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Abstract
Govindan and Klumpp [7] provided a characterization of perfect equilibria using Lex-
icographic Probability Systems (LPSs). Their characterization was essentially finite in
that they showed that there exists a finite bound on the number of levels in the LPS, but
they did not compute it explicitly. In this note, we draw on two recent developments
in Real Algebraic Geometry to obtain a formula for this bound.

Mathematics Subject Classification 91A68 · 14F25 · 9191

1 Introduction

The concept of perfect equilibrium [15] plays a central role in the theory of refinements
of Nash equilibria. Not only has it been successful in applications to economicmodels,
but its pioneering use of trembles has spurred further refinements. From a practical
viewpoint, the very nature of its definition makes perfect equilibrium very hard to

1 A recent advance in computing perfect equilibria is the homotopy method in [5].
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compute, which explains the relative paucity of algorithms to compute it. Indeed,
recall that an equilibrium of a finite game in normal form is perfect if there exists a
sequence of profiles of completely-mixed strategies converging to it against which the
equilibrium is a best reply. The set of perfect equilibria of a finite game is, thus, defined
by finitely many polynomial inequalities as well the universal (∀) and existential (∃)
quantifiers. Consequently, checking whether a strategy profile is perfect, let alone
computing the entire set, requires, in principle, an infinite number of operations, as we
have to contend with the quantifiers: for every ε > 0, there exists δ > 0 such that...
However, the set of perfect equilibria is a semi-algebraic set—see [3]. Therefore, by
the Tarski-Seidenberg Theorem [4], there exists an equivalent description of perfect
equilibria that is quantifier-free. It would be really convenient, then, to know what
such a description would look like. This question is open and seems hard to resolve.
A more modest question is whether we can eliminate the universal quantifier; in other
words, we are after an equivalent definition of perfection of the following form: a
strategy profile is perfect if there exists a solution to a finite system of polynomial
equations and inequalities (in which the given strategy profile is a parameter). Such
a formulation provides a finite characterization of perfection, since it requires only a
finite number of steps to check whether a finite system of polynomial equations and
inequalities has a solution. Govindan and Klumpp [7] (henceforth GK) obtain a result
of this kind. The system that they consider is shown to have a bound on the number of
polynomials involved; this bound depends only on the cardinalities of the player set
and the strategy sets of the players, but it is not computed. In this note, we sharpen the
result in GK by giving explicit bounds. It is worth noting that the polynomial system
in this characterization involves only multilinear polynomials, which are especially
suitable for the application of polynomial-solving algorithms (see [6] and [11]).

What make this paper possible are recent advances in quantifying the bounds
involved in two results from Real Algebraic Geometry that were used by GK. The
first concerns what is called the Łojasiewicz inequality, which states that the value of
a polynomial in a neighborhood of a zero is bounded from below by a polynomial
function of the distance from the zero-set of the polynomial. Kurdyka and Spodzieja
[10] give an explicit formula for the degree of the bounding polynomial. The second
concerns the Nash curve-selection lemma [4]. Suppose X is a semi-algebraic set and x
belongs to its closure. Then, the curve-selection lemma states that there is an analytic
function from an interval [0, ε] into the closure of X that maps 0 to x and maps all
other points into X . Basu and Roy [1] provide a quantitative version of this lemma
that gives us a bound on the degree of the (coordinate) analytic functions.

2 Definitions and statement of the theorem

We study a finite game G in normal form. The set of players isN = { 1, . . . , N }. The
finite set of pure strategies of each player n ∈ N is denoted Sn , and the corresponding
set of mixed strategies is �n . Define S ≡ ∏

n Sn and � ≡ ∏
n �n . For each n,

S−n = ∏
m �=n Sm ;�−n ≡ ∏

m �=n �m . The payoff function of player n isGn : � → R.
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Definition 2.1 The profile σ ∈ � is a perfect equilibrium if there exists a sequence σ k

of profiles of completely-mixed strategies converging to σ such that for each k, each
player n ∈ N , and each strategy sn ∈ Sn , Gn(σn, σ

k−n) ≥ Gn(sn, σ k−n).

GK provide an equivalent definition of perfect equilibria that replaces the test
sequence σ k with a lexicographic probability system (LPS) for each player.2 To
describe their characterization, we need some definitions.

Definition 2.2 Let K be a non-negative integer. An LPS of order K over a finite set
X is a (K + 1)-tuple (�0, . . . , �K ) of probability distributions over X . We say that �
has full support if ∪K

k=0 supp�
k = X .

Definition 2.3 An LPS profile of order K over S is an N -tuple � ≡ (�1, . . . , �N ),
where for each player n, �n is an LPS over Sn of order K . The LPS profile � has
full support if each �n has full support, and in this case, let �(�) ≡ maxn∈N min{ k |
∪k
i=0 supp�

i
n = Sn }.

The next definition gives us a procedure for forming products of the LPSs of the
players.

Definition 2.4 Given an LPS profile � of order K over S, for each player n, the induced
beliefsμn over S−n of order K (N−1) is defined as follows. For k = 0, . . . , K (N−1):

μk
n = Ck

n

∑

(km )m �=n

⊗m �=n�
km
m ,

where the sum is over all vectors (km)m �=n whose coordinates sum to k, and Ck
n is the

appropriate normalizing constant that gives us a probability distribution.

Definition 2.5 Let � be an LPS profile of order K and let μn be the induced beliefs
for player n. For 0 ≤ k ≤ K (N − 1), we say that a strategy τn ∈ �n is a best reply of
order k against � if for all sn ∈ Sn :

(Gn(τn, μ
0
n), . . . ,Gn(τn, μ

k
n)) ≥L (Gn(sn, μ

0
n), . . . ,Gn(sn, μ

k
n)),

where ≥L is the lexicographic ordering on vectors.

We are now ready to state the main result of GK.

Theorem 2.6 Given a normal-form game G, there exist non-negative integers � ≤ K
(that depend only on N and the cardinalities of the sets Sn) such that a strategy profile
σ is a perfect equilibrium of G iff there exists an LPS profile � of order K such that:

(1) � has full support and �(�) ≤ �;
(2) �0

n = σn for each player n;
(3) σn is a best-reply of order K against �.

2 Blume et al [2] provide a characterization in terms of LPSs defined on the set S of pure-strategy
profiles. But, their definition is not semialgebraic: in particular, one of their conditions—called strong
independence—cannot be verified in finitely many steps.
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For two-player games, we can take � = K = 1. For the general case, GK only
proved that these bounds exist. For our bounds, we need to define a few constants. Let
κ = ∑

n∈N |Sn|; d = N − 1; Z = (2d + 6)(2d + 5)κ−1; D = 5(κ(2d + 4) + 2)Z ;
L = d(6d − 3)2κ−1.

Theorem 2.7 In Theorem 2.6, we can take � = 2d(ZD)2(1 + Z) and K =
L2d(ZD)2(1 + Z).

Remark 2.8 We have defined K to be �L, but as the proof of Theorem 2.7 shows, we
do not have to let K be this absolute constant, but rather we could let it be �(�)L. Put
differently, in the statement of Theorem 2.6, σ is perfect iff we have an LPS satisfying
conditions (1) and (2) and where σn is a best-reply of order �(�)L against �.

Remark 2.9 Suppose we have an N -player game where each player has a actions,
then using very crude bounds for Z and D, we get � ≤ 100N 3a2(6aN )6aN ≡ �̄ and
K ≤ (6N )2aN �̄. Of course, these bounds are enormously high, but we believe that
they can be improved upon (see the last section of the paper).

Remark 2.10 As a practical matter, what can be said of our characterization when the
payoffs are integers? It is well-known that even with integer payoffs, a game may not
have an equilibrium with rational coordinates—cf. [13]. Therefore, the best one can
hope for is that the LPS characterization we have involves algebraic numbers, and
indeed that is the case. To see why that is true, observe that an LPS test for perfection
involves obtaining probability distributions (the levels of an LPS) that solve a finite
system of polynomial equations and inequalities where the coefficients are the payoff
numbers in the game. Thus, all the probability distributions of the LPS have only
algebraic numbers.

3 Some facts about polynomials

GK prove their theorem by first deriving an equivalence between the statement using
LPSs and another involving polynomials. Applying tools from semi-algebraic geom-
etry for polynomials, they then derive their bounds. The proof of our theorem works
with the same set of polynomials and therefore we now review some facts about
polynomials and also the above-mentioned equivalence of GK.

A monomial function F : Rκ → R is of the form xi11 · · · xikk where i1, . . . ik are
non-negative integers; its degree in variable xl , denoted degxl (F), is il and its total
degree, denoted deg(F), is i1 + · · · + ik . A polynomial is a finite linear combination∑

j a j Fj of mononomials Fj ; its degree in variable xl is max { degxl Fj | a j �= 0 } and
its total degree is max { deg Fj | a j �= 0 }, with the degree of the zero function being
zero. If F : Rκ → R

l , l ≥ 2, is a function where each coordinate Fj is a polynomial,
the degree of F is the maximum over j of the degree of Fj . We call F a polynomial
map.

For a polynomial (or more generally a power series) f (t) ≡ ∑
k akt

k of a single
variable t , the order of f , denoted o( f ), is the smallest k for which ak �= 0—the
order of the zero function is ∞. We say that f > 0 (resp. f ≥ 0) if ao( f ) > 0 (resp.
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either ao( f ) > 0 or f ≡ 0). For a polynomial map f : R → R
l , the order of f is

max j o( f j ).
Now we turn to the description of perfect equilibria using polynomials. A poly-

nomial strategy-profile is a polynomial map η : R → ∏
n∈N R

Sn . For each n, the
payoff function Gn can be extended uniquely to a multilinear function over the whole
of

∏
m∈N R

Sm , still denoted Gn . Given a polynomial strategy profile, we can now
compute the “payoff” Gn(η) ≡ Gn ◦ η, which is a polynomial whose degree is at
most

∑
m maxsm deg ηm,sm . We say that a strategy τn ∈ �n is a best-reply of order r

against a polynomial strategy profile η if for each sn ∈ Sn ,Gn(τn, η−n)−Gn(sn, η−n)

is either non-negative or of order at least r + 1. The following lemma is from GK (see
their Claim 3.3).

Lemma 3.1 Let � ≤ K be non-negative integers and let σ ∈ �. The following state-
ments are equivalent:

(1) There exists an LPS profile � of order K such that:

(a) � has full support and �(�) ≤ �;
(b) �0

n = σn for each player n;
(c) σn is a best-reply of order K against �.

(2) There exists a polynomial map η : R → R
κ such that:

(a) ηn,sn > 0 for each n, sn and o(η) ≤ �;
(b) η(0) = σ ;
(c) For each n, σn is a best reply of order K against η.

Remark 3.2 As the proof of Lemma 3.1 in GK shows, we can take o(η) to be equal to
�(�) in going from an LPS profile to the associated polynomial and vice versa, thus
giving us an intimate connection between these two ways of looking at perfection.

Remark 3.3 There are cases where simple bounds can be obtained for � and K using
the equivalence of the lemma above. First note that σ is a perfect equilibrium if and
only if σ belongs to the closure of P ≡ { τ ∈ R

κ | τ ∈ int(�),∀n ∈ N , sn ∈
Sn,Gn(σn, τ−n) − Gn(sn, τ−n) ≥ 0 }. If P is a convex set—as it is the case with
two-player or polymatrix games, for example—then consider τ ∗ ∈ P . It follows that
the linear map t �→ (1 − t)σ + tτ ∗ satisfies conditions 2(a), 2(b) and 2(c) which
implies that � and K can be taken equal to 1.

We conclude this section with the two key results from Real Algebraic Geometry
that we referred to before. Let F : Rκ → R

l be a polynomial map of degree d and let
V (F) be the set of zeros of F . Fix x ∈ V (F). The Łojasiewicz inequality provides a
lower bound on the value of F in a neighborhood of x . Specifically, there exist positive
constants C, ε, r such that ‖F(y)‖ ≥ Cdist(y, V (F))r for y such that ‖x − y‖ < ε,
where ‖ · ‖ is the Euclidean norm and dist(y, V (F)) is the Euclidean distance of y
to V (F). The smallest r satisfying the inequality is called the Łojasiewicz exponent.
Kurdyka and Spordieza [10] show that if F is a polynomial of degree d ≥ 2, then the
Łojasiewicz exponent is ≤ d(6d − 3)κ−1. We exploit this estimate in our theorem.
The next result concerns the curve-selection lemma.
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Proposition 3.4 Let P be a semi-algebraic subset ofRκ defined by polynomials whose
total degrees are bounded by d. Let x belong to the closure of P. There exist ε > 0
and an analytic function φ : [0, ε) → R

κ such that: (1) φ((0, ε)) ⊂ P; (2) φ(0) = x;
(3) o(φ) ≤ 2dZ2D2(1 + Z).

Proof The Quantitative Curve Selection Lemma (Theorem 2 in Basu and Roy [1])
implies that there exist: (1) a semi-algebraic path φ : [0, t0) → R

κ ; (2) a set of
polynomials f (T ,U ), g0(T ,U ), ..., gκ (T ,U ) in two variables (T ,U ); (3) a semi-
algebraic function u : [0, t0) → R such that: (a) φ(0) = x and φ(t) ∈ P for all t > 0;
(b) f (t, u(t)) = 0 for all t ∈ (0, t0); (c) φ(t) = (

g1(t,u(t))
g0(t,u(t)) , ...,

gκ (t,u(t))
g0(t,u(t)) ), for t > 0.3

Moreover,

max{degT ( f ), degT (g0), ..., degT (gκ)} = 2dZD2

and

max{degU ( f ), degU (g0), ..., degU (gκ)} = Z .

Viewing the polynomial f as a polynomial with complex coefficients, it follows from
the algebraic closure of complex Puiseux series that the root u(·) can be assumed to be a
real Puiseux series.Moreover, byRiemman’smethod of resolution of singularities (see
Theorem 1.5 in Kollár [9]) we have that u(t) is a real Puiseux series with nonnegative
exponents: u(t) = ∑

k≥0 akt
k/q , where q ≤ Z . Riemann’s result also implies that the

Puiseux series converges in a neighborhood of zero. Let ξ be the order of u. Now,
a necessary condition for (t, u(t)) to be a root of f (T ,U ) = ∑

(i, j) ci j T
iU j for

t ∈ [0, t0) is that the lowest powers of t after substituting (t, u(t)) for (T ,U ) must
cancel. Therefore, there must be at least two monomials ci j T iU j and ci ′ j ′T i ′U j ′ such
that both give the same degree β on t after substituting (t, u(t)) in the monomials, and
other monomials give degrees ≥ β. Therefore, i + jξ = i ′ + j ′ξ ⇐⇒ ξ = i−i ′

j ′− j ≤
2dZD2.

Since degT (gi ) is bounded by 2dZD2 and degU (gi ) is bounded by Z , it follows that
the order of gi (t, u(t)) is bounded by (2dZD2 +2d(ZD)2). Changing variables from
t to tq , it follows that the order of gi (tq , u(tq)) is less than (2dZD2 + 2d(ZD)2)Z .
Since φ is continuous at 0, it follows that gi (tq ,u(tq ))

g0(tq ,u(tq ))
, i = 1, ..., κ is a power series

with order bounded by (2dZD2 + 2d(ZD)2)Z = (2d(ZD)2)(1 + Z). ��

4 Proof of Theorem 2.7

As we remarked in Sect. 2, for the case N = 2, we can take � = K = 1. Therefore,
assume N > 2. We prove the theorem by invoking the equivalence in Lemma 3.1. Fix

3 Since the description of x (see Basu and Roy [1] for a definition) uses univariate polynomials with
coefficients in R, x admits a trivial description h = (X , X − 1, X − x1, ..., X − xκ ). Therefore, the
coefficients of the polynomials used in the description of the semi-algebraic path φ can be taken directly
as R.
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σ ∈ �. Suppose � and K are as specified in Theorem 2.7 and suppose η : R → R
k

is a polynomial map satisfying properties 2(a)–2(c) of Lemma 3.1. We show that σ is
perfect. There is nothing to prove if σ is completely mixed; therefore assume that it is
not. For each n, let Tn be the set of pure strategies that are best replies against σ . Let T 1

n
be the subset of Tn consisting of those strategies that are best replies of order K against
η; then T 1

n includes the support of σn . Let T 0
n = Tn\T 1

n . Let F : Rκ × ∏
n R

T 0
n →∏

n R
Tn be the polynomial whose coordinate for (n, tn) is Fn,tn (τ, c) ≡ Gn(tn, τ−n)−

Gn(σn, τ−n) if tn ∈ T 1
n and Fn,tn (τ, c) ≡ Gn(tn, τ−n)−Gn(σn, τ−n)+c2n,tn if tn ∈ T 0

n .
(In case T 0

n is empty for some n, then we do not have the coordinate c for him; in
particular if T 0

n is empty for all n, F is a function defined on Rκ .) For all small t , each
player n and each strategy tn ∈ T 0

n , Gn(tn, η−n(t))−Gn(σn, η−n(t)) < 0. Therefore,
the function cn,tn (t) ≡ (Gn(σn, η−n(t) − Gn(tn, η−n(t)))1/2 is well-defined. Themap
F(η(t), c(t)) now has order K + 1 as a function of t .

Let W be the set of (τ, c) ∈ R
κ × ∏

n R
T 0
n such that τn,sn = 0 for some n and sn

that is not in the support of σn . We claim that (V (F)\W ) ∩ U is nonempty for each
small neighborhoodU of σ . Indeed, by the Łojasiewicz inequality, if this intersection
is empty, then for each small t , since d((η(t), c(t)), V (F)) = O(to(η)), the order of
F(η(t), c(t)) is nomore than o(η)L ≤ K , which is a contradictionwith the conclusion
from the previous paragraph. Hence, the intersection is nonempty.

Take now a sequence of neighborhoodsUk of σ whose intersection is σ . For each k,
pick a point (σ k, ck) ∈ (V (F)\W )∩Uk . For each n, all the strategies in T 1

n are equally
good replies against σ k , and at least weakly better than those in T 0

n ; as strategies in
Sn\Tn are inferior replies against σ , they remain so against σ k for large k. Therefore,
σ is a perfect equilibrium.

To prove the other direction, let now σ be a perfect equilibrium of G. Let P be the
set of completely mixed strategy-profiles τ ∈ � such that for all n ∈ N , sn ∈ Sn ,
Gn(σn, τ−n)−Gn(sn, τ−n) ≥ 0. The set P is semi-algebraic.Moreover, asσ is perfect,
P is non-empty and σ belongs to the closure of P . By Proposition 3.4, it follows that
there exists an analytic function ϕ : [0, ε) → R

κ such that ϕ((0, ε)) ⊂ P , ϕ(0) = σ

and o(ϕ) ≤ �. Therefore, K ≤ (2d(ZD)2)(1+ Z)L. Now consider the polynomial η
of order K obtained by truncating each coordinate of ϕ to its first K + 1 terms. This
polynomial satisfies conditions 2(a)–2(c) of Lemma 3.1 and our theorem is proved.

5 Concluding remarks

The two quantitative results concerning the Łojasiewicz inequality and the curve-
selection lemma that we invoke hold for the case of arbitrary polynomials. In the
context of game theory, the polynomials we are considering are very special: they
happen to be multilinear functions. Therefore, it is worthwhile investigating whether
the bounds in this paper can be tightened.

The idea of trembles in the definition of perfection is the basis for a number of
refinements, and we can obtain a finite characterization for several of those as well. As
extensive-form perfection is the same as normal-form perfection applied to the agent-
normal-form, the results here extend immediately to it. As for properness [12], as GK
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show, there is an equivalent definition using LPSs that is similar to that for perfection
with the added restriction that superior replies are infinitely more likely in the LPS. By
incorporating an additional variable ε (used in the definition of ε-properness), we get
a finite characterization where the variables κ and d are augmented by one. Finally, a
more challenging and important open problem is to obtain a similar characterization
for stable sets [8].4
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