers. We explore whether only complex
files are receiving perfective changes and which metric values are indicative of corrective
changes. This provides us with data for practitioners and static analysis tool vendors for

Page 3 of 40 30Empir Software Eng (2023) 28:30

boundary values which are likely to have a positive impact on the quality of source code
from the perspective of the developers.

Overall, our work provides the following contributions:

– A large data set of manual classifications of commit intents with improving internal and
external quality categories.

– A confirmatory study of size and complexity metric value as well as static analysis
warning changes for quality improvements.

– An exploratory study of size and complexity metric values as well as static analysis
warnings of files that are the target of quality improvements.

– A fine-tuned state-of-the-art deep learning model for automatic classification of commit
intents.

The main findings of our study are the following:

– We confirm previous work that quality increasing commits are smaller than changes
unrelated to quality.

– While perfective changes have a positive impact on most static source code metric
values and static analysis warnings, corrective changes have a negative impact on size
and complexity.

– The files that are the target of perfective changes are already less complex and smaller
than files which are not the target of perfective changes.

– The files that are the target of corrective changes are more complex and larger than files
which are not the target of corrective changes.

The remainder of this paper is structured as follows. In Section 2, we define our research
questions and hypotheses. In Section 3, we discuss the previous work related to our study.
Section 4 contains our case study design with descriptions for subject selection as well as
data sources and analysis procedure. In Section 5, we present the results of our case study
and discuss them in Section 6. Section 7 lists our identified threats to validity and Section 8
closes with a conclusion of our work.

2 Research Questions and Hypotheses

In our study, we answer two research questions.

– RQ1: Does developer intent to improve internal or external quality have a positive
impact on software metric values?
Previous work provides us with certain indications about the impact on software met-
ric values. This is part of our confirmatory study, and we derive two hypotheses from
previous work regarding how size and software metric values should change for differ-
ent types of quality improvement. We formulate our assumptions as hypothesis and test
these in our case study.

– H1: Intended quality improvements are smaller than non-perfective and
non-corrective changes.
Mockus (2000) found that corrective changes modify fewer lines while perfec-
tive changes delete more lines. Purushothaman and Perry (2005) also observed
more deletions for perfective maintenance and an overall smaller size of per-
fective and corrective maintenance. Both studies provide measurements we

30 Page 4 of 40 Empir Software Eng (2023) 28:30

base our hypothesis on. While they are using the same closed source project
we will be able to see if our assumption holds for our multiple Java open
source projects.

Hönel et al. (2019) used size-based metrics as additional features for
an automated approach to classify maintenance types. They found that the
size-based metric values increased the classification performance. Moreover,
just-in-time quality assurance (Kamei et al. 2013) builds on the assumption
that changes and metrics derived from these changes can predict bug intro-
duction, meaning there should be a difference. Therefore, we hypothesize that
corrective as well as perfective maintenance consist of smaller changes. Addi-
tion of features should be larger than both, and therefore we assume that the
categories we are interested in, perfective and corrective, are smaller than
other non-perfective and non-corrective changes.

– H2: Intended quality improvements impact software quality metric val-
ues in a positive way.
In this paper, we focus on metrics used in the Columbus Quality Model
(Bakota et al. 2011, 2014). The metrics are specifically chosen for a quality
model so they should provide different measurements based on their main-
tenance category. Prior research, e.g., Ch’avez et al. (2017) and Stroggylos
and Spinellis (2007) found that refactorings, which are part of our classifica-
tion, have a measurable impact on software metric values. We hypothesize that
an improvement consciously applied by a developer via a perfective commit
has a measurable, positive impact on software metric values. Positive means
that we expect a value change direction of the metric value, e.g., complex-
ity is reduced. We note our expected direction for each metric together with a
description in Table 4.

Defect prediction research assumes a connection between software metrics
and external software quality in the form of bugs. While most publications in
defect prediction are not investigating the impact of single bug fixing changes
the most common datasets all contain coupling, size and complexity metrics
as independent variables, e.g., Jureczko and Madeyski (2010), NASA (2004),
and D’Ambros et al. (2012), see also the systematic literature review by Hos-
seini et al. (2017). We hypothesize that fixing bugs via corrective commits has
a measurable, positive impact on software metric values. While a bug fix may
add complexity, our study compares bug fix changes with all non-corrective
changes including feature additions. Therefore, we do not hypothesize that
bug fixing decreases complexity generally, but that it is decreasing complex-
ity in comparison to all non-corrective changes. In contrast to H1 we are not
able to compare our results to concrete studies as we are not aware of a study
that investigates metric value changes of perfective and corrective changes and
compares them against all other non-perfective and non-corrective changes.
We are instead trying to validate the assumption that quality improvements
should have a positive impact on software quality metrics as they are found to
improve detection of defects (Gyimothy et al. 2005).

Our second research question is exploratory in nature.

– RQ2: What kind of files are the target of internal or external quality improvements?
The first part of our study provides us with information about metric value changes

Page 5 of 40 30Empir Software Eng (2023) 28:30

for quality increasing commits. In this part, we are exploring which files are the target
of quality increasing commits. We are interested in how complex, e.g., via cyclomatic
complexity, a file is on average that receives perfective maintenance. Moreover, on the
external quality side we are interested in which files are receiving corrective changes.
Due to the exploratory nature of this research question, we do not derive hypotheses.

3 RelatedWork

We separate the discussion of the related work into publications on the classification of
changes, publications on the relation between quality improvements and software metrics
and publications with a focus on the commit message.

Most prior work that follows a similar approach to ours is concerned with specific types
of quality improving changes, e.g., refactoring and removal of code smells. We note that
some code smell detection is based on internal software quality metrics, which we use in
our study.

We first present previous research related to the first phase of our study, i.e., classifi-
cation of changes with respect to maintenance types. Mockus (2000) study changes in a
large system and identified reasons for changes. They find that a textual description of the
change can be used to identify the type of change with a keyword based approach which
they validated with a developer survey. The authors classified changes to Swansons mainte-
nance types. They find that corrective and perfective changes are smaller and that perfective
changes delete more lines than other changes. Mauczka et al. (2012) present an automatic
keyword based approach for classification into Swansons maintenance types. They evaluate
their approach and provide a keyword list for each maintenance type together with a weight.

Fu et al. (2015) present an approach for change classification that uses latent drichtlet
allocation. They study five open source projects and classify changes into Swansons main-
tenance types together with a not sure type. The keyword list of their study is based on
Mauczka et al. (2012).

Mauczka et al. (2015) collect developer classifications for three different classification
schemes. Their data contains 967 commits from six open source projects. While the devel-
opers themselves are the best source of information, we believe that within the guidelines
of our approach our classifications are similar to those of the developers. We evaluate this
assumption in Section 4.2.

Yan et al. (2016) use discriminative topic modeling also based on the keyword list by
Mauczka et al. (2012). They focus on changes with multiple categories. Levin and Yehudai
(2017) improve maintenance type classification by utilizing source code in addition to key-
words. This is an indication that metric values which are computed from source code are
impacted by different maintenance types.

Hönel et al. (2019) use size metrics as additional features for automated classification
of changes. In our study, we first classify the change and then look at how this impacts
size and spread of the change. However, the differences we found in our study support the
assumption that size-based features can be used to distinguish change categories.

More recently, Wang et al. (2021) also analyze developer intents from the commit
messages. They focus on large review effort code changes instead of quality changes or
maintenance types. They also use a keyword based heuristic for the classification. They do
not, however, include a perfective maintenance classification.

Ghadhab et al. (2021) also use a deep learning model to classify commits. They use word
embeddings from the deep learning model in combination with fine-grained code changes

30 Page 6 of 40 Empir Software Eng (2023) 28:30

to classify into Swansons maintenance categories. In contrast to Ghadhab et al., we do not
include code changes in our automatic classifications and focus on the commit message.

The classification of changes for the ground truth in our study is based on manual inspec-
tion by two researchers instead of a keyword list. We specify guidelines for the classification
procedure which enable other researchers to replicate our work. To accept or reject our
hypotheses, we only inspect internal and external quality improvements which would cor-
respond to the perfective and corrective maintenance types by Swanson. In contrast to the
previous studies, we relate our classified changes also to a set of static software metrics.

We now present research related to our second phase of our study, the relation between
intended quality improvements and software metrics. Stroggylos and Spinellis (2007) found
changes where the developers intended a refactoring via the commit message. The authors
then measured several source code metrics to evaluate the quality change. In contrast to the
work of Stroggylos and Spinellis (2007), we do not focus on refactoring keywords. Instead,
we consider refactoring as a part of our classification guidelines. Moreover, our aim is to
investigate whether the metrics most commonly used as internal quality metrics (see also
; Al Dallal and Abdin 2018) are the ones that are changing if developers perform quality
improving changes including refactoring.

Fakhoury et al. (2019) investigate the practical impact of software evolution with devel-
oper perceived readability improvements on existing readability models. After finding
target commits via commit message filtering, they applied state-of-the-art readability mod-
els before and after the change and investigate the impact of the change on the resulting
readability score.

Pantiuchina et al. (2018) analyze commit messages to extract the intent of the developer
to improve certain static source code metrics related to software quality. In contrast to their
work, we are not extracting the intent to improve certain static code metrics but instead
focus on overall improvement to measure the delta of a multitude of metrics between the
improving commit and its parents. Developers may not use the terminology Pantiuchina et
al. base their keywords on, e.g., instead of writing reduce coupling or increase cohesion the
developer may simply write refactoring or simplify code.

In contrast to the previous studies, we relate developer intents to improve the quality
either by perfective maintenance or by corrective maintenance to change size metrics and
static source code metrics. In addition, we also look at mean static source code metrics per
file which are the target of quality improvements.

As the commit message is used to extract the intent of the developer in our study, we
also briefly discuss related work on commit message contents. Most of that work that is
not already covered previous sections builds and evaluates a quality model for the commit
message. The proposed quality models are not suitable for our study as is, as they only
determine general commit message quality and we use the message to classify the commit
to one of three types. However, they still provide interesting data considering the content of
the commit messages.

Santos and Hindle (2016) investigate whether unusual commit messages correlate with
build failures using an n-gram language model. The authors find, that their language model
is able to identify unusual commit messages. However, they did not find a significant cor-
relation between unusualness of a commit message as determined by the cross-entropy of
their language model and build failures.

Chahal and Saini (2018) analyze the impact of community dynamics on syntactic quality
of commit messages. They define a commit message quality model and use the model to
relate community dynamic metrics to commit message quality. They find that a small group
of contributors active at the same time can lead to a high quality of commit messages.

Page 7 of 40 30Empir Software Eng (2023) 28:30

Tian et al. (2022) study commit messages in five open source projects and find, that an
average of about 44% messages could be improved. They proposed a classification model
for quality of commit messages after manually classifying 1600 commits. In their multi-
method study the authors also provide a taxonomy of commit messages with expression
categories. They find, that between 0.9% and 7.5% of commit messages do neither contain
what was changed nor why the change was applied.

4 Case Study Design

The goal of our case study is to gather empirical data about what changes when a developer
intends to improve the quality of the code base in comparison to their counterpart, e.g., what
changes in perfective commits in comparison to all other, i.e., non-perfective commits.

To achieve this, we first sample a number of commits from our selected study subjects.
This sample is classified by two researchers into two categories of quality improving and
other changes. The classification into categories is only done via the commit message as it
expresses the intent of the developer on what the change should achieve.

This data is then used to train a model that can confidently classify the rest of our commit
messages. The classified commits are then used to investigate the static source code metric
value changes to accept or reject our hypotheses in the confirmatory part of our study. After
that, we investigate the metric values before the change is applied in the exploratory part of
our study.

4.1 Data and Study Subject Selection

The data used in our study is a SmartSHARK (Trautsch et al. 2017) database taken from
Trautsch et al. (2020a). We use all projects and commits in the database. However, only
commits that change production code and which are not empty are considered. For each
change in our data, we extract a list of changed files, the number of changed lines, the
number of hunks,1 and the delta as well as the previous and current value of source code
metrics from the changed files between the parent and the current commit. To create our
ground truth sample, we randomly sample 2% of commits per project rounded up for manual
classification.

The data consists of Java open source projects under the umbrella of the Apache Software
Foundation.2 All projects use an issue tracking system and were still active when the data
was collected. Each project consist of at least 100 files and 1000 commits and is at least
two years old. Table 1 shows every project, the number of commits and the years of data
we consider for sampling. In addition, we include the number of perfective and corrective
commits for our ground truth and final classification.

4.2 Change Type Classification Guidelines

As we are not relying on a keyword based approach and there is no existing guideline
for this kind of classification, we created a guideline based on Herzig et al. (2013). Our
ground truth consists of a sample of changes which we manually classified into perfective,

1An area within a file that is changed.
2https://www.apache.org

30 Page 8 of 40 Empir Software Eng (2023) 28:30

https://www.apache.org

Table 1 Case study subjects with time frame and distribution of commits

Project Timeframe #C #S #SP #SC #AP #AC

archiva 2005–2018 3,914 79 35 17 1,478 1,005

calcite 2012–2018 1,987 40 8 14 565 665

cayenne 2007–2018 3,738 75 31 14 1,470 1,007

commons-bcel 2001–2019 884 18 9 6 588 171

commons-beanutils 2001–2018 577 12 5 2 317 130

commons-codec 2003–2018 828 17 12 1 619 76

commons-collections 2001–2018 1,827 37 27 3 1,185 200

commons-compress 2003–2018 1,598 32 17 6 873 317

commons-configuration 2003–2018 2,075 42 23 7 1,027 253

commons-dbcp 2001–2019 1,034 21 15 3 672 211

commons-digester 2001–2017 1,256 26 16 0 744 113

commons-imaging 2007–2018 682 14 10 2 476 96

commons-io 2002–2018 1,036 21 15 3 613 171

commons-jcs 2002–2018 788 16 10 1 400 162

commons-jexl 2002–2018 1,469 30 20 1 873 199

commons-lang 2002–2018 3,261 66 50 6 2,182 420

commons-math 2003–2018 4,675 94 66 10 2,981 574

commons-net 2002–2018 1,092 22 13 5 585 246

commons-rdf 2014–2018 529 11 9 0 341 35

commons-scxml 2005–2018 479 10 6 2 256 76

commons-validator 2002–2018 1,573 32 18 6 900 296

commons-vfs 2002–2018 1,136 23 11 8 628 207

eagle 2015–2018 582 12 5 4 104 199

falcon 2011–2018 1,547 31 7 13 255 676

flume 2011–2018 1,489 30 5 14 266 591

giraph 2010–2018 854 18 4 6 201 281

gora 2010–2019 569 12 3 4 182 141

helix 2011–2019 2,199 44 8 9 552 580

httpcomponents-client 2005–2019 2,399 48 22 16 1,113 639

httpcomponents-core 2005–2019 2,598 52 25 12 1,326 544

jena 2002–2019 8,698 174 88 34 4,163 1,424

jspwiki 2001–2018 4,326 87 32 25 1,523 941

knox 2012–2018 1,131 23 3 10 266 306

kylin 2014–2018 6,789 136 40 40 1,904 2,163

lens 2013–2018 1,370 28 9 9 321 479

mahout 2008–2018 2,075 42 16 15 836 467

manifoldcf 2010–2019 2,867 58 10 21 602 1,164

mina-sshd 2008–2019 1,281 26 10 6 381 396

nifi 2014–2018 3,299 66 12 18 592 1,052

opennlp 2008–2018 1,763 36 22 6 805 275

parquet-mr 2012–2018 1,228 25 7 9 439 316

pdfbox 2008–2018 8,256 166 81 69 3,934 2,904

phoenix 2014–2019 7,835 157 23 83 828 4,545

Page 9 of 40 30Empir Software Eng (2023) 28:30

Table 1 (continued)

Project Timeframe #C #S #SP #SC #AP #AC

ranger 2014–2018 2,213 45 10 20 434 908

roller 2005–2019 2,435 49 15 13 869 723

santuario-java 2001–2019 1,455 30 14 5 627 406

storm 2011–2018 2,839 57 24 9 987 716

streams 2012–2019 911 19 7 2 264 196

struts 2006–2018 2,945 59 21 18 1,191 682

systemml 2012–2018 3,860 78 21 25 921 1,416

tez 2013–2018 2,359 48 8 27 443 1,223

tika 2007–2018 2,581 52 11 10 705 740

wss4j 2004–2018 2,455 50 22 10 712 702

zeppelin 2013–2018 1,836 37 11 6 333 699

125,482 2,533 1,022 685 47,852 35,124

All considered commits (#C), sample size (#S), sample perfective commits (#SP), sample corrective commits
(#SC), all perfective commits (#AP), all corrective commits (#AC)

corrective, and other changes. We do not consider adaptive changes as separate a category.
Instead, we include them in the other changes. The reason is that we focus on internal
and external quality improvements and map perfective to internal quality and corrective
to external quality. Every commit message is inspected independently by two researchers
with software development experience. The inspection is using a graphical frontend that
loads the sample and displays the commit message which can then be assigned a label by
each researcher independently. If the commit message does not provide enough information,
we inspect additional linked information in the form of bug reports or the change itself.
In case of a link between the commit message and the issue tracking system, we inspect
the bug report and determine if it is a bug according to the guidelines by Herzig et al.
(2013). We perform this step because the reporter of a bug sometimes assigns a wrong type.
We defined the guidelines listed in Table 2 used by both researchers for the classification
of changes. The deep learning model for our final classification of intents only receives
the commit messages. This is a conscious trade-off. On the one hand we want the ground
truth to be as exact as possible, on the other hand we want to keep the automatic intent
classification as simple as possible. The results of our fine-tuning evaluation (Table 3) show
that the model does not need the additional data from changes and issue reports to perform
well.

Both researchers achieve a substantial inter-rater agreement (Landis and Koch 1977) with
a Kappa score of 0.66 (Cohen 1960). Disagreements are discussed and assigned a label both
researchers agree upon after discussion. The disagreement front end shows both prior labels
anonymized in random order.

In contrast to the classification by Mauczka et al. (2015) and Hattori and Lanza (2008),
we do not categorize release tagging, license or copyright corrections as perfective. Our
rationale is that these changes are not related to the code quality, which is our main interest
in this study.

30 Page 10 of 40 Empir Software Eng (2023) 28:30

Table 2 Classification rules and examples, footnotes denote different commit messages from our data

A change is classified as perfective if. . .

1. the commit message says code is removed or marked as deprecated.

2. code is moved to new packages.

3. generics are introduced, new Java features are used, existing code is switched to collections, or class

members are switched to final.

4. documentation is improved or example code is updated.

5. static analysis warnings are fixed even though no related bug is reported.

6. code is reformatted or the readability is otherwise improved (e.g. whitespace fixes or tabs to spaces).

7. existing code is cleaned up, simplified, or its efficiency improved.

8. dependencies are updated.

9. developer tooling is improved, e.g., build scripts or logging facilities.

10. the repository layout is cleaned, e.g., by removing compiled code or maintaining .gitignore files.

11. tests are improved or added.

Examples: Eliminated unused private field. JIRA: DBCP-255a Because of other null

checks it was already impossible to use the field. Thus, this is clean up. [CODEC-127]

Non-ascii characters in source filesb While the linked issue is a bug, it only affects IDEs

for developers and not the compiled code. Thus, this is an improvement of developer

tooling. JEXL-240: Javadocc The message indicates that this commit only improved

the code comments. Therefore, it is classified as perfective.

A change is classified as corrective if. . .

1. the commit message mentions bug fixes.

2. the commit message or the linked issue mentions that a wrong behaviour is fixed.

3. the commit message or the linked issue mentions that a NullPointerException is fixed.

4. a bug report is linked via the commit message that is of type bug and is not just a

feature request in disguise (see Herzig et al. 2013).

Examples: KYLIN-940 ,fix NPE in monitor module, apply patch from Xiaoyu Wangd

This fixes a NullPointerException that is visible to the end user. owl syntax checker (bug

fixes)e Fixes a wrong behavior.

A change is classified as other if. . .

1. the commit message mentions feature or functionality addition.

2. the commit message mentions license information or copyrights changes.

3. the commit message mentions repository related information with unclear purpose,

e.g., merges of branches without information, tagging of releases.

4. the commit message mentions that a release is prepared.

5. an issue is linked via the commit message that requests a feature.

6. any of the 1-5 are tangled with a perfective or corrective classification.

Examples: KYLIN-715 fix license issuef License changes or additions are not direct

improvements of source code. Support the alpha channel for PAM files. Fix the alpha

channel order when reading and writing. Add various tests.g This change adds support

for a new feature, fixes something and adds tests, it is therefore highly tangled and we

do not classify it as either or both.

Page 11 of 40 30Empir Software Eng (2023) 28:30

In Mauczka et al. (2015) the researchers selected six projects and seven developers with
personal commitment and provided the developers with the commit messages that they then
labeled according to different classification schemes. One of which is the Swanson clas-
sification which matches our study. Each developer labeled a sample of commit messages
from their respective project. As we are focused on Java we also use the Java projects of the
Mauczka et al. (2015) dataset to validate our guidelines.

Two authors of this paper re-classified the Java projects from Mauczka et al. (2015):
Deltaspike, Mylyn-reviews and Tapiji. The commit messages were classified separately
first. Disagreements were then resolved together in a separate session. In the first session
both authors achieve a substantial inter-rater agreement (Landis and Koch 1977) with a
Kappa score of 0.62 (Cohen 1960).

Aside from the classification differences regarding release tagging, license or copyright
changes, we noticed further differences. Several commits contain some variation of “minor
bugfixes” which are classified as perfective maintenance by the developers or both cor-
rective and perfective, whereas we classify them as corrective. Additionally, code removal
or test additions were not classified as perfective changes by the developers, but rather as
corrective changes. This reveals a difference of perspective between researchers and devel-
opers. We consider pure code removal and test additions as perfective instead of corrective
as we think of corrective changes as improving external quality, e.g., by fixing a customer
facing bug. The data also contains clean-up and removal messages without a hint of an
underlying bug which are classified as corrective by the developers. Based on the informa-
tion available to us, we cannot decide if these are misclassifications by the developers, the
result of differences in the classification guidelines, or misclassifications by us due to lack
of in-depth knowledge about the projects.

The authors achieve a substantial inter-rater agreement (Landis and Koch 1977) with the
developers yielding a Kappa score of 0.63 (Cohen 1960).

4.3 Deep Learning for Commit Intent Classification

In order to use all available data, we use a deep learning model that classifies all data which
is not manually classified into perfective, corrective or other. Due to the size of state-of-the-
art deep learning models and the computing requirements for training them, a current best

Table 3 Change classification model performance comparison

Model Acc. F1 MCC Description

von der Mosel et al. (2022) 0.80 0.79 0.70 BERT model pre-trained on

software engineering data, fine-tuned

with only commit messages

Ghadhab et al. (2021) 0.78 0.80 – BERT model pre-trained on natural

language, includes code changes.

Gharbi et al. (2019) – 0.46 – Multi-label active learning, only

commit message

Levin and Yehudai (2017) 0.76 – – Keywords and code changes, Random

Forest model

Hönel et al. (2019) 0.80 – – LogitBoost model, includes code density.

30 Page 12 of 40 Empir Software Eng (2023) 28:30

practice is to use a pre-trained model which was trained unsupervised on a large data set.
The model is then fine-tuned on labeled data for a specific task.

To achieve a high performance, we use seBERT (von der Mosel et al. 2022), a model that
is pre-trained on textual software engineering data in two common Natural Language Pro-
cessing (NLP) tasks. Masked Language Model (MLM) and Next Sentence Prediction (NSP)
which predict randomly masked words in a sentence and the next sentence respectively.
Combined, this allows the model to learn a contextual understanding of the language. While
von der Mosel et al. (2022) include a similar benchmark based on our ground truth data, it
only used the perfective label, i.e., a binary classification to demonstrate text classification
for software engineering data. In our study, we measure performance of the multi-class
case with all three labels, perfective, corrective and other. Within this study, we first use our
ground truth data to evaluate the multi-class performance of the model. We perform a 10 ×
10 cross-validation which splits our data into 10 parts and uses 9 for fine-tuning the model
and one for evaluating the performance. The fine-tuning itself splits the data into 80%
training and 20% validation. The model is then fine-tuned and evaluated on the validation
data for each epoch. At the end the best epoch is chosen to classify the test data of the fold.
This is repeated 10 times for every fold which yields 100 performance measurements.

Our experiment shows sufficient performance comparable to other state-of-the-art
models for commit classification. We provide the final fine-tuned model as well as the
fine-tuning code as part of our replication kit for other researchers. Performance wise our
model is comparable to Ghadhab et al. (2021) and improves performance compared other
studies, e.g., Gharbi et al. (2019) and Levin and Yehudai (2017). However, we note that
we fine-tuned the model with only the labels used in our study, i.e., perfective, corrective
and other. Therefore, it cannot be used or directly compared with models that support other
commit classification labels. This would require the same data and labels, we can only
compare the given model performance metrics, which we do in Table 3. If we look at the
overview of commit classification studies by AlOmar et al. (2021) we can see that our
model outperforms the other models for comparable tasks where accuracy or F-measure
is given. While this is evidence that our model can perform our required commit intent
classification a throughout comparison of different commit intent classification approaches
is not within the scope of this study.

4.4 Metric Selection

The metric selection is based on the Columbus software quality model by Bakota et al.
(2011). The metrics are selected from the current version of the model also in use as Qual-
ityGate (Bakota et al. 2014). The current model consists of 14 static source code metrics
related to size, complexity, documentation, re-usability and fault-proneness. While the qual-
ity model provides us with a selection of metrics, we do not use it directly as it requires a
baseline of projects before estimating quality of a candidate project.

Table 4 shows the metrics utilized in this study, a short description, and the direction
which we assume they change in quality improving commits. As most of the metrics are size
and complexity metrics, we expect that their values decrease in comparison to all other com-
mits. The metrics we expect to increase in quality improving commits are commented lines
of code, comment density, and API documentation, as added documentation should increase
these metrics. The three bottom rules consist of static analysis warnings from PMD3 aggre-

3https://pmd.github.io/

Page 13 of 40 30Empir Software Eng (2023) 28:30

https://pmd.github.io/

Table 4 Static source code metrics and static analysis warning severities used in this study including the
expected direction of their values in quality increasing commits

Name and description Abbrev �

Cyclomatic Complexity (McCabe 1976)

The number of independent control-flow paths. McCC ↓
Logical Lines of Code

Number of lines in a file without comments and empty lines. LLOC ↓
Nesting Level else-if

Maximum of nesting level in a file. NLE ↓
Number of parameters in a method

The sum of all parameters of all methods in a file. NUMPAR ↓
Clone Coverage

Ratio of code covered by duplicates. CC ↓
Comment lines of code

Sum of commented lines. CLOC ↑
Comment density

Ratio of CLOC to LLOC. CD ↑
API Documentation

Number of documented public methods, +1 if class is documented. AD ↑
Number of Ancestors

Number of classes, interfaces, enums from which the class is inherited. NOA ↓
Coupling between object classes

Number of used classes (inheritance, function call, type reference). CBO ↓
Number of Incoming Invocations

Other methods that call the current class. NII ↓
Minor static analysis warnings

E.g., brace rules, naming conventions. Minor ↓
Major static analysis warnings

E.g., type resolution rules, unnecessary/unused code rules. Major ↓
Critical static analysis warnings

E.g., equals for string comparison, catching null pointer exceptions. Critical ↓

gated by severity for every file. We are of the opinion that this selection strikes a good
balance of size, complexity, documentation, clone, and coupling based metrics.

As we are interested in static source code metrics in a commit granularity, we sum
the metrics values for all files that are changed within a commit. In addition, we extract
meta information about each change. The static source code metrics are provided by a

30 Page 14 of 40 Empir Software Eng (2023) 28:30

SmartSHARK plugin using the OpenStaticAnalyzer.4 To answer our research question, we
provide the delta of the metric value changes as well as their current and previous value.

4.5 Analysis Procedure

For our confirmatory study as part of RQ1, we compare the difference between two sam-
ples. To choose a valid statistical test of whether there is a difference between both samples,
we first perform the Shapiro-Wilk test (Wilk and Shapiro 1965) to test for normality of
each sample. Since we found that the data is non-normal, we perform the Mann-Whitney U-
test (Mann and Whitney 1947) to evaluate if the metric values of one population dominates
the other. Since we have an expectation about the direction of metric changes, we perform a
one-sided Mann-Whitney U test. The H0 hypothesis is that both samples are the same, the
alternative hypothesis is that one sample contains lower or higher values depending on our
expectation. The expected direction of the metric value change is noted in the last column
of Table 4.

As our data contains a large number of metrics, we cannot assume a statistical test with
p < 0.05 is a valid rejection of a H0 hypothesis. To mitigate the problem posed by a high
number of statistical tests, we perform Bonferroni correction (Abdi 2007). We choose a
significance level of α = 0.05 with Bonferroni correction for 192 statistical tests. They
consist of four size metrics with two groups and three statistical tests as well as 14 source
code metrics with two groups and three statistical tests (normality tests for two samples and
Mann-Whitney U for difference between samples). The second part is repeated for RQ2.
We reject the H0 hypothesis that there is no difference between samples at p < 0.00026.

To calculate the effect size of the Mann-Whitney U test, we use Cliff’s d (Cliff 1993) as a
non-parametric effect size measure. We follow a common interpretation of d values (Gries-
som and Kim 2005): d < 0.10 is negligible, 0.10 ≤ d < 0.33 is small, 0.33 ≤ d < 0.474
is medium and d ≥ 0.474 is large. We provide the effect size for every difference that is
statistically significant.

We report the results visually with box plots. The box plots shows three groups: all,
perfective and corrective, this allows us to show the values for each metric for each group
and serves to highlight the differences. Additionally, we report the differences between each
group and its counterpart, e.g., perfective and non-perfective in the tables where we report
the statistical differences.

A more detailed description of the procedure for each hypothesis follows. For H1, we
compare the structure of quality improving changes with every non-perfective and non-
corrective change. We compare the size (changed lines) and diffusion (number of hunks,
number of changed files) to evaluate the hypothesis. We visualize the results with box plots
and report results for statistical tests to determine if the difference in samples is statistically
significant.

For H2, we also visualize the results via box plots. As most of the differences hover
around zero, we transform the data before plotting via sign(x) · log(abs(x + 1)). As we
are interested in the differences between changes of metric values, we also require x �= 0 :
∀x ∈ X where X is the complete, non-transformed data set for the visualizations. Due to
the difference in changes, we provide our data size corrected, e.g., the delta of McCC is
divided by the modified lines. Additionally, we report the percentage of data that is non-
zero to indicate how often the measurements are changing in our data. In addition to the
visualization, we provide a table with differences between the samples and statistical test
results.

4https://openstaticanalyzer.github.io/

Page 15 of 40 30Empir Software Eng (2023) 28:30

https://openstaticanalyzer.github.io/

Table 5 Statistical test results for perfective and corrective commits, Mann-Whitney U test p-values (p-val)
and effect size (d) with category, n is negligible, s is small

Metric Perfective Corrective

p-value d p-val d

#lines added <0.0001 0.20 (s) <0.0001 0.21 (s)

#lines deleted <0.0001 0.15 (s) <0.0001 0.16 (s)

#files modified 0.2081 – <0.0001 0.22 (s)

#hunks <0.0001 0.01 (n) <0.0001 0.22 (s)

Statistically significant p-values are bolded

As part of our exploratory study for answering RQ2, we also provide box plots of our
metric values. Instead of transformed delta values, we provide the raw averages per file in a
change before the change was applied. In addition, we provide the median values of all of
our metrics before the change was applied. In this part, we apply a two-sided Mann-Whitney
U test as we have no expectation of the direction the metrics change into for the categories.
To complement the visualization, we also provide density plots for both categories. They
show the overlap between the perfective and corrective changes.

4.6 Replication Kit

All data and source code can be found in our replication kit (Trautsch et al. 2021). In addi-
tion, we provide a small website for this publication that contains all information and where
the fine-tuned model can be tested live.5

5 Results

In this section, we first present the results for evaluating our hypotheses of our first research
question. After that, we describe the results of the exploratory part of our study for our
second research question.

5.1 Confirmatory Study

We first present the results of our confirmatory study and evaluate our hypotheses. These
results answer our first research question: Does developer intent to improve internal or
external quality have a positive impact on software metric values?

5.1.1 Results H1: Intended Quality Improvements are Smaller than Non-perfective
and Non-corrective Changes

Figure 1 shows the distribution of sizes between perfective, corrective, and all commits.
Table 5 shows the statistical test results for the differences between perfective and non-
perfective as well as corrective and non-corrective commits. We can see that perfective
commits tend to add fewer lines but instead remove more lines as the non-perfective com-
mits. When we calculate a median delta between all commits and perfective commits, we

5https://r.semistatic.space/emse2021/

30 Page 16 of 40 Empir Software Eng (2023) 28:30

https://r.semistatic.space/emse2021/

Fig. 1 Commit size distribution over all projects for all, perfective and corrective commits. Fliers are omitted

find a difference of 28 for added lines and -2 for deleted lines. While the effect sizes are
negligible to small, we can see this difference also in Fig. 1. The diffusion of the change
over files is also different, however for the number of modified files the difference is not
significant for perfective commits.

Corrective commits also tend to add less code, while they do not delete as much, the
difference in added and deleted lines is also statistically significant. While the effect size
is small, we can see the difference in Fig. 1. For corrective commits, we can also see a
difference in the number of files changed and the number of hunks modified. This diffusion
of the change via the number of files and hunks is also statistically significant although,
again, with a small effect size.

We can conclude, that perfective commits tend to remove more lines, and are generally
adding fewer lines to the repository. Corrective commits delete fewer lines and add fewer
lines than non-corrective commits. Corrective commits are also distributed over fewer
hunks and fewer files than non-corrective commits.

We accept H1 that intended quality improvements are smaller than non-perfective
and non-corrective changes.
Perfective and corrective commits tend to add fewer lines, perfective commits
remove more lines. The effect size is negligible to small in all cases.

5.1.2 Results H2: Intended Quality Improvements Impact Software Quality Metric
Values in a Positive Way

We first note that no metric value changes for each instance of our data. This can be seen in
Table 6, which shows the percentages for each metric value for perfective, corrective, and
all changes. We can see some differences between changes, e.g., critical PMD warnings
only change in about 7% of commits while LLOC changes in about 75%. Some differences
are also between categories, e.g., McCC changes in 31% of perfective changes and in 57%
of corrective changes.

To evaluate H2, we present the differences in all changes visually as box plots in Fig. 2,
which shows the metric values for all commits, only perfective and only corrective.

In addition, we provide Table 7 which shows the Mann-Whitney U test (Mann and Whit-
ney 1947) p-values, and effect sizes for differences between the types of commits. The
differences that are compared in Table 7 are between perfective and non-perfective as well
as corrective and non-corrective. We can see that most metric values are different depending
on whether they are measured in perfective, corrective, or non-perfective and non-corrective
commits. In the following, we discuss the differences for each measured metric value. A
description for each metric and the expected direction of metric value change is shown in
Table 4.

McCC: the cyclomatic complexity of perfective changes is smaller than for non-
perfective changes as well as a combination of all changes. Even when we do not account for
the size of the change. This is expected as some perfective commits mention simplification

Page 17 of 40 30Empir Software Eng (2023) 28:30

Table 6 Percentage of commits
where the metric value does
change on all commits (%NZ),
perfective commits (%NZ P) and
corrective commits (%NZ C)

Metric %NZ %NZ P %NZ C

McCC 51.03 31.01 57.70

LLOC 74.69 60.93 77.99

NLE 36.76 23.92 34.28

NUMPAR 35.93 24.44 24.98

CC 49.41 37.81 55.14

CLOC 51.56 46.52 42.51

CD 76.07 66.48 77.35

AD 27.19 20.63 15.82

NOA 10.51 6.96 3.62

CBO 30.89 22.52 22.22

NII 27.08 17.78 21.09

Minor 36.15 27.02 29.77

Major 19.87 13.23 14.77

Critical 7.23 4.20 4.95

of code. For perfective commits the effect size is medium. Corrective commits however have
higher McCC than all commits. This can be seen in Fig. 2. The median of corrective com-
mits is higher than for all commits. Our assumption about McCC being lower in all quality
improving commits is not met in this case. While it makes sense that corrective commits add

Fig. 2 Static source code metric value changes in all, perfective and corrective commits divided by changed
lines. Fliers are omitted

30 Page 18 of 40 Empir Software Eng (2023) 28:30

Table 7 Statistical test results for perfective and corrective commits, Mann-Whitney U test p-values (p-val)
and effect size (d) with category, n is negligible, s is small, m is medium

Metric Perfective Corrective

p-val d p-val d

McCC <0.0001 0.39 (m) 1.0000 –

LLOC <0.0001 0.45 (m) 1.0000 –

NLE <0.0001 0.27 (s) 1.0000 –

NUMPAR <0.0001 0.25 (s) <0.0001 0.09 (n)

CC 1.0000 – <0.0001 0.12 (s)

CLOC <0.0001 0.16 (s) <0.0001 0.05 (n)

CD 1.0000 – <0.0001 0.16 (s)

AD <0.0001 0.02 (n) <0.0001 0.08 (n)

NOA <0.0001 0.08 (n) <0.0001 0.07 (n)

CBO <0.0001 0.19 (s) <0.0001 0.06 (n)

NII <0.0001 0.19 (s) <0.0001 0.02 (n)

Minor <0.0001 0.19 (s) <0.0001 0.05 (n)

Major <0.0001 0.12 (s) <0.0001 0.05 (n)

Critical <0.0001 0.05 (n) <0.0001 0.03 (n)

Statistically significant p-values are bolded. All values are normalized for changed lines

complexity, Table 7 provides a comparison of stochastic dominance between corrective and
non-corrective commits, not if corrective commits remove or add McCC. Thus, this means
that changes in corrective commits are more complex than those of non-corrective changes.

LLOC: the difference of LLOC is the most pronounced in our data. We find that
even when we do not correct for size of the change the difference between perfective
and non-perfective changes in LLOC is the most pronounced. While manually classifying
the commits, we found that often code is removed because it was marked as deprecated
before or it was no longer needed due to other reasons. The effect size for perfective com-
mits is medium. For corrective commits, we can see the same result as for McCC. While
we assumed that bug fixes usually add code, we did not expect them to dominate all
non-corrective commits including feature additions.

NLE: the nesting level if-else is smaller in perfective commits. We expect this is due
to simplification and removal of complex code. When we look at the box plot in Fig. 2 it
shows a noticeable difference. This means simplification is a high priority when improving
code quality in perfective commits. For corrective commits, we can see the same effect
as previously seen for McCC and LLOC. The NLE is not lower but higher for corrective
commits. This is more evidence for the fact that bug fixes add more complex code. There
may be a timing factor involved, e.g., if bug fixes are quick fixes, they would add more
complex code without a more complex refactoring which would decrease the complexity
again.

NUMPAR: the number of parameters in a method is also different for perfective com-
mits. This may be a hint of the type of perfective maintenance performed the most in
perfective commits. The manual classification showed a lot of commit messages that
claimed a simplification of the changed code. This metric would also be impacted by a sim-
plification or refactoring operations. Corrective commits also show less additions in this

Page 19 of 40 30Empir Software Eng (2023) 28:30

metric, while it only has a negligible effect size it is still statistically significant. Fixing bugs
seems to include some code reduction or at least less addition of parameters for methods.

CC: the clone coverage is not different for perfective commits. We would have expected
that it is decreasing in perfective commits. However, it seems that clone removal is not a
big part of perfective maintenance in our study subjects, which contradicts our expectation.
Corrective commits contain a lower clone coverage, however. This could either be because
corrective commits introduce fewer new clones than non-corrective commits or because
they remove more. A possible reason for clone removal may be the correction of copy and
paste related bugs.

CLOC: the comment lines of code show a difference for perfective commits and correc-
tive commits. While we expected the CLOC to increase in both types of quality improving
commits the effect size is higher in perfective commits. It seems that bug fixing operations
do not add enough comment lines to show a larger difference here for corrective commits.

CD: the comment density of perfective commits is not statistically significantly different
from non-perfective commits. We would have expected a difference here because perfec-
tive maintenance should include additional comments on new or previously uncommented
code. We can see a difference for corrective commits here. This shows that the density of
comments is also improving in bug fixing operations probably due to clarifications for parts
of the code that were fixed.

AD: the API documentation metric does change in perfective and corrective commits
compared to non-perfective and non-corrective commits. A reason could be that perfective
commits do add API documentation to make the difference significant. Corrective changes
that introduce code in our study subjects seem to almost always include API documentation,
therefore we can see a difference here. However, the effect size is negligible in both cases.

NOA: the number of ancestors is lower in perfective commits as expected. This metric
would be affected in simplification and clean up maintenance operations. For corrective
commits we can also see a lower value, this hints at some clean up operations happening
during bug fixing.

CBO: the coupling between objects is lower after perfective commits. This is expected
due to class removal and subsequent decoupling of classes. For corrective commits we can
also see a difference. While the effect size is negligible, there is some code clean up happen-
ing during bug fixes, e.g., NOA and CC are also lower in corrective than in non-corrective
commits.

NII: the number of incoming invocations is lower in both perfective and corrective com-
mits. However, the effect size is small in perfective and negligible in corrective commits. It
seems reasonable to see a difference in this metric, because in the case of perfective com-
mits, we have lots of source code removal. However, there are also maintenance activities
which are decoupling classes which would also impact this metric. Corrective maintenance
seems to involve only limited decoupling operations, also seen in CBO.

Minor: The PMD warnings of minor severity are different in both types of changes.
However, we can see that the effect size is larger for perfective changes which makes sense
as those warnings can be part of perfective maintenance.

Major: The PMD warnings of major severity are also different in both types of changes.
We can see the difference in effect size again and we expect the reason is the same as for
Minor.

Critical: The PMD warnings of critical severity are different for both types of changes.
Here, the effect size is negligible for both types. However, as they are only changed in about
7% of our commits, they are not changing often regardless of commit type.

30 Page 20 of 40 Empir Software Eng (2023) 28:30

There are significant differences between perfective and corrective changes. Cor-
rective changes do not have a positive impact on all quality metrics. Therefore, we
reject H2 that intended quality improvements have a positive impact on quality
metric values.

5.2 Summary RQ1

In summary, we have the following results for RQ1.

RQ1 Summary
While intended quality improvements by developers yield measurable differences
in almost all metrics we find that not all metric values are changing in the expected
direction.

Perfective changes
Perfective commits have a positive effect on metric values that measure code
complexity through the size, conditional statements, number of parameters, and
coupling. For two metrics we do not find the expected difference to non-perfective
commits. Code clones and comment density metric values are not statistically
significantly different in perfective commits.

Corrective changes
Only for two metrics, we observe a non-negligible and statistically significant
change that we predicted. For LLOC, McCC and NLE, we observe the opposite of
the expectation, which indicates that bug fixes add complex code.

5.3 Exploratory Study

To answer our RQ2: What kind of files are the target of internal or external quality improve-
ments? We conduct an exploratory study. We present the results which files are changed in
which change category with respect to their metric values. The extracted metrics are con-
sidered on a per-change basis, i.e., we divide the metrics by the number of changed files
to get an average metric value per file. We depict the average metric value per file before
the change is applied in Fig. 3 as box plot. The median for each metric per file is listed in
Table 8. This provides a view on the average metric values per file before a perfective or
corrective change is applied.

In addition to the per file metric values we include a kernel density estimation of the
metric values before the change is applied in Fig. 4. In Fig. 4 the metric values are depicted
per change. This provides an additional view on the differences in densities for metric values
before a perfective or corrective change is applied. Figure 3 shows box plots for the metric
values of files before the change is applied. We can see that, perfective changes are not
necessarily applied to complex files. If we compare the median values in Table 8 we can see
that perfective changes are applied to smaller, simpler files than the average or corrective
change. McCC, LLOC, NLE, NUMPAR and CBO are lower for the files which receive
perfective changes, while CLOC, CD, AD are higher. This means that less complex and
well documented files are often the target of perfective changes. If we look at corrective
changes we see that they are more complex and usually larger files. McCC, LLOC, NLE,
NUMPAR, CBO, NII as well as Minor, Major and Critical are higher than all changes, or

Page 21 of 40 30Empir Software Eng (2023) 28:30

Fig. 3 Static source code metrics divided by the number of changed files before the change is applied. Fliers
are omitted

perfective changes. As we consider the metric values before the change is applied they can
be considered pre-bugfix. However, when we consider our results for RQ1 the corrective
changes usually increase the complexity even further.

Table 8 Median metric values
per file before the change is
applied

Metric All Perfective Corrective

McCC 21.78 18.78 33.23

LLOC 186.98 163.75 264.18

NLE 9.60 8.33 14.00

NUMPAR 16.06 15.00 22.00

CC 0.04 0.04 0.05

CLOC 46.25 55.00 54.00

CD 0.25 0.32 0.25

AD 0.50 0.67 0.46

NOA 1.00 1.00 1.00

CBO 9.67 8.00 14.00

NII 8.00 8.50 9.50

Minor 7.00 6.00 9.67

Major 2.00 1.25 3.00

Critical 0.00 0.00 0.00

30 Page 22 of 40 Empir Software Eng (2023) 28:30

Fig. 4 Kernel density estimation plot of metric values for perfective and corrective categories before the
change

Table 9 show the results of our statistical tests. Analogous to RQ1 we compare the differ-
ence between perfective and non-perfective as well as corrective and non-corrective. While

Table 9 Statistical test results for
perfective and corrective
commits regarding their average
metrics before the change,
Mann-Whitney U test p-values
(p-val) and effect size (d) with
category, n is negligible, s is
small, m is medium

Metric Perfective Corrective

p-val d p-val d

McCC <0.0001 0.05 (n) <0.0001 0.08 (n)

LLOC <0.0001 0.05 (n) <0.0001 0.05 (n)

NLE <0.0001 0.04 (n) <0.0001 0.07 (n)

NUMPAR 0.6367 – 0.0218 –

CC <0.0001 0.01 (n) 0.0011 –

CLOC <0.0001 0.12 (s) <0.0001 0.06 (n)

CD <0.0001 0.15 (s) <0.0001 0.15 (s)

AD <0.0001 0.17 (s) <0.0001 0.15 (s)

NOA 0.5109 – <0.0001 0.02 (n)

CBO <0.0001 0.09 (n) <0.0001 0.07 (n)

NII <0.0001 0.05 (n) <0.0001 0.04 (n)

Minor <0.0001 0.04 (n) <0.0001 0.02 (n)

Major <0.0001 0.09 (n) <0.0001 0.04 (n)

Critical <0.0001 0.05 (n) <0.0001 0.03 (n)Statistically significant p-values
are bolded

Page 23 of 40 30Empir Software Eng (2023) 28:30

most metric differences are statistically significant, we observe only some small effect sizes
for the comment related metrics while the rest is negligible.

Figure 4 shows another perspective on our data in the form of a direct comparison of the
density between perfective and corrective changes. We can see that McCC, NLE, LLOC,
NUMPAR, CD, CBO, NII and Minor have a lower density for perfective than for correc-
tive. While the differences are small they are noticeable.

RQ2 Summary
The files that are targets of perfective changes are in median not large and complex
even before the change is applied. Corrective changes are applied to files which are
in median already complex and large. In particular the median values of McCC,
LLOC, CBO and NLE show this behavior. This also holds for the median val-
ues of static analysis warnings. The median number of static analysis warnings is
lower before a perfective change is applied and higher before a corrective change is
applied. The differences are statistically significant for most metrics, however the
effect sizes are negligible to small.

6 Discussion

Our results show that size is different in both types of commits in H1. The size difference
between all commits and perfective as well as corrective commits shows that both tend to
be smaller than non-perfective and non-corrective commits. In case of perfective commits,
code is statistically significantly more often deleted.

The differences in change size as well as the increased number of deletions for perfec-
tive commits we found for H1 confirms previous research. The studies by Mockus (2000),
Purushothaman and Perry (2005) and Alali et al. (2008) found that perfective maintenance
activities are usually smaller. Mockus (2000) as well as Purushothaman and Perry (2005)
found that corrective maintenance is also smaller and that perfective maintenance deletes
more code. Another indication that size between maintenance types is different can be
seen in the work by Hönel et al. (2019), which used size based metrics as predictors for
maintenance types and showed that it improved the performance of classification models.

Our results for H2 show statistically significant differences in metric measurements
between perfective commits and non-perfective commits. This result indicates a confirma-
tion of the measurements used by quality models, as the majority of metrics change as
expected when developers actively improve the internal code quality. This empirical confir-
mation of the connection between quality metrics and developer intent is one of our main
contributions and was, to the best of our knowledge, not part of any prior study. However,
there are several examples of prior work that assumed this relationship.

The publications by McCabe (1976) and Chidamber and Kemerer (1994) assume that
reducing complexity and coupling metrics increases software quality which is in line
with our developer intents. While all metrics are included in a current ColumbusQM ver-
sion (Bakota et al. 2014) because we used it as a basis, the CBO, McCC, LLOC, NOA
metrics are also part of the SQUALE model (Mordal-Manet et al. 2009) AD, NLE, McCC,
and PMD warnings are also part of Quamoco (Wagner et al. 2012). It seems that develop-
ers and the Columbus quality model agree with their view on software quality. We find that
most of the metrics used in the quality model change when developers perceive their change
as quality increasing. This is also true for most of the metrics shared with the SQUALE

30 Page 24 of 40 Empir Software Eng (2023) 28:30

model and with the Quamoco quality model. However, the implementation for the met-
rics may differ between the models. Our work establishes that all these quality models are
directly related to intended improvements of the internal code quality by the developers.

Surprisingly, we found only few statistically significant and non-negligible differences
for corrective commits. Not all software metric values are changing into the expected direc-
tion for corrective commits. For example, we can see that McCC, LLOC and NLE are
increasing in corrective changes compared to non-corrective commits. While we are not
expecting them to decrease for every corrective commit, we assumed that in comparison
to all non-corrective commits they would be decreasing. Even when considering software
aging (Parnas 2001) we would expect the aging to impact all kinds of changes not just cor-
rective changes. When we look at popular data sets used in the defect prediction domain
we often find coupling, size and complexity software metrics (Herbold et al. 2022). For
example, the popular (as per the literature review from Hosseini et al. (2017)) data set by
Jureczko and Madeyski (2010) uses such features, but they are also common in more recent
data sets, e.g., by Ferenc et al. (2020) or Yatish et al. (2019).

That the most significant difference is in the size of changes could explain various recent
findings from the literature, in which size was found to be a very good indicator both for
release level defect prediction (Zhou et al. 2018) and just-in-time defect prediction (Huang
et al. 2017). This could also be an explanation for possible ceiling effects (Menzies et al.
2008) when such criteria are used, as the difference to non-corrective changes are relatively
small. We believe that these aspects should be further considered by the defect predic-
tion community and believe that more research is required to establish causal relationships
between features and defectiveness.

While the work by Peitek et al. (2021) indicates that cyclomatic complexity may not be
as indicative of code understandability as expected, we show within our work that it often
changes in quality increasing commits. It seems that developers associate overall complexity
as measured by McCC, NLE, NUMPAR with code that needs quality improvement. How-
ever, as we can see in the exploratory part of our study the most complex files are usually
not targeted for quality increasing changes.

Our exploratory study to answer RQ2 about files that are the target of quality increasing
commits reveals additional interesting data. We show that perfective maintenance does not
necessarily target files that are in need of it due to high complexity in comparison to non-
perfective changes. In fact, low complexity files as measured by McCC and NLE are more
often part of additional quality increasing work by the developers. This may hint at prob-
lems regarding the prioritization of quality improvements in the source code. Maybe errors
could have been avoided when perfective changes would have targeted more complex files.
There could also be effects of different developers or a bias for perfective changes towards
simpler code, this warrants future investigation. Corrective changes, in contrast to perfec-
tive changes, are applied to files which are large and complex. This was expected, however
combined with the results of RQ1 this means that bugs are fixed in complex and large files
and then the files get, on average, even more complex and even larger.

Future work could investigate boundary values according to our data. When we com-
pare the median values of our measurements in Table 8 with current boundary values from
PMD,6 we may think that the PMD warning value of 80 McCC per file may be too high. A
PMD warning triggered at 34 McCC per file would have warned about at least 50% of the

6https://pmd.github.io/pmd/pmd rules java design.html#cyclomaticcomplexity

Page 25 of 40 30Empir Software Eng (2023) 28:30

https://pmd.github.io/pmd/pmd_rules_java_design.html#cyclomaticcomplexity

files that were in need of a bug fix. However, lowering the boundary will also result in more
warnings for files that were not target of corrective changes.

6.1 Implications for Researchers

Our results for H1 increase the validity of previous research by confirming previous
results in our study on a larger data set of different projects. Our confirmation that qual-
ity increasing changes are smaller than non-perfective and non-corrective changes shows
that researchers developing a change classification approach can benefit from including size
based metrics.

Our results for H2 show that perfective changes reduce size and complexity metrics
in comparison to non-perfective changes. Previous studies investigating refactorings also
found an impact on size and complexity metrics. We are able to generalize this finding by
providing results of a superset of refactoring operations, namely perfective changes. This
indicates that perfective changes generally reduce size and complexity metrics. This also
indicates that software quality models that use the affected metrics in their code quality
estimations agree with the developers on what impacts code quality.

Increasing the external quality by fixing bugs, i.e., corrective changes, decreases the
internal quality, i.e., complexity metric values. Defect prediction models may assign a
higher risk to parts of the code that contained a bug before as there is an assumption of latent
bugs still existing (Kim et al. 2007; Rahman et al. 2011). Our data provides a fine grained
perspective by providing empirical data which shows that the code quality as measured by
static source code metrics is actually decreasing.

This also has implications for researchers developing and deploying defect prediction
models in practice. The fact that fixing a bug increases the risk of the file can lead to prob-
lems regarding the acceptance of the model by practitioners as they have no way of reducing
the risk (Lewis et al. 2013). The results of our study could help to explain the reasons to
developers. We can empirically show that fixing a bug is a complex operation that intro-
duces even more complexity than non-corrective changes, even feature additions. According
to our results, the main driver of complexity in a project are bug fixes and the only way to
combat the rising complexity is perfective maintenance which should especially target large
and complex files.

In our results for RQ2 we see a difference between files before corrective changes are
applied and before non-corrective changes are applied. This difference is one of the sources
of the predictive power of defect prediction models. However, the difference is smaller than
expected. Incorporating metrics that have a larger difference in our data, e.g., comment
density and API documentation into defect prediction models, may increase their prediction
performance.

6.2 Implications for Practitioners

Our results for H2 suggest that, for the most part, software quality models match the expec-
tations of the developers. If practitioners select a software quality model which uses static
source code metrics that show a difference in our data they can expect that the model
matches their intuition.

In combination with RQ2, our results indicate that bug fixing is the main driver of com-
plexity in a software project and perfective changes are the main reducer of complexity.
This has implications for developers. If more complex files were targeted for perfective

30 Page 26 of 40 Empir Software Eng (2023) 28:30

maintenance bugs could possibly have been prevented. As fixing bugs does not decrease
complexity, perfective maintenance is the best way to reduce it and combat rising complex-
ity of the project as a whole. However, given the results for RQ2, we see that large and
complex files are not the main target of perfective maintenance. This is an opportunity for
improvement by shifting priorities for perfective maintenance to large and complex files.
Moreover, our results indicate that a bug fix should be treated similar to technical debt
regarding its negative impact on complexity metrics. To mitigate this, practitioners should
be aware that it would be beneficial to clean up and simplify the code that is introduced as
part of the bug fix.

7 Threats to Validity

In this section, we discuss the threats to validity we identified for our work. We discuss four
basic types of validity separately as suggested by Wohlin et al. (2000) and include reliability
due to our manual classification approach.

7.1 Reliability

We classify changes to a software retroactively and without the developers. This may intro-
duce a researcher bias to the data and subsequently the results. However, this is a necessity
given the size of the data and the unrestricted time frame for the sample and full data
because it would not be feasible to ask developers about a couple of commits from years
ago. To mitigate this threat, we perform the classification labeling according to guidelines
and every change is independently classified by two researchers. We also compare our dif-
ferences with a sample of changes classified by the developers themselves from Mauczka
et al. (2015) and confirm that we are agreeing on most changes. In addition, we measure the
inter-rater agreement between the researchers and find that it is substantial.

7.2 Construct Validity

Our definition of quality improving may be too broad. We aggregate different types of
quality improvement together, e.g., improving error messages, structure of the code or read-
ability. This may influence the changes we observe within our metric values. While these
differences should be studied as well, we believe that a broad overview of generic quality
improvements independent of their type has advantages. We avoid the risk of being focused
only on structural improvements, i.e., due to use of generics or new Java features without
missing bigger changes due to simplification of method code.

7.3 Conclusion Validity

We are reporting differences in metric value changes between perfective and corrective
changes of the software development history of our study subjects. We find a difference
for perfective commits and only some non-negligible, statistically significant difference for
corrective commits. This could be an effect of our sample used as ground truth, however
we chose to draw randomly from a list of commits in our study subjects so that our sample
should be representative.

Page 27 of 40 30Empir Software Eng (2023) 28:30

We use a deep learning model to classify all of our commits based on the ground truth
we provide. This can introduce a bias or errors in the classification. We note however, that
the non-negligible effect sizes for our results do not change. The quality metric evaluation
of only the ground truth data is included in the Appendix and shows similar results. We note
that for the small effect sizes we observe, a large number of observations are needed to show
a significant difference as is demonstrated by the results in this article when compared to
the ground truth.

7.4 Internal Validity

A possible threat could be tangled commits which improve quality and at the same time
add a feature. We mitigate this in our ground truth, by manual inspection of the commit
message of every change considered. We excluded tangled commits if it was possible to
determine this by the commit message. As no automatic untangling approach is available
to us and available approaches to label tangled commits already use the commit message
to find tangled commits we determine that tangled commits which are not identifiable from
the commit message are a minor threat.

Another threat could be a lower number of feature additions in our study subjects. Maybe
feature additions happen too infrequently to influence the results, therefore, corrective com-
mits are seen as adding more complex code than non-corrective commits. While we include
some projects that are in development for a long period of time, we believe this threat is
mitigated by the unrestricted time frame of our study.

Bots which commit code (Dey et al. 2020) could be a possible threat to our study. We
mitigate this threat by matching our author data against the bot data set provided by Dey
et al. (2020). We did not find matches for bots in our data. We were able to detect a Jenkins
bot only when dropping the restriction of our case study data that a commit has to change
non-test code. We also implemented the detection mechanism by Dey et al. (2020) which
uses the username and email of the author of the commit, as used by Dey et al. to create
their bot data set. This also yielded no bots in our data. Manual inspection of the author data
yielded two bot-like accounts which turned out to be from a previous cvs2svn conversion
as well as asf-sync-process which allows user patches without an account. However, the
content of changes by the accounts we found are created by developers. We determine that
the threat of bots in our data is low.

Missing information in a commit message could impact our results. Commits which are
in our other category could still be perfective or corrective without it being apparent from the
commit message. The study conducted by Tian et al. (2022) found that between 0.9% and
7.5% of commits do not contain why a change was made nor what it was that was changed.
This can not be mapped to our study completely because we do not discern between why
and what. Morevoer, some of what we found could map top both, e.g., simplify, clean up.
We are not able to mitigate this threat as we extract the intent of the developers only from
the commit message.

7.5 External Validity

We focus on a convenience sample of data consisting of Java Open Source projects under
the umbrella of the Apache Software Foundation. We consider this a minor threat to external
validity. The reason is that although we are limited to one organization, we still have a wide
variety of different types of software in our data. We believe that this mitigates the missing
variety of project patronage.

30 Page 28 of 40 Empir Software Eng (2023) 28:30

Furthermore, we only include Java projects. However, Java is used in a wide variety of
projects and remains a popular language. Its age provides us with a long history of data we
can utilize in this study. However, we note that this study may not generalize to all Java
projects much less all software projects in other languages.

8 Conclusion

Numerous quality measurements exist, and numerous software quality models try to connect
concrete quality metrics with abstract quality factors and sub factors. Although it seems
clear that some static source code metrics influence software quality factors, the question
of which and how much remains. Instead of relying on necessarily limited developer and
expert evaluations of source code or changes we extract metrics from past changes where
developers intended to increase the quality extracted from the commit message.

Within this work, we performed a manual classification of developer intents on a sample
of 2,533 commits from 54 Java open source projects by two researchers independently and
guided by classification guidelines. We classify the commits into three categories, perfec-
tive maintenance, corrective maintenance, or neither. We further evaluate our classification
guidelines by re-classifying of a developer labeled sample. We use the manually labeled
data as ground truth to evaluate and then fine tune a state-of-the-art deep learning model for
text classification. The fine-tuned model is then used to classify all available commits into
our categories increasing our data size to 125,482 commits. We extract static source code
metrics and static analysis warnings for all 125,482 commits which allows us to investigate
the impact of changes and the distribution of metric values before the changes are applied.
Based on the literature, we hypothesize that certain metric values change in a certain direc-
tion, e.g., perfective changes reduce complexity. We find that perfective commits are more
often removing code and generally add fewer lines. Regarding the metric measurements,
we find that most metric value changes of perfective commits are significantly different to
non-perfective commits and have a positive, non-negligible impact on the majority of metric
values.

Surprisingly, we found that corrective changes are more complex and larger than non-
corrective changes. It seems that fixing a bug increases the size, but also the complexity
measured via McCC and NLE. As we compare against all non-corrective changes, we were
expecting less addition of complexity as e.g., feature additions. We conclude that the process
of performing a bug fix tends to add more complex code than non-corrective changes.

We find that complex files are not necessarily the primary target for quality increas-
ing work by developers, including refactoring. To the contrary, we find that perfective
quality changes are applied to files that are already less complex than files changed in non-
perfective or corrective commits. Files contained in corrective changes on the other hand are
more complex and usually larger than files contained in either perfective or non-corrective
changes. In combination with our first result this shows that corrective changes are applied
to files which are already complex and get even more complex after the change is applied.

While we explored a limited number of metrics and commits we think that this approach
can be used to evaluate more metrics connected with software quality in a meaningful way
and help practitioners and researchers with additional empirical data.

Page 29 of 40 30Empir Software Eng (2023) 28:30

Appendix: Ground Truth Only Results

Fig. 5 Ground truth only. Commit size distribution over all projects for all, perfective and corrective commits.
Fliers are omitted

Table 10 Ground truth only. Statistical test results for perfective and corrective commits, Mann-Whitney U
test p-values (p-val) and effect size (d) with category n is negligible, s is small

Metric Perfective Corrective

p-value d p-val d

#lines added <0.0001 0.20 (s) <0.0001 0.20 (s)

#lines deleted <0.0001 0.13 (s) <0.0001 0.17 (s)

#files modified 0.2829 – <0.0001 0.22 (s)

#hunks 0.7009 – <0.0001 0.21 (s)

Statistically significant p-values are bolded

Fig. 6 Ground truth only. Static source code metric value changes in all, perfective and corrective commits
divided by changed lines. Fliers are omitted

30 Page 30 of 40 Empir Software Eng (2023) 28:30

Table 11 Ground truth only. Statistical test results for perfective and corrective commits, Mann-Whitney U
test p-values (p-val) and effect size (d) with category, n is negligible, s is small, m is medium

Metric Perfective Corrective

p-val d p-val d

McCC <0.0001 0.37 (m) 1.0000 –

LLOC <0.0001 0.42 (m) 1.0000 –

NLE <0.0001 0.26 (s) 0.9577 –

NUMPAR <0.0001 0.24 (s) <0.0001 0.09 (n)

CC 1.0000 – <0.0001 0.12 (s)

CLOC <0.0001 0.19 (s) 0.1906 –

CD 0.9303 – <0.0001 0.15 (s)

AD 0.1556 – <0.0001 0.10 (s)

NOA <0.0001 0.08 (n) <0.0001 0.09 (n)

CBO <0.0001 0.18 (s) 0.0145 –

NII <0.0001 0.19 (s) 0.0620 –

Minor <0.0001 0.18 (s) 0.0005 –

Major <0.0001 0.10 (s) 0.0002 0.06 (n)

Critical <0.0001 0.06 (n) 0.1111 –

Statistically significant p-values are bolded. All values are normalized for changed lines

Fig. 7 Ground truth only. Static source code metrics before the change is applied. Fliers are omitted

Page 31 of 40 30Empir Software Eng (2023) 28:30

Table 12 Median metric values
before the change is applied Metric All Perfective Corrective

McCC 21.00 18.00 34.00

LLOC 187.22 160.38 270.00

NLE 9.50 7.67 15.20

NUMPAR 16.00 14.67 21.00

CC 0.04 0.04 0.04

CLOC 48.22 55.00 55.00

CD 0.25 0.31 0.24

AD 0.50 0.63 0.49

NOA 1.00 1.00 1.00

CBO 9.50 8.00 14.00

NII 8.00 8.00 9.00

Minor 7.00 5.43 10.00

Major 2.00 1.00 2.67

Critical 0.00 0.00 0.00

Table 13 Ground truth only.
Statistical test results for
perfective and corrective
commits regarding their average
metrics before the change,
Mann-Whitney U test p-values
(p-val) and effect size (d) with
category, n is negligible, s is
small, m is medium

Metric Perfective Corrective

p-val d p-val d

McCC 0.0003 – 0.0016 –

LLOC 0.0005 – 0.1138 –

NLE 0.0003 – 0.0072 –

NUMPAR 0.5344 – 0.4704 –

CC 0.4142 – 0.0210 –

CLOC <0.0001 0.10 (n) 0.0111 –

CD <0.0001 0.15 (s) <0.0001 0.16 (s)

AD <0.0001 0.15 (s) <0.0001 0.15 (s)

NOA 0.6847 – 0.2103 –

CBO <0.0001 0.11 (s) 0.0190 –

NII 0.0510 – 0.0105 –

Minor 0.0006 – 0.6288 –

Major <0.0001 0.12 (s) 0.0852 –

Critical 0.0179 – 0.5730 –Statistically significant p-values
are bolded

30 Page 32 of 40 Empir Software Eng (2023) 28:30

Table 14 Detailed statistical tests results for metric changes

Metric MWU statistic Median SHA statistic SHA p-val

Perfective changes

McCC 2579401012.5 0.02,0.00 0.55,0.27 <0.0001,<0.0001

LLOC 2691844899.5 0.25,0.00 0.57,0.20 <0.0001,<0.0001

NLE 2351847133.0 0.00,0.00 0.58,0.20 <0.0001,<0.0001

NUMPAR 2328626543.0 0.00,0.00 0.39,0.05 <0.0001,<0.0001

CC 1666541612.5 0.00,0.00 0.03,0.01 <0.0001,<0.0001

CLOC 2158356261.5 0.00,0.00 0.32,0.34 <0.0001,<0.0001

CD 1715608163.5 0.00,0.00 0.41,0.21 <0.0001,<0.0001

AD 1899339427.0 0.00,0.00 0.25,0.13 <0.0001,<0.0001

NOA 1997259809.5 0.00,0.00 0.06,0.01 <0.0001,<0.0001

CBO 2208901912.0 0.00,0.00 0.21,0.04 <0.0001,<0.0001

NII 2210463268.0 0.00,0.00 0.09,0.07 <0.0001,<0.0001

Minor 2201853734.0 0.00,0.00 0.04,0.01 <0.0001,<0.0001

Major 2077680338.5 0.00,0.00 0.04,0.00 <0.0001,<0.0001

Critical 1952568002.5 0.00,0.00 0.05,0.05 <0.0001,<0.0001

Corrective changes

McCC 1319862052.5 0.00,0.00 0.36,0.36 <0.0001,<0.0001

LLOC 1406100592.5 0.07,0.18 0.36,0.36 <0.0001,<0.0001

NLE 1538986445.5 0.00,0.00 0.35,0.35 <0.0001,<0.0001

NUMPAR 1736495605.5 0.00,0.00 0.14,0.14 <0.0001,<0.0001

CC 1781604826.0 0.00,0.00 0.01,0.01 <0.0001,<0.0001

CLOC 1665288104.5 0.00,0.00 0.38,0.38 <0.0001,<0.0001

CD 1833218654.0 0.00,0.00 0.28,0.28 <0.0001,<0.0001

AD 1719709796.5 0.00,0.00 0.19,0.19 <0.0001,<0.0001

NOA 1700427713.0 0.00,0.00 0.03,0.03 <0.0001,<0.0001

CBO 1687001103.5 0.00,0.00 0.09,0.09 <0.0001,<0.0001

NII 1621472694.0 0.00,0.00 0.11,0.11 <0.0001,<0.0001

Minor 1664776380.0 0.00,0.00 0.01,0.01 <0.0001,<0.0001

Major 1667877088.0 0.00,0.00 0.01,0.01 <0.0001,<0.0001

Critical 1631274846.5 0.00,0.00 0.07,0.07 <0.0001,<0.0001

Accompanies Table 7. SHA is Shapiro-Wilk, MWU is Mann-Whitney U test, the number of samples for
non-perfective is 77,630, for perfective the number is 47,852. The number of samples for non-corrective is
90,258 and for corrective 35,124. For both samples the median, Shapiro-Wilk test statistic and p-value are
given comma separated

Page 33 of 40 30Empir Software Eng (2023) 28:30

Table 15 Detailed statistical tests results for metrics before the change is applied

Metric MWU statistic Median SHA statistic SHA p-val

Perfective changes

McCC 1946723702.0 47.00,39.00 0.27,0.21 <0.0001,<0.0001

LLOC 1946637361.5 397.00,335.00 0.26,0.21 <0.0001,<0.0001

NLE 1934702498.0 21.00,18.00 0.28,0.24 <0.0001,<0.0001

NUMPAR 1860319211.0 34.00,32.00 0.25,0.20 <0.0001,<0.0001

CC 1881849087.0 0.09,0.08 0.07,0.10 <0.0001,<0.0001

CLOC 1642584608.5 84.00,118.00 0.18,0.24 <0.0001,<0.0001

CD 1570226793.0 0.40,0.54 0.08,0.14 <0.0001,<0.0001

AD 1548982847.0 0.83,1.00 0.11,0.14 <0.0001,<0.0001

NOA 1861405551.0 2.00,2.00 0.13,0.09 <0.0001,<0.0001

CBO 2023896520.5 21.00,15.00 0.24,0.16 <0.0001,<0.0001

NII 1756171669.5 15.00,18.00 0.25,0.21 <0.0001,<0.0001

Minor 1926916681.5 15.00,13.00 0.15,0.13 <0.0001,<0.0001

Major 2025070328.5 4.00,3.00 0.23,0.17 <0.0001,<0.0001

Critical 1949852017.5 0.00,0.00 0.19,0.12 <0.0001,<0.0001

Corrective changes

McCC 1455448657.0 41.00,50.00 0.23,0.23 <0.0001,<0.0001

LLOC 1506999970.0 361.00,399.00 0.23,0.23 <0.0001,<0.0001

NLE 1477296467.5 18.00,22.00 0.25,0.25 <0.0001,<0.0001

NUMPAR 1573653093.5 33.00,33.00 0.22,0.22 <0.0001,<0.0001

CC 1605078855.0 0.09,0.08 0.09,0.09 <0.0001,<0.0001

CLOC 1683529860.5 101.00,83.00 0.22,0.22 <0.0001,<0.0001

CD 1832629967.5 0.51,0.35 0.12,0.12 <0.0001,<0.0001

AD 1822953682.5 1.00,0.75 0.13,0.13 <0.0001,<0.0001

NOA 1616227506.0 2.00,2.00 0.10,0.10 <0.0001,<0.0001

CBO 1476937730.0 17.00,21.00 0.19,0.19 <0.0001,<0.0001

NII 1655048856.5 17.00,14.00 0.22,0.22 <0.0001,<0.0001

Minor 1557520234.5 14.00,14.00 0.14,0.14 <0.0001,<0.0001

Major 1516141644.5 3.00,4.00 0.19,0.19 <0.0001,<0.0001

Critical 1546362144.0 0.00,0.00 0.15,0.15 <0.0001,<0.0001

Accompanies Table 9. SHA is Shapiro-Wilk, MWU is Mann-Whitney U test, the number of samples for
non-perfective is 77,630, for perfective the number is 47,852. The number of samples for non-corrective is
90,258 and for corrective 35,124. For both samples the median, Shapiro-Wilk test statistic and p-value are
given comma separated

Acknowledgements We want to thank the GWDG Göttingen7 for providing us with computing resources
within their HPC-Cluster.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was partly funded by
the German Research Foundation (DFG) through the project DEFECTS, grant 402774445

Data Availability The datasets generated during and/or analysed during the current study are available in
the Zenodo repository, https://doi.org/10.5281/zenodo.7078179.

7https://www.gwdg.de

30 Page 34 of 40 Empir Software Eng (2023) 28:30

https://doi.org/10.5281/zenodo.7078179
https://www.gwdg.de

Declarations

Conflict of Interests The authors have no competing interests to declare that are relevant to the content of
this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdi H (2007) Bonferroni and sidak corrections for multiple comparisons. In: Encyclopedia of measurement
and statistics. Sage, Thousand Oaks, pp 103–107

Al Dallal J, Abdin A (2018) Empirical evaluation of the impact of object-oriented code refactor-
ing on quality attributes: a systematic literature review. IEEE Trans Softw Eng 44(1):44–69.
https://doi.org/10.1109/TSE.2017.2658573

Alali A, Kagdi H, Maletic JI (2008) What’s a typical commit? A characterization of open source software
repositories. In: 2008 16th IEEE international conference on program comprehension, pp 182–191.
https://doi.org/10.1109/ICPC.2008.24

AlOmar EA, Mkaouer MW, Ouni A (2021) Toward the automatic classification of self-affirmed refactor-
ing. J Syst Softw 171:110821. https://doi.org/10.1016/j.jss.2020.110821. http://www.sciencedirect.com/
science/article/pii/S016412122030217X

Alshayeb M (2009) Empirical investigation of refactoring effect on software quality. Inf Softw Technol
51(9):1319–1326. https://doi.org/10.1016/j.infsof.2009.04.002. http://www.sciencedirect.com/science/
article/pii/S095058490900038X

Bakota T, Hegedűs P, Körtvélyesi P, Ferenc R, Gyimóthy T (2011) A probabilistic software quality
model. In: 2011 27th IEEE international conference on software maintenance (ICSM), pp 243–252.
https://doi.org/10.1109/ICSM.2011.6080791

Bakota T, Hegedűs P, Siket I, Ladányi G, Ferenc R (2014) Qualitygate sourceaudit: a tool for
assessing the technical quality of software. In: 2014 Software evolution week—IEEE conference
on software maintenance, reengineering, and reverse engineering (CSMR-WCRE), pp 440–445.
https://doi.org/10.1109/CSMR-WCRE.2014.6747214

Bavota G, De Lucia A, Di Penta M, Oliveto R, Palomba F (2015) An experimental investi-
gation on the innate relationship between quality and refactoring. J Syst Softw 107:1–14.
https://doi.org/10.1016/j.jss.2015.05.024. http://www.sciencedirect.com/science/article/pii/
S0164121215001053

Boehm BW, Brown JR, Lipow M (1976) Quantitative evaluation of software quality. In: Proceedings of the
2nd international conference on software engineering, ICSE ’76. IEEE Computer Society Press, Los
Alamitos, pp 592–605. http://dl.acm.org/citation.cfm?id=800253.807736

Chahal KK, Saini M (2018) Developer dynamics and syntactic quality of commit messages in oss projects.
In: Stamelos I, Gonzalez-Barahoña JM, Varlamis I, Anagnostopoulos D (eds) Open source systems:
enterprise software and solutions. Springer International Publishing, Cham, pp 61–76

Ch’avez A, Ferreira I, Fernandes E, Cedrim D, Garcia A (2017) How does refactoring affect inter-
nal quality attributes? A multi-project study. In: Proceedings of the 31st Brazilian symposium
on software engineering, SBES’17. Association for Computing Machinery, New York, pp 74–83.
https://doi.org/10.1145/3131151.3131171

Chidamber SR, Kemerer CF (1994) A metrics suite for object oriented design. IEEE Trans Softw Eng
20(6):476–493. https://doi.org/10.1109/32.295895

Cliff N (1993) Dominance statistics: ordinal analyses to answer ordinal questions. Psychol Bull
Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20(1):37–46.

https://doi.org/10.1177/001316446002000104

Page 35 of 40 30Empir Software Eng (2023) 28:30

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TSE.2017.2658573
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1016/j.jss.2020.110821
http://www.sciencedirect.com/science/article/pii/S016412122030217X
http://www.sciencedirect.com/science/article/pii/S016412122030217X
https://doi.org/10.1016/j.infsof.2009.04.002
http://www.sciencedirect.com/science/article/pii/S095058490900038X
http://www.sciencedirect.com/science/article/pii/S095058490900038X
https://doi.org/10.1109/ICSM.2011.6080791
https://doi.org/10.1109/CSMR-WCRE.2014.6747214
https://doi.org/10.1016/j.jss.2015.05.024
http://www.sciencedirect.com/science/article/pii/S0164121215001053
http://www.sciencedirect.com/science/article/pii/S0164121215001053
http://dl.acm.org/citation.cfm?id=800253.807736
https://doi.org/10.1145/3131151.3131171
https://doi.org/10.1109/32.295895
https://doi.org/10.1177/001316446002000104

D’Ambros M, Lanza M, Robbes R (2012) Evaluating defect prediction approaches: a
benchmark and an extensive comparison. Empirical Softw Engg 17(4–5):531–577.
https://doi.org/10.1007/s10664-011-9173-9

Dey T, Mousavi S, Ponce E, Fry T, Vasilescu B, Filippova A, Mockus A (2020) Detecting and
characterizing bots that commit code. In: Proceedings of the 17th international conference on
mining software repositories. Association for Computing Machinery, New York, pp 209–219.
https://doi.org/10.1145/3379597.3387478

Fakhoury S, Roy D, Hassan A, Arnaoudova V (2019) Improving source code readability: theory and prac-
tice. In: 2019 IEEE/ACM 27th international conference on program comprehension (ICPC), pp 2–12.
https://doi.org/10.1109/ICPC.2019.00014

Fenton N, Bieman J (2014) Software metrics: a rigorous and practical approach, 3rd edn. CRC Press, Inc.,
Boca Raton

Ferenc R, Gyimesi P, Gyimesi G, Tóth Z, Gyimóthy T (2020) An automatically created novel bug dataset
and its validation in bug prediction. J Syst Softw 169:110691. https://doi.org/10.1016/j.jss.2020.110691.
http://www.sciencedirect.com/science/article/pii/S0164121220301436

Fu Y, Yan M, Zhang X, Xu L, Yang D, Kymer JD (2015) Automated classification of
software change messages by semi-supervised latent dirichlet allocation. Inf Softw Technol
57:369–377. https://doi.org/10.1016/j.infsof.2014.05.017. http://www.sciencedirect.com/science/article/
pii/S0950584914001347

Ghadhab L, Jenhani I, Mkaouer MW, Ben Messaoud M (2021) Augmenting commit classification by
using fine-grained source code changes and a pre-trained deep neural language model. Inf Softw Tech-
nol 135:106566. https://doi.org/10.1016/j.infsof.2021.106566. https://www.sciencedirect.com/science/
article/pii/S0950584921000495

Gharbi S, Mkaouer MW, Jenhani I, Messaoud MB (2019) On the classification of software change
messages using multi-label active learning. In: Proceedings of the 34th ACM/SIGAPP symposium
on applied computing, SAC ’19. Association for Computing Machinery, New York, pp 1760–1767.
https://doi.org/10.1145/3297280.3297452

Griessom RJ, Kim JJ (2005) Effect sizes for research: a broad practical approach. Lawrence Erlbaum
Associates Publishers

Gyimothy T, Ferenc R, Siket I (2005) Empirical validation of object-oriented metrics on open source software
for fault prediction. IEEE Trans Softw Eng 31(10):897–910. https://doi.org/10.1109/TSE.2005.112

Hattori LP, Lanza M (2008) On the nature of commits. In: Proceedings of the 23rd IEEE/ACM international
conference on automated software engineering, ASE’08. IEEE Press, Piscataway, pp III–63–III–71.
https://doi.org/10.1109/ASEW.2008.4686322

Herbold S, Trautsch A, Trautsch F, Ledel B (2022) Problems with SZZ and features: An empiri-
cal study of the state of practice of defect prediction data collection. Empir Software Eng 27:42.
https://doi.org/10.1007/s10664-021-10092-4

Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: how misclassification impacts bug prediction.
In: Proceedings of the 2013 international conference on software engineering, ICSE ’13. IEEE Press,
pp 392–401

Hönel S, Ericsson M, Löwe W, Wingkvist A (2019) Importance and aptitude of source code density for com-
mit classification into maintenance activities. In: 2019 IEEE 19th international conference on software
quality, reliability and security (QRS), pp 109–120. https://doi.org/10.1109/QRS.2019.00027

Hosseini S, Turhan B, Gunarathna D (2017) A systematic literature review and meta-analysis on cross project
defect prediction. IEEE Trans Softw Eng PP(99):1–1. https://doi.org/10.1109/TSE.2017.2770124

Huang Q, Xia X, Lo D (2017) Supervised vs unsupervised models: a holistic look at effort-aware just-in-
time defect prediction. In: 2017 IEEE International conference on software maintenance and evolution
(ICSME), pp 159–170. https://doi.org/10.1109/ICSME.2017.51

ISO/IEC (2001) Iso/iec 9126. software engineering—product quality
ISO/IEC (2011) ISO/IEC 25010:2011, systems and software engineering—systems and software quality

requirements and evaluation (square)—system and software quality models
Jureczko M, Madeyski L (2010) Towards identifying software project clusters with regard to

defect prediction. In: Proceedings of the 6th international conference on predictive models
in software engineering, PROMISE ’10. Association for Computing Machinery, New York.
https://doi.org/10.1145/1868328.1868342

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-
scale empirical study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773.
https://doi.org/10.1109/TSE.2012.70

30 Page 36 of 40 Empir Software Eng (2023) 28:30

https://doi.org/10.1007/s10664-011-9173-9
https://doi.org/10.1145/3379597.3387478
https://doi.org/10.1109/ICPC.2019.00014
https://doi.org/10.1016/j.jss.2020.110691
http://www.sciencedirect.com/science/article/pii/S0164121220301436
https://doi.org/10.1016/j.infsof.2014.05.017
http://www.sciencedirect.com/science/article/pii/S0950584914001347
http://www.sciencedirect.com/science/article/pii/S0950584914001347
https://doi.org/10.1016/j.infsof.2021.106566
https://www.sciencedirect.com/science/article/pii/S0950584921000495
https://www.sciencedirect.com/science/article/pii/S0950584921000495
https://doi.org/10.1145/3297280.3297452
https://doi.org/10.1109/TSE.2005.112
https://doi.org/10.1109/ASEW.2008.4686322
https://doi.org/10.1007/s10664-021-10092-4
https://doi.org/10.1109/QRS.2019.00027
https://doi.org/10.1109/TSE.2017.2770124
https://doi.org/10.1109/ICSME.2017.51
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1109/TSE.2012.70

Kim S, Zimmermann T, Whitehead EJ Jr, Zeller A (2007) Predicting faults from cached
history. In: 29th International conference on software engineering (ICSE’07), pp 489–498.
https://doi.org/10.1109/ICSE.2007.66

Kitchenham B, Pfleeger SL (1996) Software quality: the elusive target [special issues section]. IEEE Softw
13(1):12–21. https://doi.org/10.1109/52.476281

Landis JR, Koch GG (1977) An application of hierarchical kappa-type statistics in the assessment of majority
agreement among multiple observers. Biometrics 33(2):363–374. http://www.jstor.org/stable/2529786

Levin S, Yehudai A (2017) Boosting automatic commit classification into maintenance activities by utilizing
source code changes. In: Proceedings of the 13th international conference on predictive models and
data analytics in software engineering, PROMISE. Association for Computing Machinery, New York,
pp 97–106. https://doi.org/10.1145/3127005.3127016

Lewis C, Lin Z, Sadowski C, Zhu X, Ou R, Whitehead EJ (2013) Does bug prediction support human devel-
opers? findings from a google case study. In: 2013 35th International conference on software engineering
(ICSE), pp 372–381. https://doi.org/10.1109/ICSE.2013.6606583

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 18(1):50–60

Mauczka A, Huber M, Schanes C, Schramm W, Bernhart M, Grechenig T (2012) Tracing your maintenance
work—a cross-project validation of an automated classification dictionary for commit messages. In:
Proceedings of the 15th international conference on fundamental approaches to software engineering,
FASE’12. Springer, Berlin, pp 301–315. https://doi.org/10.1007/978-3-642-28872-2 21

Mauczka A, Brosch F, Schanes C, Grechenig T (2015) Dataset of developer-labeled commit messages. In:
Proceedings of the 12th working conference on mining software repositories, MSR ’15. IEEE Press,
Piscataway, pp 490–493. http://dl.acm.org/citation.cfm?id=2820518.2820595

McCabe TJ (1976) A complexity measure. IEEE Trans Softw Eng 2(4):308–320.
https://doi.org/10.1109/TSE.1976.233837

McCall JA, Richards PK, Walters GF (1977) Factors in software quality: concept and definitions of software
quality, vol 1(3). Rome Air Development Center, Air Force Systems Command, Griffiss Air Force Base,
New York

Menzies T, Turhan B, Bener A, Gay G, Cukic B, Jiang Y (2008) Implications of ceiling effects in
defect predictors. In: Proceedings of the 4th international workshop on predictor models in soft-
ware engineering, PROMISE ’08. Association for Computing Machinery, New York, pp 47–54.
https://doi.org/10.1145/1370788.1370801

Mockus Votta (2000) Identifying reasons for software changes using historic databases.
In: Proceedings 2000 international conference on software maintenance, pp 120–130.
https://doi.org/10.1109/ICSM.2000.883028

Mordal-Manet K, Balmas F, Denier S, Ducasse S, Wertz H, Laval J, Bellingard F, Vaillergues P (2009) The
squale model—a practice-based industrial quality model. In: 2009 IEEE International conference on
software maintenance, pp 531–534. https://doi.org/10.1109/ICSM.2009.5306381

NASA (2004) Nasa IV & V facility metrics data program. http://mdp.ivv.nasa.gov/repository.html
Pantiuchina J, Lanza M, Bavota G (2018) Improving code: the (mis) perception of quality metrics. In:

2018 IEEE International conference on software maintenance and evolution (ICSME), pp 80–91.
https://doi.org/10.1109/ICSME.2018.00017

Pantiuchina J, Zampetti F, Scalabrino S, Piantadosi V, Oliveto R, Bavota G, Penta MD (2020) Why
developers refactor source code: a mining-based study. ACM Trans Softw Eng Methodol 29(4).
https://doi.org/10.1145/3408302

Parnas DL (2001) Software aging. Addison-Wesley Longman Publishing Co., Inc, pp 551–567
Peitek N, Apel S, Parnin C, Brechmann A, Siegmund J (2021) Program comprehension and code complex-

ity metrics: an fmri study. In: 2021 IEEE/ACM 43rd international conference on software engineering
(ICSE), pp 524–536. https://doi.org/10.1109/ICSE43902.2021.00056

Purushothaman R, Perry DE (2005) Toward understanding the rhetoric of small source code changes. IEEE
Trans Softw Eng 31(6):511–526. https://doi.org/10.1109/TSE.2005.74

Rahman F, Posnett D, Hindle A, Barr E, Devanbu P (2011) Bugcache for inspections: hit or miss? In: Pro-
ceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on foundations of
software engineering, ESEC/FSE ’11. Association for Computing Machinery, New York, pp 322–331.
https://doi.org/10.1145/2025113.2025157

Santos EA, Hindle A (2016) Judging a commit by its cover: correlating commit message entropy
with build status on travis-ci. In: Proceedings of the 13th international conference on mining
software repositories, MSR ’16. Association for Computing Machinery, New York, pp 504–507.
https://doi.org/10.1145/2901739.2903493

Page 37 of 40 30Empir Software Eng (2023) 28:30

https://doi.org/10.1109/ICSE.2007.66
https://doi.org/10.1109/52.476281
http://www.jstor.org/stable/2529786
https://doi.org/10.1145/3127005.3127016
https://doi.org/10.1109/ICSE.2013.6606583
https://doi.org/10.1007/978-3-642-28872-2_21
http://dl.acm.org/citation.cfm?id=2820518.2820595
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/1370788.1370801
https://doi.org/10.1109/ICSM.2000.883028
https://doi.org/10.1109/ICSM.2009.5306381
http://mdp.ivv.nasa.gov/repository.html
https://doi.org/10.1109/ICSME.2018.00017
https://doi.org/10.1145/3408302
https://doi.org/10.1109/ICSE43902.2021.00056
https://doi.org/10.1109/TSE.2005.74
https://doi.org/10.1145/2025113.2025157
https://doi.org/10.1145/2901739.2903493

Scalabrino S, Bavota G, Vendome C, Linares-Vásquez M, Poshyvanyk D, Oliveto R (2021)
Automatically assessing code understandability. IEEE Trans Softw Eng 47(3):595–613.
https://doi.org/10.1109/TSE.2019.2901468

Stroggylos K, Spinellis D (2007) Refactoring–does it improve software quality? In: Fifth inter-
national workshop on software quality (woSQ’07: ICSE workshops 2007), pp 10–10.
https://doi.org/10.1109/WOSQ.2007.11

Swanson EB (1976) The dimensions of maintenance. In: Proceedings of the 2nd international conference on
software engineering. ICSE ’76. IEEE Computer Society Press, Washington, DC, pp 492–497

Tian Y, Zhang Y, Stol KJ, Jiang L, Liu H (2022) What makes a good commit message? In: Proceedings
of the 44th international conference on software engineering, ICSE ’22. Association for Computing
Machinery, New York, pp 2389–2401. https://doi.org/10.1145/3510003.3510205

Trautsch A, Herbold S, Grabowski J (2020a) A longitudinal study of static analysis warning evolu-
tion and the effects of PMD on software quality in apache open source projects. Empir Softw Eng.
https://doi.org/10.1007/s10664-020-09880-1

Trautsch A, Trautsch F, Herbold S, Ledel B, Grabowski J (2020b) The smartshark ecosystem for soft-
ware repository mining. In: Proceedings of the 42st international conference on software engineering -
demonstrations. ACM

Trautsch A, Erbel J, Herbold S, Grabowski J (2021) Replication kit. https://github.com/atrautsch/emse2021
replication

Trautsch F, Herbold S, Makedonski P, Grabowski J (2017) Addressing problems with replicabil-
ity and validity of repository mining studies through a smart data platform. Empir Softw Eng.
https://doi.org/10.1007/s10664-017-9537-x

von der Mosel J, Trautsch A, Herbold S (2022) On the validity of pre-trained transformers for natural lan-
guage processing in the software engineering domain. IEEE Transactions on Software Engineering, 1–1.
https://doi.org/10.1109/TSE.2022.3178469

Wagner S, Lochmann K, Heinemann L, Kläs M, Trendowicz A, Plösch R, Seidl A, Goeb A, Streit J (2012)
The quamoco product quality modelling and assessment approach. In: Proceedings of the 34th Interna-
tional conference on software engineering, ICSE ’12. IEEE Press, Piscataway, pp 1133–1142. http://dl.
acm.org/citation.cfm?id=2337223.2337372

Wang S, Bansal C, Nagappan N (2021) Large-scale intent analysis for identifying large-review-
effort code changes. Inf Softw Technol 130:106408. http://www.sciencedirect.com/science/article/pii/
S0950584920300033

Wilk MB, Shapiro SS (1965) An analysis of variance test for normality (complete samples). Biometrika
52(3-4):591–611. https://doi.org/10.1093/biomet/52.3-4.591

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software
engineering: an introduction. Kluwer Academic Publishers, Norwell

Yan M, Fu Y, Zhang X, Yang D, Xu L, Kymer JD (2016) Automatically classifying software
changes via discriminative topic model: supporting multi-category and cross-project. J Syst Softw
113:296–308. https://doi.org/10.1016/j.jss.2015.12.019. http://www.sciencedirect.com/science/article/
pii/S016412121500285X

Yatish S, Jiarpakdee J, Thongtanunam P, Tantithamthavorn C (2019) Mining software defects: should we
consider affected releases? In: 2019 IEEE/ACM 41st international conference on software engineering
(ICSE), pp 654–665. https://doi.org/10.1109/ICSE.2019.00075

Zhou Y, Yang Y, Lu H, Chen L, Li Y, Zhao Y, Qian J, Xu B (2018) How far we have progressed in the
journey? An examination of cross-project defect prediction. ACM Trans Softw Eng Methodol 27(1).
https://doi.org/10.1145/3183339

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

30 Page 38 of 40 Empir Software Eng (2023) 28:30

https://doi.org/10.1109/TSE.2019.2901468
https://doi.org/10.1109/WOSQ.2007.11
https://doi.org/10.1145/3510003.3510205
https://doi.org/10.1007/s10664-020-09880-1
https://github.com/atrautsch/emse2021_replication
https://github.com/atrautsch/emse2021_replication
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1109/TSE.2022.3178469
http://dl.acm.org/citation.cfm?id=2337223.2337372
http://dl.acm.org/citation.cfm?id=2337223.2337372
http://www.sciencedirect.com/science/article/pii/S0950584920300033
http://www.sciencedirect.com/science/article/pii/S0950584920300033
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1016/j.jss.2015.12.019
http://www.sciencedirect.com/science/article/pii/S016412121500285X
http://www.sciencedirect.com/science/article/pii/S016412121500285X
https://doi.org/10.1109/ICSE.2019.00075
https://doi.org/10.1145/3183339

Alexander Trautsch is a postdoctoral researcher at the AI Engi-
neering research group at the University of Passau. He received his
doctorate in 2022 from the Georg-August-Universität Göttingen. His
research interests include empirical software engineering, software
evolution and the application of machine learning approaches to
improve software development.

Johannes Erbel is a postdoctoral researcher at the Georg-August-
Universität Göttingen and works in the research group Software Engi-
neering for Distributed Systems at the Institute of Computer Science.
He received his doctorate in 2022 from the Georg-August-Universität
Göttingen by investigating the reflection of scientific workflows
within a causally connected cloud runtime model. Dr. Erbel’s
research interests focus on model-driven engineering approaches, as
well as software evolution. For more information, see: https://swe.
informatik.uni-goettingen.de/staff/johannesmartin-erbel.

SteffenHerbold is professor and Chair of AI Engineering at the Uni-
versity of Passau. His research is focused on the responsible and fair
solution of problems with machine learning, the quality assurance of
applications using machine learning, and their operation.

Page 39 of 40 30Empir Software Eng (2023) 28:30

https://swe.informatik.uni-goettingen.de/staff/johannesmartin-erbel
https://swe.informatik.uni-goettingen.de/staff/johannesmartin-erbel

Jens Grabowski is professor at the Georg-August-Universitat
Göttingen and is heading the Software Engineering for Distributed
Systems Group. Prof. Grabowski is one of the developers of the stan-
dardized testing languages TTCN-3 and UML Testing Profile. The
current research interests of Prof. Grabowski are directed towards
model-based development and testing, managed software evolution,
and empirical software engineering.

30 Page 40 of 40 Empir Software Eng (2023) 28:30

	What really changes when developers intend to improve their source code: a commit-level study of static metric value and static analysis warning changes
	Abstract
	Introduction
	Research Questions and Hypotheses
	Related Work
	Case Study Design
	Data and Study Subject Selection
	Change Type Classification Guidelines
	Deep Learning for Commit Intent Classification
	Metric Selection
	Analysis Procedure
	Replication Kit

	Results
	Confirmatory Study
	Results H1: Intended Quality Improvements are Smaller than Non-perfective and Non-corrective Changes
	Results H2: Intended Quality Improvements Impact Software Quality Metric Values in a Positive Way

	Summary RQ1
	Exploratory Study

	Discussion
	Implications for Researchers
	Implications for Practitioners

	Threats to Validity
	Reliability
	Construct Validity
	Conclusion Validity
	Internal Validity
	External Validity

	Conclusion
	Appendix: : Ground Truth Only Results
	Declarations
	References

