
APPROXIMATION AT PLACES OF BAD REDUCTION

FOR RATIONALLY CONNECTED VARIETIES

BRENDAN HASSETT AND YURI TSCHINKEL

Abstract. This paper addresses weak approximation for rationally
connected varieties defined over the function field of a curve, espe-
cially at places of bad reduction. Our approach entails analyzing the
rational connectivity of the smooth locus of singular reductions of the
variety. As an application, we prove weak approximation for cubic
surfaces with square-free discriminant.
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1. Introduction

In number theory, many results and techniques rely on approximating
adelic points by rational points. In this paper, we study geometric ver-
sions of these notions for rationally connected varieties over the function
field of a curve. In this context, rational points correspond to sections
of rationally-connected fibrations over the curve. We are looking for sec-
tions with prescribed jet data in finitely many fibers (see Section 2 for
definitions).

Let k be an algebraically closed field of characteristic zero, B a smooth
curve over k with function field F = k(B). Let B be the smooth projec-
tive model of F and put S := B \B.
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Theorem 1. Let X be a smooth proper rationally connected variety over
F , and π : X → B a model of X, i.e., X is an algebraic space flat and
proper over B with generic fiber X. Let X sm be the locus where π is
smooth and X • ⊂ X sm be such that

(1) there exists a section s : B → X •;
(2) for each b ∈ B and x ∈ X •

b , there exists a rational curve f : P1 →
X •

b containing x and the generic point of X •
b .

Then sections of X • → B satisfy approximation away from S.

Rationally-connected fibrations over curves have sections by [7]. The
existence of a section through a finite set of prescribed points is addressed
[12] 2.13 and [11] IV.6.10.1. Weak approximation is known in fibers of
good reduction [8], so we take simultaneous resolutions of singular fibers
of X whenever possible [2] [3]. Consequently, when X → B admits a
simultanteous resolution over some étale neighborhood of b, we replace
X by this resolution. However, the resolved family may be an algebraic
space, rather than a scheme, over B. This is why Theorem 1 is stated in
this generality.

We shall actually prove a stronger result, Theorem 15, which is appli-
cable in positive characteristic. In this context, Corollary 16 gives weak
approximation at places of good reduction.

There are very few instances where weak approximation over function
fields is known at all places [4]:

• stably rational varieties;
• connected linear algebraic groups and homogeneous spaces for

these groups;
• homogeneous space fibrations over varieties that satisfy weak ap-

proximation, for example, conic bundles over rational varieties;
• Del Pezzo surfaces of degree at least four.

Even the case of cubic surfaces remains open, in general. Madore estab-
lished weak approximation for cubic surfaces at places of good reduction
[13]. His proof uses the abundance of distinct unirational parametriza-
tions, and builds on ideas of Swinnerton-Dyer [15].

When is Theorem 1 applicable? Let X be a smooth projective ratio-
nally connected variety over F = k(B), with B projective. There exists
a regular model π : X → B, and any section s : B → X is contained in
X sm. For each singular fiber Xb, fix an irreducible component X •

b ⊂ X sm
b ;
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these determine an open subset X • ⊂ X sm. To prove weak approxima-
tion for X, it suffices to prove approximation for each X • obtained in this
way. We do not know how to verify (1) in general: Is there any section
meeting a prescribed irreducible component of X sm

b ? Further, there is no
general result giving a regular model X → B such that each irreducible
component of X sm

b has the property (2).
We give applications to cubic surfaces:

Theorem 2. Let X be a smooth cubic surface over F and π : X → B a
model whose singular fibers are cubic surfaces with rational double points.
Suppose there exists a section s : B → X sm. Then sections of X sm → B
satisfy approximation away from S.

When the model is regular all sections are contained in the smooth
locus, so we conclude:

Corollary 3. Let X be a smooth cubic surface over F . Suppose X admits
a regular model π : X → B whose singular fibers are cubic surfaces with
rational double points. Then weak approximation holds for X away from
S.

There exist cubic surfaces which do not admit models with at most
rational double points in a given fiber, e.g., the isotrivial family

x3 + y3 + z3 = tw3

over the t-line. Nonetheless, Corollary 3 proves weak approximation for
‘generic’ cubic surfaces.

Corollary 4. Let Hi lb = P(Γ(OP3(3))) ' P19 denote the Hilbert scheme
of cubic surfaces, U → Hi lb the universal family, D ⊂ Hi lb the discrim-
inant divisor, and B ⊂ Hi lb a smooth curve transverse to D (i.e., the
discriminant is square-free along B). Then sections of

X = U ×Hilb Spec(F ) → B

satisfy approximation away from S.

Meeting the discriminant transversally is an open condition on the
classifying map to the Hilbert scheme. The transversality implies that
near singular points of Xb, the model X := U ×Hilb B has local analytic
equation x2 + y2 + z2 = t, where t is a local uniformizer for B at b. In
particular, X is a regular model and Corollary 3 applies.
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In our approach to approximation, we require precise control over
proper rational curves in the smooth locus. One focus of this paper
is to extend standard results on smooth proper rationally connected va-
rieties to the non-proper case (see Section 4). The application to cubic
surfaces entails a refinement of rational connectivity results of [9] (see
Section 5).

Acknowledgments: We are grateful to J. L. Colliot-Thélène for numer-
ous discussions about the problems considered here; the ideas here were
developed during visits to Orsay by both authors. We also benefitted
from conversations with S. Keel, A. Knecht, J. Kollár, and J. McKernan.
The first author was partially supported by the Sloan Foundation and
NSF Grants 0134259 and 0196187.

2. Notions of approximation

Let F be a global field, i.e., a number field or the function field of a
curve B defined over an algebraically closed field k. Let S a finite set
of places of F containing the archimedean places, oF,S the corresponding
ring of integers, and AF,S the restricted direct product over all places
outside S.

Let X be an algebraic variety over F , X(F ) the set of F -rational
points and X(AF,S) ⊂

∏
v/∈S X(Fv) the set of AF,S-points of X. The set

X(AF,S) carries a natural direct product topology. One says that weak
approximation holds for X away from S if X(F ) is dense in this topology.

The set X(AF,S) also carries a natural adelic topology: The basic open
subsets are ∏

v∈S′

uv ×
∏

v/∈(S∪S′)

X (ov),

where S ′ is a finite set of nonarchimedean places disjoint from S, X is a
model over Spec(oF,S), ov is the completion of oF,S at v, and uv ⊂ X(Fv)
an open subset in the v-adic analytic topology on X(Fv). This does not
depend on the choice of model. Strong approximation holds for X away
from S if X(F ) is dense in X(AF,S). Note that strong approximation
implies weak approximation. Conversely, for X proper over the integers,
weak approximation implies strong approximation, since X (ov) = X(Fv);
in these cases, we will use the term weak approximation for the sake of
consistency.
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Finally, there is a formulation which is sensitive to the choice of model
X . Consider the topology on

∏
v/∈S X (ov) with basic open subsets

∏

v∈S′

uv ×
∏

v/∈(S∪S′)

X (ov),

with uv ⊂ X (ov) an open subset. We say that approximation holds for
S-integral points of X if X (oF,S) is dense in this product. This is a weak
version of strong approximation.

We now focus on the function field case: Let B be a smooth projective
model of B with S = B \B; place v correspond to points b ∈ B. Let X
be a smooth variety proper over F = k(B), π : X → B a model proper
and flat over B (which exists by [14]), and X • ⊂ X sm a model for X
surjecting onto B. Since π is proper, F -rational points of X correspond
to sections s : B → X . If X is regular s factors through X sm.

Definition 5. An admissible section of π : X → B is a section s : B →
X sm. An admissible N-jet of π at b is a section of

X sm ×B Spec(OB,b/m
N+1
B,b ) → Spec(OB,b/m

N+1
B,b ).

An approximable N-jet of π at b is a section of

X ×B Spec(OB,b/m
N+1
B,b ) → Spec(OB,b/m

N+1
B,b )

that may be lifted to a section of X̂b → B̂b, with B̂b = Spec(ÔB,b) and

X̂b = X ×B B̂b.

Hensel’s lemma guarantees that every admissible N -jet is approximable.
Let {bi}i∈I be a finite set of points and ji an admissible N -jet of π at
bi. We write J = {ji}i∈I for the corresponding collection of admissible
N -jets.

The notions of weak and strong approximation introduced above have
geometric interpretations

• Weak and strong approximation hold for X away from S if any
finite collection of approximable jets of π can be realized by a
section s : B → X .

• This is equivalent to weak approximation holding for X• away
from S: Every jet in X at b can be realized by a section X×BB̂b →
B̂b meeting X̂ •

b .
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• If X is regular these are equivalent to the condition that any
collection of admissible jets of π can be realized by a section
s : B → X sm.

There is an analogous formulation of approximation for integral points:

• Approximation holds for sections of X • → B away from S if
each collection of jet data in X • can be realized by a section
s : B → X •.

• If X is regular and X • = X sm this is equivalent to weak approxi-
mation for X.

3. Curves, combs, and deformations

The dual graph associated with a nodal curve C has vertices are in-
dexed by the irreducible components of C and its edges indexed by the
intersections of these components. A projective nodal curve C is tree-like
if

• each irreducible component of C is smooth;
• the dual graph of C is a tree.

Definition 6. A comb with m reducible teeth is a projective nodal curve
C with m + 1 subcurves D, T1, . . . , Tm such that

• D is smooth and irreducible;
• Tl ∩ Tl′ = ∅, for all l 6= l′;
• each Tl meets D transversally in a single point; and
• each Tl is a chain of P1’s.

Here D is called the handle and the Tl the reducible teeth.

We will use the following lemma, which has the same proof as Propo-
sition 24 of [8]:

Lemma 7. Let C be a tree-like curve, W a smooth algebraic space,
h : C → W an immersion with nodal image. Suppose that for each
irreducible component Cl of C, H1(Cl,Nh ⊗ OCl

) = 0 and Nh ⊗ OCl
is

globally generated. Then h deforms to an immersion.
Suppose furthermore that w = {w1, . . . , wM} ⊂ C is a collection of

smooth points such that for each component Cl, H1(Nh ⊗OCl
(−w)) = 0

and the sheaf Nh ⊗ OCl
(−w) admits a section nonzero at each point of

the quotient
(Nh ⊗OCl

)/Nh|Cl
.

Then h : C → W deforms to an immersion of a smooth curve into W
containing h(w).
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4. Strong rational connectivity

Definition 8. A variety X is rationally connected (resp. separably ratio-
nally connected) if there is a family of proper irreducible rational curves
g : U → Z (resp. π2 : U = P1×Z → Z) and a cycle morphism u : U → X
such that

u2 : U ×Z U → X ×X

is dominant (resp. smooth over the generic point)).

Intuitively, two generic points of X can be joined by an irreducible
projective rational curve. Over fields of characteristic zero, rational con-
nected varieties are also separably rationally connected [11] IV.3.3.1.

The notion of rational connectedness is a bit subtle over countable
fields: For convenience, we work over an uncountable algebraically closed
field. Over such a field, rational connectivity is equivalent to the condi-
tion that two very general points of X can be joined by such a rational
curve.

Definition 9. Let X be a smooth algebraic space of dimension d and
f : P1 → X a nonconstant morphism, so we have an isomorphism

f ∗TX ' OP1(a1)⊕ . . .⊕OP1(ad)

for suitable integers a1, . . . , ad. Then f is free (resp. very free) if each
ai ≥ 0 (resp. ai ≥ 1).

We refer the reader to [11] IV.3 for further facts about rationally con-
nected varieties.

One technical result will play a prominent rôle in our analysis.

Proposition 10 ([11] IV.3.9.4). Let V be a smooth separably rationally
connected (not necessarily proper) variety. Then there exists a nonempty
subset V 0 ⊂ V characterized as the largest open subset such that if
v1, . . . , vm ∈ V 0 are distinct closed points, then there is a very free curve
in V 0 containing these as smooth points. Moreover, any rational curve
C ⊂ V that meets V 0 is contained in V 0.

No example where V 0 6= V is known.

Remark 11. Let V2 be a smooth variety, V1 ⊂ V2 a rationally connected
dense open subvariety, and V 0

2 ⊂ V2 the largest open set satisfying the
conditions of Proposition 10 . Then V 0

1 ⊂ V 0
2 . Thus a point v ∈ V2 is in

V 0
2 provided there is a rational curve f : P1 → V2 through v and meeting

V 0
1 .
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Proposition 12. Let V be a smooth separably rationally connected vari-
ety, and β : W → V an iterated blow-up of V along smooth subvarieties.
Then β−1(V 0) = W 0.

Proof. The inclusion W 0 ⊂ β−1(V 0) is straightforward: Given points
w1, . . . , wm ∈ W 0, there is a very free curve g : P1 → W 0 containing
them; we may choose this to be transversal to the exceptional divisor of
β. The inclusion of sheaves

TW ↪→ β∗TV

remains an inclusion after pull-back via g, as the support of the cokernel
does not contain g(P1). The positivity of g∗TW implies the positivity of
(β ◦ g)∗TV , which means that β ◦ g : P1 → V is also very free.

For the reverse direction, we may restrict to the case where W is the
blow-up of V along a smooth subvariety Z of codimension r > 1, with
exceptional divisor E. It is clear that β−1(V 0 \ Z) ⊂ W0, so consider
some w ∈ β−1(z) with z ∈ Z ∩ V 0. It suffices to construct a rational
curve containing w and the generic point of W .

There exists a very free curve f ′ : P1 → V 0 with the following proper-
ties:

(1) f ′(P1) meets Z only at z (we can always deform a very free curve
so that it misses a codimension ≥ 2 subset);

(2) f ′(P1) is smooth at z and transverse to Z.

Let g′ : P1 → W denote the lift to W , which is free in W , and w′ = g′(0).
If w′ = w then we are done. Otherwise, let ` ⊂ β−1(z) ' Pr−1 denote the
line joining w and w′. Since g′ is free, it admits a small deformation to
a free curve g′′ : P1 → W with w′′ := g′′(0) ∈ `, w′′ 6= w′. (See Figure 1.)

We construct a comb h : C → W with handle ` ⊂ Pr−1 ⊂ W and two
teeth g′, g′′ : P1 → W . Using the exact sequence of normal bundles

0 →N`/E → N`/W →NE/X ⊗O` → 0

we find
N`/W ' Odim(V )−r

P1 ⊕OP1(1)r−2 ⊕OP1(−1)

where the negative summand is in the normal direction to E. Since g ′(P1)
and g′′(P1) are transverse to E, applying Proposition 23 of [8] we see

Nh ⊗O` ' Odim(V )−r
P1 ⊕OP1(1)r−2 ⊕OP1(1);

the quotient (Nh⊗O`)/Nh|` lies in the image of the positive summands.
Lemma 7 implies that h : C → W admits a deformation to a rational

curve containing w. �



APPROXIMATION AT PLACES OF BAD REDUCTION 9

w

w’

w"

β −1(z) = P r−1
g"(P  )1

l

g’(P  )1

Figure 1. Constructing the comb

A similar argument gives the following strengthening of Proposition 10
(cf. Theorem 2.2 of [6])

Proposition 13. Let V be a smooth separably rationally connected vari-
ety and V 0 ⊂ V be the distinguished open subset characterized in Propo-
sition 10. Then for any finite collection of jets

ji : Speck[ε]/
〈
εN+1

〉
↪→ V 0, i = 1, . . . , m

supported at distinct points v1, . . . , vm, there exists a very free rational
curve smooth at v1, . . . , vm with the prescribed jets.

Proof. There is an iterated blow-up

β : W = WN → . . . → Wj → . . . → W1 → V

and points w1, . . . , wm ∈ W so that if g : C → W is a morphism whose
image contains w1, . . . , wm then the image of f := β ◦g : C → V contains
the given collection of jets. Here is the description: Over each point vi,
we blow up V successively at N points. Given any smooth curve germ C
with the prescribed N -jet at vi, Wj is the blowup of Wj−1 at the points of
the proper transform of C lying over the vi. Proposition 12 then implies
there exists a very free curve g : P1 → W through w1, . . . wm. However,
the image of this curve in V will be singular at vi if g(P1) meets β−1(vi)
in more than one point.

We claim there exists a very free curve gi : P1 → W meeting β−1(vi)
only at wi, transversally. We choose this curve so that it is disjoint from
β−1(vj) when j 6= i. Fix generic points xi ∈ gi(P

1) and let g0 : P1 → W be
a very free curve intersecting gi(P

1) transversely at xi but not meeting any
β−1(vi). (For example, take g0 = (β−1 ◦ f0), where f0 : P1 → V is a very
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free curve through β(x1), . . . , β(xm).) Consider the comb h : C → W
with handle g0(P

1) and m-teeth gi(P
1). This deforms to a very free curve

h′ : P1 → W meeting each β−1(vi) only at wi, transversally.
The proof of the claim is a refinement of the argument for Propo-

sition 12. We proceed by induction on N . The base case N = 1 is
contained in the proof of Proposition 12, which gives a very free curve
smooth at vi with prescribed tangency. Let Ei,N ' Pdim(V )−1 be the
last exceptional divisor of β : W → V over vi, i.e., the exceptional di-
visor of the N -th blow-up. For 1 ≤ j < N , let Ei,j ⊂ WN denote the
proper transform of the exceptional divisor of Wj → Wj−1 over vi; we
have Ei,j ' Blwi,j

Pdim(V )−1, where wi,j is the intersection of the proper
transform of C with the exceptional divisor of Wj → Wj−1.

Suppose that g′i : P1 → W is a very free curve such that β◦g′i is smooth
with the desired (N − 1)-jet at vi. Let w′

i = g′i(P
1) ∩ β−1(vi) denote the

unique point of intersection, which we assume is distinct from wi. Let `N

denote the line in Ei,N ' Pdim(V )−1 joining wi and w′
i, and zN−1 its point of

intersection with Ei,N−1. Let `N−1 ⊂ Ei,N−1 ' Blwi,N−1
Pdim(V )−1 denote

the proper transform of a line containing zN−1, and zN−2 its point of
intersection with Ei,N−2. Continue in this way, until we obtain `1 ⊂ Ei,1,
the proper transform of a line containing z1. Finally, let g′′i : P1 → W be
a very free curve meeting the exceptional locus transversally at a generic
point of `1. (See Figure 2.)

l

1

w

w’

i

i

i

i

1

l
g’’ (P  )

g’ (P  )1

N

Figure 2. Constructing the comb with reducible teeth

Let h : C → W be the comb with handle `N and two reducible teeth:

(1) g′i : P1 → W ;
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(2) the union of the lines `N−1, . . . , `1 and the curve g′′i : P1 → W ;

By a normal bundle computation similar to that of Proposition 12, we
find that Nh|`N is ample and Nh is nonnegative on each of the remaining
components: Again, Lemma 7 (or Proposition 24 of [8]) implies that h
admits a deformation to an immersed rational curve containg wi.

Here are the details of the computations (cf. [8] Section 5): The normal
bundle of a line in projective space is

N`N/Ei,N
= N`N /Pdim(V )−1 ' OP1(+1)dim(V )−2

and the normal bundle for an exceptional divisor is

NEi,N/W ' OPdim(V )−1(−1).

For each j we have

(4.1) 0 → N`j/Ei,j
→N`j/W →NEi,j/W |`j

→ 0

which for j = N yields

N`N /W ' OP1(+1)dim(V )−2 ⊕OP1(−1),

with the negative component in the direction normal to Ei,N . We also
have an extension

(4.2) 0 →N`j/W → Nh|`j
→ Q(`j) → 0,

where Q(`j) is a torsion sheaf supported at the points where `j meets the
adjacent components. For j = N these are g′i(P

1) and `N−1, and since
the tangent vectors to these curves are normal to Ei,N , we find

Nh|`N
' OP1(+1)dim(V )−2 ⊕OP1(+1).

The normal bundle of the proper transform of a line in the blow-up of
projective space at a point of the line is

N`j/Ei,j
= N`j/Blwi,j

Pdim(V )−1 ' Odim(V )−2

P1

for j = 1, . . . , N − 1. Similarly, we can compute

NEi,h/W |`j
= OP1(−2)

so the exact sequence analogous to (4.1) yields

N`j/W ' Odim(V )−2
P1 ⊕OP1(−2),

with the negative component in the direction normal to Ei,j. Using (4.2)
and the fact that `j is adjacent to `j+1 and `j−1 (or g′′i (P

1) when j = 1),
we find

Nh|`j
' Odim(V )−2

P1 ⊕OP1 .
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�

Definition 14. A smooth separably rationally connected variety Y is
strongly rationally connected if any of the following conditions hold:

(1) for each point y ∈ Y , there exists a rational curve f : P1 → Y
joining y and a generic point in Y ;

(2) for each point y ∈ Y , there exists a free rational curve containing
y;

(3) for any finite collection of points y1, . . . , ym ∈ Y , there exists a
very free rational curve containing the yj as smooth points;

(4) for any finite collection of jets

Spec k[ε]/
〈
εN+1

〉
⊂ Y, i = 1, . . . , m

supported at distinct points y1, . . . , ym, there exists a very free
rational curve smooth at y1, . . . , ym and containing the prescribed
jets.

The implications
(4) ⇒ (3) ⇒ (2) ⇒ (1)

are obvious. By Proposition 10, assertions (1)-(3) are each equivalent to
the condition Y = Y 0. Property (4) is analogous to Theorem 2.2 of [6],
which is stated for proper varieties. It follows from (1) by Proposition 13.

With basic properties of strongly rationally connected varieties estab-
lished, Theorem 1 follows from the general result (cf. [11] IV.6.10.1):

Theorem 15. Let π : Y → B be a smooth morphism whose fibers are
strongly rationally connected. Assume that π has a section. Then sections
of Y → B satisfy approximation away from S.

Proof. Let π : Y → B be a proper flat model of Y → B, which exists by
[14]. The section extends to a section s of π. By a result of Artin and
Néron [1] Corollary 4.6, there exists a blow-up with center supported in
π−1(S)

Ỹ → Y

such that the proper transform of s(B) in Ỹ is contained in Ỹsm.
Recall the proof of weak approximation at places of good reduction in

Section 5 of [8]. This is a bootstrap argument, using the existence of a
section in the smooth locus to construct sections with prescribed jets of
successively higher order. Properness is used only to establish that the
smooth fibers are strongly rationally connected, so we can produce very
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free curves with desired properties. In our situation, this is part of the
hypotheses. �

Weak approximation at places of good reduction in positive character-
istic was left unresolved in [8]. However, combining Theorem 15 with the
main result of [5] yields:

Corollary 16. Let π : Y → B be a smooth proper morphism with sep-
arably rationally connected fibers. Then weak approximation holds away
from S = B \B.

5. Cubic surfaces

We work over an algebraically closed field of characteristic zero.

Definition 17. A log Del Pezzo surface is a pair (X, ∆) consisting of a
normal projective surface X and an effective Q-divisor ∆ =

∑
ai∆i, 0 <

ai ≤ 1 on X, with log terminal singularities, such that −(KX + ∆) is
ample. When ∆ is empty, this is equivalent to saying that X has quotient
singularities and ample anticanonical class.

Theorem 18 ([9] 1.6). The smooth locus of a log Del Pezzo surface
(X, ∆) is rationally connected, i.e., two generic points in X sm can be
joined by an irreducible projective rational curve contained in X sm.

Example 19 ([16]). There exist projective rational surfaces with rational
double points whose smooth locus is not rationally connected. Consider

X̃ = E × P1

where (E, 0) is an elliptic curve and the involution

ι : X̃ → X̃

(e, [x0, x1]) 7→ (−e, [x1, x0]).

The involution has eight isolated fixed points q ⊂ X̃. The quotient

X = X̃/ 〈ι〉 has eight A1 singularities and is rational: X → E/ 〈ι〉 ' P1

is a conic bundle. Since X̃ − q → Xsm is a covering space, π1(X
sm) ⊂

π1(X̃ − q) with index two. Thus

π(X̃ − q) ' π(X̃) ' π(E) ' Z× Z

and Xsm has infinite fundamental group. However, rationally connected
varieties (even non-proper ones) have finite fundamental groups (see
Lemma 7.8 of [9] and Proposition 2.10 of [10], for example).
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The following conjecture would allow us to apply Theorem 1 to prove
weak approximation for many log Del Pezzo surfaces:

Conjecture 20. The smooth locus of a log Del Pezzo surface is strongly
rationally connected.

We prove this for cubic surfaces:

Theorem 21. Let X ⊂ P3 be a cubic surface with rational double points.
Then Xsm is strongly rationally connected.

Proof. Let x1 ∈ Xsm be a point. We produce a rational curve R ⊂ Xsm

joining x1 and a generic point x2 ∈ Xsm.
We will make explicit precisely how x2 must be chosen. We assume:

(1) The tangent hyperplane section H2 at x2 is irreducible and nodal.

In particular, H2 ⊂ Xsm and there are no lines ` ⊂ X containing x2.
Projection from x2 then gives a double cover

Blx2X → P2;

the covering transformation interchanges the exceptional divisor and the
proper transform. We obtain a birational involution

ιx2 : X 99K X

x 7→ x′,

where {x, x′, x2} are collinear. This factors as the blow-up of x2 followed
by the blow-down of the proper transform of H2. Note that ιx2 fixes the
singularities of X and thus takes Xsm to itself.

We also assume:

(2) H2 does not contain x1.

It follows that H2 does not contain x′1 = ιx2(x1). Moreover, x1 and x′1
are in the open subset on which ιx2 is an isomorphism.

We assume furthermore:

(3) x2 is not contained in H1.

It follows that x2 6∈ H ′
1, the tangent hyperplane section at x′1. Indeed,

suppose that x2 ∈ H ′
1. We know that x2 6= x′1 (because x′1 6∈ H2), so

consider the line joining x2 and x′1. This meets X only at x2 and x′1, so
x′1 = x1 and x2 ∈ H1, a contradiction.

Finally, we assume:

(4) H ′
1 is irreducible and nodal.
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In particular, H ′
1 ⊂ Xsm.

Since x2 6∈ H ′
1, ιx2 is regular along H ′

1. We verify that the rational
curve R = ιx2(H

′
1) has the desired properties. Since H ′

1 ⊂ Xsm and
ιx2(X

sm) ⊂ Xsm, we find R ⊂ Xsm. We have x′1 ∈ H ′
1, so x1 = ιx2(x

′
1) ∈

R. Since H ′
1 meets H2 in a point y 6= x2, x2 = ιx2(y) ∈ R. �

We now prove Theorem 2: For each singular fiber Xb, X sm
b is strongly

rationally connected by Theorem 21. Approximation follows from Theo-
rem 1.

Example 22. Here is another case where Conjecture 20 is easily verified.
Let X be a partial resolution of a cubic surface Σ with at most A1-
singularities, i.e., we have a factorization of the minimal resolution

Σ̃ → X
β
→ Σ.

Then Xsm is strongly rationally connected.
Theorem 2 implies that Σsm is strongly rationally connected, hence

β−1(Σsm) ⊂ (Xsm)0. The locus Xsm \β−1(Σsm) is a union of (−2)-curves
{Ei}, corresponding to the resolved singularities {pi} of Σ. If (Xsm)0

meets Ei, it must also contain Ei. Hence it suffices to show that for each
Ei there exists a rational curve in Xsm meeting Ei and β−1(Σsm) (see
Remark 11).

To find this rational curve, consider the projection from pi

πi : Σ 99K P2

which induces a morphism π′
i : X → P2. The image of Ei is a plane conic

and the image of the singularities of X has codimension two in P2, so
there exists a rational curve

f : P1 → P2 \ π′
i(Sing(X))

meeting the image of Ei.
The same argument applies if X is obtained from a cubic surface Σ

with A1 and A2 singularities by resolving some subset of Sing(Σ).
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