
Results Math (2021) 76:53

c© 2021 The Author(s)

1422-6383/21/020001-20

published online March 11, 2021
https://doi.org/10.1007/s00025-020-01330-0 Results in Mathematics

Deterministic Sparse Sublinear FFT with
Improved Numerical Stability

Gerlind Plonka and Therese von Wulffen

Abstract. In this paper we extend the deterministic sublinear FFT al-
gorithm in Plonka et al. (Numer Algorithms 78:133–159, 2018. https://
doi.org/10.1007/s11075-017-0370-5) for fast reconstruction of M -sparse
vectors x of length N = 2J , where we assume that all components of
the discrete Fourier transform x̂ = FNx are available. The sparsity of
x needs not to be known a priori, but is determined by the algorithm.
If the sparsity M is larger than 2J/2, then the algorithm turns into a
usual FFT algorithm with runtime O(N logN). For M2 < N , the run-
time of the algorithm is O(M2 logN). The proposed modifications of the
approach in Plonka et al. (2018) lead to a significant improvement of the
condition numbers of the Vandermonde matrices which are employed in
the iterative reconstruction. Our numerical experiments show that our
modification has a huge impact on the stability of the algorithm. While
the algorithm in Plonka et al. (2018) starts to be unreliable for M > 20
because of numerical instabilities, the modified algorithm is still numeri-
cally stable for M = 200.

Mathematics Subject Classification. 65T50, 42A38.

Keywords. Sparse FFT, discrete Fourier transform, sublinear algorithm,
Vandermonde matrices.

1. Introduction

Sparse FFT methods can be used in many different applications, where it is
a priori known that the resulting signal in time/space or frequency domain
is sparse. Such algorithms have earned a considerable interest within the last
years.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-020-01330-0&domain=pdf
http://orcid.org/0000-0002-3232-0573
https://doi.org/10.1007/s11075-017-0370-5
https://doi.org/10.1007/s11075-017-0370-5

53 Page 2 of 20 G. Plonka and T. von Wulffen Results Math

Many deterministic sparse FFT algorithms are based on combinatorial
approaches or phase shift, see e.g. [1,3,6,9,10,19]. These approaches usually
need access to arbitrary values of a given function f(x) =

∑M
j=1 aj e2πiwjx

assuming that the unknown frequencies wj are in [−N/2, N/2)∩Z. The sparse
FFT techniques in [8,17] are based on Prony’s method.

By contrast, the deterministic algorithms proposed in [11,13,14,16], or
in [15], Section 5.4, consider the fully discrete problem, where for a given
vector x ∈ C

N , we want to efficiently compute its discrete Fourier transform
x̂ under the assumption that x̂ is M -sparse or has a short support of length
M . Recently, these techniques have also been transferred to derive sparse fast
algorithms for the discrete cosine transform, [4,5].

Problem statement Let x = (xj)N−1
j=0 ∈ C

N with N = 2J for some J > 1.
Further, let FN := (ωjk

N)N−1
j,k=0 ∈ C

N×N with ωN := e−2πi/N denote the Fourier
matrix of order N , and F−1

N = 1
N FN . We consider the following two scenarios,

which can essentially be treated with the same algorithm.

(a) Assume that x̂ := FN x = (x̂k)N−1
k=0 is given. How do we, in a sublinear

way, determine x from x̂, if it can be assumed that x is M -sparse with
M2 < N?

(b) Assume that x ∈ C
N is given. How do we, in a sublinear way, determine

x̂ = FNx from x, if it can be assumed that x̂ is M -sparse with M2 < N?

In both scenarios, M needs not to be known beforehand. However, if M is
known, then this knowledge can be used to simplify the algorithm. Throughout
the paper, we say that a vector x is M -sparse, if only M components have an
amplitude that exceeds a predetermined small threshold ε > 0.

This paper is organized as follows. In Sect. 2, we summarize the basic
multi-scale idea of the algorithm used in [16] for the scenario (a). Section 3
is devoted to the extension of the method in [16]. First, we present the gen-
eral pseudocode of the sparse FFT algorithm. The numerical stability of this
algorithm mainly depends on the condition number of special Vandermonde
matrices, which are used at each iteration step for solving a linear system with
at most M unknowns. In Sect. 3.1 we give an estimate of the condition num-
ber of the occurring Vandermonde matrices, which are partial matrices of the
Fourier matrix. This estimate is used in the sequel to determine the two free
parameters determining the Vandermonde matrix. One parameter stretches
the given nodes generating the Vandermonde matrix, and the second param-
eter determines the number of its rows. In Sect. 4 we briefly show, how the
derived algorithm can be simply adapted to solve the sparse FFT problem
(b). Finally, in Sect. 5 we present the large impact of the new approach that
allows rectangular Vandermonde matrices. A Python implementation of the
new algorithm is available under the link “software” on our homepage http://
na.math.uni-goettingen.de.

http://na.math.uni-goettingen.de
http://na.math.uni-goettingen.de

Vol. 76 (2021) Deterministic Sparse Sublinear FFT Page 3 of 20 53

2. Multi-scale Sparse Sublinear FFT Algorithm from [16]

We consider the problem stated in (a) to derive an iterative stable procedure
to reconstruct x from adaptively chosen Fourier entries of x̂. To state the
multi-scale algorithm from [16], we need to define the periodized vectors

x(j) = (x(j)
k)2

j−1
k=0 :=

(2J−j−1∑

l=0

xk+2j l

)2j−1

k=0
∈ C

2j

, j = 0, . . . , J. (1)

In particular, x(J) = x and x(0) =
N−1∑

k=0

xk is the sum of all components x.

Observe that, if the vector x̂ = (x̂k)N−1
k=0 is known, then also the Fourier trans-

formed vectors x̂(j) are immediately known, and we have

x̂(j) = F2jx(j) = (x̂2J−jk)2
j−1

k=0

(see Lemma 2.1 in [13]). Throughout the paper, we assume that no cancellation
appears in the periodic vectors, i.e., for each significant component |xk| > ε of
x, k ∈ {0, . . . , N − 1}, we have

|x(j)
k′ | > ε for all j = 0, . . . , J − 1, k′ = k mod 2j (2)

for a fixed shrinkage constant ε > 0. Condition (2) is for example satisfied if
all components of x lie in one quadrant of the complex plane, e.g. Rexj ≥ 0
and Im xj ≥ 0 for j = 1, . . . , N − 1.
Idea of the algorithm The multi-scale algorithm in [16] iteratively computes
x(j+1) from x(j), for j = j0, . . . , J −1. If the sparsity M of x is unknown, then
we start with j0 = 0 and x(0) := x̂0 =

∑N
k=0 xk. If M with M2 < N is known

beforehand, then we fix j0 = �log2 M� + 1 and compute

x(j0) := F−1
2j0 x̂

(j0) =
1

2j0
F2j0 (x̂2J−j0k)2

j0−1
k=0

using an FFT algorithm with complexity O(j0 2j0) = O(M log M). At the j-th
iteration step, we assume that x(j) ∈ C

2j

with sparsity Mj has already been
computed. Then we always have Mj ≤ M . For M2

j < 2j , the computation of
x(j+1) from x(j) is based on the following theorem (see Theorem 2.2 in [16]).

Theorem 2.1. Let x(j), j = 0, . . . , J −1, be the vectors defined in (1) satisfying
(2). Then, for each j = 0, . . . , J − 1, we have: if x(j) ∈ C

2j

is Mj-sparse with
support indices 0 ≤ n1 < n2 < . . . < nMj

≤ 2j −1, then the vector x(j+1) can
be uniquely recovered from x(j) and Mj components x̂k1 , . . . , x̂kMj

of x̂ = FN x,
where the indices k1, . . . , kMj

are taken from the set {2J−j−1(2l + 1) : l =
0, . . . 2j − 1} such that the matrix

A(j) :=
(
ω

kpnr

N

)Mj

p,r=1
(3)

is invertible.

53 Page 4 of 20 G. Plonka and T. von Wulffen Results Math

The proof of Theorem 2.1 is constructive. With the notation x(j+1) =(
x(j+1)

0

x(j+1)
1

)

, i.e., x(j+1)
0 :=

(
x

(j+1)
�

)2j−1

�=0
and x(j+1)

1 :=
(
x

(j+1)
�

)2j+1−1

�=2j
, we have

from (1)

x(j) = x(j+1)
0 + x(j+1)

1 . (4)

Thus, if x(j) is known, it suffices to compute x(j+1)
0 , while x(j+1)

1 then follows
from (4). We can now use the factorization of the Fourier matrix F2j+1 (see
Equation (5.9) in [15]), and obtain

(
(x̂

(j+1)
2�)2

j−1
�=0

(x̂
(j+1)
2�+1)2

j−1
�=0

)

=

(
F2j 0
0 F2j

)(
x
(j+1)
0 + x

(j+1)
1

W2j (x
(j+1)
0 − x

(j+1)
1)

)

=

(
F2jx(j)

F2j W2j (2x
(j+1)
0 − x(j))

)

,

where W2j := diag (ω0
2j+1 , . . . , ω

2j−1
2j+1), and 0 denotes the zero matrix of size

2j × 2j . Thus, we conclude

F2j W2j

(
2x(j+1)

0 − x(j)
)

=
(
x̂

(j+1)
2�+1

)2j−1

�=0
. (5)

Further, (4) together with (2) implies that x(j+1)
0 can only have significant

entries for the same index set as x(j), and we have to compute only these Mj

entries. Introducing the restricted vectors

x̃(j+1)
0 :=

(
x(j+1)

nr

)Mj

r=1
∈ C

Mj , x̃(j) :=
(
x(j)

nr

)Mj

r=1
∈ C

Mj ,

we can also restrict the matrix F2j W2j ∈ C
2j×2j

in the linear system (5) to
its Mj columns with indices nr. Finally, it suffices to restrict the system in
(5) to Mj linear independent rows, and x(j+1)

0 can still be uniquely computed.
Therefore a restriction A(j) ∈ C

Mj×Mj of the product F2j W2j can be chosen
as

A(j) :=
(
ω

hpnr

2j

)Mj

p,r=1
diag

(
ωn1

2j+1 , . . . , ω
nMj

2j+1

)
. (6)

Here, the matrix
(
ω

hpnr

2j

)Mj

p,r=1
is a restriction of F2j to the the rows 0 ≤ h1 <

h2 < . . . < hMj
≤ 2j and columns nr, r = 1, . . . , Mj corresponding to support

indices of x(j). The diagonal matrix is the restriction of W2j to the rows and
columns nr. Comparison with (3) yields kp = 2J−j−1(2hp + 1), p = 1, . . . , Mj .
In Algorithm 2.3 in [16], Theorem 2.1 is applied to iteratively compute x(j+1)

from x(j), if solving the restricted linear system

A(j)
(
2x̃(j+1)

0 − x̃(j)
)

=
(
x̂

(j+1)
2hp+1

)Mj

p=1
(7)

is cheaper than an FFT algorithm for vectors of length 2j .

Vol. 76 (2021) Deterministic Sparse Sublinear FFT Page 5 of 20 53

The further results in [16] focus on finding good choices of indices (hp)
Mj

p=1

at each iteration step. Thereby, the paper restricts to matrices A(j) of the form

A(j) :=
(
ω

σj p nr

2j

)Mj−1,Mj

p=0,r=1
diag

(
ωn1

2j+1 , . . . ω
nMj

2j+1

)
, (8)

i.e., we choose hp+1 = σjp for p = 0, . . . , Mj − 1 and some parameter σj ∈
{1, . . . , 2j − 1}. The first matrix in the factorization (8) is a Vandermonde
matrix generated by the roots of unity w

σjnr

2j , r = 1, . . . , Mj . The iterative
algorithm which is based on Theorem 2.1 will be stable, if the linear system
(7) can be efficiently computed in a stable way at each level j = j0, . . . , J .
Therefore, [16] tries to find parameters σj ∈ {1, . . . , 2j − 1} such that

VMj
(σj) :=

(
ω

σj p nr

2j

)Mj−1,Mj

p=0,r=1

is invertible and has a good condition number. Observe that VMj
(σj) is always

invertible if we choose σj = 1. However, σj = 1 can lead to a very bad condition
number of VMj

(σj) and A(j), respectively.

Remark 2.2. Using Theorem 2.1, the reconstruction algorithm is based on the
idea to iteratively compute periodizations x(j) ∈ C

2j

of x ∈ C
2J

of growing
length 2j . At each iteration step, we rigorously exploit the sparsity of these
vectors x(j) and conclude from the support {n1, . . . , nMj

} of x(j) that the
support set of x(j+1) can only be a subset of {n1, . . . , nMj

}∪{n1+2j , . . . , nMj
+

2j}. Therefore, the assumption (2) is crucial, since otherwise, not all support
indices may be found.

If (2) is not satisfied and if the sparsity M of x is known beforehand,
then the iteration would start by computing the periodization x(j0) of length
2j0 > M directly, and we can compare the sparsity of x(j0) with M to ensure
that no cancellation appears. If the sparsity of x(j0) is smaller than M , we could
then employ a direct FFT algorithm to find the next periodizations x(j), j > j0,
until the sparsity of x(j) is equal to M . The complexity of the algorithm would
then increase and depends on the level, where the last cancellation appears.
In the worst case, if cancellation appears already in xJ−1, we would get the
complexity of a usual FFT algorithm.

3. Extension of the Sparse FFT Algorithm

The main contribution of this paper is an extension of the algorithm proposed
in [16], which tremendously improves the stability of that algorithm to make
it really applicable.

We will stay with the iterative approach to compute x(j+1) ∈ C
2j+1

from the Mj-sparse vector x(j) ∈ C
2j

via (7) and (4), where we consider only
matrices A(j), which are given as a product of a Vandermonde matrix and
a diagonal matrix (with condition number 1) as in (8), and we will also try

53 Page 6 of 20 G. Plonka and T. von Wulffen Results Math

to find a suitable parameter σj ∈ {1, . . . , 2j − 1} to improve the numerical
stability of the system. The Vandermonde structure provides the advantage
that the system in (7) can be solved with computational cost of O(M2) (see,
e.g., [7]).

We however do not insist on a square matrix as in [16], but allow the
Vandermonde matrix factor to be a rectangular matrix with more rows than
columns of the form

VM ′
j ,Mj

(σj) :=
(
ω

σj p nr

2j

)M ′
j−1,Mj

p=0,r=1
, M ′

j ≥ Mj . (9)

We will choose the number of rows of the Vandermonde matrix VM ′
j ,Mj

(σj)
adaptively at each iteration step based on the obtained estimate of the condi-
tion number of VM ′

j ,Mj
(σj), where

κ2(VM ′,M (σ)) :=
maxu∈CM ,‖u‖2=1 ‖VM ′,M (σ)u‖2

minu∈CM ,‖u‖2=1 ‖VM ′,M (σ)u‖2
. (10)

We start with presenting the general pseudo code for the case of unknown
sparsity M . In the further subsections, we will particularly present, how the
matrix A(j) needs to be chosen, where we allow now a rectangular matrix. In
Algorithm 3.1, we use the set notation I(j) + 2j := {n + 2j : n ∈ I(j)}.

Algorithm 3.1. Sparse (inverse) FFT for unknown sparsity M
Input: N = 2J (length of the vector x),

ε (shrinkage constant),
possible access to Fourier values x̂k, k = 0, . . . , N − 1.

Initialization:
if |x̂0| < ε, Output: M = 0, x = 0, I(J) = ∅.
if |x̂0| ≥ ε, then M := 1, I(0) := {0}, and x̃(0) = x̂0.
Loop
for j = 0, . . . , J − 1 :

if M2 ≥ 2j , then
Determine x(j+1)

0 :

Put ẑ(j+1) :=
(
x̂

(j+1)
2p+1

)2j−1

p=0
=

(
x̂2J−j−1(2p+1)

)2j−1

p=0
∈ C

2j

.

Compute x(j+1)
0 := 1

2

(
diag

(
(ωk

2j+1)2
j−1

k=0

)∗
(F2j)−1 ẑ(j+1) + x(j)

)

using an FFT algorithm.

Determine x(j+1) and I(j+1):
Compute x(j+1)

1 := x(j) − x(j+1)
0 .

Put x(j+1) :=
(
(x(j+1)

0)T , (x(j+1)
1)T

)T

.

Determine the index set I(j+1) by deleting all indices in(
I(j) ∪ (I(j) + 2j)

)

that correspond to entries in x(j+1) with modulus being smaller

Vol. 76 (2021) Deterministic Sparse Sublinear FFT Page 7 of 20 53

than ε.
Set M := #I(j+1).

else
Set x̃(j) = (x(j)

l)l∈I(j) .
Determine the Matrix A(j) ∈ C

M ′×M and the index set
{hp1 , . . . , hpM

}: see Sections 3.2 and 3.3.

Determine x̃(j+1)
0 :

Choose the Fourier values ẑ(j+1) :=
(
x̂

(j+1)
2hp+1

)M ′

p=1

=
(
x̂2J−j−1(2hp+1)

)M ′

p=1
.

Compute x̃(j+1)
0 by solving the system

A(j)
(
2x̃(j+1)

0 − x̃(j)
)

= ẑ(j+1). (11)

Determine x̃(j+1) and I(j+1):
Compute x̃(j+1)

1 := x̃(j) − x̃(j+1)
0 .

Put x̃(j+1) :=
(
(x̃(j+1)

0)T , (x̃(j+1)
1)T

)T

.

Determine the index set I(j+1) by deleting all indices in(
I(j) ∪ (I(j) + 2j)

)
that correspond to entries in x̃(j+1) with mod-

ulus being smaller than ε.
Set M := #I(j+1).

Output: I(J), the set of active indices in of x,
x̃ = x̃(J) = (xl)l∈I(J) , the vector restricted to nonzero entries.

To determine the suitable matrix

A(j) = VM ′
j ,Mj

(σj) diag
(
ωn1

2j+1 , . . . ω
nMj

2j+1

)
,

we have to find a well-conditioned Vandermonde matrix VM ′
j ,Mj

(σj). Our
procedure consists of two steps.

1) We compute a suitable parameter σj with O(M2) operations.
2) We compute the number M ′

j of needed rows in the Vandermonde matrix,
to achieve a well-conditioned coefficient matrix in the system (11).

As seen already in [16], we can simplify the procedure of determining VM ′
j ,Mj

(σj), if the number of significant entries Mj of x(j) did not change in the
previous iteration step, i.e., if Mj−1 = Mj . In this case, we can just choose
σj+1 := 2σj and stay with the number of columns, i.e., M ′

j := M ′
j−1 (see also

Sect. 3.4).

53 Page 8 of 20 G. Plonka and T. von Wulffen Results Math

3.1. Estimation of the Condition Number of VM ′
j ,Mj

(σj)

It is crucial for our algorithm to have a good estimate of the condition number
of VM ′

j ,Mj
(σj). The condition number of VM ′

j ,Mj
(σj) strongly depends on the

minimal distance between its generating nodes ω
σjnr

2j . More precisely, we have
the following theorem (see [12,16] or Theorem 10.23 in [15]).

Theorem 3.2. Let 0 ≤ n1 < n2 < . . . < nMj
< 2j be a given set of indices. For

a given σj ∈ {1, . . . , 2j − 1} we define

dj = d(σj) := min
1≤k<l≤Mj

(
(±σj (nl − nk))mod 2j

)
(12)

as the smallest (periodic) distance between two indices σj nl and σj nk, and
assume that dj > 0. Then the condition number κ2(VM ′

j ,Mj
(σj)) of the Van-

dermonde matrix VM ′
j ,Mj

(σj) :=
(
ω

σj p nr

2j

)M ′
j−1,Mj

p=0,r=1
satisfies

κ2(VM ′
j ,Mj

(σj))2 ≤ M ′
j + 2j/dj

M ′
j − 2j/dj

, (13)

provided that M ′
j > 2j

dj
.

However, this estimate cannot be used for square matrices, i.e., for Mj =
M ′

j , and it is not very sharp for large Mj . Indeed, if dj = 2j/Mj which means
that the values σj nk are equidistantly distributed on the periodic interval
[0, 2j), then the square matrix M

−1/2
j VMj ,Mj

(σj) (with M ′
j = Mj) is orthog-

onal with condition number 1 (see [2]), while the estimate (13) cannot be
applied. On the other hand, if M ′

j = 2j , then we can simply conclude that
V2j ,Mj

(σj)∗V2j ,Mj
(σj) = 2j IMj

such that we again achieve condition number

1, while (13) provides 2j(1+1/dj)
2j(1−1/dj)

, which again fails for the worst case dj = 1
completely. Therefore, we apply another estimate, which is a simple conse-
quence of the Theorem of Gershgorin, and can be iteratively computed during
the iteration steps. It is based on the following Theorem.

Theorem 3.3. Let 0 ≤ n1 < n2 < . . . < nMj
< 2j be a given set of indices,

and assume that σj(nk − n�) �= 0mod 2j. Further, let for all k = 1, . . . , Mj,
Mj ≤ M ′

j ≤ 2j, and

Sk(σj) :=
Mj∑

�=1
� �=k

∣
∣
∣
∣
∣
∣

sin
(

M ′
jπ

2j σj (nk − n�)
)

sin
(

π
2j σj (nk − n�)

)

∣
∣
∣
∣
∣
∣
. (14)

Then the condition number of the Vandermonde matrix VM ′
j ,Mj

(σj) in (9) is
bounded by

κ2(VM ′
j ,Mj

(σj))2 ≤ M ′
j + maxk Sk(σj)

M ′
j − maxk Sk(σj)

. (15)

Vol. 76 (2021) Deterministic Sparse Sublinear FFT Page 9 of 20 53

Proof. Considering the matrix product W := VM ′
j ,Mj

(σj)∗ VM ′
j ,Mj

(σj) ∈
C

Mj×Mj , it follows for the components wk,� of W that

wk,k =
M ′

j−1
∑

p=0

ω
p σj (nk−nk)

2j = M ′
j , k = 0, . . . , Mj − 1,

and for k �= � and σj(nk − n�) �= 0mod 2j ,

|wk,�| =
∣
∣
∣

M ′
j−1

∑

p=0

ω
p σj (nk−n�)

2j

∣
∣
∣ =

∣
∣
∣
1 − ω

M ′
jσj(nk−n�)

2j

1 − ω
σj(nk−n�)

2j

∣
∣
∣ =

∣
∣
∣
sin

(
M ′

jπ

2j σj(nk − n�)
)

sin
(

π
2j σj(nk − n�)

)
∣
∣
∣.

Thus, Sk(σj) is the sum of the absolute values of all non-diagonal components
in the k-th row of W. The Theorem of Gershgorin implies now that the max-
imal eigenvalue of W is bounded from above by M ′

j + maxk Sk(σj), and the
smallest eigenvalue is bounded from below by M ′

j − maxk Sk(σj). �

While the estimate (15) is quite simple to achieve, it is more accurate
than (13). In particular, in the two special cases M ′

j = Mj , dj = 2j/Mj and
M ′

j = 2j , dj = 1, the estimate is sharp, and we obtain the true condition
number 1.

For our computation of σj in Sect. 3.2, we will however simplify (14) and
will consider instead an approximation of the upper bound of Sk(σj),

S̃k(σj) :=
Mj∑

�=1
� �=k

∣
∣
∣
∣
∣

1

sin(π
2j σj (n(j)

k − n
(j)
�))

∣
∣
∣
∣
∣
≥ Sk(σj) (16)

which is not longer dependent on M ′
j . Note that S̃k(σj) > 2j can appear, if σj

is not well chosen.

3.2. Efficient Computation of σj

For a given set of indices 0 ≤ n1 < n2 < . . . < nM < 2j we want to find
a suitable σj ∈ {1, . . . , 2j − 1} such that an approximation of maxk S̃k(σj)
is minimal. More precisely, as shown in Algorithm 3.4, we compare different
possible parameters σ by comparing the sums of four terms in the sum (16),
where the largest term is always included.

We surely could just consider all possible sets {σn1, . . . , σnM} for σ ∈
{1, . . . , 2j − 1}, compute the maximal sum S̃

(j)
k (σ) and compare the results

to find the optimal parameter σ̃j . However, this procedure is too expensive.
To achieve a sparse FFT algorithm with the desired overall complexity of
O(M2 log N), we can spend at most O(M2) operations to find a suitable pa-
rameter σj .

To avoid vanishing distances ±σj(nk − n�)mod 2j = 0 for all nk �= n�,
we will only consider odd integers σj ≥ 1. We then have that 2j and σj are
co-prime such that for each odd σj we at least achieve that maxk S̃

(j)
k (σj) is

53 Page 10 of 20 G. Plonka and T. von Wulffen Results Math

bounded. As our numerical tests show that prime numbers are good candidates
for σj , we propose the following algorithm to determine σj .

Algorithm 3.4. (Computation of σj if Mj > Mj−1)
Input:
N := 2j .
Index set I(j) = {n1, . . . , nMj

}.
Initialization:
Set Mj := #I(j) and choose K with K ≤ Mj/ log2 Mj .
Let Σ := be set of K largest prime numbers smaller than N/2.
Loop:
For all σ ∈ Σ:

Compute the set σI(j) := {σl mod N : l ∈ I(j)}.
Order the elements of σI(j) by size to get ñ1 < . . . < ñMj

.
Compute the sequence of distances δk := ñk − ñk−1, k = 1, . . . , Mj ,
where ñ0 := ñMj

− N .
Find the index of the smallest distance k̃ := argmink=1,...,Mj

δk.
Compute

Dσ := max

{∣
∣
∣
∣
∣

1

sin(δk̃π

N)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

1

sin(
δk̃−1π

N)

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

1

sin(δk̃π

N)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

1

sin(
δk̃+1π

N)

∣
∣
∣
∣
∣

}

with the convention that δ0 := δMj
and δMj+1 := δ1.

Completion:
Choose σ ∈ Σ with minimal Dσ.
If there are several parameters σ achieving the same value Dσ,

choose the σ which minimizes the sum
∣
∣
∣
∑Mj

k=1 ωσnk

N

∣
∣
∣.

Output: σj := σ

The most expensive step in Algorithm 3.4 is the sorting of Mj elements
in σI(j), which can be done with Mj log Mj ≤ M log M operations. Since Σ
contains K < Mj/ log2 Mj elements, the algorithm has a computational cost of
O(M2). Note, that we did not compute the complete sum S̃k(σ) for all choices
of σ in Algorithm 3.4. Instead, for fixed σ, we search for an index k̃ that
provides the smallest (periodic) distance |σ(nk̃ −nk̃−1)| = mink �=� |σ(nk −n�)|.
This index k̃ is a good candidate for argmaxk S̃k(σ). We then only compute
the sum of the largest component and the neighboring component of S̃k̃(σ)
instead of the full sum, since S̃k̃(σ) is mainly governed by these components.

Remark 3.5. Using Theorem 3.2 it is of course also possible to determine σj

by comparing only the minimal distance d(σ) in (12) for all σ ∈ Σ, and to
choose σ ∈ Σ that maximizes this distance.

There are always enough odd prime numbers available in [1, 2j

2], since
M2

j < 2j (see, e.g., [18]).

Vol. 76 (2021) Deterministic Sparse Sublinear FFT Page 11 of 20 53

3.3. Determination of M ′
j

Further, we need to fix the number of needed rows M ′
j ≥ Mj to ensure that the

Vandermonde matrix VM ′
j ,Mj

(σj) is well conditioned. Employing Theorem 3.3,
we consider M ′

j = c Mj for a small set of integers c, e.g. c ∈ {1, 2, 5}. Starting
with c = 1, we compute maxk Sk(σj) in (14) with O(M2

j) operations, and
check via (15) whether the condition number of VM ′

j ,Mj
(σj) is acceptable. If

it is too large, we enlarge c.

Remark 3.6. We can also use the estimates in Theorem 3.2 for determining
M ′

j . In this case, we simply fix M ′
j such that

(
M ′

j + 2j/dj

M ′
j − 2j/dj

)1/2

< C

where C is a pre-determined bound for the condition number of VM ′
j ,Mj

(σj).
However, this estimate usually leads to a strong overestimation of M ′

j .

In our numerical experiments we achieved good results with the simple
bound

M ′
j = c Mj with c := min

{⌊
2j/Mj

dj

⌋

, cmax

}

, (17)

where cmax is usually an integer with cmax ≤ 5 (see Sect. 5). This setting can
also be understood as a compromise for having a good condition number of
the matrix A(j) in the system (11) on the one hand and the computational
cost to solve the linear system on the other hand. Using for example the QR
decomposition algorithm in [7] for rectangular Vandermonde matrices of size
cMj × Mj , we obtain a complexity of (5c + 7

2)M2
j + O(cMj).

3.4. Choice of A(j) if Mj−1 = Mj

If Mj = Mj−1, we apply the following Lemma which is an extension of Theo-
rem 4.2 in [16].

Lemma 3.7. Let σj−1 and M ′
j−1 be the parameters used in the Algorithm 3.1

to determine VM ′
j−1,Mj−1(σj−1) in the iteration step j −1, where 0 < n

(j−1)
1 <

. . . < n
(j−1)
Mj−1

< 2j−1 are the support indices of x(j−1). Further, assume that we

have found x(j) with Mj = Mj−1, and support indices 0 < n
(j)
1 < . . . < n

(j)
Mj

<

2j. Then we can simply choose σj := 2σj−1 and M ′
j := M ′

j−1 to achieve a
Vandermonde matrix VM ′

j ,Mj
(σj) for iteration step j of Algorithm 3.1. With

this choice, VM ′
j ,Mj

(σj) coincides with VM ′
j−1,Mj−1(σj−1) up to possible per-

mutation of columns. In particular, we have

κ2(VM ′
j ,Mj

(σj)) = κ2(VM ′
j−1,Mj−1(σj−1)).

53 Page 12 of 20 G. Plonka and T. von Wulffen Results Math

Proof. If Mj = Mj−1, then it follows that n
(j)
r ∈ {n

(j−1)
r , n

(j−1)
r +2j−1} for all

r = 1, . . . , Mj−1. With σj = 2σj−1 we obtain

σj n(j)
r mod 2j = 2σj−1n

(j)
r mod 2j = 2σj−1n

(j−1)
r mod 2j .

Thus, for p = 1, . . . , M ′
j (with M ′

j = M ′
j−1),

ω
σj(p−1)n(j)

r

2j = ω
2σj−1(p−1)n(j)

r

2j = ω
2σj−1(p−1)n(j−1)

r

2j = ω
σj−1(p−1)n(j−1)

r

2j−1 .

Hence, VM ′
j−1,Mj−1(σj−1) and VM ′

j ,Mj
(σj) have the same columns, and may

differ only due to a different ordering of columns. In other words, there is an
Mj × Mj permutation matrix PMj

, such that VM ′
j ,Mj

(σj)=VM ′
j−1,Mj−1(σj−1)

PMj
. In particular, the two matrices have the same condition number. �

This observation implies that there will be no extra effort to compute the
matrix A(j) at all iteration steps j, where the sparsity Mj has not changed
compared to Mj−1.

4. The Direct Sparse FFT Algorithm

We consider now the direct sparse FFT problem stated in (b) in Sect. 1. For
given x ∈ C

N , we want to determine y := x̂ = FN x, assuming that y possesses
unknown sparsity M . We will show that our Algorithm 3.1 can be transferred
to this problem.

First, we observe that the Fourier matrix satisfies the property

F−1
N =

1
N

FN =
1
N

J′
N FN

(see Equation (3.34) in [15]), where J′
N := (δ(j+k) mod N)N−1

j,k=0 is the so-called
flip matrix with (J′

N)−1 = J′
N . Here, δj denotes the Kronecker symbol, i.e.,

δj = 0 for j �= 0 and δj = 1 for j = 0. Thus, the relation x = F−1
N y is

equivalent to

w := N J′
Nx = FNy.

In other words, if we replace the given vector x by w in Algorithm 3.1, then
w is the given Fourier transform of the desired vector y, and we can apply
Algorithm 3.1 directly to compute y.

5. Numerical Experiments

First, we present some numerical experiments showing that the algorithm in
[16] for sparsity M > 20 is no longer reliable. We generate randomly cho-
sen sets of support indices IM ⊂ {0, . . . , 215 − 1} with different cardinalities
M = 20, 30, . . . , 100, and randomly choose values xk for k ∈ IM in double
precision arithmetics. Then we apply our Algorithm 3.1, where access to the
Fourier transform of x ∈ C

2J

is provided. While σj is optimally chosen as a

Vol. 76 (2021) Deterministic Sparse Sublinear FFT Page 13 of 20 53

Figure 1. Error rate in percentage for the computed set of
indices for cmax = 1 and J = 15

prime number according to Algorithm 4.5 in [16], we only consider square Van-
dermonde matrices (as in [16]), i.e., we set cmax = 1. We compare the output
index set Iout with the generated set IM of indices and count the failures of
100 tests for each M . The results are presented in Fig. 1. The test shows that
the algorithm starts to be unreliable for sparsity M > 20.

We now run the test with the same input data as above, but used the
criteria in (17) with cmax = 2. For any M = 20, 30, . . . , 100, no failures occur
for the computed set of indices Iout, i.e., we always find IM = Iout. Even if we
run the tests for M = 200, the error rate is still zero.

To understand this strong effect when the number of rows of the Vander-
monde matrix is enlarged, we analyze the condition numbers of the Vander-
monde matrices occurring in the computations for different values cmax. We
generate sets IM of indices and randomly choose the amplitudes of compo-
nents of x with support IM . For Algorithm 3.1, we provide access to the
Fourier transformed vector x̂ as an input as before for the tuples (J,M)
with J = 15, 16, . . . , 22, and M = 20, 30, 40, 50. In this experiment, we vary
cmax ∈ {1, 2, 5}. In each test we compute the average over all condition num-
bers of the used Vandermonde matrices and repeat this 20 times for each tuple
(J,M). Finally, we take the mean of all the 20 averages, and obtain the results
given in the Tables 1 and 2. The results in Table 1 show that a suitable choice
of the parameter σj , as applied in [16], is not sufficient to ensure moderate
condition numbers of the Vandermonde matrices involved in the sparse FFT
algorithm for M ≥ 20.

In Table 2, we provide some further condition numbers for larger numbers
M of significant vector entries up to M = 200 and N = 215, . . . , 222. The
experiments show that cmax = 2, i.e., doubling the number of rows in the

53 Page 14 of 20 G. Plonka and T. von Wulffen Results Math

T
a
b
l
e
1
.

A
ve

ra
ge

co
nd

it
io

n
nu

m
be

r
fo

r
c m

a
x

=
1

af
te

r
20

te
st

s

c m
a
x

=
1

J
M

=
20

M
=

30
M

=
40

M
=

50

15
45

58
7

89
59

76
1

82
65

81
65

6
81

34
44

18
90

55
16

15
09

32
35

41
85

9
41

76
49

03
53

55
90

26
09

90
71

1
17

50
23

98
10

44
09

6
29

14
88

40
97

71
93

67
03

02
04

.9
5

18
10

38
09

67
45

72
10

80
28

69
99

25
80

65
10

16
72

35
25

70
42

75
19

10
49

1
48

32
05

2
11

19
42

75
3

12
37

79
27

19
11

83
20

41
98

3
71

14
12

91
85

28
39

9
93

46
22

29
70

0
21

61
93

8
35

02
25

3
56

70
02

19
3

14
36

72
69

63
29

26
1

22
38

80
62

37
16

80
24

25
93

41
68

8
28

19
72

28

Vol. 76 (2021) Deterministic Sparse Sublinear FFT Page 15 of 20 53

T
a
b
l
e
2
.

A
ve

ra
ge

co
nd

it
io

n
nu

m
be

r
fo

r
c m

a
x

=
2

(l
ef

t)
an

d
c m

a
x

=
5

(r
ig

ht
)

af
te

r
20

te
st

s

c m
a
x

=
2

c m
a
x

=
5

J
M

=
20

M
=

10
0

M
=

20
0

J
M

=
20

M
=

10
0

M
=

20
0

15
4.

31
12

8.
83

12
62

3.
74

15
1.

33
4.

52
16

.4
2

16
5.

57
41

5.
11

16
70

96
.3

8
16

1.
36

8.
01

38
.6

4
17

7.
94

74
.2

3
32

29
0.

12
17

1.
43

4.
97

37
.7

8
18

40
.5

2
59

1.
17

59
01

.6
5

18
1.

79
8.

59
19

.7
6

19
14

.7
6

73
2.

74
15

46
31

.9
1

19
1.

44
10

.1
3

38
.6

4
20

14
.4

6
23

1.
35

27
97

9.
52

20
1.

39
9.

56
28

.2
9

21
17

.5
1

25
9.

04
14

60
4.

35
21

1.
75

7.
25

22
.4

1
22

12
.8

6
36

0.
91

17
89

7.
02

22
1.

63
6.

04
23

.1
2

53 Page 16 of 20 G. Plonka and T. von Wulffen Results Math

Figure 2. Runtime comparison of the Algorithmus 3.1 for
cmax = 1 (green), cmax = 5 (blue), cmax = 20 (red) for M =
10 (solid line) and M = 30 (dashed line) for length N = 2J

with J = 10, . . . , 24. (Color figure online)

matrix A(j), is usually sufficient for M ≤ 100. For M > 100, we need to take
a larger cmax.

Now, we investigate how the runtime of the Algorithm depends on cmax.
In Fig. 2 we present the average runtime for 20 tests with randomly chosen
sparse vectors with sparsities M = 10, 30 and for cmax = 1, cmax = 5, cmax =
20. As we see in Fig. 2, our modifications have only a very small effect on the
runtime. Finally, in Fig. 3 we compare the runtime of the Python implemented
FFT numpy.fft.fft of length 2J with our algorithm for cmax = 20. We can
see, that our current Python implementation starts to be faster than the FFT
for M ≤ 30 and N ≥ 220. It is available under the link “software” on our
homepage http://na.math.uni-goettingen.de.

6. Conclusions

In this paper, we have presented a modification of the sparse FFT algorithm
in [16], which is based on the assumption that the wanted vector x ∈ C

N

with N = 2J is M -sparse, and that the components of the discrete Fourier
transform x̂ = FN x are available. Our proposed algorithm has the complexity
O(M2 log N) and is sublinear in N for small M . As in [16], the reconstruc-
tion of x is based on an iterative reconstruction of 2j-periodizations of x for
j = 0, . . . , J . At each iteration step, one needs to solve an equation system
of size O(M), where the coefficient matrices are governed by Vandermonde
matrices which are submatrices of the Fourier matrix F2j . Differently from

http://na.math.uni-goettingen.de

Vol. 76 (2021) Deterministic Sparse Sublinear FFT Page 17 of 20 53

Figure 3. Runtime comparison of Algorithmus 3.1 and
cmax = 20 (red) and the FFT (gray) for M = 10 (solid
line) and M = 30 (dashed line) for length N = 2J with
J = 10, . . . , 24. (Color figure online)

[16], we have considered rectangular Vandermonde matrices, and we have pre-
sented efficient methods to determine these matrices in dependence of two
parameters, which both have a huge impact on the condition number. The
first parameter σj changes the nodes ωn�

2j , � = 1, . . . , Mj determining the Van-
dermonde matrix to ω

σjn�

2j . Here Mj ≤ M denotes the found sparsity of x(j).
The second parameter M ′

j ≥ Mj denotes the number of rows in the Vander-
monde matrix. One ingredient to determine suitable parameters σj and M ′

j is
the new estimate for the condition number of the occurring Vandermonde ma-
trices in Theorem 3.3. As shown in the numerical experiments, the presented
modification of the sparse FFT algorithm makes it applicable also for larger
sparsity values M while the original algorithm in [16] started to be unreliable
already for M > 20.

Acknowledgements

The authors like to thank the reviewers for very exact reading of the manu-
script and many constructive remarks for its improvement. The authors grate-
fully acknowledge the support by the German Research Foundation in the
framework of the RTG 2088.

Funding Open Access funding enabled and organized by Projekt DEAL. The
authors gratefully acknowledge the support by the German Research Founda-
tion in the framework of the RTG 2088.

53 Page 18 of 20 G. Plonka and T. von Wulffen Results Math

Code Availability A Python implementation of the new algorithm is available
under the link “software” on our homepage http://na.math.uni-goettingen.de.

Compliance with Ethical Standards
Conflict of interest The authors declare that they have no conflict of interest.

Human and Animal Rights This article does not contain any studies with
human participants or animals performed by any of the authors.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s
Creative Commons licence and your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

[1] Akavia, A.: Deterministic sparse Fourier approximation via approximating arith-
metic progressions. IEEE Trans. Inf. Theory 60(3), 1733–1741 (2014). https://
doi.org/10.1109/TIT.2013.2290027

[2] Berman, L., Feuer, A.: On perfect conditioning of Vandermonde matrices on the
unit circle. Electron. J. Linear Algebra 16(1), 157–161 (2007). https://doi.org/
10.13001/1081-3810.1190

[3] Bittens, S.: Sparse FFT for functions with short frequency support.
Dolomites Res. Not. Approx. 10, 43–55 (2017). https://doi.org/10.14658/
pupj-drna-2017-Special Issue-7

[4] Bittens, S., Plonka, G.: Sparse fast DCT for vectors with one-block sup-
port. Numer. Algorithms 82(2), 663–697 (2019). https://doi.org/10.1007/
s11075-018-0620-1

[5] Bittens, S., Plonka, G.: Real sparse fast DCT for vectors with short support.
Linear Algebra Appl. 582, 359–390 (2019). https://doi.org/10.1016/j.laa.2019.
08.006

[6] Christlieb, A., Lawlor, D., Yang, W.: A multiscale sub-linear time Fourier al-
gorithm for noisy data. Appl. Comput. Harmon. Anal. 40(3), 553–574 (2016).
https://doi.org/10.1016/j.acha.2015.04.002

[7] Demeure, C.J.: Fast QR factorization of Vandermonde matrices. Linear Algebra
Appl. 122–124, 165–194 (1989). https://doi.org/10.1016/0024-3795(89)90652-6

http://na.math.uni-goettingen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TIT.2013.2290027
https://doi.org/10.1109/TIT.2013.2290027
https://doi.org/10.13001/1081-3810.1190
https://doi.org/10.13001/1081-3810.1190
https://doi.org/10.14658/pupj-drna-2017-Special_Issue-7
https://doi.org/10.14658/pupj-drna-2017-Special_Issue-7
https://doi.org/10.1007/s11075-018-0620-1
https://doi.org/10.1007/s11075-018-0620-1
https://doi.org/10.1016/j.laa.2019.08.006
https://doi.org/10.1016/j.laa.2019.08.006
https://doi.org/10.1016/j.acha.2015.04.002
https://doi.org/10.1016/0024-3795(89)90652-6

Vol. 76 (2021) Deterministic Sparse Sublinear FFT Page 19 of 20 53

[8] Heider, S., Kunis, S., Potts, D., Veit, M.: A sparse Prony FFT. In: 10th In-
ternational Conference on Sampling Theory and Applications (SAMPTA), pp.
572–575. Zenodo, (2013). https://doi.org/10.5281/zenodo.54481

[9] Iwen, M.A.: Combinatorial sublinear-time Fourier algorithms. Found. Comput.
Math. 10, 303–338 (2010). https://doi.org/10.1007/s10208-009-9057-1

[10] Iwen, M.A.: Improved approximation guarantees for sublinear-time Fourier al-
gorithms. Appl. Comput. Harmon. Anal. 34(1), 57–82 (2013). https://doi.org/
10.1016/j.acha.2012.03.007

[11] Merhi, S., Zhang, R., Iwen, M.A., Christlieb, A.: A new class of fully dis-
crete sparse Fourier transforms: Faster stable implementations with guar-
antees. J. Fourier Anal. Appl. 25, 751–784 (2019). https://doi.org/10.1007/
s00041-018-9616-4

[12] Moitra, A.: Super-resolution, extremal functions and the condition number of
Vandermonde matrices. In: STOC ’15: Proceedings of the Forty-Seventh Annual
ACM Symposium on Theory of Computing, pp. 821–830, (2015). https://doi.
org/10.1145/2746539.2746561

[13] Plonka, G., Wannenwetsch, K.: A deterministic sparse FFT algorithm for vectors
with small support. Numer. Algorithms 71(4), 889–905 (2016). https://doi.org/
10.1007/s11075-015-0028-0

[14] Plonka, G., Wannenwetsch, K.: A sparse fast Fourier algorithm for real non-
negative vectors. J. Comput. Appl. Math. 321, 532–539 (2017). https://doi.org/
10.1016/j.cam.2017.03.019

[15] Plonka, G., Potts, D., Steidl, G., Tasche, M.: Numerical Fourier Analysis.
Birkhäuser, Basel (2018). https://doi.org/10.1007/978-3-030-04306-3

[16] Plonka, G., Wannenwetsch, K., Cuyt, A., Lee, W.-S.: Deterministic sparse FFT
for M-sparse vectors. Numer, Algorithms 78, 133–159 (2018). https://doi.org/
10.1007/s11075-017-0370-5

[17] Potts, D., Tasche, M., Volkmer, T.: Efficient spectral estimation by MUSIC and
ESPRIT with application to sparse FFT. Front. Appl. Math. Stat. 2, 1 (2016).
https://doi.org/10.3389/fams.2016.00001

[18] Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime
numbers. Illinois J. Math. 6(1), 64–94 (1962). https://doi.org/10.1215/ijm/
1255631807

[19] Segal, B., Iwen, M.A.: Improved sparse Fourier approximation results: faster im-
plementations and stronger guarantees. Numer. Algorithms 63, 239–263 (2013).
https://doi.org/10.1007/s11075-012-9621-7

Gerlind Plonka and Therese von Wulffen
Institute for Numerical and Applied Mathematics
University of Göttingen
Lotzestraße 16-18
37083 Göttingen
Germany

e-mail: plonka@math.uni-goettingen.de;
therese.vonwulffen@stud.uni-goettingen.de

https://doi.org/10.5281/zenodo.54481
https://doi.org/10.1007/s10208-009-9057-1
https://doi.org/10.1016/j.acha.2012.03.007
https://doi.org/10.1016/j.acha.2012.03.007
https://doi.org/10.1007/s00041-018-9616-4
https://doi.org/10.1007/s00041-018-9616-4
https://doi.org/10.1145/2746539.2746561
https://doi.org/10.1145/2746539.2746561
https://doi.org/10.1007/s11075-015-0028-0
https://doi.org/10.1007/s11075-015-0028-0
https://doi.org/10.1016/j.cam.2017.03.019
https://doi.org/10.1016/j.cam.2017.03.019
https://doi.org/10.1007/978-3-030-04306-3
https://doi.org/10.1007/s11075-017-0370-5
https://doi.org/10.1007/s11075-017-0370-5
https://doi.org/10.3389/fams.2016.00001
https://doi.org/10.1215/ijm/1255631807
https://doi.org/10.1215/ijm/1255631807
https://doi.org/10.1007/s11075-012-9621-7

53 Page 20 of 20 G. Plonka and T. von Wulffen Results Math

Received: April 21, 2020.

Accepted: December 12, 2020.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

	Deterministic Sparse Sublinear FFT with Improved Numerical Stability
	Abstract
	1. Introduction
	2. Multi-scale Sparse Sublinear FFT Algorithm from PWC18
	3. Extension of the Sparse FFT Algorithm
	3.1. Estimation of the Condition Number of VMj',Mj(σj)
	3.2. Efficient Computation of σj
	3.3. Determination of Mj'
	3.4. Choice of A(j) if Mj-1=Mj

	4. The Direct Sparse FFT Algorithm
	5. Numerical Experiments
	6. Conclusions
	Acknowledgements
	References

