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Abstract

schedules using a pharmacokinetics (PK) model.

(https://github.com/gunhanb/TITEPK _sequential).

Background: Conventional methods for phase | dose-escalation trials in oncology are based on a single treatment
schedule only. More recently, however, multiple schedules are more frequently investigated in the same trial.

Methods: Here, we consider sequential phase | trials, where the trial proceeds with a new schedule (e.g. daily or
weekly dosing) once the dose escalation with another schedule has been completed. The aim is to utilize the
information from both the completed and the ongoing schedules to inform decisions on the dose level for the next
dose cohort. For this purpose, we adapted the time-to-event pharmacokinetics (TITE-PK) model, which were originally
developed for simultaneous investigation of multiple schedules. TITE-PK integrates information from multiple

Results: In a simulation study, the developed approach is compared to the bridging continual reassessment method
and the Bayesian logistic regression model using a meta-analytic-predictive prior. TITE-PK results in better
performance than comparators in terms of recommending acceptable dose and avoiding overly toxic doses for
sequential phase | trials in most of the scenarios considered. Furthermore, better performance of TITE-PK is achieved
while requiring similar number of patients in the simulated trials. For the scenarios involving one schedule, TITE-PK
displays similar performance with alternatives in terms of acceptable dose recommendations. The R and Stan code
for the implementation of an illustrative sequential phase | trial example in oncology is publicly available

Conclusion: In phase | oncology trials with sequential multiple schedules, the use of all relevant information is of great
importance. For these trials, the adapted TITE-PK which combines information using PK principles is recommended.

Keywords: Phase | dose-escalation trials, Multiple treatment schedules, PK models, Bayesian statistics

Background

Phase I trials constitute the first step in investigating the
safety of potentially promising therapies in humans [1]. In
many disease areas, phase I trials are conducted in healthy
subjects which are not expected to benefit from the ther-
apy. Phase I trials in healthy subjects include single and
multiple ascending trials [2]. In the single ascending dose
trials, the effects of a single dose on subjects are investi-
gated, whereas multiple ascending dose trials investigate
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the effects of multiple doses. In life-threatening diseases
such as in oncology, however, patients with few therapeu-
tic options are recruited for a phase I trial, since therapies
are usually highly toxic [3]. The main assumption is that
both the probability of toxicity and the probability of effi-
cacy are increasing with dose. Thus, the drug is expected
to have very little efficacy at low doses [3]. In this paper,
we focus on phase I trials in oncology.

Phase I trials in oncology traditionally enroll small
cohorts of patients who are treated in treatment cycles.
The observed toxicities are classified into dose-limiting
toxicities (DLT) and non-DLT. Each time a cohort com-
pletes the first cycle at a given dose level, the available data
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are assessed to decide how the trial proceeds. The main
aim is to identify the maximum tolerated dose (MTD).
The MTD can be defined as the dose level at which the
probability of DLT is closest to a target probability, usu-
ally 25% or 30% [4]. Typically, the estimation of the MTD
is based on the toxicity data of the first cycle only. The
setup of a phase I trial includes pre-specified doses to be
evaluated, a starting dose which is considered safe, cohort
size, maximum sample size and other stopping rules. If
all doses have very low DLT probabilities, the dose which
has DLT probability closest to the target probability can
be declared as the MTD, after the maximum sample size is
reached. Furthermore, the starting dose of the trial is tra-
ditionally determined one tenth of the lethal dose for mice
or one sixth the highest non-severely toxic dose in a more
sensitive species such as monkeys [5].

Standard methods for phase I dose-escalation trials in
oncology include algorithm-based methods such as 3+3
designs [6] and model-based methods such as the con-
tinual reassessment method (CRM) [7]. The CRM uses
a statistical model to estimate the relationship between
the dose and the probability of DLT, which informs
dose-escalation decisions. The Bayesian logistic regres-
sion model (BLRM) [4, 8] is a two-parameter version
of the CRM which utilizes the escalation with the over-
dose control (EWOC) [9] criterion. The EWOC criterion
aims to reduce the risk of overdosing patients by choosing
doses with a posterior probability of being above the true
MTD lower than a feasibility bound.

In addition to the dose administered, the frequency
of administration, known as the schedule, is a crucial
part of a treatment plan of any phase I trial. In practice,
sometimes it is required to investigate multiple sched-
ules, e.g. a dose given once a day or an adequately larger
dose given once a week. Hence, the probability of DLT
for each patient is a function of both the dose and the
schedule. Simultaneous investigation of dose and sched-
ule within a phase I trial has gained some attention in the
literature. In such trials, the doses and the schedules are
altered for different cohorts of patients within the same
trial. Methods for simultaneous investigation of dose and
schedule combination include a Bayesian time-to-event
model by Braun et al. [10] and the partial order contin-
ual reassessment method by Wages et al. [11]. Recently,
Gunhan et al. [12] proposed an alternative dose-schedule
finding method, a Bayesian time-to-event pharmacoki-
netics model (TITE-PK), which uses pharmacokinetics
(PK) principles. Unlike other phase I methods, TITE-PK
makes use of an exposure-response model that is often
more informative than a standard dose-response model.
TITE-PK models the relationship between time-to-first
DLT and an exposure measure of the drug obtained
by a pseudo-PK model in a Bayesian model-based
approach. TITE-PK has been shown to have desirable
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operating characteristics in terms of finding an accept-
able dose and schedule simultaneously in simulation
studies [12].

In this paper, we consider an alternative phase I design
in which multiple treatment schedules are investigated
sequentially, rather than simultaneously. The schedules
are denoted by S; where i = 1,2,...,k. The sequen-
tial multiple schedule design proceeds as follows. In the
first step, cohorts of patients are enrolled with S; and
the trial is continued until the MTD is declared for S;.
In the second step, the trial continues with schedule S,
and the starting dose can be informed from the S;. Dose-
escalation decisions are informed by utilizing information
from both schedules S; and Ss. That is, data from both the
completed schedule S; and the ongoing schedule S, are
integrated. Once the MTD for the Schedule S, is deter-
mined, the trial can continue with schedule S3 and so on.
In other words, the MTD for schedule S; declared in the
ith schedule of the phase I trial.

A sequential phase I trial with different strata, where
strata may correspond to different patient populations,
formulations, or treatment schedules etc., also called a
bridging trial, was considered by Liu et al. [13] among
others [14-16]. Liu et al. [13] introduced the bridging
CRM (B-CRM) to borrow information from different
strata. B-CRM takes into account potential heterogeneity
between different strata using a Bayesian model averag-
ing approach. Neuenschwander et al. [14] suggest the use
of BLRM with a meta-analytic-predictive (MAP) prior
[17] approach (BLRM-MAP) to take advantage of the
completed step of the trial with different strata.

Borrowing approaches are based on discounting the
existing information at the cost of increasing the needed
sample size to achieve an acceptable performance in a new
trial. Here we suggest the use of a modelling approach
based on PK principles in order to increase the statis-
tical efficiency. Therefore, we adapted the TITE-PK to
design and analyze sequential phase I trials with multi-
ple schedules. In the first step, TITE-PK is used to inform
dose-escalation decisions for schedule S until the MTD
is declared or the trial is stopped. In the next step, TITE-
PK models the data from both the completed (S;) and
the ongoing (S) steps of the trial directly, but only rec-
ommending doses for Schedule Sp. TITE-PK can be used
for any number of schedules. We investigate the oper-
ating characteristics of TITE-PK for phase I trials with
one schedule and sequential phase I trials with multi-
ple schedules through simulations. We provide simulation
results comparing the performance of TITE-PK to CRM
and BLRM for phase I trials involving one schedule and
to B-CRM and BLRM-MAP for sequential phase I tri-
als involving multiple schedules. This paper builds on
the previous work by Giinhan et al. [12], and offers two
main contributions. Firstly, we adapt TITE-PK to phase I
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dose-escalation trials with sequential (rather than simul-
taneous) multiple schedules. Secondly, we apply TITE-PK
for a standard phase I dose-escalation trial, that is phase I
trial involving a single schedule only.

lllustrative example: everolimus trial

Everolimus (RADO0O01) is an oral inhibitor of mammalian
target of rapamycin, that has been developed as an anti-
tumor agent [18]. Everolimus is approved by the US FDA
to treat various conditions including certain types of pan-
creatic cancer and gastrointestinal cancer [18] and certain
type of tuberous sclerosis [19]. The elimination half-life
and the absorption rate of everolimus for cancer patients
were reported as 30 (hours) and 2.5 (1/hours), respectively
[20]. Everolimus was included in a phase Ib trial in com-
bination with standard of care (etoposide and cisplatin
chemotherapy) to identify a feasible dose and schedule in
the treatment of small cell lung cancer (ClinicalTrials.gov
identifier: NCT00466466) [21]. Note that this trial did not
include the initial human exposure to everolimus, since
everolimus was investigated for different types of diseases,
previously. Hence, this trial was an example of an effort
for drug re-purposing.

The everolimus trial was open-label and multi-centered.
Patients were assigned alternately to either weekly or daily
schedules of everolimus in treatment cycles of 21 days. In
the everolimus trial, doses in both schedules were esca-
lated simultaneously and analysed separately from one
another. A Bayesian time-to-event model [22] was used to
inform the dose-escalation decisions. The final data can
be obtained from the supplementary material of Besse et
al. [21]. The dataset is displayed in Table 1. All DLT were
reported at day 15. Based on investigator and medical
monitor opinion, 2.5 mg with daily schedule was identified
as the MTD [21].

We used this trial to illustrate the TITE-PK approach for
sequential designs, because (1) the trial is a phase I dose-
escalation trial in oncology, (2) the trial evaluated two
different schedules (weekly and daily dosing), and (3) the
large number of DLT allows a good assessment on the per-
formance of the TITE-PK. We will analyse the final dataset

Table 1 Data of the everolimus trial. The treatment schedules
which are used, the doses which are administered in mg, number
of patients, and number of DLT are given

Schedule Dose Number Number
(mg) of patients of DLT

Weekly 200 5 0

Weekly 30.0 13

Daily 2.5 4 2

Daily 50 6 3
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as if the trial had been conducted sequentially, specifically
assuming S is weekly schedule and S is daily schedule.

This paper is organized as follows. In the following
section, we describe statistical methods for phase I tri-
als with sequential multiple schedules. We review the
BLRM and CRM. Then, we develop TITE-PK for sequen-
tial investigation of multiple schedules. The performance
of TITE-PK and comparators are studied in simulations,
and in the everolimus example. We close with a brief
discussion and some conclusions.

Methods

The Bayesian logistic regression model (BLRM)

The models described in this section follow the BLRM and
BLRM MAP described by Neuenschwander et al [8]. The
BLRM is a logistic regression model in the logarithm of
a standardized dose. For dose d, the number of patients
with a DLT (r;) in a cohort of size n; are assumed to be
binomially distributed

rg ~ Bin(my, ny)

with DLT probabilities (7r;) and two parameters («; and
a3)

logit(my) = log(a1) + ay log(d/d*),

where d* is the reference dose used for standardization of
the dose. At the reference dose, the odds of the DLT are «;.
Thus, the reference dose is critical in choosing a prior for
o1. The reference dose is defined such that the reference
dose d* is set to the anticipated MTD at which an odds of
1/2 is used as mean for the «; prior.

To inform the dose-escalation decisions, the posterior
distribution of the DLT probability ; is used. The DLT
probabilities are classified into three categories as follows

(i) Ty <X Underdosing (UD)
(i) x<my <y Targeted toxicity (TT)
(iii) Ty >y Overdosing (OD)

Escalation or de-escalation decisions are informed using
the overdosing probability of dose d, P(r; > y). The
EWOC criteria is fulfilled, if P(r; > y) is smaller than
the pre-specified feasibility bound, 4, which was recom-
mended as 0.25 by Babb et al. [9]. Following this advice,
we use 2 = 0.25 throughout the manuscript. Among the
doses which fulfill the EWOC criterion, the highest dose
is recommended for the next cohort. Once the maximum
sample size is reached, the highest dose among the doses
satisfy EWOC criterion is declared as the MTD.

In the absence of relevant historical data, Neuen-
schwander et al [8] suggest the use of weakly informative
priors (W1IPs) for o1 and o5 instead of flat priors. There are
two problems regarding flat priors. Firstly, no formal anal-
ysis is possible until one DLT is observed in the trial, since
the posterior is proportional to the likelihood. Secondly,
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flat priors on the o1 and «y result in U-shaped priors for
the DLT probabilities [4]. Their suggested WIP is a bivari-
ate normal distribution (log(a1), log(az)) ~ N (m, S) with
means (m; = logit(wg«), my = 0), standard deviations
(01 = 2,09 = 1), and the correlation p = 0 [8]. Here, 7y«
is the anticipated DLT probability at the reference dose.
A derivation of the suggested WIP for the BLRM can be
obtained using quantiles from minimally informative uni-
modal Beta distributions [4]. An extension of the BLRM is
used to incorporate different schedules in a phase I trial,
which we describe in the following.

The BLRM MAP

The BLRM with a meta-analytic predictive (MAP)
approach [23, 24] can be used for informing dose-
escalation decisions in a phase I study with multiple
schedules. Hereafter, we refer this method as the BLRM
MAP. In the BLRM MARP approach, the doses from the
first schedule (S1) are re-scaled so that two sets of doses
from different schedules are comparable. For example,
if §1 is weekly dosing and S, is daily dosing, the doses
from S are divided by 7. This ensures that the respective
nominal dose in each schedule results in the same cumula-
tive dose. Then, a meta-analytic-predictive (MAP) prior is
derived using the data of the S assuming some between-
schedule heterogeneity for the parameters. Furthermore,
it may be desirable to make the MAP prior more robust
for possible unwarranted use of data from S;. To achieve
this, the robust MAP prior (BVNRrmap) can be obtained by
mixing the MAP prior (BVNyap) with the WIP (BVNwyp)
[8,17], i.e.

BVNRrMar = w BVNpMmap + (1 — w) BVNwp,

where w is the weight which can be chosen, for exam-
ple, from the range of 0.5 and 0.9. Neuenschwander
et al. [8] suggested the use of w = 0.8, and in this paper
we follow their suggestion. After the robust MAP prior is
derived, the BLRM is used to inform dose-escalation deci-
sions. The R package OncoBayes?2 [25] can be used to
implement the BLRM and the BLRM MAP.

The continual reassessment method (CRM)

The models described in this section follow the CRM and
B-CRM described by Liu et al. [13]. For dose d, p, is the
prespecified DLT probability, also known as prior skele-
tons. The relationship between the prior skeletons p; and
DLT probabilities ; are given by a power model

Ty = pZXP(a)
where « is the model parameter. For the dose-escalation
decisions, the posterior mean of the 7, is used. The dose
with posterior mean of 7; closest to the target probability
¢ is recommended for the next cohort. Once the maxi-
mum sample size is reached, the dose with posterior mean
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of m; closest to the target probability is declared as the
MTD.

Following Liu et al. [13], we use a WIP for the «, namely
N(0,22%). To determine the prior skeletons, we used the
method developed by Lee and Cheung [26].

The bridging CRM (B-CRM)

We now consider phase I dose-escalation trials with
sequential multiple schedules. Assume that the first step
of the phase I trial with schedule S; is completed with
Js, doses, namely b1, b, . . ., by, . The first step of the trial
resulted in binomial data Ds; = (xj, m;) where x; is the
number of patients who experienced DLT and m; is the
cohort size at dose b;. Firstly, we can estimate the DLT
probabilities using a probit model, i.e.

nj(P) = n(P)(bj) = @(fo + p1 b)),

N P . .
where the superscript in nj( ) refers a parametric estimate;

® is the cumulative distribution function of the standard
normal distribution; By and B; are the model parameters.
Secondly, we estimate a non-parametric estimate of the
DLT probabilities using isotonic regression [27]

th:u Xk
Lhmu Mk

The isotonic estimates of DLT probabilities can be
obtained using the pooled-adjacent-violators algorithm
[28].

In order to gain advantage of both parametric and
non-parametric estimates of DLT probabilities, we use a
mixture estimator of DLT probabilities:

P NP
= w,»rr/.( ) + 1 —w) T[j( ),

where the weights w; are calculated from data. The follow-

7 NP)

i = MaXo<y<j MINj<y<]s,

. . y . I

ing weights are used: w; = ;17 where 1; is the likelihood
]

ratio evaluated at dose level j under the probit model and

isotonic regression. The }; is given by

P)\Y P\
(") (1-=")

j = Xi mi—x; *
() ()

We estimated the DLT probabilities from the completed
part of the trial involving schedule S;. The estimated DLT
probabilities are used as the prior skeletons p; for the
analysis of next step of the phase I trial, that is involving
schedule S;. Assume that there are / doses from sched-
ule Sy in the next step of the trial, namely dy,ds, ..., d;.
To take into account heterogeneity in DLT probabilities
between schedules, we use three sets of prior skeletons:

1 pj=m
7]_1

g for j=1,...
2 pj= /
i Lzﬂ for j=J
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w1 for j=2,...,]
30 = Loforj=1
2 ] =

The prior skeleton 1 assumes that the dose-toxicity
curve obtained by the schedule S; is same to the dose-
toxicity curve of the schedule S;. Prior skeletons 2 and
3 shift the dose-toxicity curve one dose level up and one
dose level down, respectively. To incorporate three dif-
ferent prior skeletons into the CRM model, a Bayesian
model averaging approach [29] is used to estimate DLT
probabilities. Then, the standard CRM is used to inform
dose-escalation decisions.

For the CRM and B-CRM, the trial is terminated for
safety, if the following rule is satisfied: P(7; > 0.30) <
0.90 where 7; is the DLT probability of the lowest dose.
For the CRM implementation, we used the R package
bcrm [30]. For the B-CRM, we use the publicly available
R-code which is provided as the supplementary material
of Liu et al. [13].

TITE-PK for sequential phase | trials

TITE-PK for simultaneous investigation of multiple
schedules in phase I trials were introduced in Giinhan
et al. [12], here we adapt it for sequential investigation
of multiple schedules. The time-to-first DLT events are
modeled using a time-varying (non-homogeneous) Pois-
son process. The hazard function is assumed to depend
on an exposure measure of the drug (E(£)):

h(t) = BE®t) (1)

where B is the only parameter to estimate in the model.

The exposure measure is calculated using a pseudo-
PK model which consists of two ordinary differential
equations:

% = —k,C(t) and C(0) =0
dczif;(t) = kett (C(£) — Cefi(£)) and Cgt(0) = 0.

where C(t) and Ceg(¢) are the concentrations of drug in
the central compartment and in the so-called effect com-
partment, respectively. Due to non-identifiability, the vol-
ume in both compartments is set to unity by convention
here. Furthermore, k. is the elimination rate constant and
kefr is the PK parameter which governs the delay between
the concentration in the central compartment and the
concentration in the effect compartment. The parameter
ke is parametrized using the elimination half-life T, that
isk, = loiﬁ. The parameters k. and k¢ are assumed to be
known from previous analyses, for example from another
previously studied indication or pre-clinical data. In other
words, the drug concentrations in the effect compartment
(Cefr(2)) is calculated by treating the PK parameters as
known, following Cox et al. [31]. Thus, PK measurements
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are not analysed together with the toxicity data, as is done
for example by Ursino et al [32]. The model can be seen as
a kinetic-pharmacodynamic model (K-PD) described in,
for example, Ooi et al. [33].

TITE-PK uses an adapted EWOC criterion. For this
purpose, the measure of the interest is the probability of
a patient experiencing at least one DLT within the first
cycle (shortly the end-of-cycle 1 DLT probability), P(T <
t*|Cesr(t*|d, f)), where d and f refer to the dose and fre-
quency of administration, respectively. Using basic event
history analysis [34], we have the following equation

P(T < t*|Ceft(£¥|d, f)) = 1 — e HEICr@1dS) = (9)

which describes the relationship between the end-of-cycle
1 probabilities and the cumulative hazard function H ().
All patients without a DLT up to the end of cycle 1 will be
censored at the end of cycle 1, and patients with a DLT are
censored at the time of a DLT. The event indicator §; is 0
for censored events and 1 for DLT events. We can write
the overall likelihood as

J
L(T,CI) = [ /(718" S(Glp) "~

j=1

where / is the total number of the patients, f(7}|8) is the
probability density function, and S(Cj|8) is the survivor
function.

Using Eq. 2, it can be shown that

cloglog(P(T < t*|Ceft(t*|d, f))) = log(B)
+ log(AUCE (¢*| Ceft(*|d, /))) ®3)

where cloglog(x) = log(—log(1l — x)) and AUCE(¢) is the
area under the curve of the exposure measure over time.

To help prior specification, E(t) is obtained by scaling
Cett(t) using a reference schedule (reference dose d* and
frequency f*) at the end of the first treatment cycle (cycle
1: t*) such that

AUCE(t"|Cege (£ |d*, f*)) = 1. (4)

By combining Eqs. 3 and 4, it follows that for the
reference schedule cloglog(P(T < t*|Cegs(t*|d*,f*)) =
log(B). This relationship suggest to constrain B to be
positive, which ensures that #(t) > 0, since E(t) > 0
for all ¢ (see Eq. 1). The use of a reference schedules
is analogous to the reference dose in the BLRM (see
The Bayesian logistic regression model (BLRM) sub-
section). The relationship between B and P(T <
t*|Cer(t*|d*, f*)) helps us to specify a prior distri-
bution for the parameter B. Following [8], we sug-
gest a normal prior distribution A (cloglog(P*(T <
t*|Cege(t¥]d*, f*)), 1.25%)) for the log(B). Here, P*(T <
t*|Cee(t*|d*, f*)) is the anticipated end-of-cycle 1 DLT
probability at the reference schedule.
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Similar to the BLRM, the posterior distributions of
end-of-cycle 1 DLT probabilities are classified into three
categories in order to inform dose-escalation decisions:

(i) P(T < t*|Cege(t"|d, f)) < x Underdosing
(UD)

(i) x < P(T < t*|Cest(t*|d,f)) <y Targeted toxicity
(TT)

(iii) P(T < t*|Ceg(t*|d, f)) > y Overdosing (OD)

The EWOC criterion is fulfilled, if the overdosing prob-
ability P(P(T < t*|Ceg(t*|d,f)) > y) is smaller than the
feasibility bound a. For the feasibility bound, we use 0.25
as in the BLRM. Analogous to the monotonicity of dose-
DLT probability assumption of CRM, TITE-PK assumes
the monotonicity of the exposure measure and the end-
of-cycle 1 DLT probability. That is, AUCE(* | Cege(£*|d, f))
is proportional to the end-of-cycle 1 DLT probabilities.
Among the dose and schedule combinations which fulfill
the EWOC criteria, the combination which has the low-
est AUCE(t*|Cee(t*|d, f)) is recommended for the next
cohort.

In the case of sequential investigation of multiple sched-
ules, initially TITE-PK is used to conduct the phase I trial
with S7 until the MTD is declared or trial is stopped since
all doses are found to be too toxic. In this step, the fre-
quency of administration is the same for dose-escalation
decisions. Then, cohorts are recruited with Schedule S,.
For dose-escalation decisions, the information from the
phase I trial with S; is treated as data together with the
new information generated from the phase I trial with
S». Since TITE-PK is an exposure-response model, there
is no need to re-scale the doses from different schedules
to make them comparable. As opposed to BLRM MAP
and B-CRM methods, data from the completed trials is
treated as part of the data instead of as part of the prior
distribution.

Software implementation

We implemented TITE-PK in Stan [35] via the rstan
R package, which employs the No-U-Turn sampler, an
adaptive form of Hamiltonian Monte Carlo sampling.
The No-U-Turn sampler belongs to the family of Markov
chain Monte Carlo (MCMC) methods. It has been
argued that the No-U-Turn sampler is more efficient
and robust sampler than Gibbs sampling or Metropolis-
Hastings used by WinBUGS [36] for models with complex
posterior distributions [35]. For the application and
simulations, four parallel chains of 1,000 MCMC iter-
ations after warm-up of 1,000 iterations are generated.
Convergence diagnostics are checked using the Gelman-
Rubin statistics and traceplots in the application. There
were no divergences reported for the implementation
of the application. The R and Stan code to analyze the
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everolimus application is publicly available from Github
(https://github.com/gunhanb/TITEPK _sequential). The
main programming code is the Stan code from the linked
folder, which conducts the Bayesian computation to cal-
culate posterior distributions. The method can be applied
by changing R-code based on the application, for example
different doses or schedules, while keeping the Stan code.

Simulation study

We compared the operating characteristics of TITE-PK
and alternative methods in a simulation study. The simu-
lation study follows the clinical scenario evaluation frame-
work introduced by Benda et al. [37] and it is inspired by
the everolimus trial. As the target probability ¢ for the
CRM and B-CRM, we use 0.30 following Liu et al. [13].
Also, doses with DLT probabilities between 0.20 and 0.40
are considered acceptable in our simulations following Liu
et al. [13]. To have a fair comparison between the meth-
ods, we use (0.20 - 0.40) to define the targeted toxicity
interval of BLRM and TITE-PK, in other words x = 0.20
and y = 0.40 for three categories described in subsection
The BLRM.

Firstly, we considered scenarios only involving one
schedule to compare the performance of TITE-PK to
CRM and BLRM. These are Scenarios 1-6, which are listed
in Table 2. Here, daily doses of 2.5, 5, 7.5, 10, 12.5, and
15 (mg) are investigated. Also, the starting dose is 2.5 mg
for all methods. Secondly, we considered scenarios repre-
senting sequential phase I trials. These are Scenarios 7-13,
which are listed in Table 3 and displayed in Fig. 1. Scenar-
ios 7-13 consists of phase I trials with two steps. In the
first step, doses of 2.5, 5, 7.5, 10, 12.5, 15 (mg) with the
dosing frequency of 48 hours (S7) and in the second step,
doses of 2.5, 5, 7.5, 10, 12.5, 15 (mg) with daily dosing (S2)
are administered. There methods are assessed in Scenar-
ios 7-13: TITE-PK, Bridging CRM (B-CRM), BLRM using
MAP prior (BLRM MAP).

The DLT probabilities of the doses in the simulations are
determined to reflect clinically relevant settings. Scenario

Table 2 Scenarios 1-6 in the simulation study. Doses with dose
limiting toxicities in the targeted toxicity interval (0.20 - 0.40) are
in boldface. Scenarios 1-6 represent phase | trials with one
schedule, that is daily schedule

Doses in mg

Scenario 2.5 5 7.5 10 125 15

1 0.05 0.10 0.20 0.30 0.50 0.70
2 0.30 0.40 0.52 0.61 0.76 0.87
3 0.05 0.06 0.08 0.11 0.19 0.34
4 0.06 0.08 0.12 0.18 0.40 0.71
5 0.10 0.22 0.31 045 0.60 0.72
6 050 0.55 061 0.69 0.76 0.87
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Table 3 Scenarios 7-13 in the simulation study. Daily doses with dose limiting toxicities in the targeted toxicity interval (0.20 - 0.40) are

in boldface
Doses with Schedule S, Doses with Schedule S;
Scenario Schedule 2.5 5 7.5 10 12.5 15 2.5 5 7.5 10 12,5 15
7 S 0.05 0.07 0.09 0.10 013 0.18
S 0.08 0.12 0.16 0.18 0.23 0.27
8 M 0.08 012 0.16 0.20 0.23 0.27
S 0.18 0.26 0.34 045 049 0.55
9 M 0.03 0.12 0.28 0.40 0.54 0.62
S 0.20 0.30 0.45 0.50 0.60 0.75
10 M 0.10 0.20 0.34 0.40 0.49 0.55
S 0.35 0.40 0.45 057 0.67 0.80
11 M 0.05 0.07 0.09 0.15 0.22 0.28
S 0.30 0.35 048 0.52 0.61 0.70
12 S 0.45 0.50 0.55 0.65 0.75 0.85
S 048 0.56 0.62 0.70 0.80 0.88
13 M 0.18 0.26 0.34 045 0.49 0.55
S 0.08 0.12 0.16 0.18 0.23 0.27
Scenario 7 Scenario 8 Scenario 9
2 1.00 Frequency 1.00 1.00
E 0.80 24 hours 0.80 0.80 ,
8 0.609 | -4 48hours 0.60 . 060 AA
040 ======="t - - - 0408 - - -----—-><""--- 0408 - - - - - - < - AL - -
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Fig. 1 Scenarios 7-13 in the simulation study. Each scenario includes two curves of dose and DLT probabilities, which represents two schedules. Two
schedules are the frequency of administration of 48 (S1) and 24 hours (S;). The horizontal dashed lines represent the boundaries of the targeted
toxicity interval
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1 corresponds to a phase I trial which does not include
any dose with DLT probability in the overdosing interval.
However, all doses are in the overdosing interval in Sce-
nario 6. In Scenarios 2-5, different dose levels are chosen
as the doses within the targeted toxicity interval (0.20 -
0.40) (see Table 2). In Scenarios 2 and 5, lower dose lev-
els are within the targeted toxicity interval. In Scenarios 3
and 4, higher dose levels are within the targeted toxicity
interval. In Scenario 7, there is no dose from Schedules 1
and 2 in the overdosing interval, whereas all doses from
Schedules 1 and 2 are in the overdosing interval in Sce-
nario 12. In Scenarios 8-10, lower dose levels of Schedule
2 are within the targeted toxicity interval (Table 3). In Sce-
narios 7 and 13, higher dose levels of Schedule 2 are within
the targeted toxicity interval. Scenario 11 is a scenario in
which the discrepancy of dose-toxicity curve between the
schedules is higher than other scenarios (see Fig. 1). Sce-
nario 13 is Scenario 8 with DLT probabilities for Schedules
1 and 2 switched. Hence, the monotonicity assumption of
the exposure and DLT probabilities is violated in Scenario
13. In other words, for the same dose, toxicity is higher
with the lower frequent administration.

For TITE-PK, we need to determine PK parameters. By
mimicking the everolimus trial, PK parameters are cho-
sen as follows. The elimination rate constant is taken as
k, = 105# (1/h). For kefr, an estimate is derived using
the cycle length and the absorption rate. Specifically, a
log-normal distribution is constructed by matching the
inverse of cycle length 1/504 (1/h) and the absorption rate
2.5 (1/h) as the 0.025 and 0.975 quantiles, respectively.
This gives a log-normal distribution with mean parameter
0.37, hence we assume that log(kefr) = 0.37.

Prior skeletons and distributions are constructed so that
prior DLT probabilities from different methods are sim-
ilar. For TITE-PK model, reference dose and reference
dosing frequency are determined using 7.5 mg (d* = 7.5
mg) and 24 hours (f* = 1/24 1/h). A normal weakly
informative prior (WIP) is chosen such that log(8) ~
N (cloglog(P(T < t*) = 0.30),1.25%). This implies that
prior median of DLT probability at the reference dose
and frequency is 0.30. For BLRM MAP, we choose a WIP
assuming median DLT probability of 0.30 at dose 7.5 mg.
More specifically, we choose a bivariate normal distribu-
tion (log(e1),log(az)) ~ BVN(m, ¥) with means m; =
logit(0.30) and my = 0, standard deviations o7 = 2 and
o9 = 1, and correlation p = 0. For the CRM, the prior
skeleton is calculated using the method of Lee and Che-
ung [26] assuming an indifference interval of 0.10, which
produces (0.02, 0.12, 0.30, 0.50, 0.68, 0.80). A normal prior
with mean 0 and standard deviation 2 is used as the prior
for the power parameter « in the CRM and B-CRM (& ~
N(0,22)), as suggested by Liu et al. [13].

The following simulation settings and decision rules
are used for TITE-PK, BLRM and BLRM MAP. The
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maximum number of patients per trial was set to 60. If all
doses are in the overdosing interval based on the EWOC
criterion, the trial is stopped without selecting any dose as
the MTD. Otherwise, the trial continues until the recom-
mendation of the MTD. The recommended MTD must
meet the following conditions:

(i) At least 6 patients have been treated at the MTD.
(ii) A minimum of 21 patients have already been treated
in the trial.

For the CRM and B-CRM, the trial is terminated for
safety, if the following rule is satisfied: P(7; > 0.30) <
0.90 where 71 is the DLT probability of the lowest dose.
The sample size of 21 patients is used unless the trial is
stopped due to the safety. For all methods in the simula-
tions, cohort sizes of 3 are used and data for 1,000 trials
were generated per scenario.

Results

Simulation results

The simulation results for Scenarios 1-6 (see Table 2) are
summarized in Table 4. We calculated six different met-
rics to evaluate the performance of different methods.
Scenarios 1-6 represent phase I trials with one schedule
investigated. In Scenario 1, TITE-PK slightly outperforms
other methods in terms of recommending the MTD in the
targeted toxicity interval. The corresponding percentages
are 78% for TITE-PK, 75% for BLRM and 73% for CRM.
Also, BLRM vyields slightly lower percentage for the MTD
selection in the overdosing interval compared to TITE-
PK and CRM. BLRM selects the MTD in the overdosing
interval in 6% of the time, while TITE-PK and CRM do
this in 11% and 9% of the time, respectively. In Scenario
2, CRM yields higher percentage for the MTD selection
in the targeted toxicity interval compared to the TITE-PK
and BLRM. CRM recommends the MTD in the targeted
toxicity interval in 61% of the time, while TITE-PK and
BLRM do this in 52% and 49% of the time, respectively.
Three methods perform similarly in terms of recommend-
ing the MTD in the overdosing interval. In scenario 3,
TITE-PK results in the best performance in terms of the
MTD selection in the targeted toxicity interval. TITE-PK
recommends the MTD in the targeted toxicity interval
75% of the time, while BLRM and CRM do this in 64% and
24% of the time, respectively.

In scenario 4, all methods perform poorly in terms of
selecting the MTD in the targeted toxicity, while TITE-
PK results in the best performance. TITE-PK yields 36%
percentage for the MTD selection in the targeted toxic-
ity interval, while CRM and BLRM vyields 22% and 14%,
respectively. In scenario 5, CRM (79%) and BLRM (78%)
produces slightly higher percentages than TITE-PK (71%)
in terms of the selecting MTD in the targeted toxicity
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Table 4 Simulation results for TITE-PK, CRM, and BLRM in Scenarios 1-6
Scenario
1 2 3 4 5 6
Probability of selecting MTD in the targeted toxicity interval
TITE-PK 0.78 0.52 0.75 0.36 0.71 n/a
CRM 0.73 0.61 0.24 0.22 0.79 n/a
BLRM 0.75 049 0.64 0.14 0.78 n/a
Probability of selecting MTD in the overdosing interval
TITE-PK 0.1 0.03 n/a 0.06 0.17 0.11
CRM 0.09 0.04 n/a 0.04 0.10 0.14
BLRM 0.06 0.02 n/a 0.04 0.10 0.07
Probability of selecting no combination as MTD
TITE-PK 0.01 042 0.00 0.01 0.04 0.87
CRM 0.01 0.36 0.01 0.01 0.03 0.86
BLRM 0.01 048 0.01 0.01 0.04 0.92
Mean number of patients enrolled
TITE-PK 24.7 154 233 27.0 22.8 8.1
CRM 209 15.7 209 208 20.5 89
BLRM 236 149 24.2 24.8 219 73
Proportion of patients enrolled in the overdosing interval
TITE-PK 0.28 0.15 n/a 0.13 0.27 1.00
CRM 0.05 0.05 n/a 0.01 0.06 1.00
BLRM 0.10 0.08 n/a 0.11 0.11 1.00
Proportion of DLT observed
TITE-PK 0.28 038 0.21 0.25 0.30 0.52
CRM 0.18 033 0.11 0.15 0.22 051
BLRM 0.21 035 0.15 0.20 0.24 050

interval. In scenario 6, all doses are in the overdosing
interval. BLRM (92%) stops the trial with slightly higher
percentages compared to CRM (86%) and TITE-PK (87%).

In Scenarios 1, 3, 4 and 5, TITE-PK and BLRM enrolls
slightly higher number of patients and results in slightly
higher proportions of DLT observed in comparison to
CRM. Overall, none of the methods shows superior per-
formance in terms of the investigated metrics. The results
depend on the scenarios. Similar results from the com-
parison of BLRM and CRM was also obtained by the
simulation studies in Neuenschwander et al. [4].

We continue with Scenarios 7-13 in which sequen-
tial phase I trials are investigated. The simulation results
under Scenarios 7-13 (see Table 3) are summarized in
Table 5. In Scenario 7, BLRM MAP produces the best per-
formance in terms of the MTD selection in the targeted
toxicity interval, while TITE-PK is the second. The corre-
sponding percentages are 95%, 90%, and 83% for BLRM
MAP, TITE-PK, and B-CRM respectively. In Scenarios 8-
11, TITE-PK demonstrates superior performance in terms
of selecting the MTD in the targeted toxicity interval.

TITE-PK selects the MTD in the targeted toxicity interval
in 14%, 17%, 16%, and 10% more simulated trials in com-
parison to the second best performed method in Scenarios
8-11, respectively. In Scenarios 8 and 9, TITE-PK pro-
duces lower percentages in terms of the MTD selection
in the overdosing interval, selecting MTD in 16% and 3%
less simulated trials compared to BLRM MAP. In Scenario
11, CRM (28%) displays superior performance in terms
of the MTD selection in the overdosing interval in com-
parison to other methods. In Scenario 12, TITE-PK and
BLRM MAP displays better performance than B-CRM by
stopping the trial in 98% and 97% of the time, while requir-
ing less patients than other methods. The monotonicity
assumption of the exposure and DLT probabilities is vio-
lated in Scenario 13. In Scenario 13, B-CRM outperforms
other methods by selecting MTD in the targeted toxicity
interval in 22% more trials compared to the BLRM MAP.
TITE-PK (17%) displays the worst performance in terms
of the MTD selection in the targeted toxicity interval.
The number of people required in a trial is very crucial
measure to assess the performance of a method. Table 5
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Table 5 Simulation results for TITE-PK, B-CRM, and BLRM-MAP in Scenarios 7-13

Scenario
7 8 9 10 11 12 13
Probability of selecting MTD in the targeted toxicity interval
TITE-PK 0.90 0.70 0.94 0.84 0.62 n/a 017
B-CRM 0.83 0.50 0.64 0.60 0.52 n/a 0.77
BLRM MAP 0.95 0.56 0.77 0.68 046 n/a 0.55
Probability of selecting MTD in the overdosing interval
TITE-PK n/a 022 0.05 0.02 037 0.02 n/a
B-CRM n/a 038 0.08 0.00 0.28 0.25 n/a
BLRM MAP n/a 040 0.21 0.10 041 0.03 n/a
Probability of selecting no combination as MTD
TITE-PK 0.00 0.02 0.01 0.14 0.00 0.98 0.15
B-CRM 0.00 0.02 0.02 0.28 0.20 0.75 0.00
BLRM MAP 0.00 0.02 0.02 0.22 0.12 097 0.01
Mean number of patients enrolled
TITE-PK 217 217 214 194 218 37 19.7
B-CRM 210 210 210 18.0 190 9.0 211
BLRM MAP 215 236 216 200 228 4.8 234
Proportion of patients enrolled in the overdosing interval
TITE-PK n/a 0.39 017 0.12 0.61 1.00 n/a
B-CRM n/a 046 0.15 0.06 0.72 1.00 n/a
BLRM MAP n/a 0.59 0.40 0.26 0.70 1.00 n/a
Mean number of DLT observed

TITE-PK 53 82 6.2 7.5 10.2 1.8 24
B-CRM 4.5 7.0 7.3 7.5 8.5 4.0 30
BLRM MAP 57 97 77 82 1.1 24 39

displays the mean number of people required in a trial for
the investigated methods and the lower is more desirable.
In Scenarios 7-13 except 12, TITE-PK and B-CRM enrolls
similar number of patients, whereas BLRM MAP requires
slightly higher number of patients. In Scenario 12, TITE-
PK and BLRM MAP requires lower number of patients
in comparison to B-CRM. In Scenarios 7-13 except 12, in
terms of the proportion of DLT observed, all methods per-
form similarly. In Scenarios 7-12, TITE-PK displays the
best or the second best performance in terms of the MTD
selection in the targeted toxicity and overdosing inter-
vals. However, TITE-PK clearly shows poor performance
in Scenario 13, which is expected, as the monotonic-
ity assumption between exposure and DLT probability is
violated.

Revisiting the everolimus trial

Returning to the data set described before, consider the
everolimus trial shown in Table 1. Firstly, we analyse the
data only from the daily schedule using the BLRM, the
CRM, and the TITE-PK. Secondly, we analyse it as if the

trial is conducted sequentially, specifically S; is weekly
schedule and S, is daily schedule using BLRM MADP,
B-CRM, and TITE-PK. The reference schedule is deter-
mined using dosing amount of 5 mg (4* = 5 mg) and
dosing frequency of 24 hours (f* = 1/24 1/h). For TITE-
PK, PK parameters are chosen such that T, = 30 (hours)
and log(kegr) = 0.37 as explained in the simulation study.
To compare BLRM, CRM and TITE-PK models, priors
are constructed so that prior DLT probabilities are similar.
To define a WIP for BLRM, we choose a bivariate nor-
mal prior with following parameters (m; = logit(my =
0.30),my = 0,01 = 125,09 = 1,p = 0). For the CRM,
we use the target probability of 0.30. The prior skele-
ton is, then, calculated assuming an indifference inter-
val of 0.10, which produces (0.12, 0.30, 0.50, 0.68). For
TITE-PK, a normal WIP is chosen such that log(8) ~
N (cloglog(P(T < t*) = 0.30),1.25%) at the reference
dose and schedule. The summaries of prior DLT probabil-
ities of BLRM and TITE-PK, and prior skeletons of CRM
are shown in Fig. 2A. Points, thick lines and thin lines
correspond to median estimates, the 50% and the 95%
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equi-tailed credible intervals, respectively. Vertical dashed
lines (0.20-0.40) are the boundaries of the targeted toxicity
interval. Recall that, in TITE-PK and BLRM, eligible doses
are determined based on the EWOC criterion, whereas
CRM selects the dose closest to the target probability.
Figure 2B displays the posterior estimates of DLT proba-
bilities, when we only consider daily schedule data. BLRM
suggests that all doses are in the overdosing interval,
meaning that the trial should be stopped without any dose
declared as the MTD. The estimated overdosing proba-
bility of 2.5 mg is 0.40, which is higher than 0.25. For
TITE-PK, only 2.5 mg is not in the overdosing interval.
The overdosing probability of 2.5 mg is 0.14, P(P(T <
t*ld = 2.5,f = 24) > 0.40) = 0.14, which is smaller
than 0.25. Although median DLT probability estimate of
CRM is higher than the median DLT probability esti-
mate of BLRM, CRM does not conclude that the trial
should be stopped. This is because, P(r; > 0.30) = 0.80,
which is smaller than 0.90. Furthermore, credible intervals
obtained by the CRM is getting shorter with the increasing

dose, which was also observed by Neuenschwander et al.
[4]. Overall, high overdosing probabilities for all doses
seem reasonable, since 2 DLT were observed in the 4
patients with 2.5 mg, and 3 DLT were in the 6 patients
with 5 mg dose.

We continue by treating the data from the weekly sched-
ule as the completed trial in a sequential phase I trial. We
estimate the DLT probabilities of daily doses, but also tak-
ing into consideration the data coming from the weekly
data. To implement BLRM-MAP, the MAP prior is calcu-
lated based on the weekly data. Later, the BLRM is fitted
and posterior estimates of DLT probabilities are obtained.
In the B-CRM, prior skeletons are calculated using the
weekly data. Then, CRM via a Bayesian model averaging
method is used to estimate DLT probabilities. TITE-PK,
naturally, combines information from different schedules.
Figure 2C displays the estimated posterior summaries of
DLT probabilities of daily doses obtained by TITE-PK,
BLRM-MAP and B-CRM approaches. For both TITE-PK
and BLRM-MAP, the overdosing probability of dose 2.5
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mg is decreased substantially, namely from 0.40 to 0.18
for BLRM-MAP, and from 0.14 to 0.00 for TITE-PK. For
CRM, the probability P(7; > 0.30) is also decreased from
0.80 to 0.67. The reduction of the overdosing probabilities
of 2.5 mg seems reasonable, since in the weekly sched-
ule data, no DLT were observed in the 5 patients with 20
mg and 4 DLT were in the 13 patients with 30 mg. The
interval estimates of 2.5 mg and 5 mg obtained by TITE-
PK are shorter, hence more precise estimates compared to
BLRM-MAP and B-CRM. All three methods suggest that
daily 2.5 mg is sufficiently safe, hence it can be declared as
the MTD which was the conclusion of the original phase I
trial.

As pointed out in Methods section, by construction of
TITE-PK, the elimination half-life T, is treated as known.
To investigate the influence of misspecification of the 7,
parameter, we fit TITE-PK using T, ranging from 5 to
50 hours. The timing of all DLT (in total 9 DLT) were
reported at day 15. To examine what would be the influ-
ence of the timing of DLT, we also fit TITE-PK to two
hypothetical datasets. Early DLT dataset and late DLT
dataset are created by changing timing of DLT from day 15
to day 1.5 and to day 20.5, respectively. Posterior estimates
of DLT probabilities for different T, values and for differ-
ent timing of DLT are shown in Fig. 3. The middle plot
corresponds to the original everolimus trial data. Firstly,
the posterior medians and credible intervals obtained by
different T, values look very similar. In practice, a reli-
able estimate of elimination half-life is often not available.
Hence, these results are reassuring for the practicality of
TITE-PK. Secondly, timing of DLT has a crucial affect
on the posterior estimates, and hence the overdosing
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probabilities. Having the same number of DLT, the earlier
the DLT happened, the higher the overdosing probability
of the corresponding dose estimated. This makes sense,
since one would expect the drug to be more toxic if DLT
happened earlier than later.

Discussion

In this manuscript, we considered a sequential trial in
which trial with schedule S; is already completed. Another
type of a sequential trial can be designed to use the so-
called concurrent co-data [14]. That is, the trial with
Schedule S; is still ongoing, and we would like to utilize
the information from the Schedule S; to inform dose-
escalation decisions with Schedule S; (and vice versa).
TITE-PK can be used for such designs as well. We did
not investigate these situations, since these are beyond the
scope of the paper.

In a sequential phase I trial, strata sometimes refer to
other than schedules, e.g. patient populations. In such sit-
uations, the integration of different strata can be achieved
using a MAP approach. Since TITE-PK is parametrized by
mimicking the interpretable parameters of the BLRM, it
can be extended to use a MAP approach like the BLRM.
A key strength of the TITE-PK approach is its ability
to integrate the data from different treatment sched-
ules in a model based approach. This makes ad-hoc
approaches like dose re-scaling obsolete which reduces
the need for strong discounting of historical data from
different schedules. However, discounting may still be
needed to account for other sources like different patient
populations. Recently, Li and Yuan [16] introduced a
method to find the MTD for paediatric dose-escalation
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Fig. 3 Misspecification of elimination half-life T, and different timing of DLT. Using different values of T,, posterior median, 50% and 95% equi-tailed
credible intervals for end-of-cycle 1 DLT probabilities obtained by TITE-PK for two hypothetical datasets (early DLT and late DLT) and the original
everolimus trial dataset are shown. Early DLT dataset and late DLT dataset are created by changing timing of DLT from day 15 to day 1.5 and to day
20.5, respectively. Data from both weekly and daily schedules are included in the analysis




Glnhan et al. BMC Medical Research Methodology (2021) 21:69

trial by incorporating information from the concurrent
adult data. Their method is based on the CRM and
uses Bayesian model averaging to control discounting
from the adult data. The BLRM MAP approach makes
the assumption of the exchangeability between different
schedules. Instead of using a MAP prior, one can use
exchangeability/non-exchangeability (EX-NEX) [25, 38]
approach for phase I trials with multiple schedules, which
relaxes the exchangeability assumption.

The monotonicity assumption of the exposure and DLT
probabilities is often very reasonable but could be con-
sidered a limitation of TITE-PK. Similarly, the BLRM and
the CRM assumes the monotonicity of the doses and
DLT probabilities. Since, we have used a linear PK model
within TITE-PK, the monotonicity of the exposure and
DLT probabilities implies the monotonicity of the dose
and DLT probabilities.

The main purpose of the pseudo-PK model is to account
for the dose and schedule (frequency of administration).
This is done in a relatively approximate way and these
parts of the model can be improved in a future work. We
see a number of challenges about expanding the model
to also include real PK data and a realistic PK model. An
important challenge is operational, that is PK data is com-
monly only available with some delay as compared to DLT
data. Furthermore, coupling the PK with the PD model
leads to challenges implied by joint models which need
to be addressed (like consequences of model misspecifi-
cation in either model). However, one can consider alter-
native PK models, for instance a first-order absorption
linear one compartment model instead of the described
pseudo-PK model.

In the simulations where we investigated phase I tri-
als with one schedules (Scenarios 1-6), we assumed the
monotonicity of dose and DLT probabilities. When there
is a heavy violation of the assumption of the monotonic-
ity (as in Scenarios 13), the operating characteristics are
expected to be weaker compared to bridging CRM or
BLRM MAP. The violation of the assumptions occurred,
since there is a clear conflict in exposure and DLT pro-
files between different schedules. Such violations can be
informed using the external PK data from the ongoing
trial. An extension combining TITE-PK with MAP could
be more useful for such situations.

Conclusions

We have adapted TITE-PK for efficiently estimating
the maximum tolerable dose in sequential phase I tri-
als involving multiple schedules. To integrate data from
different schedules, TITE-PK makes use of exposure-
response modelling considering kinetic drug properties.
Moreover, we have demonstrated that TITE-PK can be
used as an alternative to the standard methods like the
BLRM or CRM to conduct phase I trials with only one
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schedule. In these trials, we have demonstrated that TITE-
PK displays similar performance compared to CRM and
BLRM. In scenarios with sequential phase I trials, TITE-
PK mostly displays superior performance in terms of
acceptable dose recommendations in comparison to the
bridging CRM and BLRM using MAP approach. An appli-
cation involving weekly and daily schedules is used to
illustrate TITE-PK. Also, using the application, we have
shown that TITE-PK is robust against the misspecification
of the PK parameter elimination half-life.
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