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Abstract
Thevariance associatedwith the distributionof sumsof twounlike powers in arithmetic
progressions is evaluated asymptotically.
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1 Introduction

Recently the authors [2] studied the distribution in arithmetic progressions of the num-
bers that are the sum of two positive cubes of integers, and established an asymptotic
formula ofMontgomery–Hooley type for the associated variance. As indicated on that
occasion, a further development of our method supplies related results for sums of a
square and an h-th power, for any h � 3. Here we discuss the problem in broader
generality and consider, for given numbers h � k � 2, the sequence of numbers of
the shape xk + yh as x and y range over the natural numbers. Our method is successful
whenever the number

θ = 1

k
+ 1

h
(1.1)
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Sums of two unlike powers in arithmetic progressions S183

exceeds 1/2. Given such a pair k, h, let r(n) denote the number of solutions of xk +
yh = n in natural numbers x and y, and let ρ(q, a) denote the number of incongruent
solutions of the congruence xk + yh ≡ a (mod q). Finally, let

C = �

(
1 + 1

k

)
�

(
1 + 1

h

)/
�

(
1 + 1

k
+ 1

h

)
(1.2)

denote the area of the domain

{
(ξ, η) ∈ R

2 : ξ > 0, η > 0, ξ k + ηh < 1
}
.

For N � 1, Q � 1 we consider the variance

V (N , Q) =
∑
q�Q

q∑
a=1

∣∣∣∣
∑
n�N

n≡a (mod q)

r(n) − ρ(q, a)

q2
CN θ

∣∣∣∣
2

. (1.3)

An asymptotic formula for V (N , Q) is expected to hold when Q is not too far from
N θ. One possible approach is a dispersion argument. Opening the square in (1.3), the
expression

�Q�
∑
n�N

r(n)2 (1.4)

arises naturally and prominently impacts the behaviour of V (N , Q). It transpires that
the case k = h = 2 is peculiar because, in marked contrast to all other cases, here
r(n) is often so large that the order of magnitude of (1.4) is QN log N . This atypical
case has been analysed by Dancs [3] in his thesis, in a slightly different setting; he
replaces our r(n) with the number of solutions of n = x2 + y2 in integers x and y.
Translated to our language, his main result asserts that there are real numbers c, c′
such that whenever 1 � Q � N then

V (N , Q) = 1

2
QN

(
log

N

Q
+ c

)
+ 1

4
Q2 log Q + c′Q2 + O

(
N 5/3+ε

)
.

Here and later in this paper, we apply the following convention concerning the letter
ε: whenever ε occurs in a statement, it is asserted that the statement is true for any
positive value assigned to ε.

For sums of two cubes, the case k = h = 3, the situation is rather different. There
are only about N 2/3 numbers n not exceeding N that are the sum of two positive cubes,
and for a typical such number one has r(n) = 2. Therefore, the sum

∑
n�N r(n)2 will

be of size N 2/3. This reflects in the shape of the asymptotic expansion of the variance
for which we obtained ([2,Theorem 1.1])

V (N , Q) = 2CQN 2/3 + O
(
Q1/2N 29/30+ε + Q13/18N 7/9+ε + N 19/15+ε

)
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S184 J. Brüdern, R.C. Vaughan

uniformly in the range 1 � Q � N .
The remaining pairs k, h with h � k � 2 and θ > 1/2 are

k = 2, h � 3 and k = 3, h = 4 or 5. (1.5)

Thus, in all these cases we have h > k, and as we shall see in Lemma 2.1, this implies
that for the typical number that is the sum of a k-th power and an h-th power, one has
r(n) = 1. Again, this changes the leading term in an asymptotic formula for V (N , Q).

Theorem 1.1 Suppose that k, h is one of the pairs satisfying (1.5), and let1 � Q � N θ.
If k = 3, then

V (N , Q) = CQN θ + O
(
N 2θ−1/(8h)+ε + Q1/2N 3θ/2−1/(16h)+ε

)
.

If k = 2 and h � 7, then

V (N , Q) = CQN θ + O
(
N 2θ−1/h+ε + Q1/2N 3θ/2−1/(2h)+ε

)
. (1.6)

If k = 2 and 4 � h � 6, then the error term in (1.6) is to be replaced by

N 21/16+ε + Q1/2N 1+ε + QN 5/8+ε

while for k = 2, h = 3 this error is

(
N 17/12 + Q3/4N + Q1/2N 7/6 + Q1/4N 31/24)N ε.

There is a large body of work concerned with the distribution of arithmetic
sequences in residue classes, with a view toward an asymptotic formula for the asso-
ciated variance. The historic papers of Montgomery [9] and Hooley [6] on the von
Mangoldt function triggered interest in analogous results for other arithmetic functions
of great familiarity in multiplicative number theory, such as the indicator function of
the k-free numbers [17] and their l-tuplets [10], or the divisor function [11–13]. There
are also axiomatic studies in work of Hooley [7, 8] and Vaughan [15, 16]. Any attempt
to review all examples that have been detailed hitherto would take us far afield, but a
common feature of previous work is that in all cases that we are aware of, the order of
magnitude of the crucial expression (1.4) onlymildly digresses from QN . In particular
we do not know a single instance where the appropriate analogon of

∑
n�N r(n)2 is

bounded above by N 1−δ, for some δ > 0. This paper and its compagnion [2] provide
a family of such examples, with δ approaching 1/2. At δ = 1/2, however, essential
obstacles arise on which we comment in more detail.

Our approach to estimates of the type provided by Theorem 1.1 uses a variant of
the dispersion argument proposed by Goldston and Vaughan [4]. One is required to
evaluate the sum

∑
n,m�N

n≡m (mod q)

r(n)r(m)
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Sums of two unlike powers in arithmetic progressions S185

asymptotically, and this is within the competence of the circle method. In our earlier
work on sums of two cubes, this approach was modified, and the circle method was
brought into play only after r(n)was replaced by an arithmetic function that resembles
the minor arcs contribution in the integral

r(n) =
∫ 1

0

∑
xk+yh�N

e(α(xk + yh − n)) dα,

the latter being valid for all n not exceeding N . This led to considerable technical
simplifications. Similar ideas apply in the more general set-up of this paper as well.
As is often the case with mixed exponents in representation problems, a proportion
of the Farey intervals in our application of the Hardy–Littlewood method have to be
treated as major for the smaller exponent, but as minor for the larger one. This new
hurdle is overcome by a succession of pruning exercises that we execute in §4. We
then obtain, in §5, an imperfect version of Theorem 1.1. This is of some interest on its
own right, see Theorem 5.4 below. The deduction of Theorem 1.1 from Theorem 5.4
is then achieved in §6 by following the routines developed in [2,Section 4].

The Fourier integral that we estimate by the circle method appears in (5.4) below.
The square root cancellation barrier for this integral is N θ+1/2, and it therefore appears
to be very difficult to find asymptotic relations for V (N , Q) with an error estimate
superior to N θ+1/2. An error of this size is dominated by the leading QN θ only if
Q � N 1/2. It should therefore be noted that in the cases k = 2, h � 7 Theorem 1.1
indeed supplies a valid asymptotic formula whenever Q � N 1/2+ε, and achieves
square root cancellation in a certain range for Q. In the remaining cases, the result is
somewhat weaker but then θ is rather larger than 1/2. In fact, our methods are tuned
to perform optimally for the smaller values of θ , leaving the other cases susceptible
to some small improvement.

In §7 we consider the numbers representable as sums of a k-th power and an h-th
power without multiplicities. Define r0(n) = 1 whenever r(n) � 1 and let r0(n) = 0
otherwise. Then, for a typical natural number n one has r(n) = r0(n). It is now natural
to examine

V0(N , Q) =
∑
q�Q

q∑
a=1

∣∣∣∣
∑
n�N

n≡a (mod q)

r0(n) − ρ(q, a)

q2
CN θ

∣∣∣∣
2

.

Theorem 1.2 Suppose that k, h is one of the pairs satisfying (1.5). Let Q � N θ. Then

V0(N , Q) = V (N , Q)

+O
(
QN 2/h+ε + N 4/h+ε + V (N , Q)1/2

(
Q1/2N 1/h+ε + N 2/h+ε

))
.

This combines easily with the results of Theorem 1.1, and provides asymptotic
formulae for V0(N , Q). In particular, one finds that (1.6) holds with V (N , Q) replaced
by V0(N , Q). For an analogous result in the case k = h = 3 see [2,Theorem 1.4].
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S186 J. Brüdern, R.C. Vaughan

Perhaps surprisingly, for the numbers that are the sum of two squares, an asymptotic
formula for V0(N , Q) is not yet known.

2 Auxiliaries

We begin with elementary mean value estimates for r(n).

Lemma 2.1 Let k, h be a pair satisfying (1.5). Then

∑
n�N

r(n) = CN θ + O
(
N 1/k),

and

∑
n�N

r(n)2 =
∑
n�N

r(n) + O
(
N 2/h+ε

)
.

Proof The linear mean of r(n) follows by the standard lattice point argument of Gauß.
The sum of r(n)2 equals the number of solutions of

xk + yh = uk + vh � N

in positive integers x, y, u, v. The solutions with y = v (and a fortiori x = u)
contribute

∑
r(n). There are O(N 2/h) choices for y �= v, and once these are chosen,

a divisor argument shows that there are no more than O(N ε) choices for x and u. �	
We frequently encounter a family of multiplicative functions that we now describe.

Let l � 2 be a natural number, and let κl be the multiplicative function that for primes
p and integers ν, λ with ν � 0 and 2 � λ � l is defined by

κl
(
plν+1) = p−ν−1/2, κl

(
plν+λ

) = p−ν−1. (2.1)

We then have the immediate bounds

κl(q) � q−1/l (2.2)

for all q ∈ N, and the estimate

∑
q�Q

κl(q)2 �
∏
p�Q

(
1 + 1

p
+ O

(
1

p2

))

 log Q. (2.3)

Lemma 2.2 Let k, h be a pair satisfying (1.5). Then

∑
q�Q

qκk(q)2κh(q)2 
 Qε (2.4)

123



Sums of two unlike powers in arithmetic progressions S187

and

∑
q�Q

1

q

(∑
r |q

rκk(r)κh(r)

)2


 Qε. (2.5)

Proof By (2.2) we have qκ2(q)2 � 1. Hence, the cases of (2.4) where k = 2 are
immediate from (2.3). If k = 3 and h = 4 or 5, then one checks from (2.1) that
pνκ3(pν)2κh(pν)2 � p−1 holds for all ν � 1 while (2.2) yields the bounds

pνκ3(p
ν)2κ4(p

ν)2 � p−ν/6, pνκ3(p
ν)2κ5(p

ν)2 � p−ν/15

that are superior when ν is large. Similar to the argument in (2.3), the estimate (2.4)
now follows after turning the sum into an Euler product.

Next we establish (2.5) in the case where k = 3, h = 5. Let

K (q) =
∑
r |q

rκ3(r)κ5(r).

By (2.2),

K (pν) =
ν∑

μ=0

pμκ3(p
μ)κ5(p

μ) �
ν∑

μ=0

p7μ/15 � 2p7ν/15,

and hence,

p−νK (pν)2 � 4p−ν/15.

For 1 � ν � 14 one checks from (2.1) that pνκ3(pν)κ5(pν) � p(ν−1)/2, and so, for
the same ν, we have K (pν) � (ν + 1)p(ν−1)/2 and p−νK (pν)2 � (ν + 1)2 p−1. It
follows that the expression on the left-hand side of (2.5) does not exceed

∏
p�Q

∞∑
ν=0

p−νK (pν)2 �
∏
p�Q

(
1 + O

(
1

p

))
.

This establishes (2.5) in the case k = 3, h = 5. By the obvious inequality κ4(q) �
κ5(q) the case k = 3, h = 4 also follows.

This leaves the cases k = 2, h � 3. Here, by (2.2) and (2.1), we have

pνκ2(p
ν)κh(p

ν) = pν/2κh(p
ν) � p(ν−1)/2

for all ν � 1, and also

pνκ2(p
ν)κh(p

ν) � pν(1/2−1/h).

The proof of (2.5) in these cases now proceeds as above. �	
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S188 J. Brüdern, R.C. Vaughan

3 Gauß andWeyl sums

For l � 2 let

Sl(q, a) =
q∑

x=1

e(axl/q)

be the l-th power Gauß sum. By [14,Lemmata 4.3, 4.4 and 4.5], the bound

q−1Sl(q, a) 
 qεκl(q) (3.1)

holds whenever (a, q) = 1. The partial singular series relative to the parameter T � 1
for the sum of a k-th power and an h-th power is the sum

s(n; T ) =
∑
t�T

t∑
c=1

(c,t)=1

t−2Sk(t, c)Sh(t, c)e(−cn/t). (3.2)

We require the following mean value estimate.

Lemma 3.1 Let N � 1, T � 1. Then, for pairs k, h satisfying (1.5),

∑
n�N

n2(θ−1) |s(n; T )|2 
 (
N 2θ−1 + T 2)T ε.

Proof One opens the square and the definition (3.2). Then, by the dual of the large
sieve inequality (see [2,Lemma 2.2], for example),

∑
M�m�2M

|s(m; T )|2 
 (M + T 2)
∑
t�T

t∑
c=1

(c,t)=1

t−4|Sk(t, c)Sh(t, c)|2.

Via (3.1) and (2.4), we infer that

∑
M�m�2M

|s(m; T )|2 
 (M + T 2)T ε
∑
t�T

tκk(t)
2κh(t)

2 
 (M + T 2)T 2ε.

To deduce Lemma 3.1, split the sum over n into intervals M � n < 2M and sum over
M = 2μ. Since 1/2 < θ < 1, the desired estimate is immediate. �	

The remainder of this section is primarily concerned with the exponential sum

g(α) =
∑
n�N

r(n)e(αn) (3.3)
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Sums of two unlike powers in arithmetic progressions S189

that we examine by relating it to the more familiar Weyl sums

fl(α, X) =
∑
x�X

e(αxl). (3.4)

For the latter, we now define their major arc approximation. This entails the integral

vl(β, X) =
∫ X

0
e(βt l) dβ (3.5)

for which partial integration provides the estimate

vl(β, X) 
 X(1 + Xl |β|)−1/l . (3.6)

The next lemma is [14,Theorem 4.1].

Lemma 3.2 Let a ∈ N, q ∈ N, α ∈ R and write β = α − a/q. Then

fl(α, X) − q−1Sl(q, a)vl(β, X) 
 q1/2+ε(1 + Xl |β|)1/2.

From now on, let k, h be a pair satisfying (1.5). We require appropriate analogues
of Lemma 3.2 for the sum g(α). By (3.3),

g(α) =
∑

xk+yh�N

e(α(xk + yh)).

We apply Lemma 3.2 to the sum over x . In the notation of that lemma, this yields

g(α) =
∑

y�N1/h

e(αyh)

(
Sk(q, a)

q
vk

(
β, (N − yh)1/k

) + O
(
q1/2+ε(1 + N |β|)1/2)

)
.

We define the function

g∗(α; q, a) = Sk(q, a)

q

∑
y�N1/h

e(αyh)vk
(
β, (N − yh)1/k

)
(3.7)

and arrive at the following imperfect approximation for g(α).

Lemma 3.3 Let a ∈ N, q ∈ N, α ∈ R and write β = α − a/q. Then

g(α) = g∗(α; q, a) + O
(
N 1/hq1/2+ε(1 + N |β|)1/2).
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S190 J. Brüdern, R.C. Vaughan

To proceed further, we apply an obvious substitution in (3.5) to infer

∑
y�N1/h

e(αyh)vk
(
β, (N − yh)1/h

)

= 1

k

∑
y�N1/h

e(αyh)
∫ N−yh

0
t (1−k)/ke(βt) dt

= 1

k

∫ N

0
t (1−k)/ke(βt)

∑
yh�N−t

e(αyh) dt .

We apply Lemma 3.2 again to see that the above expression equals

1

k

∫ N

0
t (1−k)/ke(βt)

×
(
Sh(q, a)

q
vh

(
β, (N − t)1/h

) + O
(
q1/2+ε(1 + N |β|)1/2)

)
dt

= Sh(q, a)

khq

∫ N

0
t (1−k)/k

∫ N−t

0
s(1−h)/he(β(t + s)) ds dt

+O
(
N 1/kq1/2+ε(1 + N |β|)1/2). (3.8)

Once more by obvious substitutions, the double integral here simplifies to

∫ N

0

∫ N−t

0
t (1−k)/ks(1−h)/he(β(t + s)) ds dt

=
∫ N

0
e(βu)

∫ u

0
t (1−k)/k(u − t)(1−h)/h dt du

= B
∫ N

0
e(βu)uθ−1 du

where θ is defined by (1.1) and

B = B(1/k, 1/h) =
∫ 1

0
t (1−k)/k(1 − t)(1−h)/h dt

is a special value of Euler’s Beta function. By (1.2) and a mundane computation, one
finds that B = khθC and then concludes from (3.1), (3.7) and (3.8) that

g∗(α; q, a) = θCq−2Sk(q, a)Sh(q, a)
∫ N
0 e(βu) uθ−1 du

+O
(
N 1/kκk(q)q1/2+ε(1 + N |β|)1/2). (3.9)
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By Euler’s summation formula,

∑
n�N

nθ−1e(βn) =
∫ N

0
uθ−1e(βu) du + O(1 + |β|N θ ).

We define the sum

w(β) = θC
∑
n�N

nθ−1e(nβ) (3.10)

and observe, with later applications inmind, that the proof of [14,Lemma 2.8] provides
the estimate

w(β) 
 N θ (1 + N‖β‖)−θ . (3.11)

Further, we write

W (α; q, a) = q−2Sk(q, a)Sh(q, a)w(α − a/q). (3.12)

Then, by (3.9), (3.10), (3.12) and Lemma 3.3, we conclude as follows.

Lemma 3.4 Let α ∈ R, q ∈ N and a ∈ Z with |α − a/q| � 1. Then

g(α) = W (α; q, a) + O
((
N 1/h + N 1/kκk(q)

)
q1/2+ε(1 + N |α − a/q|)1/2).

4 Pruning exercises

Let 1 � X � 1
4N

1/2, and letN(q, a; X)denote the interval of all realαwith |qα−a| �
X/N . Further, let N(X) denote the union of N(q, a; X) with 1 � a � q � X and
(a, q) = 1. Note that this union is disjoint. For convenience, wewriteN = N

( 1
4N

1/2
)
.

When 1 � a � q � 1
4N

1/2, (a, q) = 1 and α ∈ N
(
q, a; 1

4N
1/2

)
, put

�(α) = (q + N |qα − a|)−1.

This defines a function � : N → (0,∞). Our basic tool is a development of
[1,Lemma 1].

Lemma 4.1 Let � : R → [0,∞) be a trigonometric polynomial

�(α) =
∑

|m|�M

ψme(αm)

123



S192 J. Brüdern, R.C. Vaughan

with real non-negative coefficients ψm. Then, uniformly for γ ∈ R and 1 � X �
1
4N

1/2, one has

∫
N(X)

�(α)�(α + γ ) dα 
 MεN ε−1(Xψ0 + �(0)).

Proof Let I denote the integral to be estimated. Since � is a non-negative function,
we have

I �
∑
q�X

1

q

q∑
a=1

(a,q)=1

∫ 1

−1
(1 + N |β|)−1�

(
a

q
+ β + γ

)
dβ

=
∫ 1

−1
(1 + N |β|)−1

∑
|m|�M

ψm

∑
q�X

1

q

q∑
a=1

(a,q)=1

e

(
am

q

)
e
(
(β + γ )m

)
dβ.

The classical bound for Ramanujan’s sum [5,Theorem 272]

∣∣∣∣
q∑

a=1
(a,q)=1

e

(
am

q

)∣∣∣∣ � (q,m) (4.1)

now shows that

I �
(∫ 1

−1
(1 + N |β|)−1 dβ

) ∑
|m|�M

ψm

∑
q�X

(q,m)

q


 log N

N

(
Xψ0 +

∑
1�|m|�M

ψm

∑
q�X

(q,m)

q

)
.

For non-zero integers m one routinely finds that

∑
q�X

(q,m)

q
�

∑
d�X
d|m

∑
r�X/d

1

r

 |m|ε log X , (4.2)

and the lemma follows immediately. �	
Within this section we adumbrate fl(α, N 1/l) to fl(α). As a first application of

Lemma 4.1, we take�(α) = | fl(α)|2 whereψm is the number of solutions of xl−yl =
mwith 1 � x, y � N 1/l . Thus, the hypotheses of this lemmaare satisfiedwithM = N ,
so uniformly in γ ∈ R we infer the estimate

∫
N(X)

�(α)| fl(α + γ )|2 dα 
 N 1/l−1+εX + N 2/l−1+ε. (4.3)
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Performing the same argument with �(α) = | fl(α)|4 yields
∫
N(X)

�(α)| fl(α + γ )|4 dα 
 N 2/l−1+εX + N 4/l−1+ε. (4.4)

The principal object in this section is to estimate the integral

J (X) =
∫
N(X)\N( 12 X)

�(α) |g(α)|2 dα (4.5)

where g(α) is the sum defined in (3.3) with k, h chosen in accordance with (1.5).
There are several approaches, depending on the relative size of k and h, and on the
size of X . For convenience, we put

L(X) = N(X)\N( 1
2 X

)

and note at once that

�(α) 
 X−1 (α ∈ L(X)). (4.6)

If we pair this bound with the mean value

∫ 1

0
|g(α)|2 dα =

∑
n�N

r(n)2 
 N θ (4.7)

that in turn is implied by (3.3), Lemma 2.1 and orthogonality, we deduce a first result
concerning J (X), namely

J (X) 
 N θ X−1. (4.8)

More sophisticated bounds for J (X) depend on (4.3) or (4.4).

Lemma 4.2 Let k, h be one of the pairs satisfying (1.5), and let 1 � X � 1
4N

1/2. Then

J (X) 
 N θ−1/2+ε + X−1/2N θ−(1/2)+(1/h)+ε.

Proof Let

K (γ ) =
∑
n�N

e(−γ n).

Then, by (3.3) and (3.4),

g(α) =
∫ 1

0
fk(α + γ ) fh(α + γ )K (γ ) dγ.
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Hence, by (4.5),

J (X) �
∫ 1

0

∫ 1

0
|K (γ )K (γ ′)|

∫
L(X)

�(α) |F(α, γ, γ ′)| dα dγ dγ ′

where we wrote

F(α, γ, γ ′) = fk(α + γ ) fh(α + γ ) fk(−α − γ ′) fh(−α − γ ′).

For any complex numbers z, z′ one has 2|zz′| � |z|2 + |z′|2, and so,

2|F(α, γ, γ ′)| � | fk(α + γ ) fh(α + γ )|2 + | fk(α + γ ′) fh(α + γ ′)|2

We put

J (X , γ ) =
∫
L(X)

�(α) | fk(α + γ ) fh(α + γ )|2 dα. (4.9)

By symmetry in γ and γ ′ it now follows that

J (X) �
∫ 1

0

∫ 1

0
|K (γ )K (γ ′)| J (X , γ ) dγ dγ ′.

The trivial bound K (γ ) 
 N (1 + N‖γ ‖)−1 implies that

∫ 1

0
|K (γ )| dγ 
 log N ,

and we arrive at the preparatory bound

J (X) 
 (log N )2 sup
0�γ�1

J (X , γ ). (4.10)

By (4.9) and Schwarz’s inequality,

J (X , γ ) �
(∫ 1

0
| fk(α + γ )|4 dα

)1/2(∫
L(X)

�(α)2| fh(α + γ )|4 dα
)1/2

.

By (4.4) and (4.6), we have

∫
N(X)

�(α)2| fh(α + γ )|4 dα 
 N 2/h−1+ε + X−1N 4/h−1+ε

while Hua’s Lemma [14,Lemma 2.5] yields

∫ 1

0
| fk(α + γ )|4 dα 
 N 2/k+ε,
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both bounds being valid uniformly in γ . This shows that

J (X , γ ) 
 N θ−1/2+ε + X−1/2N θ−(1/2)+(1/h)+ε,

and the lemma is available from (4.10). �	
The bounds obtained so far are useful for large X . The next two lemmata are of

preparatory nature for an argument that gives good bounds for J (X)when X is smaller.

Lemma 4.3 Let k, h be a pair satisfying (1.5) and let 1 � X � 1
4N

1/2. Then

∫
L(X)

�(α)|g(α)| dα 
 N θ−1+ε
(
1 + X1/2N−1/(2h) + XN−θ/2).

Proof We follow through the initial phase of the proof of Lemma 4.2 leading to (4.10).
In this way, we arrive at the provisional bound

∫
L(X)

�(α)|g(α)| dα 
 (log N ) sup
0�γ�1

∫
L(X)

�(α)| fk(α + γ ) fh(α + γ )| dα.

By Schwarz’s inequality, the integral on the right-hand side is reduced to the integrals
in (4.3) with l = k and l = h, and the lemma follows immediately. �	

Define the function g∗ : N → C by taking g∗(α) = g∗(α; q, a) whenever α ∈
N(q, a; 1

4N
1/2) with 1 � a � q � 1

4N
1/2 and (a, q) = 1.

Lemma 4.4 Let k, h be a pair satisfying (1.5), and let 1 � X � 1
4N

1/2. Then

∫
L(X)

�(α)|g∗(α)|2 dα 
 N 2θ−1+ε
(
N−1/h + X−2/k).

Proof Let B(q) = [−1, 1] when 1
2 X < q � X , and when q � 1

2 X put

B(q) = {α ∈ R : X/(2qN ) � |β| � 1}.

Then, writing I for the integral to be estimated,

I �
∑
q�X

1

q

q∑
a=1

(a,q)=1

∫
B(q)

(1 + N |β|)−1
∣∣∣∣g∗

(
a

q
+ β; q, a

)∣∣∣∣
2

dβ. (4.11)

By (3.1) and (3.7),

g∗
(
a

q
+ β; q, a

)

 κk(q)

∣∣∣∣
∑

y�N1/h

e

(
ayh

q

)
e(β yh)vk

(
β, (N − yh)1/k

)∣∣∣∣,
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so that

∣∣∣∣g∗
(
a

q
+ β; q, a

)∣∣∣∣
2


 κk(q)2
∑

y1,y2�N1/h

e

(
a

q
(yh1 − yh2 )

)
e
(
β(yh1 − yh2 )

)

× vk
(
β, (N − yh1 )1/k

)
vk

(−β, (N − yh2 )1/k
)
,

the expression on the right being real and non-negative. We insert this in (4.11), bring
the sum over a inside and estimate it by (4.1). This manoeuvre yields

I 
 Xε
∑
q�X

κk(q)2

q

∫
B(q)

(1 + N |β|)−1
∑

y1,y2�N1/h

(
q, yh1 − yh2

)

×∣∣vk(β, (N − yh1 )1/k
)
vk

(−β, (N − yh2 )1/k
)∣∣ dβ. (4.12)

First consider the portion of the sum on the right where 1
2 X < q � X . Here

B(q) = [−1, 1], so we can bring the sum over q inside the integral and use the trivial
uniform bound |vk(β, (N − yh)1/k)| � N 1/k . We then see that this portion of (4.12)
is bounded above by


 N 2/k+ε

∫ 1

−1
(1 + N |β|)−1

∑
X/2<q�X

κk(q)2

q

∑
y1,y2�N1/h

(
q, yh1 − yh2

)
dβ


 N 2/k−1+2ε
∑

X/2<q�X

κk(q)2

q

∑
y1,y2�N1/h

(
q, yh1 − yh2

)
.

Here we single out terms with y1 = y2 and apply (4.2) for the remaining choices of
y1, y2. Then, by (2.2) and (2.3) we see that the above expression is bounded by


 N 2/k−1+ε

(
N 1/h

∑
q�X

κk(q)2 + X−2/k
∑
y1 �=y2

∑
X/2<q�X

(q, yh1 − yh2 )

q

)


 N 2θ−1+ε
(
N−1/h + X−2/k) (4.13)

which is sufficient.
Our treatment of the portion where q � 1

2 X is similar but relies on the bound
vk(β, (N − yh)1/k) 
 |β|−1/k that is again uniform in y, and which follows from
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(3.6). This portion of (4.12) therefore does not exceed


 N ε−1
∑

q�X/2

κk(q)2

q

∑
y1,y2�N1/h

(
q, yh1 − yh2

) ∫ 1

X/(2qN )

β−1−2/k dβ


 N 2/k−1+εX−2/k
∑
q�X

κk(q)2 q2/k−1
∑

y1,y2�N1/h

(
q, yh1 − yh2

)
.

We can now proceed as in (4.13) to obtain the same final estimate. �	
Lemma 4.5 Let k, h be a pair satisfying (1.5) and 1 � X � 1

4N
1/2. Then

J (X) 
 N 2θ−1+ε
(
N−1/h + X−2/k + N−1/k X1/2

+ N−(1/k)−1/(2h)X + N (1/h)−3θ/2X3/2).
Proof Directly from (4.5) we have

J (X) �
∫
L(X)

�(α)|g(α) − g∗(α)||g(α)| dα +
∫
L(X)

�(α)|g∗(α)g(α)| dα

while Schwarz’s inequality shows that

∫
L(X)

�(α)|g∗(α)g(α)| dα � J (X)1/2
(∫

L(X)

�(α)|g∗(α)|2 dα
)1/2

.

Combining the last two inequalities implies that

J (X) 

∫
L(X)

�(α)|g(α) − g∗(α)||g(α)| dα +
∫
L(X)

�(α)|g∗(α)|2 dα.

The second integral on the right-hand side is estimated in Lemma 4.4, and contributes
an acceptable amount. To bound the first integral on the right-hand side, note that
Lemma 3.3 yields g(α) − g∗(α) 
 N 1/h X1/2+ε for α ∈ L(X), and then we apply
Lemma 4.3 to find that

∫
L(X)

�(α)|g(α) − g∗(α)||g(α)| dα


 N 1/h X1/2+εN θ−1+ε
(
1 + X1/2N−1/(2h) + XN−θ/2).

This establishes the lemma. �	
We have completed the estimation of J (X) but simplify the results for readier use.

Lemma 4.6 Let k = 2, h � 3 and 1 � X � 1
4N

1/2. Put σ(3) = 1/12, σ(4) = 1/16
and σ(h) = 0 for h � 5. Then

J (X) 
 (
N 1/h+σ(h) + N 2/h X−1)N ε.
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Proof First suppose that h � 5. For X � N 2/h Lemma 4.2 gives J (X) 
 N 1/h. For
X � N 2/h the desired estimate is contained in Lemma 4.5.

Next suppose that h = 3 or 4. If X � N 1/2−σ(h), we use (4.8) and obtain
J (X) 
 N 1/h+σ(h)+ε. For X � N 1/2−σ(h) the desired bound is again a consequence
of Lemma 4.5. �	
Lemma 4.7 Let k = 3 and h = 4 or 5. Further let 1 � X � 1

4N
1/2. Then

J (X) 
 N 2θ−1+ε
(
N−1/(8h) + X−2/3).

Proof This follows from Lemma 4.2 for X � N 1/3+1/(4h), and from Lemma 4.5 for
the remaining X . �	

5 Imperfect variance

We launch our attack on Theorem 1.1 by first considering the expression

U (N , Q, T ) =
∑
q�Q

q∑
a=1

∣∣∣∣
∑
n�N

n≡a (mod q)

(
r(n) − θCs(n; T )nθ−1)∣∣∣∣

2

.

that may be viewed as an imperfect version of the variance V (N , Q). One opens the
square and finds that

U (N , Q, T ) = �Q�U0(N , T ) + 2S (5.1)

where

U0(N , T ) =
∑
n�N

(
r(n) − θCs(n; T )nθ−1)2 (5.2)

and

S =
∑
q�Q

∑
1�m<n�N
n≡m (mod q)

(
r(m) − θCs(m; T )mθ−1)(r(n) − θCs(n; T )nθ−1).

Our ultimate goal in this section is an asymptotic formula for U (N , Q, T ). It is
easy to extract a main term from U0(N , T ).

Lemma 5.1 Let T � 1. Then

U0(N , T ) =
∑
n�N

r(n)2 + O
(
T 1+εN 2θ−1 + T 2+ε

)
.
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Proof We square out the expression in (5.2), and first consider the cross term

∑
n�N

r(n)nθ−1s(n; T ).

Here, by (3.1), (3.2) and (2.3), we have the trivial bound

s(n; T ) 

∑
t�T

tκk(t)κh(t) 
 T 1+ε.

Hence, by Lemma 2.1 and partial summation, we see that the cross term is bounded
by


 T 1+ε
∑
n�N

nθ−1r(n) 
 T 1+εN 2θ−1,

which is acceptable. This leaves the sum involving |s(n; T )|2, and here Lemma 3.1
provides an acceptable estimate. �	

The next theorem provides an estimate for S. Recall the data σ(h) defined in
Lemma 4.6.

Theorem 5.2 Let k, h be one of the pairs satisfying (1.5) and suppose that 1 � Q �
N θ. If k = 2 and 1 � T � N 1/h, then

S 
 N 1+1/h+σ+ε + N 1+2/h+εT−1.

If k = 3, h = 4 and 1 � T � N 1/8, then

S 
 N 2θ−1/32+ε + N 2θ+εT−1 + N 7/8+εT 2,

and if k = 3, h = 5 and 1 � T � N 1/20, then

S 
 N 2θ−1/40+ε + N 2θ+εT−1 + N 19/20+εT 2.

The initial steps in the proof of this theoremare identical to thework in [2,Section 3].
Form the exponential sums

G(α) =
∑
n�N

(
r(n) − θCs(n; T )nθ−1)e(αn) (5.3)

and

F(α) =
∑
q�Q

∑
r�N/q

e(αqr).
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Then

S =
∫ 1

0
F(α)|G(α)|2dα. (5.4)

We follow Goldston and Vaughan [4, Section 3] and examine the integral in (5.4)
by the circle method. This depends on a mean square estimate for G(α). By (5.3) and
(3.3),

G(α) = g(α) − θC
∑
n�N

s(n; T )nθ−1e(αn)

so that

|G(α)|2 
 |g(α)|2 +
∣∣∣∣
∑
n�N

s(n; T )nθ−1e(αn)

∣∣∣∣
2

. (5.5)

By Lemma 3.1 and orthogonality, one finds that

∫ 1

0

∣∣∣∣
∑
n�N

s(n; T )nθ−1e(αn)

∣∣∣∣
2

dα 
 N 2θ−1+ε + T 2+ε. (5.6)

Then, by (4.7), (5.5) and (5.6), it follows that

∫ 1

0
|G(α)|2dα 
 N θ + T 2+ε. (5.7)

Consider a typical interval M(r , b) associated with the element b/r of the Farey
dissection of order 2N 1/2, namely, when 1 � b � r � 2N 1/2 and (b, r) = 1,

M(r , b) =
(
b + b−
r + r−

,
b + b+
r + r+

]

where r± is defined by br± ≡ ∓1 (mod r) and 2N 1/2 − r < r± � 2N 1/2 and b± is
defined by b± = (br± ± 1)/r . We observe that

∣∣∣∣b + b±
r + r±

− b

r

∣∣∣∣ = 1

r(r + r±)

lies in [1/(4r N 1/2), 1/(2r N 1/2)). For r � 1
4N

1/2 this implies that

N
(
r , b; 1

4N
1/2) ⊂ M(r , b). (5.8)
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The analysis of the function F relative to the Farey intervals performed in [2, Section 3]
we invoke with R = 2N 1/2 (in the notation of [2]). Then, by (5.8), we infer the bound

F(α) 
 N (log N )�(α) + N 1/2 log N

for all α covered by the Farey intervals. Consequently, by (5.4) and (5.7),

S 
 N 1/2+θ+ε + N 1/2+εT 2+ε + N 1+ε

∫
N

�(α)|G(α)|2 dα. (5.9)

We are reduced to estimating the integral on the right hand side. We choose a
parameter Y with 1 � Y � 1

4N
1/2, write K = N(Y ) for the core major arcs, and

put k = N\K. By (4.6) we see that �(α) 
 Y−1 holds uniformly on k, so that (5.6)
provides us with the bound

∫
k

�(α)

∣∣∣∣
∑
n�N

s(n; T )nθ−1e(αn)

∣∣∣∣
2

dα 
 Y−1(N 2θ−1+ε + T 2+ε
)
.

Further, since k is covered by no more than log N sets L(X) with Y � X � 1
4N

1/2, it
follows from (4.5) that

∫
k
�(α)|g(α)|2 dα 
 (log N ) sup

Y�X� 1
4 N

1/2

J (X).

If k = 2, then by (5.5) and Lemma 4.6, the last two bounds combine to give

∫
k
�(α)|G(α)|2 dα 
 (

N 1/h+σ(h) + N 2/hY−1 + Y−1T 2)N ε. (5.10)

When k = 3, the same argument based on Lemma 4.7 yields

∫
k
�(α)|G(α)|2 dα 
 N 2θ−1+ε

(
N−1/(8h) + Y−2/3) + Y−1T 2+ε. (5.11)

On the core major arcs, we use approximations to G(α) provided by Lemma 3.4.
Here we follow the pattern of our previous work [2, Section 3] quite closely, beginning
with (3.12) of that memoir. In the wider context of our current analysis, this formula
still reads

G(α) = g(α) −
∑
t�T

t∑
c=1

(c,t)=1

W (α; t, c), (5.12)

but now stems from (5.3), (3.12) and (3.2).
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Wewish to use this for α ∈ K and therefore writeK as the disjoint union of intervals
K(r , b) = {α : |rα − b| � Y/N } with 1 � b � r � Y and (b, r) = 1. Suppose that
α is in one of these arcs K(r , b). Then

G(α) = g(α) − W (α; r , b) + D(α; r , b) (5.13)

where in view of (5.12) we have

D(α; r , b) = W (α; r , b) −
∑
t�T

t∑
c=1

(c,t)=1

W (α; t, c).

Here we estimate a typical summand on the far right when c/t �= b/r . If α ∈ K(r , b),
then |α − b/r | � Y (r N )−1. We proceed subject to the condition that T � Y , this will
turn out to be the case later. It then follows that

∥∥∥∥α − c

t

∥∥∥∥ �
∥∥∥∥br − c

t

∥∥∥∥ − Y

rN
� 1

2

∥∥∥∥br − c

t

∥∥∥∥.

Hence, by (3.1), (3.11) and (3.12), we have

W (α; t, c) 
 tεκk(t)κh(t)

∥∥∥∥br − c

t

∥∥∥∥
−θ

.

At this stage, we may follow through the argument in [2] that leads from (3.15) to
(3.20) of that paper. Instead of [2,(3.17)] we then encounter the sum

∑
t�T

tκk(t)κh(t),

and by (2.3) and Cauchy’s inequality, this sum is bounded O(T 1+ε), as is required to
proceed to [2, (3.18)], and we then arrive at the estimates

D(α; r , b) 
 r θ + T 1+ε (r � T ) (5.14)

and

D(α; r , b) 
 |W (α; r , b)| + r θ + T 1+ε (r > T ). (5.15)

Lemma 5.3 One has

∑
r�Y

r∑
b=1

(b,r)=1

∫
K(r ,b)

�(α)|D(α; r , b))|2 dβ 
 N 2θ−1+εT−1 + N ε−1Y
(
Y 2θ + T 2).
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Proof We begin with the set of all α where D(α; r , b) 
 r θ + T 1+ε holds. This set
makes a contribution to the integral in question that does not exceed

∑
r�Y

r∑
b=1

(b,r)=1

∫
K(r ,b)

r−1(1 + N |α − b/r |)−1(r2θ + T 2+ε
)
dα 
 N ε−1Y

(
Y 2θ + T 2).

On the remaining set we have r > T and D(α; r , b) 
 |W (α; r , b)|. This follows
from (5.14) and (5.15). By (3.1), (3.11), (3.12) and (2.4) we see that

∑
T<r�Y

r∑
b=1

(b,r)=1

∫
K(r ,b)

r−1(1 + N |α − b/r |)−1|W (α; r , b)|2 dα


 N 2θ
∑

T<r�Y

rεκk(r)
2κh(r)

2
∫ Y/(r N )

−Y/(r N )

(1 + N |β|)−1−2θ dβ 
 N 2θ−1+εT−1.

This confirms the estimate proposed in Lemma 5.3. �	
Our last auxiliary estimate is now almost immediate. For α ∈ K(r , b) we see from

(5.13) that

|G(α)|2 
 |g(α) − W (α; r , b)|2 + |D(α; r , b)|2.

We multiply by �(α). Then, by Lemma 3.4,

�(α)|g(α) − W (α; r , b)|2 
 N ε
(
N 2/h + N 2/kκk(r)

2).
Now we integrate over K and obtain

∫
K

�(α)|g(α) − W (α; r , b)|2 dα 
 N ε−1
(
N 2/hY 2 + N 2/kY

∑
r�Y

κk(r)
2
)

.

We apply (2.3) and combine the result with Lemma 5.3 to confirm the bound

∫
K

�(α)|G(α)|2 dα 
 N ε−1(N 2/hY 2 + N 2/kY + Y 1+2θ + YT 2 + N 2θT−1).
(5.16)

We are ready to derive an estimate for S. Indeed, N is the union of k and K, so we
have to combine the results in (5.9) and (5.16) with either (5.10) or (5.11). We first
consider the cases with k = 2 and choose Y = N 1/h . Then, we are allowed to take
1 � T � N 1/h, and find that

S 
 N 1+1/h+σ(h)+ε + N 1+2/h+εT−1.
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For k = 3, the choices Y = Y5 = N 1/20 and Y = Y4 = N 1/8 give

S 
 (
N 2θ−1/(8h) + NY−1

h T 2 + N 2θT−1)N ε

in the range 1 � T � Yh . In both cases, Theorem 5.2 is now available.
Asymptotic formulae for U (N , Q, T ) are also available.

Theorem 5.4 Let k, h be one of the pairs satisfying (1.5) and suppose that 1 � Q �
N θ . If k = 2 and 1 � T � N 1/h, then

U (N , Q, T ) = CQN θ + O
(
N 1+1/h+σ(h)+ε + N 1+2/h+εT−1 + QT N 2/h+ε

)
.

If k = 3 and 1 � T � N 1/(8h), then

U (N , Q, T ) = CQN θ + O
(
N 2θ+εT−1).

We remark here that for Q � N θ and k = 2, h � 6 one has QT N 2/h �
N (1/2)+(4/h) � N 1+1/h, so the term QT N 2/h can be ignored except when h � 5.
Iterating an earlier comment relating to the error term in Theorem 1.1, note here that
for k = 2 errors of size N 1+1/h correspond to square root cancellation in the integral
representation of S, and are probably hard to improve.

For a proof of Theorem 5.4 use Lemma 2.1 within Lemma 5.1 to see that

U0(N , T ) = CN θ + O
(
N 1/k + N 2/h+ε + T N 2θ−1+ε + T 2N ε

)

where we choose T in accordance with Theorem 5.2. Then T � N 1/h in all cases, so
the term T 2 in the error term is redundant. By (5.1) we get

U (N , Q, T ) = CQN θ + 2S + O
(
N θ + Q

(
N 1/k + N 2/h+ε + T N 2θ−1+ε

))
.

(5.17)

First suppose that k = 3 and 1 � T � N 1/(8h). Then, by Theorem 5.2, one has
S 
 N 2θ+εT−1, and Theorem 5.4 follows from (5.17).

Next suppose that k = 2 and 1 � T � N 1/h . Now 2θ − 1 = 2/h, and the term
O(N 2/h+ε) in (5.17) can be ignored. Further, one has QN 1/2 � N 1+1/h , and the cases
with k = 2 of Theorem 5.4 again follow from (5.17) and Theorem 5.2.

6 From the imperfect to the perfect

In this section we establish Theorem 1.1. The argument is very similar to the one
presented in §4 of our previous communication [2] but there are some subtleties, and
we therefore proceed in moderate detail. Let

�(N , T ; q, a) =
∑
n�N

n≡a (mod q)

nθ−1s(n; T ) (6.1)
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and consider

�(N , Q, T ) =
∑
q�Q

q∑
a=1

∣∣∣∣�(N , T ; q, a) − ρ(q, a)

θq2
N θ

∣∣∣∣
2

. (6.2)

Lemma 6.1 Let 1 � T � Q � N θ. Then

�(N , Q, T ) 
 (
Q2θT 2 + N 2θT−1)N ε.

Proof The method of proof of [14,Lemma 2.12] yields

ρ(q, a)

q2
= 1

q

∑
t |q

t∑
c=1

(c,t)=1

Sk(t, c)Sh(t, c)

t2
e(−ca/t). (6.3)

We split the partial singular series as s(n; T ) = s∗
q(n; T ) + s†q(n; T ) where

s∗
q(n; T ) =

∑
t�T
t |q

t∑
c=1

(c,t)=1

Sk(t, c)Sh(t, c)

t2
e(−ca/t) (6.4)

and s†q(n; T ) is defined in the same way, but with the complementary condition t � q.
Let �†(N , T ; q, a) be the sum defined in (6.1), but with s(n; T ) replaced by

s†q(n; T ). We shall use this notation also in situations where � and s are decorated by
symbols other than †.We show that�†(N , T ; q, a) is small on average. Let 1 � a � q.
Then

�†(N , T ; q, a) =
∑

0�m�(N−a)/q

(a + mq)θ−1 s†q(a + mq, T )

=
∑
t�T
t�q

t∑
c=1

(c,t)=1

Sk(t, c)Sh(t, c)

t2
e

(
−ca

t

) ∑
0�m�(N−a)/q

(a + mq)θ−1e

(
−mqc

t

)
.

The total contribution from terms with m = 0 is

aθ−1
∑
t�T
t�q

t∑
c=1

(c,t)=1

Sk(t, c)Sh(t, c)

t2
e

(
−ca

t

)
. (6.5)

For m � 1 we have a + mq � mq, and so, by partial summation,

∑
1�m�(N−a)/q

(a + mq)θ−1 e

(
− mqc

t

)

 qθ−1

∥∥∥∥qct
∥∥∥∥

−1

.
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Hence the contribution to �†(N , T ; q, a) from terms with m � 1 is bounded by

∑
t�T
t�q

t∑
c=1

(c,t)=1

∣∣∣∣ Sk(t, c)Sh(t, c)t2

∣∣∣∣ qθ−1
∥∥∥∥qct

∥∥∥∥
−1


 qθ−1
∑
t�T
t�q

κk(t)κh(t)
t∑

c=1
(c,t)=1

∥∥∥∥qct
∥∥∥∥

−1


 qθ−1
∑
t�T

t1+ε
(
κk(t)

2 + κh(t)
2) 
 qθ−1T 1+2ε.

Here we used (2.3) in the final estimate. By similar estimates within (6.5), we also see
�†(N , T ; q, a) 
 (aθ−1 + qθ−1)T 1+ε and then have

∑
q�Q

q∑
a=1

|�†(N , T ; q, a)|2
 Q2θT 2+ε. (6.6)

Now let

s‡q(n; T ) =
∑
t>T
t |q

t∑
c=1

(c,t)=1

Sk(t, c)Sh(t, c)

t2
e(−cn/t). (6.7)

This sum depends on n only modulo q. Thus, with the convention concerning deco-
rations of � in mind,

�‡(N , T ; q, a) = s‡q(a, T )
∑
n�N

n≡a (mod q)

nθ−1.

Much as before, we find that whenever q � N θ then

∑
n�N

n≡a (mod q)

nθ−1 
 aθ−1 +
∑

1�m�(N−a)/q

(a + mq)θ−1 
 N θq−1,

and consequently,

q∑
a=1

|�‡(N , T ; q, a)|2 
 N 2θq−2
q∑

a=1

|s‡q(a, T )|2.

123



Sums of two unlike powers in arithmetic progressions S207

By (6.7) and Cauchy’s inequality, and then by orthogonality,

q∑
a=1

|s‡q(a; T )|2 
 qε

q∑
a=1

∑
t>T
t |q

∣∣∣∣
t∑

c=1
(c,t)=1

Sk(t, c)Sh(t, c)

t2
e

(
− ca

t

)∣∣∣∣
2


 q1+ε
∑
t>T
t |q

t∑
c=1

(c,t)=1

∣∣∣∣ Sk(t, c)Sh(t, c)t2

∣∣∣∣
2


 q1+ε
∑
t>T
t |q

tκk(t)
2κh(t)

2.

Recall that Q � N θ. Hence

∑
q�Q

q∑
a=1

|�‡(N , T ; q, a)|2 
 N 2θ+ε
∑
q�Q

q−1
∑
t>T
t |q

tκk(t)
2κh(t)

2.

In the sums over q and t we write q = ts. By (2.4) the double sum is

∑
T<t�Q

κk(t)
2κh(t)

2
∑

s�Q/t

s−1 
 (log Q)
∑

T<t�Q

κk(t)
2κh(t)

2 
 N εT−1.

This proves that

∑
q�Q

q∑
a=1

|�‡(N , T ; q, a)|2 
 N 2θ+εT−1. (6.8)

We collect the results obtained so far in a single estimate. By (6.3), (6.4) and (6.7),
we have

s(n; T ) = s†q(n; T ) + s∗
q(n; T ) = s†q(n; T ) − s‡q(n; T ) + ρ(q, a)

q
.

It follows that

�(N , T ; q, a) − ρ(q, a)

q

∑
n�N

n≡a (mod q)

nθ−1 = �†(N , T ; q, a) − �‡(N , T ; q, a),

and from (6.6) and (6.8) we then conclude

∑
q�Q

q∑
a=1

∣∣∣∣�(N , T ; q, a) − ρ(q, a)

q

∑
n�N

n≡a (mod q)

nθ−1
∣∣∣∣
2


 (
Q2θT 2 + N 2θT−1)N ε.

(6.9)
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By (6.9) and (6.2), we are reduced to replacing

∑
n�N

n≡a (mod q)

nθ−1 with
1

q

∑
n�N

nθ−1.

To realize this, wemay follow the argument given in [2] very closely. By orthogonality,
we see that

∑
n�N

n≡a (mod q)

nθ−1 − 1

q

∑
n�N

nθ−1 = 1

q

q−1∑
b=1

e

(
−ab

q

) ∑
n�N

nθ−1 e

(
bn

q

)
.

Here, by (3.11), the sum on the far right over n is O(‖b/q‖−θ ). Further, by (6.3) and
(3.1),

ρ(q, a)

q



∑
t |q

tκk(t)κh(t). (6.10)

Observing orthogonality, it now follows that the sum

∑
q�Q

q∑
a=1

(
ρ(q, a)

q

)2 ∣∣∣∣
∑
n�N

n≡a (mod q)

nθ−1 − 1

q

∑
n�N

nθ−1
∣∣∣∣
2

(6.11)

is bounded above by



∑
q�Q

(∑
t |q

tκk(t)κh(t)

)2 1

q2

q∑
a=1

∣∣∣∣
q−1∑
b=1

e

(
−ab

q

) ∑
n�N

nθ−1e

(
bn

q

)∣∣∣∣
2



∑
q�Q

(∑
t |q

tκk(t)κh(t)

)2 1

q

q−1∑
b=1

∥∥∥∥bq
∥∥∥∥

−2θ



∑
q�Q

q2θ−1
(∑

t |q
tκk(t)κh(t)

)2


 Q2θ+ε,

as is readily confirmed from (2.5).
The elementary evaluation

∑
n�N

nθ−1 = θ−1N θ + O(1)
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together with (6.10) and (2.5) implies the bound

∑
q�Q

q∑
a=1

ρ(q, a)2

q4

∣∣∣∣
∑
n�N

nθ−1 − N θ

θ

∣∣∣∣
2



∑
q�Q

1

q

(∑
t |q

tκk(t)κh(t)

)2


 Qε.

Equipped with the estimate obtained for the sum in (6.11), we deduce that

∑
q�Q

q∑
a=1

ρ(q, a)2

q2

∣∣∣∣
∑
n�N

n≡a (mod q)

nθ−1 − N θ

θq

∣∣∣∣
2


 Q2θ+ε.

This bound coupled with (6.9) implies Lemma 6.1. �	
The endgame begins by writing (1.3) as

V (N , Q) =
∑
q�Q

q∑
a=1

(
A(N , q, a) + B(N , q, a)

)2

where

A(N , q, a) =
∑
n�N

n≡a (mod q)

(
r(n) − θCnθ−1s(n; T )

)
,

B(N ; q, a) = θC
∑
n�N

n≡a (mod q)

nθ−1s(n; T ) − ρ(q, a)

q2
CN θ.

Then, squaring out and estimating the cross term by Cauchy’s inequality, we find

V (N , Q) = U (N , Q, T ) + (θC)2�(N , Q, T ) + O
(
(U�)1/2

)
. (6.12)

Theorem 1.1 is now easily deduced. When k = 3 we choose T = N 1/8h . Then,
for T � Q � N θ, Lemma 6.1 gives � 
 N 2θT−1, and Theorem 5.4 yields U =
CQN θ + O(N 2θT−1). Now (6.12) gives

V (N , Q) = CQN θ + O
(
N 2θ−1/(8h)+ε + Q1/2N (3θ/2)−1/(16h)+ε

)
(6.13)

in the range N 1/8h � Q � N θ. For 1 � Q � N 1/8h the asymptotic formula (6.13)
reduces to the upper bound V (N , Q) 
 N 2θ−1/(8h)+ε that we have just confirmed
for Q = N 1/8h, and hence remains true for smaller values of Q. This completes the
proof of Theorem 1.1 in the case k = 3.

The other cases are similar, and we merely indicate the choices of parameters. For
k = 2, h � 7, we take T = N 1/h . Then, for T � Q � N θ we have T 3 � (N/Q)2θ
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so that Lemma 6.1 again gives � 
 N 2θT−1 
 N 1+1/h. As above, we first deduce
that

V (N , Q) = CQN θ + O
(
N 1+1/h+ε + Q1/2N 3/4−3/(2h)+ε

)

holds for T � Q � N θ, and then see that the range 1 � Q � T is covered for trivial
reasons.

Next, consider the cases k = 2, 4 � h � 6. We wish to conclude from Lemma 6.1
that � 
 N 2θT−1 with T as large as is possible. This requires us to take T � N 1/h

and T � (N/Q)2θ/3. However, at least when h � 5 the term QT N 2/h needs attention,
and we require that QT N 2/h � N 2θT−1 as well. This reduces to T � (N/Q)1/2.
However, for h � 4 we have 2

3θ � 1
2 , so this last condition for T is implied by the

previous ones, and we can choose

T = min
(
N 1/h, (N/Q)2θ/3).

Then, again via Theorem 5.4 and (6.12), we conclude that

V (N , Q) = CQN θ + O
(
N 2θ−1/h+σ(h)+ε + N 2θ+εT−1 + Q1/2N 3θ/2+εT−1/2)

holds for T � Q � N θ, and this yields the bound in Theorem 1.1. The smaller values
of Q are again a trivial range.

This leaves the case k = 2, h = 3. We follow the same strategy but this time have
2
3θ > 1/2 and therefore choose

T = min
(
N 1/3, (N/Q)1/2

)
.

Theorem 5.4 gives

U = CQN 5/6 + O
(
N 17/12+ε + Q1/2N 7/6+ε

)
,

and Lemma 6.1 asserts that

� 
 N 2θ+εT−1 
 N 4/3+ε + N 7/6+εQ1/2.

Theorem 1.1 now follows from (6.12).

7 The proof of Theorem 1.2

We define η(n) through

r0(n) = r(n) − η(n).
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Then η(n) � 0 and takes integer values, so that

η(n) � η(n)2 = (r(n) − r0(n))2 � r(n)2 − r(n).

By Lemma 2.1, this implies that

∑
n�N

η(n) �
∑
n�N

η(n)2 �
∑
n�N

(
r(n)2 − r(n)

) 
 N 2/h+ε.

Now

V0(N , Q) =
∑
q�Q

q∑
a=1

( ∑
n�N

n≡a (mod q)

(r(n) − η(n)) − ρ(q, a)

q2
CN θ

)2

= V (N , Q) + E0 − 2E1

where

E0 =
∑
q�Q

q∑
a=1

( ∑
n�N

n≡a (mod q)

η(n)

)2

, (7.1)

E1 =
∑
q�Q

q∑
a=1

( ∑
n�N

n≡a (mod q)

r(n) − ρ(q, a)

q2
CN θ

) ∑
m�N

m≡a (mod q)

η(m). (7.2)

To bound E0, one opens the square and finds that

E0 =
∑
q�Q

∑
n,m�N

n≡m (mod q)

η(n)η(m).

Hence

E0 

∑

n,m�N

η(n)η(m)
∑

q|n−m
q�Q

1.

Here the terms with n = m contribute


 Q
∑
n�N

η(n)2 
 QN 2/h+ε
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while the terms with n �= m contribute no more than


 Qε

(∑
n�N

η(n)

)2


 N 4/h+ε.

This shows that

E0 
 QN 2/h+ε + N 4/h+ε.

Further, by (7.1), (7.2) and Cauchy’s inequality,

E2
1 
 V (N , Q)E0.

Theorem 1.2 now follows.
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