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Abstract
Weprove that a set A of at most q non-collinear points in the finite planeF2

q spansmore
than |A|/√q directions: this is based on a lower bound by Fancsali et al. which we
prove again together with a different upper bound than the one given therein. Then,
following the procedure used by Rudnev and Shkredov, we prove a new structural
theorem about slowly growing sets in Aff(Fq) for any finite field Fq , generalizing the
analogous results by Helfgott, Murphy, and Rudnev and Shkredov over prime fields.
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1 Introduction

Among the many different problems related to the study of growth and expansion in
finite groups, the study of the affine group over finite fields has occupied a particularly
interesting place. The affine group
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Aff(F) =
{(

a b
0 1

) ∣∣∣∣ a ∈ F
∗, b ∈ F

}
,

where F is a finite field, is one of the smallest interesting examples of an infinite family
of finite groups on which questions of growth of sets A ⊆ Aff(F) can yield nontrivial
answers, and it has been used to showcase techniques applicable to more general
situations, like the pivot argument; on the other hand, its shape makes it uniquely
suitable to study the so-called sum-product phenomenon, related to growth of sets
inside finite fields under both addition and multiplication. For both of these points of
view, a remarkable example is provided in Helfgott’s survey [9, §4.2].

Structural theorems about growth in Aff(Fp) (p prime) have been produced in the
last few years, describing in substance what a set A with small growth must look like.
Results like Helfgott’s [9, Prop. 4.8] and Murphy’s [14, Thm. 27] belong to a first
generation of proofs that rely, in one way or another, on sum-product estimates; they
already accomplish the goal of characterizing quite well a slowly growing A: such a
set must essentially either be a point stabilizer or be contained in a few vertical lines,
which in addition get filled in finitely many steps if |A| is at least of the same order of
magnitude as p.

Rudnev and Shkredov [16] have then quantitatively improved this classification in
Aff(Fp): the main attractivity of their result, however, resides in the fact that they
avoid any explicit ties to sum-product results. What they rely on instead is a geometric
theorem by Szőnyi [19, Thm. 5.2] that gives a good lower bound on the number of
directions spanned by a set of non-collinear points in the plane F2

p for p prime: this
approach can pave the way to a future new generation of efforts.

Following the approach by Rudnev and Shkredov, we first produce an analogous
version of Szőnyi’s result for the plane F

2
q , where q is any prime power; then we

use that estimate to prove a structural theorem on slowly growing sets in Aff(Fq)

(resembling the corresponding ones for Aff(Fp) mentioned before), which to the best
of our knowledge is the first of its kind.

Throughout the paper, p will always denote a prime and q a power of p. We
occasionally make use of the big O and big � notations, the latter following Knuth’s
convention [12]; an index Oε,�ε indicates that the implicit constant may depend on
the variable ε.

Given a set A inside the plane F2, the set of directions spanned or determined by
A denotes the set

D =
{

b′ − b

a′ − a

∣∣∣∣ (a, b), (a′, b′) ∈ A, (a, b) �= (a′, b′)
}

⊆ F ∪ {∞},

where conventionally ∞ corresponds to the fraction with a′ − a = 0. We make free
use of the natural identification Aff(F) ↔ F

∗ × F given by

(
a b
0 1

)
∈ Aff(F) ←→ (a, b) ∈ F

∗ × F
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so that we may refer to points, lines, and directions even when speaking about the
group Aff(F); in particular, we call π : Aff(F) → F

∗ the map corresponding to the
projection on the first component, so that the preimage of a point through this map is
a vertical line. Aff(F) acts also on F as (a, b) · x = ax +b, and we think of this action
when we refer to point stabilization: we call Stab(x) the set {(a, b) | (a, b) · x = x},
and we note that this set too describes a line in F

2. Finally, U denotes the unipotent
subgroup corresponding to {1} × F, again a vertical line.

As said before, one of the starting points of the new-style result for slowly growing
sets in Aff(Fp) is the following bound by Szőnyi.

Theorem 1.1 Let p be a prime, and let A ⊆ F
2
p with 1 < |A| ≤ p. Then either A is

contained in a line or A spans ≥ (|A| + 3)/2 directions.

With that, Rudnev and Shkredov prove the following (see [16, Thm. 5]).

Theorem 1.2 Let p be a prime and let A ⊆ Aff(Fp) ↔ F
∗
p × Fp with A = A−1 and

|A3| = C |A|. Then at least one of the following is true:

(a) A ⊆ Stab(x) for some x ∈ Fp;
(b) when 1 < |A| ≤ (1 + ε)p for some 0 < ε < 1, we have |π(A)| ≤ 2C4;
(c) when |A| > (1+ ε)p for some 0 < ε < 1, we have |π(A)| = Oε(C3|A|/p), and,

in particular, for |A| > 4p we have |π(A)| ≤ 2C3|A|/p and A8 ⊇ U.

Szőnyi’s bound is part of a long history of applications of results about lacunary
polynomials (i.e., polynomials made of a small number of monomials with respect
to their degree) over finite fields to finite geometry: the reader interested in similar
applications can check [19] and its bibliography.

Many results in this area can apply, with the appropriate modifications, to Fq as
well. In this case, however, bounds on the number of directions spanned by a set in
the finite plane appear to be messier, and understandably so: unlike in the case of Fp,
the number of directions determined by A tends to congregate around values |A|/pi

for powers pi |q; this is due to the fact that there may exist sets with multiples of pi

points on each line that are so well structured that they sit in relatively few directions
compared to the amount of points they have (see [3, §5] for an example of this assertion
when |A| = q).

The result we essentially use, on the number of directions spanned in F
2
q by some

set with 1 < |A| ≤ q, is due to Fancsali et al. [7, Thm. 17]: for the lower bound
they found we give here a proof that is very similar to theirs, but we also prove a
different upper bound that can be more or less advantageous than theirs depending on
the situation (Theorem 2.2). Used directly, the lower bound can only give us about
|A|/(q/p) directions; a tighter theorem, in the style of [3, Thm. 1.1], would give not
only pi |pe = q, but also i |e (and therefore a much better lower bound of |A|/√q
directions): [3, Thm. 1.1] however works only for |A| = q, and the lack of a complete
set of q points is crucial in worsening the condition on the denominator pi during the
proof.

Nevertheless, it turns out that a simple observation can make us achieve the bound
with

√
q in the denominator: at its core, we use the fact that a set of points A either

sits on ≥ √
q parallel lines or has a line with ≥ |A|/√q points on it. Our first main

result then, playing the role of Szőnyi’s bound in [16], is as follows.
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Theorem 1.3 Let q = pe be a prime power, and let A ⊆ F
2
q with 1 < |A| ≤ q. Then

either A is contained in a line or A spans

(a) > |A|/√q directions for e even,
(b) > |A|/(p(e−1)/2 + 1) directions for e odd.

Observe that the theorem is only a constant away from Szőnyi’s bound when we use
it for q = p; we add that actually the proof can be easily adjusted to yield that bound
exactly: we chose not to do so in order to get a cleaner statement, with case (b) valid
for all odd e. The quantity in (b) is also larger than |A|/√q , in all cases except for
q ∈ {2, 3, 8}: however one can again examine the proof and readily cover the three
remaining values. Thus, the set A spans > |A|/√q directions for all q.

Using Theorem 1.3 and following more or less the same proof as in [16], we obtain
our second main result, generalizing Theorem 1.2 to any Fq .

Theorem 1.4 Let q = pe be a prime power and let A ⊆ Aff(Fq) ↔ F
∗
q × Fq with

A = A−1 and |A3| = C |A|. Then at least one of the following is true:

(a) A ⊆ Stab(x) for some x ∈ Fq;
(b) when 1 < |A| ≤ q we have |π(A)| < (p�e/2� + 2)C4, while when q < |A| <

(3 + 2
√
2)q we have |π(A)| < (4 + 2

√
2)C4;

(c) when |A| ≥ (3 + 2
√
2)q we have |π(A)| < 2C3|A|/q and A8 ⊇ U.

The statement above looks remarkably similar to Theorem 1.2, and is qualitatively as
strong a structural theorem as in the case of Aff(Fp). The p�e/2� in case (b) cannot be
improved in general: for e even, there is a natural embedding of F√

q inside Fq , and
A = (F√

q)∗ × F√
q has |A| < q, C = 1, and |π(A)| = pe/2 − 1. See Sect. 4 for

further remarks.
Let us comment however on a small difference between Theorem 1.2 and the result

for Fp featured in [16]. The case of a medium-sized A (i.e., 1 < |A|/q = O(1)) has
been placed into alternative (c) by Rudnev and Shkredov and into alternative (b) by us,
essentially losing the Ak ⊇ U implication: this has been done because the subgroup
H of Kneser’s theorem [11] can stifle the growth of A, in a way that the Cauchy–
Davenport inequality ([5, Thm. VII], [6], see [20, Thm. 5.4]) could not; asking for p
large enough is innocuous in the latter, but not in the former: see also Sect. 3 where
we use it.

We could still use Alon’s bound [1, (4.2)] on the number of lines in the projective
plane as done in [16], since it holds for Fq as well: this would give for example

|π(A)| <
2(

√
5 + 1)

(7 − 3
√
5)q

C3|A| for |A| ≥
√
5 + 1

2
q

(where the maximum of ε2(1 − ε)/(2(1 + ε)) is located) and in general |π(A)| =
Oε(C3|A|/q) for |A| ≥ (1 + ε)q; then, upon using Kneser’s theorem, one could
either ask for p large enough (p > 100 in the first case, say, and p = �ε(1) in
general) or classify separately the sets A with large H (which should be possible,
because having large H = Stab(A2) is a rather restrictive condition to satisfy), and an
additional conclusion Ak ⊇ U for k = Oε(1) would be reached. It would probably be
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interesting to explore more deeply these medium-sized sets; however, for the purpose
of obtaining a structural result like Theorem 1.4 whose numerical details are of sec-
ondary relevance, we deemed to be simpler and just as effective to reduce that case to
alternative (b), especially as the observation behind our ability to do so (Lemma 2.1)
is very elementary.

As a final note, we observe that some results on which we rely in the case of F2
q have

been studied in the case of Fn
q as well. For instance, Lemma 2.1 has been generalized

to F
n
q in [10], which also deals with directions determined by two different sets, and

generalizations of Proposition 3.1 appear in [13,21].

2 Number of Directions in F
2
q

In the present section we prove bounds about the number of directions determined by
sets of points in the plane F2

q , which lead eventually to Theorem 1.3. Let us start with
the following simple statement: it does not concern Theorem 1.3, but it will allow us
in the next section to deal quickly with the sets A whose size is slightly larger than q.

Lemma 2.1 Any set A ⊆ F
2
q with |A| > q spans all q + 1 directions.

Proof The result is immediate: by the pigeonhole principle, for any given direction,
one of the q parallel lines in F

2
q following that direction has to contain at least two

points of A. ��
As a complement to Lemma 2.1, the following theorem deals with the number of
directions spanned by sets of size at most q. As remarked before, a theorem of the
same nature appears already in [7], and it is proven very similarly using the same
techniques deriving from the study of lacunary polynomials.

Theorem 2.2 Let q = pe be a prime power, let A ⊆ F
2
q with 1 < |A| ≤ q, and let D be

the set of directions determined by A. Then either |D| = 1 (and A is contained in a line),
|D| = q + 1 (and A spans all directions), or there are two integers 0 ≤ l2 ≤ l1 < e
such that

|D| ≥ |A| − 1

pl2 + 1
+ 2,

|D| ≤ q − |A| + max

{
1,

|A| − 1 − (q − |A|)max {0, |A| + pl1 − q − 1}
pl1 − 1

}
.

A little notational comment: if l1 = 0 we consider the upper bound trivial (but the
lower bound becomes (|A| + 3)/2, which is quite strong, identical to Szőnyi’s bound
for Fp).

Before we go to the proof, let us spend a few more words comparing this result
with the one in [7]: bounds there are written as (|A| − 1)/(t + 1) + 2 ≤ |D| ≤
(|A| − 1)/(s − 1), for some appropriately defined s, t . The lower bound is the same
as the one presented here, as t and pl2 are defined in the same way. The situation for
the upper bound is more interesting: we have s ≤ t = pl2 ≤ pl1 , because the authors
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define s looking at the multiplicities in Hy(x) alone (see the proof below for details)
instead of the whole xq + gy(x), which also gives a stronger geometric meaning to
their s than to our l1; however, our upper bound tends to be stronger when |A| is fairly
close to q and there is a gap between s and pl1 (which can happen, as observed in [7]).

Proof First of all, we can suppose ∞ ∈ D. If this were not true, we could take any
d ∈ D \ {0} (D is nonempty for |A| > 1, and D = {0} concludes the theorem) and
consider A′ made of points (a − db, b) for any (a, b) ∈ A, which implies also that
|A′| = |A|: such a set would span directions given by

b′ − b

a′ − db′ − a + db
= 1

(a′ − a)/(b′ − b) − d
,

from which it is clear that the new set of directions D′ is as large as D, since equalities
are preserved, and that moreover ∞ ∈ D′.

Define n ≥ 0 so that |A| = q − n. First, define the Rédei polynomial

Hy(x) =
q−n∏
i=1

(x + yai − bi ) ∈ Fq [x, y],

where the product is over all the (ai , bi ) ∈ A: it is a polynomial of degree q −n in two
variables (some authors, like in [3], define it as a homogeneous polynomial in three
variables, but by ensuring that ∞ ∈ D we do not need to do so). The usefulness of
such polynomial lies in the fact that two points of A sitting on the same line with slope
y0 yield the same x + y0a − b, so that a multiple root in Hy0(x) reflects the presence
of a line with multiple points, i.e., a secant of A, and indicates that y0 ∈ D. We also
define another function in two variables,

fy(x) =
n∑

j=0

(−1) jσ j
(
Fq \ {yai − bi |(ai , bi ) ∈ A})xn− j , (2.1)

where σ j (S) is the j-th elementary symmetric polynomial of the elements in the set S;
fy(x) is itself a polynomial in two variables (see [18, Thm. 4] for a recursive definition
of fy(x)), in which the coefficient of xn− j has y-degree j : therefore we can write

xq + gy(x) = Hy(x) fy(x) ∈ Fq [x, y],

where gy(x) is a polynomial in two variables of x-degree ≤ q − 1.
Substituting y = y0 for some y0 /∈ D, we observe that by definition the set Fq \

{y0ai − bi | (ai , bi ) ∈ A} has n elements and that fy0(x) is simply the product of the
x − ki for all the ki ∈ Fq not counted in Hy0(x), so gy0(x) = −x : this means that the
coefficients of xq−1, xq−2, . . . , x |D| in gy(x) are polynomials of degree ≤ q − |D| in
y that take value 0 for the q − |D| + 1 values y0 ∈ Fq \ D. Thus, these coefficients
are the zero polynomial; in other words, the x-degree of gy(x) is at most |D| − 1.
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Working with x, y has allowed us to give a bound on the degree of gy(x). From
now on, for the sake of simplicity we substitute one value y ∈ D \ {∞} inside our
polynomials and drop the index, and we will work with only one variable; this is
possible unless D = {∞}, from which |D| = 1 and A is contained in a vertical line.

Call l2 the largest integer for which g(x) ∈ Fq [x pl2 ]: by the fact that any x �→ x pi

is an automorphism of Fq , we have g(x) = (g̃(x))pl2 for some g̃(x) ∈ Fq [x]\Fq [x p].
Decompose xq + g(x) into its irreducible factors, and call l1 the largest integer for
which pl1 divides the multiplicity of each linear factor (hence l1 ≥ l2): l1, l2 depend
on our choice of y, so for our definition we suppose that we have chosen a y that yields
the smallest l1. We can write

xq/pl2 + g̃(x) = (R(x))pl1−l2 N (x),

where R(x) ∈ Fq [x] \ Fq [x p] is such that (R(x))pl1 is the divisor of xq + g(x) made
of its linear factors (the fully reducible part of xq + g(x)) and N (x) ∈ Fq [x] \Fq [x p]
is such that (N (x))pl2 is the divisor of xq + g(x) made of its nonlinear factors. Note
that (N (x))pl2 must be a divisor of f (x). If l1 = e then xq + g(x) = (x + c)q for
some c ∈ Fq , which means that all the points of A lie on a line of slope equal to the y
we have fixed, contradicting ∞ ∈ D: hence l2 ≤ l1 < e.

Call R∗(x) the divisor of R(x) made of all the irreducible factors of R(x) counted
without multiplicity: R∗(x) divides also xq − x by definition, so it divides xq +
g(x) − (xq − x) = g(x) + x �= 0 (y ∈ D prevents us from having g(x) = −x). If an
irreducible polynomial k1(x) divides another k2(x) with multiplicity m then it divides
k′
2(x) with multiplicity m − 1, so

(R(x))pl1−l2

R∗(x)

∣∣∣∣ (xq/pl2 + g̃(x))′ = g̃′(x) �= 0,

where the last inequality is true because g̃(x) /∈ Fq [x p]. From the reasoning above,
we obtain

xq + g(x) =
(

R∗(x) · (R(x))pl1−l2

R∗(x)

)pl2

(N (x))pl2

∣∣∣∣ (g(x) + x)pl2
(g̃′(x))pl2 f (x) �= 0,

and therefore

q = deg (xq + g(x)) ≤ pl2(deg (g(x) + x) + deg g̃′(x)) + deg f (x);

we have already determined that deg(g(x) + x) ≤ deg g(x) ≤ |D| − 1, and similarly

deg g̃′(x) ≤ deg g(x)

pl2
− 1 ≤ |D| − 1

pl2
− 1,
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whence from the definition of f (x) we get

q ≤ pl2

(
|D| − 1 + |D| − 1

pl2
− 1

)
+ n �⇒ |D| ≥ q − n − 1

pl2 + 1
+ 2,

settling the lower bound.
Let us focus now on the upper bound. Fix a point (a, b) ∈ A and take a slope

y0 ∈ Fq : the multiplicity of the linear factor x + y0a − b inside H(x) determines how
many points of A sit on the line defined by (a, b) and y0.We know that the multiplicity
of every linear factor in the whole H(x) f (x) is a multiple of pl1 and that it is at least
1 for this particular linear factor, since (a, b) sits on the line; however, we need a way
to keep under control the number of false positives that come from the fully reducible
part of f (x) (inexistent “ghost points” that make us overcount the contribution of a
single line to A, and thus undercount |D|). The way to go is to bound the number of
lines passing through (a, b) for which ghost points exist.

Let fy(x) be as in (2.1), call it for simplicity fy(x) = ∑n
j=0 σy, j xn− j where the

σy, j are polynomials in y of degree j . Assume that |D| < q + 1: then there will
be a direction y0 ∈ Fq \ D, as ∞ ∈ D. For this y0, Hy0(x) fy0(x) = xq − x and
x + y0a − b has multiplicity 1 in it; moreover, it must come from our fixed point
(a, b), which means that it must divide Hy0(x) and be coprime with fy0(x): this fact
implies that the two-variable linear polynomial x + ya − b cannot divide fy(x). In
other words, we cannot write

(xn−1 + τy,1xn−2 + . . . + τy,n−1)(x + ya − b) = xn + σy,1xn−1 + . . . + σy,n

(2.2)

for any choice of polynomials τy,i ; however, defining

τy,i =
i∑

j=0

(−1) j (ya − b) jσy,i− j

(here σy,0 = 1) we can ensure that the equality (2.2) works at least at the level of the
coefficients of x, x2, . . . , xn−1, which means that we must have

n∑
j=0

(−1) j (ya − b) jσy,n− j �= 0, (2.3)

so as to violate (2.2) for the free coefficient.
Every time fyi (x) has a x + yi a − b factor (or, geometrically speaking, every time

the line determined by (a, b) and yi has a ghost point), (2.2) is true for y = yi though,
and in particular the LHS of (2.3) is indeed 0: that expression is a polynomial in y
of degree n, so if there were n + 1 lines with ghost points (2.3) would not be true,
contradicting the fact that x + ya − b cannot divide fy(x) as polynomials in two
variables. Hence, at most n non-vertical lines through (a, b) have ghost points.
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If |D| − 1 ≤ n the upper bound stated in the theorem is already true, so suppose
that the opposite holds: then there is a non-vertical line through (a, b) whose slope is
in D with no ghosts. We can transform A as at the beginning of the proof to make that
slope ∞, i.e., (a, b) lies on a vertical secant of A.

Each non-vertical line through (a, b) whose slope is in D has a multiple of pl1

among true points of A and ghost points (l1 has been defined so as to make that
statement true for all slopes at the same time). On the ghost-free lines there are at
least pl1 − 1 true points besides (a, b), while on the ones with ghosts we can only say
that there are at least max {0, pl1 − 1 − n} of them (as the x-degree of fy(x) is n);
finally, the vertical secant has at least pl1 points including (a, b), as we made sure that
it had no ghosts before the transformation. Combining all of this with the bound on
the number of lines with ghosts, and counting all the points of A, we get

(|D| − 1 − n)(pl1 − 1) + n max {0, pl1 − 1 − n} + pl1 ≤ q − n.

As we remarked after the statement of the theorem, for l1 = 0 there is no upper bound.
For l1 > 0, the inequality above concludes the proof. ��
Now that we have the lower bound provided by Theorem 2.2, we can proceed with the
proof of the first main theorem. We retain the same notation as in the previous proof.

Proof of Theorem 1.3 Suppose that |D| /∈ {1, q + 1} (otherwise the theorem is already
proven); fix a slope y0 �= ∞ and consider the polynomial R∗(x) defined as in the
proof of Theorem 2.2. Let ε > 0 be small enough, and let q ′ = pe/2 − ε for e even
and q ′ = p(e−1)/2 for e odd.

If the degree of R∗(x) is ≤ q ′, the set A must be contained in ≤ q ′ lines with
slope y0, which means that one of them (call it L) will have to contain≥ |A|/q ′ points
of A; since A is not contained in one line there must be also a point of A outside L ,
and each secant laid between this point and a point of A ∩ L has a different slope,
so that |D| ≥ |A|/q ′: for e even it means |D| > |A|/√q , while for e odd it means
|D| ≥ |A|/p(e−1)/2.

If R∗(x) has degree > q ′, then by the fact that (R∗(x))pl1 divides xq + g(x) we
must have pl2 ≤ pl1 < q/q ′: regardless of whether e is even or odd, pl2 ≤ p�e/2�
since l2 is an integer. Using the lower bound in Theorem 2.2 (which holds for our A),
we have

|D| ≥ |A| − 1

p�e/2� + 1
+ 2 = |A|

p�e/2� + 2 − |A|
p�e/2�(p�e/2� + 1)

− 1

p�e/2� + 1
.

For e even, the bound above implies |D| > |A|/√q , while for e odd we can obtain
|D| ≥ (|A| + 3)/(p(e−1)/2 + 1). ��

3 Growth in Aff(Fq)

Wemovenow to the proof ofTheorem1.4.We followclosely the proof of the analogous
result in [16] for Fp: the only difference is that we use Theorem 1.3 instead of Szőnyi’s
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bound, and that, as we have already said, we absorb the case of A of medium size into
alternative (b), without resorting to Alon’s bound to fall into (c).

We remind the reader of two well-known and by now classical results. First, an
inequality, deducible in multiple ways from bounds by Ruzsa (see for instance [17]),
states that for any group G and any A = A−1 ⊆ G the equality |A3| = C |A|
implies |Ak | ≤ Ck−2|A| for any k ≥ 4. Second, Kneser’s theorem [11] tells us
that, given any abelian G and any A, B ⊆ G, there is a proper subgroup H with
|A + B| ≥ min {|G|, |A| + |B| − |H |}.

Theorem 1.3 and Lemma 2.1 will take care of small and medium |A|, respectively.
For |A| large we will instead make use of the following bound, due to Vinh [21,
Thm. 3]: the statement therein says actually something weaker, but it is based on a
well-known graph-theoretic result [2, Cor. 9.2.5] which allows to be reformulated as
follows (as [16] does for Fp).

Proposition 3.1 Let q be a prime power, let P be a set of points in F
2
q , and let L be a

set of lines in F
2
q . Define I (P, L) as the set of pairs (p, l) ∈ P × L such that p ∈ l.

Then
∣∣∣∣I (P, L) − |P| · |L|

q

∣∣∣∣ ≤ √
q · |P| · |L| .

We note that the phenomenon described in Proposition 3.1 is in no way restricted
to F2

q . The same graph-theoretic tools can be applied to incidences between points and
linear hyperspaces in Fn

q [13, Cor. 2], and even more generally to incidences between
points and blocks in BIBDs [13, Thm. 1]: Proposition 3.1 is a particular case of either
of those.

Let us also give here separately a lemma that will provide the upper bounds on
π(A) in (b)–(c) of Theorem 1.4.

Lemma 3.2 For any g =
(

a b
0 1

)
∈ Aff(Fq) \ {Id}, define the map

ϕg : Aff(Fq) → Aff(Fq), ϕg(h) = hgh−1.

Then

(a) any point in the image of ϕg has as preimage a line of slope b/(a − 1);
(b) if A = A−1 ⊆ Aff(Fq) and g ∈ Ak then |π(A)| ≤ |Ak+3|/|ϕg(A)|.
Proof (a) This is just an easy computation: as

(
r s
0 1

) (
a b
0 1

) (
r−1 −r−1s
0 1

)
=

(
a br + (1 − a)s

0 1

)
,

two elements are in the preimage of a single point if and only if br + (1 − a)s =
br ′ + (1− a)s′, from which all pairs of elements with (s′ − s)/(r ′ − r) = b/(a − 1)
must be sent to the same point by ϕg (we allow a = 1 and a slope equal to ∞, but we
avoid (a, b) = (1, 0) since g �= Id).
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(b) On one hand we have |Aϕg(A)g−1| = |Aϕg(A)| ≤ |Ak+3|, while on the other
hand any element of Aϕg(A)g−1 is of the form a1a2ga−1

2 g−1 ∈ AU : since

(
x y
0 1

) (
1 z
0 1

)
=

(
x xz +y
0 1

)
,

pairs in A × U with either distinct x or with the same x, y but distinct z will all
give different products in AU ; hence we can select one element of A for each value
of x (therefore |π(A)| of them) and all the a2ga−1

2 g−1 (|ϕg(A)| of them, they are
all multiplied by the same g−1), and obtain the other side of the bound, namely
|Aϕg(A)g−1| ≥ |π(A)| · |ϕg(A)|. ��
With these tools at our disposal, we can proceed with the proof.

Proof of Theorem 1.4 Let us start with the case of A large: fix a constant c > 1 to be
chosen later and impose |A| = c′q with c′ ≥ c. We use the bound from Proposition 3.1
with P = A and L = L(A) (the set of lines that are not determined by A), interpreted
as a lower bound on the expression inside the absolute value, and combine it with the
trivial observation that I (A, L(A)) ≤ |L(A)| by the definition of L(A): this yields

|L(A)| ≤ q2 c′

(c′ − 1)2
≤ q2 c

(c − 1)2
�⇒ |L(A)| ≥ q + q2

(
1 − c

(c − 1)2

)
.

If we choose here

c = 1 + 1 + √
3 − 2/p

1 − 1/p

(or c = 3+2
√
2, which is a choice valid for all primes p), by the pigeonhole principle

there must exist≥ q(1+1/p)/2 non-vertical lines of L(A) parallel to each other; call
d the direction defined by such lines. Given any two elements of A sitting on one of
these lines, we have

g =
(

a1 b1
0 1

)−1 (
a2 b2
0 1

)
=

(
a2a−1

1 b2a−1
1 −b1a−1

1
0 1

)
=

(
a′ b′
0 1

)
,

with b′/(a′ − 1) = (b2 − b1)/(a2 − a1) = d, so by Lemma 3.2 (a) there are at least
q(1 + 1/p)/2 > q/2 elements in ϕg(A); by Lemma 3.2 (b) and Ruzsa’s inequality,
this implies that |π(A)| < 2|A5|/q ≤ 2C3|A|/q. Moreover, the unipotent subgroup
U is isomorphic to Fq as an additive group, so that its largest proper subgroup is of
size q/p; therefore, since ϕg(A)g−1 ⊆ A6 ∩ U has |ϕg(A)g−1| ≥ q(1 + 1/p)/2, by
Kneser’s theorem we must have

A8 ⊇ Ag AAg−1A ⊇ (ϕg(A)g−1)(ϕg(A)g−1)−1 ⊇ U ,

and we fall into case (c) of the theorem.
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Let us deal now with A of medium size: suppose q < |A| < cq, so that by Lem-
ma 2.1 every direction is determined by some pair of points of A. Partition A2 \ {Id}
into q +1 subsets, collecting into each one of them elements having the same value for
b/(a − 1) ∈ Fq ∪ {∞}. Every two distinct a1, a2 ∈ A yield an element a−1

1 a2 ∈ A2

that is located inside the part corresponding to the slope of the line they define: by the
pigeonhole principle there will be a part (identifiable with some d ∈ Fq ∪{∞}) with at
most (|A2| − 1)/(q + 1) elements, and therefore every line of L(A) in the direction d
must have at most (|A2| − 1)/(q + 1) + 1 elements of A on it, since a−1

1 ai �= a−1
1 a j

for ai �= a j . We have thus given a bound on the number of points of A sent to the
same element by the map ϕg for some g ∈ A2 with b/(a − 1) = d, which translates
to

|ϕg(A)| ≥ (q + 1)|A|
|A2| + q

>
|A|

Cc + 1
;

proceeding as before, by Lemma 3.2 (b) and Ruzsa’s inequality we conclude that
|π(A)| < (Cc + 1)C3 ≤ (4 + 2

√
2)C4 and we reach case (b) of the theorem.

For A small (i.e., 1 < |A| ≤ q) we repeat essentially what we did for A medium,
but instead of |D| = q + 1 we use the bounds in Theorem 1.3 on the number of
directions |D| spanned by A. We obtain

|ϕg(A)| >
|A|2

q ′(|A2| − 1) + |A| >
|A|

Cq ′ + 1
,

where q ′ = √
q for e even and q ′ = p(e−1)/2 + 1 for e odd, from which we get

|π(A)| < (p�e/2� + 2)C4 and end up in case (b). Finally, we need to deal with the
other alternative in Theorem 1.3, namely that A may be contained in one line: in other
words, the elements of A are either all of the form (a, ad + b) for some b, d ∈ Fq ,
through the identification of Aff(Fq) with F∗

q ×Fq , or all contained in U . In the latter
alternative A ⊆ U implies |π(A)| = 1, yielding (b); in the former, since A = A−1 and
(a, ad + b)−1 = (a−1,−a−1b − d), we must have b = −d and then A ⊆ Stab(−d).

��

4 Concluding Remarks

Theorem 1.4, as addressed several times, gives a structural result on Aff(Fq); more
than that, it shows that the techniques used for the case ofFp in [16] can be generalized
to arbitrary finite fields. This is not a new concept, as the sum-product theorem has also
followed an analogous trajectory, although the same cannot be said of the proofs about
the affine group specifically. There is value in such feats, as it has often been the case
that results for Fq have followed the Fp case once the machinery had been understood
and streamlined; in some situations it is yet an ongoing process, for example with [8]
still missing an equally strong counterpart in Fq (where weakened generalizations are
included however in [4,15]).
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It is the hope of the author that the present result provides another small tessera in
the mosaic of growth in matrix groups. The differences between Theorems 1.2 and 1.4
seem also to reflect the general divergence point between prime fields and general
finite fields: the obstacle presented by

√
q is in substance the same as providing that

we avoid proper subfields, for its origin lies in the complications of the Frobenius
map x �→ x p in the course of the proof of Theorem 2.2. In this sense, the result
also works as a reaffirmation of deeply rooted principles that are likely to resurface
in future research on similar cases, involving matrix groups having larger rank and a
more complicated structure.

In particular, this refers to the example (immediately following Theorem 1.4) of
a set A whose growth is stifled by a subfield. The question of whether the example
we provided is essentially the only one, in line with the structure predictions of the
Helfgott–Lindenstrauss conjecture [9, Conj. 1], is not answered here. However, the
methods involved in the proof of Theorem1.4 seem to yield themselves to be employed
in such a task: having a power of p as a factor in the first half of Theorem 1.4(b)
translates into a condition on the polynomials describing the points of A as being
polynomials in some power x pl

, instead of simply polynomials in x . This in turn
might provide enough information on the arrangement of the points of A in the affine
plane (arrangement that defines Hy(x), essentially) to say that A must necessarily be
“stuck in a subfield”. This avenue of inquiry would show a quantitative version of the
aforementioned conjecture for the case of Aff(Fq), and it is worth exploring.
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