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Abstract
We study Tikhonov regularization for possibly nonlinear inverse problems with
weighted �1-penalization. The forward operator, mapping from a sequence space to
an arbitrary Banach space, typically an L2-space, is assumed to satisfy a two-sided
Lipschitz condition with respect to a weighted �2-norm and the norm of the image
space. We show that in this setting approximation rates of arbitrarily high Hölder-type
order in the regularization parameter can be achieved, and we characterize maximal
subspaces of sequences on which these rates are attained. On these subspaces the
method also converges with optimal rates in terms of the noise level with the discrep-
ancy principle as parameter choice rule. Our analysis includes the case that the penalty
term is not finite at the exact solution (’oversmoothing’). As a standard example we
discuss wavelet regularization in Besov spaces Br

1,1. In this setting we demonstrate in
numerical simulations for a parameter identification problem in a differential equa-
tion that our theoretical results correctly predict improved rates of convergence for
piecewise smooth unknown coefficients.

Mathematics Subject Classification Primary 65J15 · 65J20 · 65N20 · 65N21;
Secondary 97N50

1 Introduction

In this paper we analyze numerical solutions of ill-posed operator equations

F(x) = g

with a (possibly nonlinear) forward operator F mapping sequences x = (x j ) j∈Λ

indexed by a countable setΛ to a Banach spaceY. We assume that only indirect, noisy
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342 P. Miller, T. Hohage

observations gobs ∈ Y of the unknown solution x† ∈ R
Λ are available satisfying a

deterministic error bound ‖gobs − F(x†)‖Y ≤ δ.
For a fixed sequence of positive weights (r j ) j∈Λ and a regularization parameter

α > 0 we consider Tikhonov regularization of the form

x̂α ∈ argmin
x∈D

⎡
⎣1

2
‖gobs − F(x)‖2

Y
+ α

∑
j∈Λ

r j |x j |
⎤
⎦ (1)

where D ⊂ R
Λ denotes the domain of F . Usually, x† is a sequence of coefficients

with respect to some Riesz basis. One of the reasons why such schemes have become
popular is that the penalty term α

∑
j∈Λ r j |x j | promotes sparsity of the estimators

x̂α in the sense that only a finite number of coefficients of x̂α are non-zero. The
latter holds true if (r j ) j∈Λ decays not too fast relative to the ill-posedness of F (see
Proposition 3 below). In contrast to [29] and related works, we do not require that
(r j ) j∈Λ is uniformly bounded away from zero. In particular, this allows us to consider
Besov B0

1,1-norm penalties given by wavelet coefficients. For an overview on the use
of this method for a variety linear and nonlinear inverse problems in different fields
of applications we refer to the survey paper [26] and to the special issue [27].

Main contributions: The focus of this paper is on error bounds, i.e. rates of
convergence of x̂α to x† in some norm as the noise level δ tends to 0. Although most
results of this paper are formulated for general operators on weighted �1-spaces, we
are mostly interested in the case that x j are wavelet coefficients, and

F = G ◦ S (2)

is the composition of a corresponding wavelet synthesis operator S and an operator G
defined on a function space. We will assume that G is finitely smoothing in the sense
that it satisfies a two-sided Lipschitz condition with respect to function spaces the
smoothness index of which differs by a constant a > 0 (see Assumption 2 below and
Assumption 3 for a corresponding condition on F). The class of operators satisfying
this condition includes in particular theRadon transform and nonlinear parameter iden-
tification problems for partial differential equations with distributed measurements. In
this setting Besov Br

1,1-norms can be written in the form of the penalty term in (1). In
a previous paper [24] we have already addressed sparsity promoting penalties in the
form of Besov B0

p,1-norms with p ∈ [1, 2]. For p > 1 only group sparsity in the levels
is enforced, but not sparsity of the wavelet coefficients within each level. As a main
result of this paper we demonstrate that the analysis in [24] as well as other works
to be discussed below do not capture the full potential of estimators (1), i.e. the most
commonly used case p = 1: Even though the error bounds in [24] are optimal in a
minimax sense, more precisely in a worst case scenario in Bs

p,∞-balls, we will derive
faster rates of convergence for an important class of functions, which includes piece-
wise smooth functions. The crucial point is that such functions also belong to Besov
spaces with larger smoothness index s, but smaller integrability index p < 1. These
results confirm the intuition that estimators of the form (1), which enforce sparsity
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Maximal spaces for approximation rates in �1-regularization 343

also within each wavelet level, should perform well for signals which allow accuratele
approximations by sparse wavelet expansions.

Furthermore, we prove a converse result, i.e. we characterize the maximal sets on
which the estimators (1) achieve a given approximation rate. These maximal sets turn
out to be weak weighted �t -sequences spaces or real interpolation spaces of Besov
spaces, respectively.

Finally, we also treat the oversmoothing case that
∑

j∈Λ r j |x†j | = ∞, i.e. that the

penalty term enforces the estimators x̂α to be smoother than the exact solution x†. For
wavelet Br

1,1 Besov norm penalties, this case may be rather unlikely for r = 0, except
maybe for delta peaks. However, in case of the Radon transform, our theory requires
us to choose r > 1

2 , and more generally, mildly ill-posed problems in higher spatial
dimensions require larger values of r (see Eq. (7a) below for details). Then it becomes
much more likely that the penalty term fails to be finite at the exact solution, and it is
desirable to derive error bounds also for this situation. So far, however, this case has
only rarely been considered in variational regularization theory.

Previous works on the convergence analysis of (1): In the seminal paper [11]
Daubechies, Defrise & De Mol established the regularizing property of estimators of
the form (1) and suggested the so-called iterative thresholding algorithm to compute
them. Concerning error bounds, the most favorable case is that the true solution x† is
sparse. In this case the convergence rate is linear in the noise level δ, and sparsity of
x† is not only sufficient but (under mild additional assumptions) even necessary for a
linear convergence rate [21]. However, usually it is more realistic to assume that x†

is only approximately sparse in the sense that it can be well approximated by sparse
vectors. More general rates of convergence for linear operators F were derived in [4]
based on variational source conditions. The rates were characterized in terms of the
growth of the norms of the preimages of the unit vectors under F∗ (or relaxations)
and the decay of x†. Relaxations of the first condition were studied in [15–17]. For
error bounds in the Bregman divergence with respect to the �1-norm we refer to [5].
In the context of statistical regression by wavelet shrinkage maximal sets of signals
for which a certain rate of convergence is achieved have been studied in detail (see
[9]).

In the oversmoothing case one difficulty is that neither variational source condi-
tions nor source conditions based on the range of the adjoint operator are applicable.
Whereas oversmoothing in Hilbert scales has been analyzed in numerous papers (see,
e.g., [22,23,30]), the literature on oversmoothing for more general variational regular-
ization is sparse. The special case of diagonal operators in �1-regularization has been
discussed in [20]. In a very recent work, Chen et al. [7] have studied oversmoothing
for finitely smoothing operators in scales of Banach spaces generated by sectorial
operators.

Plan of the remainder of this paper: In the following section we introduce our
setting and assumptions and discuss two examples for which these assumptions are
satisfied in the wavelet–Besov space setting (2). Sections 3–5 deal with a general
sequence space setting. In Sect. 3 we introduce a scale of weak sequence spaces
which can be characterized by the approximation properties of some hard thresholding
operator. These weak sequence spaces turn out to be the maximal sets of solutions on
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which the method (1) attains certain Hölder-type approximation rates. This is shown
for the non-oversmoothing case in Sect. 4 and for the oversmoothing case in Sect. 5.
In Sect. 6 we interpret our results in the previous sections in the Besov space setting,
before we discuss numerical simulations confirming the predicted convergence rates
in Sect. 7.

2 Setting, assumptions, and examples

In the following we describe our setting in detail including assumptions which are
used in many of the following results. None of these assumptions is to be understood
as a standing assumption, but each assumption is referenced whenever it is needed.

2.1 Motivating example: regularization by wavelet Besov norms

In this subsection, which may be skipped in first reading, we provide more details on
the motivating example (2): Suppose the operator F is the composition of a forward
operatorG mapping functions on a domainΩ to elements of the Hilbert spaceY and a
wavelet synthesis operator S. We assume thatΩ is either a bounded Lipschitz domain
in R

d or the d-dimensional torus (R/Z)d , and that we have a system (φ j .k)( j,k)∈Λ of
real-valuedwavelet functions onΩ . Here the index setΛ := {( j, k) : j ∈ N0, k ∈ Λ j }
is composed of a family of finite sets (Λ j ) j∈N0 corresponding to levels j ∈ N0, and the
growths of the cardinality of these sets is described by the inequalities 2 jd ≤ |Λ j | ≤
CΛ2 jd for some constant CΛ ≥ 1 and all j ∈ N0.

For p, q ∈ (0,∞) and s ∈ R we introduce sequence spaces

bsp,q := {
x ∈ R

Λ : ‖x‖s,p,q < ∞}
with

‖x‖qs,p,q :=
∑
j∈N0

2 jq(s+ d
2 − d

p )

⎛
⎝∑

k∈Λ j

|x j,k |p
⎞
⎠

q
p

.
(3)

with the usual replacements for p = ∞ or q = ∞. It is easy to see that bsp,q are
Banach spaces if p, q ≥ 1. Otherwise, if p ∈ (0, 1) or q ∈ (0, 1), they are quasi-
Banach spaces, i.e. they satisfy all properties of a Banach space except for the triangle
inequality, which only holds true in the weaker form ‖x + y‖ω,p ≤ C(‖x‖ω,p +
‖y‖ω,p) with some C > 1. We need the following assumption on the relation of the
Besov sequence spaces to a family of Besov function spaces Bs

p,q(Ω) via the wavelet
synthesis operator (Sx)(r) := ∑

( j,k)∈Λ x j,kφ j,k(r).

Assumption 1 Let smax > 0. Suppose that (φ j .k)( j,k)∈Λ is a family of real-valued
functions on Ω such that the synthesis operator

S : bsp,q → Bs
p,q(Ω) given by x �→

∑
( j,k)∈Λ

x j,kφ j,k

123



Maximal spaces for approximation rates in �1-regularization 345

is a norm isomorphism for all s ∈ (−smax, smax) and p, q ∈ (0,∞] satisfying

s ∈ (σp − smax, smax) with σp = max
{
d
(
1
p − 1

)
, 0
}
.

Note that p ≥ 1 implies σp = 0, and therefore S is a quasi-norm isomorphism for
|s| ≤ smax in this case.

We refer to themonograph [32] for the definition ofBesov spaces Bs
p,q (Ω), different

types of Besov spaces on domains with boundaries, and the verification of Assumption
1.

As main assumption on the forward operator G in function space we suppose that
it is finitely smoothing in the following sense:

Assumption 2 Let a > 0, DG ⊆ B−a
2,2 (Ω) be non-empty and closed, Y a Banach

space and G : DG → Y a map. Assume that there exists a constant L ≥ 1 with

1

L
‖ f1 − f2‖B−a

2,2
≤ ‖G( f1) − G( f2)‖Y ≤ L‖ f1 − f2‖B−a

2,2
for all f1, f2 ∈ DG .

Recall that B−a
2,2 (Ω) coincideswith the Sobolev space H−a(Ω)with equivalent norms.

The first of these inequalities is violated for infinitely smoothing forward operators
such as for the backward heat equation or for electrical impedance tomography.

In the setting of Assumptions 1 and 2 and for some fixed r ≥ 0 we study the
following estimators

f̂α := S x̂α with x̂α ∈ argmin
x∈S−1(DG )

[
1

2
‖gobs − G(Sx)‖2

Y
+ α‖x‖r ,1,1

]
. (4)

We recall two examples of forward operators satisfyingAssumption 2 from [24] where
further examples are discussed.

Example 1 (Radon transform) Let Ω ⊂ R
d , d ≥ 2 be a bounded domain and

Y = L2(Sd−1 × R) with the unit sphere Sd−1 := {x ∈ R
d : |x |2 = 1}. The

Radon transform, which occurs in computed tomography (CT) and positron emission
tomography (PET), among others, is defined by

(R f )(θ, t) :=
∫

{x :x ·θ=g}
f (x) dx, θ ∈ Sd−1, t ∈ R.

It satisfies Assumption 2 with a = d−1
2 .

Example 2 (Identification of a reaction coefficient) Let Ω ⊂ R
d , d ∈ {1, 2, 3} be

a bounded Lipschitz domain, and let f : Ω → [0,∞) and g : ∂Ω → (0,∞) be
smooth functions. For c ∈ L∞(Ω) satisfying c ≥ 0 we define the forward operator
G(c) := u by the solution of the elliptic boundary value problem

− Δu + cu = f in Ω,

u = g on ∂Ω.
(5)

Then Assumption 2 with a = 2 holds true in some L2-neighborhood of a reference
solution c0 ∈ L∞(Ω), c0 ≥ 0. (Note that for coefficients c with arbitrary negative
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values uniqueness in the boundary value problem (5) may fail and every L2-ball
contains functions with negative values on a set of positive measure, well-posedness
of (5) can still be established for all c in a sufficiently small L2-ball centered at c0.
This can be achieved by Banach’s fixed point theorem applied to u = u0 + (−Δ +
c0)−1(u(c0−c))where u0 := G(c0) and (−Δ+c0)−1 f̃ solves (5)with c = c0, f = f̃
and g = 0, using the fact that (−Δ+ c0)−1 maps boundedly from L1(Ω) ⊂ H−2(Ω)

to L2(Ω) for d ≤ 3.)

2.2 General sequence spaces setting

Let p ∈ (0,∞), and let ω = (ω j ) j∈Λ be a sequence of positive reals indexed by

some countable set Λ. We consider weighted sequence spaces �
p
ω defined by

�pω := {
x ∈ R

Λ : ‖x‖ω,p < ∞}
with ‖x‖ω,p :=

⎛
⎝∑

j∈Λ

ω
p
j |x j |p

⎞
⎠

1
p

. (6)

Note that the Besov sequence spaces bsp,q defined in (3) are of this form if p = q < ∞,

more precisely bsp,p = �
p
ωs,p

with equal norm for (ωs,p)( j,k) = 2 j(s+ d
2 − d

p ). Moreover,
the penalty term in is given by α ‖·‖r ,1 with the sequence of weights r = (r j ) j∈Λ.

Therefore, we obtain the penalty terms α‖·‖s,1,1 in (4) for the choice r j,k := 2 j(r− d
2 ).

We formulate a two-sided Lipschitz condition for forward operators F on general
sequence spaces and argue that it follows from Assumptions 1 and 2 in the Besov
space setting.
Assumption 3 a = (a j ) j∈Λ is a sequence of positive real numbers with

a jr
−1
j → 0.1 Moreover, DF ⊆ �2a is closed with DF ∩ �1r �= ∅ and there exists a

constant L > 0 with

1

L

∥∥∥x (1) − x (2)
∥∥∥
a,2

≤ ‖F(x (1)) − F(x (2))‖Y ≤ L
∥∥∥x (1) − x (2)

∥∥∥
a,2

for all x (1), x (2) ∈ DF .

Suppose Assumptions 1 and 2 hold true, and let

d

2
− r < a < smax, (7a)

r ≥ 0, (7b)

S−1(DG) ∩ br1,1 �= ∅. (7c)

With a j,k := 2− ja and r j,k := 2 j(r− d
2 ) we have �2a = b−a

2,2 and �1r = br1,1. Then

a j,kr
−1
j,k → 0. As S : b−a

2,2 → B−a
2,2 (Ω) is a norm isomorphim DF := S−1(DG) is

closed, and F := G ◦S : DF → Y satisfies the two-sided Lipschitz condition above.

1 This notion means that for every ε > 0 all but finitely many j ∈ Λ satisfy a j r
−1
j ≤ ε.
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Maximal spaces for approximation rates in �1-regularization 347

In some of the results we also need the following assumption on the domain DF of
the map F .

Assumption 4 DF is closed under coordinate shrinkage. That is x ∈ DF and z ∈ �2a
with |z j | ≤ |x j | and sgn z j ∈ {0, sgn x j } for all j ∈ Λ implies z ∈ DF .

Obviously, Assumption 4 is satisfied if DF is a closed ball {x ∈ �2a : ‖x‖ω,p ≤ ρ} in
some �

p
ω space centered at the origin.

Concerning the closedness condition in Assumption 3, note that such balls are
always closed in �2a as the following argument shows: Let x (k) → x as k → ∞
in �2a and

∥∥x (k)
∥∥

ω,p ≤ ρ for all k. Then x (k) converges pointwise to x , and hence
∑

j∈Γ ω
p
j |x j |p = limk→∞

∑
j∈Γ ω

p
j |x (k)

j |p ≤ ρ p for all finite subsets Γ ⊂ Λ. This
shows ‖x‖ω,p ≤ ρ.

In the case that DF is a ball centered at some reference solution x0 �= 0, we
may replace the operator F by the operator x �→ F(x + x0). This is equivalent to
using the penalty term α ‖x − x0‖r ,1 in (1) with the original operator F , i.e. Tikhonov
regularization with initial guess x0. Without such a shift, Assumption 4 is violated.

2.3 Existence and uniqueness of minimizers

We briefly address the question of existence and uniqueness of minimizers in (1).
Existence follows by a standard argument of the direct method of the calculus of
variations as often used in Tikhonov regularization, see, e.g., [31, Thm. 3.22]).

Proposition 3 Suppose Assumption 3 holds true. Then for every gobs ∈ Y and α > 0
there exists a solution to the minimization problem in (1). If DF = �2a and F is linear,
then the minimizer is unique.

Proof Let (x (n))n∈N be a minimizing sequence of the Tikhonov functional. Then∥∥x (n)
∥∥
r ,1 is bounded. The compactness of the embedding �1r ⊂ �2a (see Proposi-

tion 31 in the “Appendix”) implies the existence of a subsequence (w.l.o.g. again the
full sequence) converging in ‖·‖a,2 to some x ∈ �2a . Then x ∈ DF as DF is closed.
The second inequality in Assumption 3 implies

lim
n→∞ ‖gobs − F(x (n))‖2

Y
= ‖gobs − F(x)‖2

Y
.

Moreover, for any finite subset Γ ⊂ Λ we have

∑
j∈Γ

r j |x j | = lim
n

∑
j∈Γ

r j |x (n)
j | ≤ lim inf

n

∥∥∥x (n)
∥∥∥
r ,1

,

and hence ‖x‖r ,1 ≤ lim infn
∥∥x (n)

∥∥
r ,1. This shows that x minimizes the

Tikhonov functional.
In the linear case the uniqueness follows from strict convexity. ��

Note that Proposition 3 also yields the existence of minimizers in (4) under Assump-
tions 1 and 2 and Eqs. (7).
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If F = A : �2a → Y is linear and satisfies Assumption 3, the usual argument (see,
e.g., [29, Lem. 2.1]) shows sparsity of the minimizers as follows: By the first order
optimality condition there exists ξ ∈ ∂ ‖·‖r ,1 (x̂α) such that ξ belongs to the range of

the adjoint A∗, that is ξ ∈ �2
a−1 and hence a−1

j |ξ j | → 0. Since a jr
−1
j → 0, we have

a j ≤ r j for all but finitely many j . Hence, we obtain |ξ j | < r j , forcing x j = 0 for all
but finitely many j .

Note that for this argument to work, it is enough to require that a jr
−1
j is bounded

from above. Also the existence of minimizers can be shown under this weaker assump-
tion using the weak∗-topology on �1r (see [14, Prop. 2.2]).

3 Weak sequence spaces

In this section we introduce spaces of sequences whose bounded sets will provide
the source sets for the convergence analysis in the next chapters. We define a specific
thresholding map and analyze its approximation properties.

Let us first introduce a scale of spaces, part of which interpolates between the spaces
�1r and �2a involved in our setting. For t ∈ (0, 2] we define weights

(ωt ) j := (a2t−2
j r2−t

j )
1
t . (8)

Note thatω1 = r andω2 = a. The next proposition captures interpolation inequalities
we will need later.

Proposition 4 (Interpolation inequality) Let u, v, t ∈ (0, 2] and θ ∈ (0, 1) with 1
t =

1−θ
u + θ

v
. Then

‖x‖ωt ,t
≤ ‖x‖1−θ

ωu ,u
‖x‖θ

ωv,v
for all x ∈ �uωu

∩ �v
ωv

.

Proof We use Hölder’s inequality with the conjugate exponents u
(1−θ)t and

v
θ t :

‖x‖tωt ,t
=
∑
j∈Λ

(
a2u−2
j r2−u

j |x j |u
) (1−θ)t

u
(
a2v−2
j r2−v

j |x j |v
) θ t

v

≤ ‖x‖(1−θ)t
ωu ,u

‖x‖θ t
ωv,v

.

��
Remark 5 In the setting of Proposition 4 real interpolation theory yields the stronger
statement �tωt

= (�uωu
, �v

ωv
)θ,t with equivalent quasi-norms (see, e.g., [19, Theorem

2]). The stated interpolation inequality is a consequence.

For t ∈ (0, 2) we define a weak version of the space �tωt
.

Definition 6 (Source sets) Let t ∈ (0, 2). We define

kt := {x ∈ R
Λ : ‖x‖kt < ∞}
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with

‖x‖kt := sup
α>0

α

⎛
⎝∑

j∈Λ

a−2
j r2j1{a−2

j r jα<|x j |}

⎞
⎠

1
t

.

Remark 7 The functions ‖ · ‖kt are quasi-norms. The quasi-Banach spaces kt are
weighted Lorentz spaces. They appear as real interpolation spaces between weighted
L p spaces. To be more precise [19, Theorem 2] yields kt = (�uωu

, �v
ωv

)θ,∞ with equiv-
alence of quasi-norms for u, v, t and θ as in Proposition 4.

Remark 8 Remarks 5 and 7 predict an embedding

�tωt
= (�uωu

, �v
ωv

)θ,t ⊂ (�uωu
, �v

ωv
)θ,∞ = kt .

Indeed the Markov-type inequality

αt
∑
j∈Λ

a−2
j r2j1{a−2

j r jα<|x j |} ≤
∑
j∈Λ

a2t−2
j r2−t

j |x j |t = ‖x‖tωt ,t

proves ‖ · ‖kt ≤ ‖·‖ωt ,t
.

For a j = r j = 1 we obtain the weak �p-spaces kt = �t,∞ that appear in nonlinear
approximation theory (see e.g. [8,10]).

We finish this section by defining a specific nonlinear thresholding procedure
depending on r and a whose approximation theory is characterized by the spaces
kt . This characterization is the core for the proofs in the following chapters. The state-
ment is [10, Theorem 7.1] for weighted sequence space. For sake of completeness we
present an elementary proof based on a partition trick that is perceivable in the proof
of [10, Theorem 4.2].

Let α > 0. We consider the map

Tα : RΛ → R
Λ by Tα(x) j :=

{
x j if a−2

j r jα < |x j |
0 else

.

Note that

α2
∑
j∈Λ

a−2
j r2j1{a−2

j r jα<|x j |} ≤ ‖Tα(x)‖2a,2 ≤ ‖x‖2a,2 .

If a jr
−1
j is bounded above, then a−2

j r2j is bounded away from zero. Hence, in this case

we see that the set of j ∈ Λ with a−2
j r jα < |x j | is finite, i.e. Tα(x) has only finitely

many nonvanishing coefficients whenever x ∈ �2a .
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Lemma 9 (Approximation rates for Tα) Let 0 < t < p ≤ 2 and x ∈ R
Λ. Then x ∈ kt

if and only if γ (x) := supα>0 α
t−p
p ‖x − Tα(x)‖ωp,p

< ∞.
More precisely we show bounds

γ (x) ≤ 2
(
2p−t − 1

)− 1
p ‖x‖

t
p
kt

and ‖x‖kt ≤ 2
p
t (2t − 1)−

1
t γ (x)

p
t .

Proof We use a partitioning to estimate

‖x − Tα(x)‖p
ωp,p =

∑
j∈Λ

a2p−2
j r2−p

j |x j |p1{|x j |≤a−2
j r jα}

=
∞∑
k=0

∑
j∈Λ

a2p−2
j r2−p

j |x j |p1{a−2
j r j2

−(k+1)α<|x j |≤a−2
j r j2

−kα}

≤ α p
∞∑
k=0

2−pk
∑
j∈Λ

a−2
j r2j1{a−2

j r j2
−(k+1)α<|x j |}

≤ α p−t‖x‖tkt 2t
∞∑
k=0

(2t−p)k

= α p−t2p
(
2p−t − 1

)−1 ‖x‖tkt .

A similar estimation yields the second inequality:

∑
j∈Λ

a−2
j r2j1{a−2

j r jα<|x j |} =
∞∑
k=0

∑
j∈Λ

a−2
j r2j1{a−2

j r j2kα<|x j |≤a−2
j r j2k+1α}

≤ α−p
∞∑
k=0

2−kp
∑
j∈Λ

a2p−2
j r2−p

j |x j |p1{|x j |≤a−2
j r j2

k+1α}

= α−p
∞∑
k=0

2−kp
∥∥x − T2k+1α(x)

∥∥p
ωp,p

≤ α−tγ (x)p2p−t
∞∑
k=0

(2−t )k

= α−tγ (x)p2p
(
2t − 1

)−1
.

��
Corollary 10 Assume a jr

−1
j is bounded from above. Let 0 < t < p ≤ 2. Then kt ⊂

�
p
ωp

. More precisely, there is a constant M > 0 depending on t, p and sup j∈Λ a jr
−1
j

such that ‖·‖ωp,p
≤ M‖ · ‖kt .
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Proof Let x ∈ kt . The assumption implies the existence of a constant c > 0 with
c ≤ a−2

j r2j for all j ∈ Λ. Let α > 0. Then

c
∑
j∈Λ

1{a−2
j r jα<|x j |} ≤

∑
j∈Λ

a−2
j r2j1{a−2

j r jα<|x j |} ≤ ‖x‖tktα−t .

Inserting α := 2‖x‖kt c− 1
t implies a−2

j r jα ≥ |x j | for all j ∈ Λ. Hence, Tα(x) = 0.

With C = 2
(
2p−t − 1

)− 1
p Lemma 9 yields

‖x‖ωp,p
= ‖x − Tα(x)‖ωp,p

≤ C‖x‖
t
p
kt

α
p−t
p = 2

p−t
p Cc

t−p
tp ‖x‖kt .

��

Remark 11 (Connection to best N-term approximation) For better understanding of
the source sets we sketch another characterization of kt . For z ∈ R

Λ we set S(x) :=∑
j∈Λ a−2

j r2j1{z j �=0}. Note that for a j = r j = 1 we simply have S(x) = #supp(x).
Then for N > 0 one defines the best approximation error by

σN (x) := inf
{‖x − z‖a,2 : S(z) ≤ N

}
.

Using arguments similar to those in the proof of Lemma 22 one can show that for

t ∈ (0, 2) we have x ∈ kt if and only if the error scales like σN (x) = O(N
1
2− 1

t ).

4 Convergence rates via variational source conditions

We prove rates of convergence for the regularization scheme (1) based on variational
source conditions. The latter are nessecary and often sufficient conditions for rates of
convergence for Tikhonov regularization and other regularization methods [13,25,31].
For �1-norms these conditions are typically of the form

β

∥∥∥x† − x
∥∥∥
r ,1

+
∥∥∥x†

∥∥∥
r ,1

− ‖x‖r ,1 ≤ ψ
(
‖F(x) − F(x†)‖2

Y

)
for all x ∈ DF ∩ �1r

(9)

with β ∈ [0, 1] and ψ : [0,∞) → [0,∞) a concave, stricly increasing function
with ψ(0) = 0. The common starting point of verifications of (9) in the references
[4,15,16,24], which have already been discussed in the introduction, is a splitting of
the left hand side in (9) into two summands according to a partition of the index set
into low level and high level indices. The key difference to our verification in [24] is
that this partition will be chosen adaptively to x† below. This possibility is already
mentioned, but not further exploited in [18, Remark 2.4] and [15, Chapter 5].
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4.1 Variational source conditions

We start with a Bernstein-type inequality.

Lemma 12 (Bernstein inequality) Let t ∈ (0, 2), x† ∈ kt and α > 0. We consider

Λα := { j ∈ Λ : a−2
j r jα < |x†j |}

and the coordinate projection Pα : RΛ → R
Λ onto Λα given by (Pαx) j := x j if

j ∈ Λα and (Pαx) j := 0 else. Then

‖Pαx‖r ,1 ≤ ‖x†‖
t
2
kt

α− t
2 ‖x‖a,2 for all x ∈ �2a .

Proof Using the Cauchy–Schwarz inequality we obtain

‖Pαx‖r ,1 =
∑
j∈Λ

(
a−1
j r j1{a−2

j r jα<|x†j |}

)(
a j |x j |

)

≤
⎛
⎝∑

j∈Λ

a−2
j r2j1{a−2

j r jα<|x†j |}

⎞
⎠

1
2
⎛
⎝∑

j∈Λ

a2j |x j |2
⎞
⎠

1
2

≤ ‖x†‖
t
2
kt

α− t
2 ‖x‖a,2 .

��
The following lemmacharacterizes variational source conditions (9) for the embedding
operator �1r ↪→ �2a (if a jr

−1
j → 0) and power-type functions ψ with β = 1 and β = 0

in terms of the weak sequence spaces kt in Definition 6:

Lemma 13 (Variational source condition for embedding operator) Assume x† ∈ �1r
and t ∈ (0, 1). The following statements are equivalent:

(i) x† ∈ kt .
(ii) There exist a constant K > 0 such that

∥∥∥x† − x
∥∥∥
r ,1

+
∥∥∥x†

∥∥∥
r ,1

− ‖x‖r ,1 ≤ K
∥∥∥x† − x

∥∥∥
2−2t
2−t

a,2
(10)

for all x ∈ �1r .

(iii) There exist a constant K > 0 such that

∥∥∥x†
∥∥∥
r ,1

− ‖x‖r ,1 ≤ K
∥∥∥x† − x

∥∥∥
2−2t
2−t

a,2

for all x ∈ �1r with |x j | ≤ |x†j | for all j ∈ Λ.
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More precisely, (i) implies (ii) with K = (2 + 4(21−t − 1)−1)‖x†‖
t

2−t
kt

and (iii) yields

the bound ‖x†‖kt ≤ K
2−t
t .

Proof First we assume (i). For α > 0 we consider Pα as defined in Lemma 12.
Let x ∈ D ∩ �1r . By splitting all three norm term in the left hand side of (10) by
‖·‖r ,1 = ‖Pα·‖r ,1 + ‖(I − Pα)·‖r ,1 and using the triangle equality for the (I − Pα)

terms and the reverse triangle inequality for the Pα terms (see [4, Lemma 5.1]) we
obtain∥∥∥x† − x

∥∥∥
r ,1

+
∥∥∥x†

∥∥∥
r ,1

− ‖x‖r ,1 ≤ 2
∥∥∥Pα(x† − x)

∥∥∥
r ,1

+ 2
∥∥∥(I − Pα)x†

∥∥∥
r ,1

. (11)

We use Lemma 12 to handle the first summand

∥∥∥Pα(x† − x)
∥∥∥
r ,1

≤ ‖x†‖
t
2
kt

α− t
2

∥∥∥x† − x
∥∥∥
a,2

.

Note that Pαx† = Tα(x†). Hence, Lemma 9 yields
∥∥∥(I − Pα)x†

∥∥∥
r ,1

=
∥∥∥x† − Tα(x†)

∥∥∥
r ,1

≤ 2(21−t − 1)−1‖x†‖tktα1−t .

Inserting the last two inequalities into (11) and choosing

α =
∥∥∥x† − x

∥∥∥
2

2−t

a,2
‖x†‖− t

2−t
kt

we get (i i).
Obviously (ii) implies (iii) as

∥∥x† − x
∥∥
r ,1 ≥ 0.

It remains to show that (iii) implies (i). Let α > 0. We define

x j :=

⎧⎪⎨
⎪⎩

x†j if |x†j | ≤ a−2
j r jα

x†j − a−2
j r jα if x†j > a−2

j r jα

x†j + a−2
j r jα if x†j < −a−2

j r jα

.

Then |x j | ≤ |x†j | for all j ∈ Λ. Hence, x ∈ �1r . We estimate

α
∑
j∈Λ

a−2
j r2j1{a−2

j r jα<|x†j |} =
∥∥∥x†

∥∥∥
r ,1

− ‖x‖r ,1 ≤ K
∥∥∥x† − x

∥∥∥
2−2t
2−t

a,2

= K

⎛
⎝∑

j∈Λ

a2j (a
−2
j r jα)21{a−2

j r jα<|x†j |}

⎞
⎠

1−t
2−t

= Kα
2−2t
2−t

⎛
⎝∑

j∈Λ

a−2
j r2j1{a−2

j r jα<|x†j |}

⎞
⎠

1−t
2−t

.
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Rearranging terms in this inequality yields

∑
j∈Λ

a−2
j r2j1{a−2

j r jα<|x†j |} ≤ K 2−tα−t .

Hence, ‖x†‖kt ≤ K
2−t
t . ��

Theorem 14 (Variational source condition) Suppose Assumption 3 holds true and let
t ∈ (0, 1), � > 0 and x† ∈ D. If ‖x‖kt ≤ � then the variational source condition

∥∥∥x† − x
∥∥∥
r ,1

+
∥∥∥x†

∥∥∥
r ,1

− ‖x‖r ,1 ≤ Cvsc‖F(x†) − F(x)‖
2−2t
2−t
Y

for all x ∈ DF ∩ �r1 (12)

holds true with Cvsc = (2 + 4(21−t − 1)−1)L
2−2t
2−t �

t
2−t .

If in addition Assumption 4 holds true, then (12) implies ‖x‖kt ≤ L
2−2t
t C

2−t
t

vsc .

Proof Corollary 10 implies x ∈ D∩�1r . The first claim follows from the first inequality
in Assumption 3 together with Lemma 13. The second inequality in Assumption 3

together with Assumption 4 imply statement (iii) in Lemma 13 with K = L
2−2t
2−t Cvsc.

Therefore, Lemma 13 yields the second claim. ��

4.2 Rates of convergence

In this section we formulate and discuss bounds on the reconstruction error which
follow from the variational source condition (12) by general variational regularization
theory (see, e.g., [24, Prop. 4.2, Thm. 4.3] or [15, Prop.13., Prop.14.]).

Theorem 15 (Convergence rates)SupposeAssumption3holds true. Let t ∈ (0, 1),� >

0 and x† ∈ DF with ‖x†‖kt ≤ �. Let δ ≥ 0 and gobs ∈ Y satisfy ‖gobs−F(x†)‖Y ≤ δ.

1. (error splitting) Every minimizer x̂α of (1) satisfies

∥∥∥x† − x̂α

∥∥∥
r ,1

≤ Ce

(
δ2α−1 + �tα1−t

)
and (13)

∥∥∥x† − x̂α

∥∥∥
a,2

≤ Ce

(
δ + �

t
2 α

2−t
2

)
. (14)

for all α > 0 with a constant Ce depending only on t and L.
2. (rates with a-priori choice of α) If δ > 0 and α is chosen such that

c1�
t

t−2 δ
2

2−t ≤ α ≤ c2�
t

t−2 δ
2

2−t for 0 < c1 < c2,

then every minimizer x̂α of (1) satisfies

∥∥∥x† − x̂α

∥∥∥
r ,1

≤ Cp�
t

2−t δ
2−2t
2−t and (15)
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∥∥∥x† − x̂α

∥∥∥
a,2

≤ Cpδ. (16)

with a constant Cp depending only on c1, c2, t and L.
3. (rates with discrepancy principle) Let 1 ≤ τ1 ≤ τ2. If x̂α is a minimizer of (1)

with τ1δ ≤ ‖F(x̂α) − gobs‖Y ≤ τ2δ, then

∥∥∥x† − x̂α

∥∥∥
r ,1

≤ Cd�
t

2−t δ
2−2t
2−t and (17)

∥∥∥x† − x̂α

∥∥∥
a,2

≤ Cdδ. (18)

Here Cd > 0 denotes a constant depending only on τ2, t and L.

We discuss our results in the following series of remarks:

Remark 16 Theproof ofTheorem15makes no use of the second inequality inAssump-
tion 3.

Remark 17 (Error bounds in intermediate norms) Invoking the interpolation inequal-
ities given in Proposition 4 allows to combine the bounds in the norms ‖·‖r ,1 and
‖·‖a,2 to bounds in ‖·‖ωp,p

for p ∈ (t, 1]. In the setting of Theorem 15(2.) or (3.) we
obtain

∥∥∥x† − x̂α

∥∥∥
ωp,p

≤ C�
t
p
2−p
2−t δ

2
p

p−t
2−t (19)

with C = Cp or C = Cd respectively.

Remark 18 (Limit t → 1) Let us consider the limiting case t = 1 by assuming only
x† ∈ �1r ∩ DF . Then it is well known, that the parameter choice α ∼ δ2 as well the

discrepancy principle as in Theorem 15.3. lead to bounds
∥∥x† − x̂α

∥∥
r ,1 ≤ C

∥∥x†∥∥r ,1
and ‖F(x†) − F(x̂α)‖Y ≤ Cδ. As above, Assumption 3 allows to transfer to a bound∥∥x† − x̂α

∥∥
a,2 ≤ C̃δ. Interpolating as in the last remark yields

∥∥∥x† − x̂α

∥∥∥
ωp,p

≤ C̃
∥∥∥x†

∥∥∥
2−p
p

r ,1
δ
2p−2

p .

Remark 19 (Limit t → 0) Note that in the limit t → 0 the convergence rates get arbi-
trarily close to the linear convergence rateO(δ), i.e., in contrast to standard quadratic
Tikhonov regularization in Hilbert spaces no saturation effect occurs. This is also the
reason why we always obtain optimal rates with the discrepancy principle even for
smooth solutions x†.

As already mentioned in the introduction, the formal limiting rate for t → 0, i.e.
a linear convergence rate in δ occurs if and only if x† is sparse as shown by different
methods in [21].
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We finish this subsection by showing that the convergence rates (15), (17), and (19)
are optimal in a minimax sense.

Proposition 20 (Optimality) Suppose that Assumption 3 holds true. Assume further-
more that there are c0 > 0, q ∈ (0, 1) such that for every η ∈ (0, c0) there is j ∈ Λ

satisfying qη ≤ a jr
−1
j ≤ η. Let p ∈ (0, 2], t ∈ (0, p) and ρ > 0. Suppose D contains

all x ∈ kt with ‖x‖kt ≤ �. Consider an arbitrary reconstruction method described by
a mapping R : Y → �1r approximating the inverse of F. Then the worst case error
under the a-priori information ‖x†‖kt ≤ � is bounded below by

sup

{∥∥∥R
(
gobs

)
− x†

∥∥∥
ωp,p

:
∥∥∥x†

∥∥∥
kt

≤ ρ, ‖F(x†) − gobs‖Y ≤ δ

}

≥ c�
t
p
2−p
2−t δ

2
p

p−t
2−t . (20)

for all δ ≤ 1
2 L�c

2−t
t

0 with c = q
2p−2t

pt (2L−1)
2
p

p−t
2−t .

Proof It is a well-known fact that the left hand side in (20) is bounded from below by
1
2Ω(2δ, �) with the modulus of continuity

Ω(δ, �) :=
sup

{∥∥∥x (1) − x (2)
∥∥∥

ωp,p
:
∥∥∥x (1)

∥∥∥
kt

,

∥∥∥x (2)
∥∥∥
kt

≤ ρ,

∥∥∥F
(
x (1)

)
− F

(
x (2)

)∥∥∥
Y

≤ δ

}

(see [12, Rem. 3.12], [34, Lemma 2.8]). By Assumption 3 we have

Ω(δ, ρ) ≥ sup{‖x‖ωp,p : ‖x‖kt ≤ ρ, ‖x‖a,2 ≤ 2L−1δ}.

By assumption there exists j0 ∈ Λ such that

q
(
2L−1δ�−1

) t
2−t ≤ a j0r

−1
j0

≤
(
2L−1δ�−1

) t
2−t

.

Choosing x j0 = �a
2−2t
t

j0
r

t−2
t

j0
and x j = 0 if j �= j0 we obtain ‖x‖kt = � and ‖x‖a,2 ≤

2L−1δ and estimate

‖x‖ωp,p
= �

(
a j0r

−1
j0

) 2p−2t
pt ≥ q

2p−2t
pt (2L−1)

2
p

p−t
2−t �

t
p
2−p
2−t δ

2
p

p−t
2−t .

��

Note that forΛ = N the additional assumption in Proposition 20 is satisfied if a jr
−1
j ∼

q̃ j for q̃ ∈ (0, 1) or if a jr
−1
j ∼ j−κ for κ > 0, but violated if a jr

−1
j ∼ exp(− j2).
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4.3 Converse result

As a main result, we now prove that the condition x† ∈ kt is necessary and sufficient
for the Hölder type approximation rate O(α1−t ):

Theorem 21 (Converse result for exact data) Suppose Assumption 3 and 4 hold true.
Let x† ∈ DF ∩ �1r , t ∈ (0, 1), and (xα)α>0 the minimizers of (1) for exact data

gobs = F(x†). Then the following statements are equivalent:

(i) x† ∈ kt .
(ii) There exists a constant C2 > 0 such that

∥∥x† − xα

∥∥
r ,1 ≤ C2α

1−t for all α > 0.

(iii) There exists a constant C3 > 0 such that ‖F(x†) − F(xα)‖Y ≤ C3α
2−t
2 for all

α > 0.

More precisely, we can choose C2 := c‖x†‖tkt , C3 := √
2C2 and bound

‖x†‖kt ≤ cC
2
t
3 with a constant c > 0 that depends on L and t only.

Proof (i) ⇒ (ii): By Theorem 15(1.) for δ = 0.
(ii) ⇒ (iii): As xα is a minimizer of (1) we have

1

2
‖F(x†) − F(xα)‖2

Y
≤ α

(∥∥∥x†
∥∥∥
r ,1

− ‖xα‖r ,1
)

≤ α

∥∥∥x† − xα

∥∥∥
r ,1

≤ C2α
2−t .

Multiplying by 2 and taking square roots on both sides yields (iii).
(iii) ⇒ (i): The strategy is to prove that ‖F(x†) − F(xα)‖Y is an upper bound on∥∥x† − Tα(x†)

∥∥
a,2 up to a constant and a linear change of α and then proceed using

Lemma 9.
As an intermediate step we first consider

zα ∈ argmin
z∈�1r

(
1

2

∥∥∥x† − z
∥∥∥2
a,2

+ α ‖z‖r ,1
)

. (21)

The minimizer can be calculated in each coordinate separately by

(zα) j = argmin
z∈R

(
1

2
a2j |x†j − z|2 + αr j |z|

)

= argmin
z∈R

(
1

2
|x†j − z|2 + αa−2

j r j |z|
)

.

Hence,

(zα) j =

⎧⎪⎪⎨
⎪⎪⎩

x†j − a−2
j r jα if x†j > a−2

j r jα

x†j + a−2
j r jα if x†j < −a−2

j r jα

0 if |x†j | ≤ −a−2
j r jα

.
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Comparing zα with Tα(x†) yields |x†−Tα(x†) j | ≤ |x†j − (zα) j | for all j ∈ Λ. Hence,

we have
∥∥x† − Tα(x†)

∥∥
a,2 ≤ ∥∥x† − zα

∥∥
a,2.

It remains to find a bound on
∥∥x† − zα

∥∥
a,2 in terms of ‖F(x†) − F(xα)‖Y.

Let α > 0, β := 2L2α and zα given by (21). Then

1

2

∥∥∥x† − zα
∥∥∥2
a,2

+ α ‖zα‖r ,1 ≤ 1

2

∥∥∥x† − xβ

∥∥∥2
a,2

+ α
∥∥xβ

∥∥
r ,1 .

Using Assumption 3 and subtracting α ‖zα‖r ,1 yield

1

2

∥∥∥x† − zα
∥∥∥2
a,2

≤ L2

2
‖F(x†) − F(xβ)‖2

Y
+ α

(∥∥xβ

∥∥
r ,1 − ‖zα‖r ,1

)
. (22)

Due to Assumption 4 we have zα ∈ DF . As xβ is a minimizer of (1) we obtain

β
∥∥xβ

∥∥
r ,1 ≤ 1

2
‖F(x†) − F(xβ)‖2

Y
+ β

∥∥xβ

∥∥
r ,1 ≤ 1

2
‖F(x†) − F(zα)‖2

Y
+ β ‖zα‖r ,1 .

Using the other inequality in Assumption 3 and subtracting β ‖zα‖r ,1 and dividing by
β we end up with

∥∥xβ

∥∥
r ,1 − ‖zα‖r ,1 ≤ L2

2β

∥∥∥x† − zα
∥∥∥2
a,2

= 1

4α

∥∥∥x† − zα
∥∥∥2
a,2

.

We insert the last inequality into (22), subtract 1
4

∥∥x† − zα
∥∥2
a,2, multiply by 4 and take

the square root and get
∥∥x† − zα

∥∥
a,2 ≤ √

2L‖F(x) − F(xβ)‖Y. Together with the
first step, the hypothesis (i i i) and the definition of β we achieve

∥∥∥x† − Tα(x†)
∥∥∥
a,2

≤ ‖F(x) − F(xβ)‖Y ≤ (2L2)
3−t
2 C3α

2−t
2 .

Finally, Lemma 9 yields x ∈ kt with ‖x†‖kt ≤ cC
2
t
3 with a constant c that depends

only on t and L . ��

5 Convergence analysis for x† /∈ �1r

We turn to the oversmoothed setting where the unknown solution x† does not admit a
finite penalty value. An important ingredient ofmost variational convergence proofs of
Tikhonov regularization is a comparison of the Tikhonov functional at the minimizer
and at the exact solution. In the oversmoothing case such a comparison is obviously
not useful. As a substitute, one may use a family of approximations of x† at which the
penalty functional is finite. See also [22,23] where this idea is used and the approxima-
tions are called auxiliary elements. Here we will use Tα(x†) for this purpose. We first
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show that the spaces kt can not only be characterized in terms of the approximation
errors ‖(I − Tα)(·)‖ωp,p

as in Lemma 9, but also in terms of ‖Tα·‖r ,1:

Lemma 22 (Bounds on ‖Tα·‖r ,1 .) Let t ∈ (1, 2) and x ∈ R
Λ. Then x ∈ kt if and only

if η(x) := supα>0 αt−1 ‖Tα(x)‖r ,1 < ∞.
More precisely, we can bound

η(x) ≤ 2(1 − 21−t )−1‖x‖tkt and ‖x‖kt ≤ η(x)
1
t .

Proof As in the proof of Lemma 9 we use a partitioning. Assuming x ∈ kt we obtain

‖Tα(x)‖r ,1 =
∑
j∈Λ

r j |x j |1{a−2
j r jα<|x j |}

=
∞∑
k=0

∑
j∈Λ

r j |x j |1{a−2
j r j2

kα<|x j |≤a−2
j r j2

k+1α}

≤ α

∞∑
k=0

2k+1
∑
j∈Λ

a−2
j r2j1{a−2

j r j2kα<|x j |}

≤ ‖x‖tktα1−t
∞∑
k=0

2k+12−kt

= 2(1 − 21−t )−1‖x‖tktα1−t .

Vice versa we estimate

∑
j∈Λ

a−2
j r2j1{a−2

j r jα<|x j |} ≤ α−1
∑
j∈Λ

r j |x j |1{a−2
j r jα≤|x j |}

= α−1 ‖Tα(x)‖r ,1 ≤ η(x)α−t .

Hence, ‖x‖kt ≤ η(x)
1
t . ��

The following lemma provides a bound on the minimal value of the
Tikhonov functional. From this we deduce bounds on the distance between Tα(x†)
and the minimizers of (1) in ‖·‖a,2 and in ‖·‖r ,1 .

Lemma 23 (Preparatory bounds) Let t ∈ (1, 2), δ ≥ 0 and � > 0. Suppose 3 and 4
hold true. Assume x† ∈ DF with ‖x†‖kt ≤ � and gobs ∈ Ywith ‖gobs−F(x†)‖Y ≤ δ.

Then there exist constants Ct , Ca and Cr depending only on t and L such that

1

2
‖gobs − F(x̂α)‖2

Y
+ α

∥∥x̂α

∥∥
r ,1 ≤ δ2 + Ct�

tα2−t , (23)
∥∥∥Tα(x†) − x̂α

∥∥∥2
a,2

≤ 8L2δ2 + Ca�
tα2−t and (24)
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∥∥∥Tα(x†) − x̂α

∥∥∥
r ,1

≤ δ2α−1 + Cr�
tα1−t . (25)

for all α > 0 and x̂α minimizers of (1).

Proof Due to Assumption 4 we have Tα(x†) ∈ D. Therefore, we may insert Tα(x†)
into (1) to start with

1

2
‖gobs − F(x̂α)‖2

Y
+ α

∥∥x̂α

∥∥
r ,1 ≤ 1

2
‖gobs − F(Tα(x†))‖2

Y
+ α

∥∥∥Tα(x†)
∥∥∥
r ,1

. (26)

Lemma 22 provides the bound α
∥∥Tα(x†)

∥∥
r ,1 ≤ C1�

tα2−t for the second summand
on the right hand side with a constant C1 depending only on t .

In the following we will estimate the first summand on the right hand side. Let
ε > 0. By the second inequality in Assumption 3 and Lemma 9 we obtain

1

2
‖gobs − F(Tα(x†))‖2

Y
≤ ‖gobs − F(x†)‖2

Y
+ ‖F(x†) − F(Tα(x†))‖2

Y

≤ δ2 + L2
∥∥∥x† − Tα(x†)

∥∥∥2
a,2

≤ δ2 + C2�
tα2−t

(27)

with a constant C2 depending on L and t . Inserting into (26) yields (23) with Ct :=
C1 + C2.

We use (27), the first inequality in Assumption 3 and neglect the penalty term in
(23) to estimate

∥∥∥Tα(x†) − x̂α

∥∥∥2
a,2

≤ L2‖F(Tα(x†)) − F(x̂α)‖2
Y

≤ 2L2‖gobs − F(Tα(x†))‖2
Y

+ 2L2‖gobs − F(x̂α)‖2
Y

≤ 8L2δ2 + Ca�
tα2−t

with Ca := 4L2(C2 + Ct ).
Lemma 22 provides the bound

∥∥Tα(x†)
∥∥
r ,1 ≤ C3�

tα1−t with C3 depending only
on t . Neglecting the data fidelity term in (23) yields

∥∥∥Tα(x†) − x̂α

∥∥∥
r ,1

≤
∥∥∥Tα(x†)

∥∥∥
r ,1

+ ∥∥x̂α

∥∥
r ,1 ≤ δ2α−1 + Cr�

tα1−t (28)

with Cr := Ct + C3.

��
The next result is a converse type result for image space bounds with exact data. In
particular, we see that Hölder type image space error bounds are determined by Hölder
type bounds on the whole Tikhonov functional at the minimizers and vice versa.
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Theorem 24 (Converse result for exact data) Suppose Assumption 3 and 4 hold true.
Let t ∈ (1, 2), x† ∈ DF and (xα)α>0 a choice of minimizers in (1) with gobs = F(x†).
The following statements are equivalent:

(i) x† ∈ kt .
(ii) There exists a constant C2 > 0 such that 1

2‖F(x) − F(xα)‖2
Y

+ α ‖xα‖r ,1 ≤
C2α

2−t .

(iii) There exists a constant C3 such that ‖F(x) − F(xα)‖Y ≤ C3α
2−t
2 .

More precisely, we can choose C2 = Ct‖x†‖tkt with Ct from Lemma 23, C3 = √
2C2

and bound ‖x†‖kt ≤ cC
2
t
3 with a constant c that depends only on t and L.

Proof (i) ⇒ (ii): Use (23) with δ = 0.
(ii) ⇒ (iii): This implication follows immediately by neglecting the penalty term,

multiplying by 2 and taking the square root of the inequality in the hypothesis.
(iii) ⇒ (i): The same argument as in the proof of the implication (iii) ⇒ (i) in
Theorem 21 applies.

��
The following theorem shows that we obtain order optimal convergence rates on kt

also in the case of oversmoothing (see Proposition 20).

Theorem 25 (Rates of convergence) Suppose Assumptions 3 and 4 hold true. Let
t ∈ (1, 2), p ∈ (t, 2] and � > 0. Assume x† ∈ DF with ‖x†‖kt ≤ �.

1. (bias bound) Let α > 0. For exact data gobs = F(x†) every minimizer xα of (1)
satisfies

∥∥∥x† − xα

∥∥∥
ωp,p

≤ Cb�
t
p α

p−t
p

with a constant Cb depending only on p, t and L.
2. (rate with a-priori choice of α) Let δ > 0, gobs ∈ Y satisfy ‖gobs − F(x†)‖Y ≤ δ

and 0 < c1 < c2. If α is chosen such that

c1�
t

t−2 δ
2

2−t ≤ α ≤ c2�
t

t−2 δ
2

2−t ,

then every minimizer x̂α of (1) satisfies

∥∥∥x̂α − x†
∥∥∥

ωp,p
≤ Cc�

t(2−p)
p(2−t) δ

2(p−t)
p(2−t)

with a constant Cc depending only on c1, c2, p, t and L.
3. (rate with discrepancy principle) Let δ > 0 and gobs ∈ Y satisfy ‖gobs −

F(x†)‖Y ≤ δ and 1 < τ1 ≤ τ2. If x̂α is a minimizer of (1) with τ1δ ≤
‖F(x̂α) − gobs‖Y ≤ τ2δ, then
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∥∥∥x̂α − x†
∥∥∥

ωp,p
≤ Cd�

t(2−p)
p(2−t) δ

2(p−t)
p(2−t) .

Here Cd > 0 denotes a constant depending only on τ1, τ2, p, t and L.

Proof 1. By Proposition 4 we have ‖·‖ωp,p
≤ ‖·‖

2p−2
p

a,2 ‖·‖
2−p
p

r ,1 . With this we interpo-
late between (24) and (25) with δ = 0 to obtain

∥∥∥Tα(x†) − xα

∥∥∥
ωp,p

≤ K1�
t
p α

p−t
p

with K1 := C
p−1
p

a C
2−p
p

r . By Lemma 9 there is a constant K2 depending only on p
and t such that

∥∥∥x† − Tα(x†)
∥∥∥

ωp,p
≤ K2�

t
p α

p−t
p . (29)

Hence

∥∥∥x† − xα

∥∥∥
ωp,p

≤
∥∥∥x† − Tα(x†)

∥∥∥
ωp,p

+
∥∥∥Tα(x†) − xα

∥∥∥
ωp,p

≤ (K1 + K2)�
t
p α

p−t
p .

2. Inserting the parameter choice rule into (24) and (25) yields

∥∥∥Tα(x†) − x̂α

∥∥∥
a,2

≤ (8L2 + Cac
2−t
2 )

1
2 δ and

∥∥∥Tα(x†) − x̂α

∥∥∥
r ,1

≤ (c−1
1 + Crc

1−t
1 )�

t
2−t δ

2(1−t)
2−t .

As above, we interpolate these two inequalities to obtain

∥∥∥Tα(x†) − x̂α

∥∥∥
ωp,p

≤ K3�
t(2−p)
p(2−t) δ

2(p−t)
p(2−t) .

with K3 := (8L2+Cac
2−t
2 )

p−1
p (c−1

1 +Crc
1−t
1 )

2−p
p . We insert the parameter choice

into (29) and get
∥∥x† − Tα(x†)

∥∥
ωp,p

≤ K2c
p−t
p

2 �
t(2−p)
p(2−t) δ

2p−2t
p(2−t) . Applying the trian-

gle inequality as in part 1 yields the claim.

3. Let ε = τ 21 −1
2 . Then ε > 0. By Lemma 9 there exists a constant K4 depending only

on t such that
∥∥x† − Tβ(x†)

∥∥2
a,2 ≤ K4�

tβ2−t for all β > 0. We choose

β := (δ2ε(1 + ε−1)−1L−2K−1
4 �−t )

1
2−t .
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Then

∥∥∥x† − Tβ(x†)
∥∥∥2
a,2

≤ ε(1 + ε−1)−1L−2δ2. (30)

We make use of the elementary inequality (a + b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2

which is proven by expanding the square and applying Young’s inequality on the
mixed term. Together with the second inequality in Assumption 3 we estimate

1

2
‖gobs − F(Tβ(x†))‖2

Y

≤ 1

2
(1 + ε)‖gobs − F(x†)‖2

Y
+ 1

2
(1 + ε−1)L2

∥∥∥x† − Tβ(x†)
∥∥∥2
a,2

≤ 1

2
(1 + 2ε)δ2 = 1

2
τ 21 δ2.

By inserting Tβ(x†) into the Tikhonov functional we end up with

1

2
τ 21 δ2 + α

∥∥x̂α

∥∥
r ,1 ≤ 1

2
‖gobs − F(x̂α)‖2

Y
+ α

∥∥x̂α

∥∥
r ,1

≤ 1

2
‖gobs − F(Tβ(x†))‖2

Y
+ α

∥∥∥Tβ(x†)
∥∥∥
r ,1

≤ 1

2
τ 21 δ2 + α

∥∥∥Tβ(x†)
∥∥∥
r ,1

.

Hence,
∥∥x̂α

∥∥
r ,1 ≤ ∥∥Tβ(x†)

∥∥
r ,1. Together with Lemma 22 we obtain the bound

∥∥∥Tβ(x†) − x̂α

∥∥∥
r ,1

≤ 2
∥∥∥Tβ(x†)

∥∥∥
r ,1

≤ K5�
t

2−t δ
2−2t
2−t

with a constant K5 that depends only on τ , t and L .
Using (30) and the first inequality in Assumption 3 we estimate

∥∥∥Tβ(x†) − x̂α

∥∥∥
a,2

≤
∥∥∥x† − Tβ(x†)

∥∥∥
a,2

+
∥∥∥x† − x̂α

∥∥∥
a,2

≤
∥∥∥x† − Tβ(x†)

∥∥∥
a,2

+ L‖F(x†) − F(x̂α)‖Y
≤
∥∥∥x† − Tβ(x†)

∥∥∥
a,2

+ L‖gobs − F(x†)‖Y + L‖gobs − F(x̂α)‖Y
≤ K6δ

123



364 P. Miller, T. Hohage

with K6 = ε
1
2 (1 + ε−1)− 1

2 L−1 + L + Lτ2. As above, interpolation yields

∥∥∥Tβ(x†) − x̂α

∥∥∥
ωp,p

≤ K7�
t(2−p)
p(2−t) δ

2p−2t
p(2−t)

with K7 := K
2p−2

p
6 K

2−p
p

5 . Finally, Lemma 9 together with the choice of β implies∥∥x† − Tβ(x†)
∥∥

ωp,p
≤ K8�

t(2−p)
p(2−t) δ

2p−2t
p(2−t) for a constant K8 that depends only on τ ,

p, t and L and we conclude

∥∥∥x† − x̂α

∥∥∥
ωp,p

≤
∥∥∥x† − Tβ(x†)

∥∥∥
ωp,p

+
∥∥∥Tβ(x†) − x̂α

∥∥∥
ωp,p

≤ (K8 + K7)�
t(2−p)
p(2−t) δ

2p−2t
p(2−t) .

��

6 Wavelet regularization with Besov spaces penalties

In the sequel we apply our results developed in the general sequence space setting to
obtain obtain convergence rates for wavelet regularization with a Besov r , 1, 1-norm
penalty.

Suppose Assumptions and 1 and 2 and Eqs. (7) hold true. Then F := G ◦S satisfies
Assumption 3 on DF := S−1(DG) ⊆ �2a = b−a

2,2 as shown in Sect. 2.

Recall that a( j,k) = 2− ja and r ( j,k) = 2 j(r− d
2 ). Let s ∈ [−a,∞). With

ts := 2a + 2r

s + 2a + r
(31)

we obtain bsts ,ts = �
ts
ωts

with equal norm for ωts given by (8). For s ∈ (0,∞) we have
ts ∈ (0, 1).

The following lemma defines and characterizes a function space Kts as the coun-
terpart of kts for s > 0. As spaces bsp,q and Bs

p,q(Ω) with p < 1 are involved let us
first argue that within the scale bsts ,ts for s > 0 the extra condition σts − smax < s in

Assumption 1 is always satisfied if we assume a+r > d
2 . To this end let 0 < s < smax.

Then

σts = d

(
1

ts
− 1

)
= d(s − r)

2a + 2r
< s − r ≤ s < smax.

Hence, σts − smax < 0 < s.

Lemma 26 (Maximal approximation spaces Kts ) Let a, s > 0 and suppose that
Assumption 1 and Eqs. (7a) and (7b) holds true. We define

Kts := S(kts ) with ‖ f ‖Kts
:= ‖S−1x‖kts
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with ts given by (31). Let s < u < smax. The space Kts coincides with the real
interpolation space

Kts = (B−a
2,2(Ω), Bu

tu ,tu (Ω))θ,∞, θ = a + s

u + a
. (32)

with equivalent quasi-norms, and the following inclusions hold true with continuous
embeddings:

Bs
ts ,ts (Ω) ⊂ Kts ⊂ Bs

tu ,∞(Ω). (33)

Hence,

Kts ⊂
⋂
t<ts

Bs
t,∞(Ω).

Proof For s < u < smax we have kts = (b−a
2,2, b

u
tu ,tu )θ,∞ with equivalent quasi-norms

(see Remark 7). By functor properties of real interpolation (see [3, Thm. 3.1.2]) this
translates to (32). As discussed above, we use a + r > d

2 (see (7a)) to see that
u ∈ (σts − smax, s) such that S : butu ,tu → Bu

tu ,tu (Ω) is well defined an bijective. By
Remark 8 we have bsts ,ts ⊂ kts with continuous embedding, implying the first inclusion

in (33). Moreover, we have tu ≤ 2a+2r
2a+r ≤ 2. Hence, the continuous embeddings

B−a
2,2(Ω) ⊂ B−a

2,∞(Ω) ⊂ B−a
tu ,∞(Ω) (see [33, 3.2.4(1), 3.3.1(9)]). Together with (32)

and the interpolation result

Bs
tu ,∞(Ω) = (B−a

tu ,∞(Ω), Bu
tu ,∞(Ω))θ,∞

(see [33, 3.3.6 (9)]) we obtain the second inclusion in (33) using [33, 2.4.1 Rem. 4].
Finally, the last statement follows from tu → ts for u ↘ s and again [33, 3.3.1(9)]. ��
Theorem 27 (Convergence rates) Suppose Assumptions 2 and 1 hold true with d

2 −r <

a < smax and br1,1 ∩ S−1(DG) �= ∅. Let 0 < s < smax with s �= r , � > 0 and ‖ · ‖L p

denote the usual norm on L p(Ω) for 1 ≤ p := 2a+2r
2a+r . Assume f † ∈ DG with

‖ f †‖Kts
≤ �. If s < r assume that DF := S−1(DG) satisfies Assumption 4. Let

δ > 0 and gobs ∈ Y satisfy ‖gobs − F( f †)‖Y ≤ δ.

1. (rate with a-priori choice of α) Let 0 < c1 < c2. If α is chosen such that

c1�
− a+r

s+a δ
s+2a+r
s+a ≤ α ≤ c2�

− a+r
s+a δ

s+2a+r
s+a ,

then every f̂α given by (4) satisfies

∥∥∥ f † − f̂α
∥∥∥
L p

≤ Ca�
a

s+a δ
s

s+a .
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2. (rate with discrepancy principle) Let 1 < τ1 ≤ τ2. If f̂α is given by (4) with

τ1δ ≤ ‖F(x̂α) − gobs‖Y ≤ τ2δ,

then
∥∥∥ f † − f̂α

∥∥∥
L p

≤ Cd�
a

s+a δ
s

s+a .

Here Ca and Cd are constants independent of δ, � and f †.

Proof If s > r (hence ts ∈ (0, 1)) we refer to Remark 17. If s < r (hence t ∈ (1, 2))
to Theorem 25 for the bound

‖x† − x̂α‖0,p,p =
∥∥∥x† − x̂α

∥∥∥
ωp,p

≤ C�
ts
p

2−p
2−ts δ

2
p

p−ts
2−ts = C�

a
s+a δ

s
s+a (34)

for the a-priori choice α ∼ �
ts

ts−2 δ
2

2−ts = �− a+r
s+a δ

s+2a+r
s+a as well as for the discrepancy

principle. With Assumption 1 and by the well known embedding B0
p,p(Ω) ⊂ L p we

obtain
∥∥∥ f † − f̂α

∥∥∥
L p

≤ c1‖ f † − f̂α‖B0
p,p

≤ c1c2‖x† − x̂α‖0,p,p.

Together with (34) this proves the result. ��
Remark 28 In view of Remark 18 we obtain the same results for the case s = r by
replacing Kts by Br

1,1(Ω).

Theorem 29 Let r = 0. Suppose Assumptions 2, 1 and 4 hold true with smax > a > d
2 .

Let f † ∈ DG ∩ B0
1,1(Ω), s > 0 and ( fα)α>0 the minimizers of (4) for exact data

gobs = F( f †). The following statements are equivalent:

(i) f † ∈ Kts .

(ii) There exists a constant C2 > 0 such that ‖ f † − fα‖B0
1,1

≤ C2α
s

s+2a for all α > 0.

(iii) There exists a constant C3 > 0 such that ‖F( f †) − F( fα)‖Y ≤ C3α
s+a
s+2a for all

α > 0.

More precisely, we can choose C2 := c‖ f †‖tsKt
, C3 := cC

1
2
2 and bound

‖ f †‖Kt ≤ cC
2
ts
3 with a constant c > 0 that depends only on L and t and operator

norms of S and S−1.

Proof Statement (i) is equivalent to x† = S−1 f † ∈ kt and statement (ii) is equivalent
to a bound ‖x − xα‖0,1,1 ≤ C̃2α

s
s+2a . Hence, Theorem 21 yields the result. ��

Example 30 We consider functions f jump, f kink : [0, 1] → R which are C∞ every-
where with uniform bounds on all derivatives except at a finite number of points in
[0, 1], and f kink ∈ C0,1([0, 1]). In other words, f jump, f kink are piecewise smooth,
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f jump has a finite number of jumps, and f kink has a finite number of kinks. Then for
p ∈ (0,∞), q ∈ (0,∞], and s ∈ R with s > σp with σp as in Assumption 1 we have

f jump ∈ Bs
p,q((0, 1)) ⇔ s < 1

p , f kink ∈ Bs
p,q((0, 1)) ⇔ s < 1 + 1

p

if q < ∞ and

f jump ∈ Bs
p,∞((0, 1)) ⇔ s ≤ 1

p , f kink ∈ Bs
p,∞((0, 1)) ⇔ s ≤ 1 + 1

p .

To see this, we can use the classical definition of Besov spaces in terms of the
modulus of continuity ‖Δm

h f ‖L p where (Δh f )(x) := f (x + h) − f (x) and
Δm+1

h f := Δh(Δ
m
h f ), see, e.g., [32, Eq. (1.23)]. Elementary computations show

that ‖Δm
h f jump‖L p decays of the order h1/p as h ↘ 0 if m ≥ 1/p, and ‖Δm

h f kink‖L p

decays as h1/p+1 if m ≥ 2/p. Therefore, as ts < 1 describing the regularity of f jump

or f kink in the scale Bs
ts ,ts (Ω) ⊂ Kts as in Theorems 27 and 29 allows for a larger

value of s and hence a faster convergence rate than describing the regularity of these
functions in the Besov spaces Bs

1,∞ as in [24]. In other words, the previous analy-
sis in [24] provided only suboptimal rates of convergence for this important class of
functions. This can also be observed in numerical simulations we provide below.

Note that the largest set on which a given rate of convergence is attained can be
achieved by setting r = 0 (i.e. no oversmoothing). This is in contrast to the Hilbert
space case where oversmoothing allows to raise the finite qualification of Tikhonov
regularization. On the other hand for larger r convergence can be guaranteed in a
stronger L p-norm.

7 Numerical results

For our numerical simulations we consider the problem in Example 2 in the form

− u′′ + cu = f in (0, 1),

u(0) = u(1) = 1.
. (35)

The forward operator in the function space setting is G(c) := u for the fixed right
hand side f (·) = sin(4π ·) + 2.

The true solution c† is given by a piecewise smooth function with either finitely
many jumps or kinks as discussed in Example 30.

To solve the boundary value problem (35) we used quadratic finite elements and
an equidistant grid containing 127 finite elements. The coefficient c was sampled on
an equidistant grid with 1024 points. For the wavelet synthesis operator we used the
code PyWavelets [28] with Daubechies wavelet of order 7.
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Fig. 1 Left: true coefficient c† with jumps in the boundary value problem (5) together with a typical
reconstruction at noise level δ = 3.5 · 10−5. Right: Reconstruction error using b01,1-penalization, the rate

O(δ2/5) predicted by Theorem 27 (see Eq. (36)), and the rate O(δ1/3) predicted by the previous analysis
in [24]

The minimization problem in (4) was solved by the Gauß-Newton-type method
ck+1 = Sxk+1,

xk+1 ∈ argmin
x

[
1

2
‖F ′[xk](x − xk) + F(xk) − u‖2

Y
+ α‖x − x0‖r ,1,1

]

with a constant initial guess c0 = 1. In each Gauß-Newton step these linearized
minimization problems were solved with the Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) proposed and analyzed by Beck and Teboulle in [2]. We used the
inertial parameter as in [6, Sec. 4]. We did not impose a constraint on the size of
‖x − x0‖0,2,2, which is required by our theory if Assumption 3 does not hold true
globally. However, the size of the domain of validity of this assumption is difficult to
assess, and such a constraint is likely to be never active for a sufficiently good initial
guess.

The regularization parameter α was chosen by a sequential discrepancy principle
with τ1 = 1 and τ2 = 2 on a grid α j = 2− jα0. To simulate worst case errors, we
computed for each noise level δ reconstructions for several data errors uδ − G(c†),
‖uδ − G(c†)‖L2 = δ, which were given by sin functions with different frequencies.

For the piecewise smooth coefficient c† with jumps shown on the left panel of
Fig. 1, Example 30 yields

c† ∈ Bs
ts ,ts ((0, 1)) ⊂ Kts ⇔ s <

1

ts
⇔ s <

4

3
.
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Fig. 2 Left: true coefficient c† with kinks in the boundary value problem (5) together with a typical
reconstruction at noise level δ = 3.5 · 10−5. Right: Reconstruction error using b01,1-penalization, the rate

O(δ4/7) predicted by Theorem 27 (see Eq. (37)), and the rate O(δ1/2) predicted by the previous analysis
in [24]

Here ts = 4
s+4 . Hence,Theorem 27 predicts the rate

∥∥∥c† − ĉα

∥∥∥
L1

= O(δe) for all e <
2

5
. (36)

In contrast, the smoothness condition c† ∈ Bs
1,∞((0, 1)) in our previous analysis in

[24], which was formulated in terms of Besov spaces with p = 1 is only satisfied
for smaller smoothness indices s ≤ 1, and therefore, the convergence rate in [24] is

only of the order
∥∥̂cα − c†

∥∥
L1 = O

(
δ
1
3

)
. Our numerical results displayed in the right

panel of Fig. 1 show that this previous error bound is too pessimistic, and the observed
convergence rate matches the rate (36) predicted by our analysis.

Similarly, for the piecewise smooth coefficient c† with kinks shown in the left panel
of Fig. 2, Example 30 yields

c† ∈ Bs
ts ,ts ((0, 1)) ⊂ Kts ⇔ s < 1 + 1

ts
⇔ s <

8

3

with ts = 4
s+4 . Hence, Theorem 27 predicts the rate

∥∥∥̂cα − c†
∥∥∥
L1

= O(δe) for all e <
4

7
(37)

which matches with the results of our numerical simulations shown on the right panel

of Fig. 2. In contrast, the previous error bound
∥∥̂cα − c†

∥∥
L1 = O

(
δ
1
2

)
in [24] based
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Fig. 3 Left: true coefficient c† with jumps in the boundary value problem (5) together with reconstructions
for r = 0 and r = 2 at noise level δ = 3.5 · 10−5 for the same data. Right: Reconstruction error using
b21,1-penalization (oversmoothing) and the rateO(δ3/10) predicted by Theorem 27 (see Eq. (38)). This case
is not covered by the theory in [24]

on the regularity condition c† ∈ B2
1,∞((0, 1)) turns out to be suboptimal for this

coefficient c† even though it is minimax optimal in B2
1,∞-balls.

Finally, for the same coefficient c† with jumps as in Fig. 1, reconstructions with
r = 0 and r = 2 are compared in the left panel of Fig. 3. Visually, the reconstruction
quality is similar for both reconstructions. For r = 2 the penalization is oversmoothing,
and Example 30 yields

c† ∈ Bs
ts ,ts ((0, 1)) ⊂ Kts ⇔ s <

1

ts
⇔ s <

6

7

with ts = 8
s+6 . Hence, Theorem 27 predicts the rate

∥∥∥̂cα − c†
∥∥∥
L4/3

= O(δe) for all e <
3

10
, (38)

which once again matches with the results of our numerical simulations shown on the
right panel of Fig. 3. This case is not covered by the theory in [24].

8 Conclusions

We have derived a converse result for approximation rates of weighted �1-
regularization. Necessary and sufficient conditions for Hölder-type approximation
rates are given by a scale ofweak sequence spaces.We also showed that �1-penalization
achieves the minimax-optimal convergence rates on bounded subsets of these weak
sequence spaces, i.e. that no other method can uniformly perform better on these sets.
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However, converse results for noisy data, i.e. the question whether �1-penalization
achieves given convergence rates in terms of the noise level on even larger sets, remains
open. Although it seems likely that the answer will be negative, a rigorous proof would
probably require uniform lower bounds on the maximal effect of data noise.

A further interesting extension concerns redundant frames. Note that lacking injec-
tivity the composition of a forward operator in function spaceswith a synthesis operator
of a redundant frame cannot meet the first inequality in Assumption 3. Therefore, the
mapping properties of the forward operator in function space will have to be described
in a different manner. (See [1, Sec. 6.2.] for a related discussion.)

We have also studied the important special case of penalization by wavelet Besov
norms of type Br

1,1. In this case the maximal spaces leading to Hölder-type approxi-
mation rates can be characterized as real interpolation spaces of Besov spaces, but to
the best of our knowledge they do not coincide with classical function spaces. They
are slightly larger than the Besov spaces Bs

t,t with some t ∈ (0, 1), which in turn are
considerably larger than the spaces Bs

1,∞ used in previous results. Typical elements
of the difference set Bs

t,t \ Bs
1,∞ are piecewise smooth functions with local singulari-

ties. Since such functions can be well approximated by functions with sparse wavelet
expansions, good performance of �1-wavelet penalization is intuitively expected. Our
results confirm and quantify this intuition.
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A Appendix

For a sequence (ω j ) j∈J of positive real numbers, we write ω j → 0 if for every ε > 0
the set { j ∈ Λ : ω j > ε} is finite.
Proposition 31 (Embeddings) Let 1 ≤ p ≤ q < ∞ and s = (s j ) j∈Λ, r = (r j ) j∈Λ

sequences of positive reals.

(i) There is a continuous embedding �
p
r ⊂ �

q
s iff s j r

−1
j is bounded.

(ii) There is a compact embedding �
p
r ⊂ �

q
s iff s j r

−1
j → 0.

Proof (i) If there is such a continuous embedding, then there exists a constant C > 0
such that
‖·‖s,q ≤ C ‖·‖r ,p . Inserting unit sequences e j := (δ jk)k∈Λ yields s jr

−1
j ≤ C .
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For the other implication we assume that there exists a constant C > 0 such that
s jr

−1
j ≤ C for all j ∈ Λ. Let x ∈ �

p
r with ‖x‖r ,p = 1. Then s j |x j | ≤ Cr j |x j | ≤

C ‖x‖r ,p implies

‖x‖qs,q =
∑
j∈Λ

sqj |x j |q ≤ (C ‖x‖r ,p)q−p
∑
j∈Λ

s pj |x j |p

≤ Cq ‖x‖q−p
r ,p

∑
j∈Λ

r pj |x j |p = Cq ‖x‖qr ,p .

Taking the q-th root shows ‖·‖s,q ≤ C ‖·‖r ,p .

(ii) Suppose s jr
−1
j → 0 is false. Then there exists some ε and a sequence of indices

( jk)k∈N such that s jk r
−1
jk

≥ ε for all k ∈ N. The sequence given by xk = r−1
jk
e jk is

bounded in �
p
r . But ‖xk − xm‖s,q ≥ 2

1
q ε for k �= m shows that it does not contain

a convergent subsequence in �
q
s .

To prove the other direction we assume s jr
−1
j → 0. Then s jr

−1
j is bounded and

by part (i) there is a continuous embedding I : �
p
r → �

q
s . We define Λn = { j ∈

Λ : s jr−1
j > 1

n }. As Λn is finite the coordinate projection Pn : �
p
r → �

q
s given by

(Pnx) j = x j if j ∈ Λn and (Pnx) j = 0 else is compact. As s j r
−1
j ≤ 1

n for all
j ∈ Λ \ Λn part (i) yields

‖(I − Pn)x‖s,q ≤ 1

n
‖(I − Pn)x‖r ,p ≤ 1

n
‖x‖r ,p for all x ∈ �

p
r .

Hence, ‖I − Pn‖ ≤ 1
n . Therefore, I = limn Pn is compact.

��
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