Automated Software Engineering (2021) 28:3
https://doi.org/10.1007/s10515-021-00280-3

®

Check for
updates

Investigation and prediction of open source software
evolution using automated parameter mining for
agent-based simulation

Daniel Honsel'® - Verena Herbold'® - Stephan Waack’ - Jens Grabowski'

Received: 6 April 2020 / Accepted: 11 March 2021 / Published online: 14 May 2021
© The Author(s) 2021

Abstract

To guide software development, the estimation of the impact of decision making on the
development process can be helpful in planning. For this estimation, often prediction
models are used which can be learned from project data. In this paper, an approach for
the usage of agent-based simulation for the prediction of software evolution trends is
presented. The specialty of the proposed approach lies in the automated parameter esti-
mation for the instantiation of project-specific simulation models. We want to assess
how well a baseline model using average (commit) behavior of the agents (i.e., the
developers) performs compared to models where different amount of project-specific
data is fed into the simulation model. The approach involves the interplay between
the mining framework and simulation framework. Parameters to be estimated include,
e.g., file change probabilities of developers and the team constellation reflecting dif-
ferent developer roles. The structural evolution of software projects is observed using
change coupling graphs based on common file changes. For the validation of simula-
tion results, we compare empirical with simulated results. Our results showed that an
average simulation model can mimic general project growth trends like the number
of commits and files well and thus, can help project managers in, e.g., controlling
the onboarding of developers. Besides, the simulated co-change evolution could be
improved significantly using project-specific data.

B Verena Herbold
vherbold @cs.uni-goettingen.de

Daniel Honsel
dhonsel @cs.uni-goettingen.de

Stephan Waack
waack @informatik.uni-goettingen.de

Jens Grabowski
grabowski @informatik.uni-goettingen.de

Institute of Computer Science, University of Gottingen, Gottingen, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-021-00280-3&domain=pdf
https://orcid.org/0000-0002-8397-354X
http://orcid.org/0000-0002-1463-7737

3 Page2of37 Automated Software Engineering (2021) 28:3

Keywords Software evolution - Agent-based simulation - Software repository
mining - Change coupling networks - Open source software

1 Introduction

The analysis of software repositories can be used to detect and forecast software
evolution trends. Topics of interest are manifold and include developer contribu-
tion behavior (Ben et al. 2013; Joblin et al. 2017; Lima et al. 2015), changes and
growth (Robles et al. 2005; Shihab et al. 2012; Kim et al. 2008), software network
evolution (Amrit and van Hillegersberg 2010; Bhattacharya et al. 2012), and the pre-
diction of bugs (Wiese et al. 2015) and effort (Kocaguneli et al. 2011). The aim of
investigating software evolution is to understand the underlying processes which drive
and impact the evolution, e.g., the reason why certain changes are performed. The his-
tory of changes is stored in the Version Control System (VCS) and is available for
analysis. In the case of Open Source Software (OSS), the data is usually stored in
repositories hosted on collaborative coding sites like GitHub. Software evolution sim-
ulation approaches use a model of the system which is filled with knowledge by mining
real software projects. Since the changes made by the developers of the software are
responsible for its evolution, we build our model upon the developers and their change
behavior. Agent-based Modeling and Simulation (ABMS) allows us to model software
evolution from the perspective of the developers performing changes to the software
entities, e.g., files, classes, or modules.

Simulating the actions of developers, can help to estimate the future maintenance
effort spent in the project and, thus, aid in planning. In practice, it is hard to figure out
simulation models which are valid for the whole application area (Sargent 2011). Using
project-specific simulation models retrieved from empirical data can mitigate this
problem, but may be not suitable for every type of software project. A close interaction
between the mining step as parameter estimation and the simulation framework for
the instantiation provides researchers with large testing possibilities. This establishes
an important step in assessing the validity of software process simulations.

This work is based on the PhD thesis of the first author (Honsel 2019) and has the
following contributions:

— The introduction of an automated parameter estimation approach including the
development of a framework to instantiate simulation models for software evolu-
tion.

— An elaborated simulation model of software evolution which builds upon lessons
learned from past studies (Honsel et al. 2014, 2015, 2016a).

— A case study including ten OSS projects comparing project-specific and general
software evolution models as well as the evaluation of these for different points in
time, i.e., short-term versus long-term prediction.

The remainder of this paper is structured as follows: We present the background of
software evolution and agent-based simulation in Sect. 2. In addition, an overview on
related work in the field is given in this section. In Sect. 3, we present a motivating
example to illustrate possible applications of our work. Then, we describe our approach

@ Springer

Automated Software Engineering (2021) 28:3 Page3of37 3

of automated simulation parameter mining from OSS project data and the associated
simulation process in detail in Sect. 4. In Sect. 5, we present our case study on the
validation of different software evolution simulation models. Finally, we conclude the
paper in Sect. 6 and give an outlook on future work.

2 Background and related work

In this section, we present the foundations of software evolution and how questions
concerning software evolution can be analyzed. Then, we go into detail about agent-
based simulation models and their ways of validation. In addition, we present the state
of the art and common approaches from related work. For our work, we combine
methods from different fields. Thus, it is important to present the basic ideas behind
the methods used as well as how they interact.

2.1 Analysis and prediction of software evolution

The investigation of software evolution dates back to Lehman (1980) who first inves-
tigated program evolution within his work at IBM. As an outcome of this research, the
laws of software evolution were formulated that try to describe the interplay between
changes, related system growth and complexity, and need for program adaption, e.g.,
maintenance activities. These investigations induced increasing interest in the topic of
software evolution research, which focuses on understanding the causes and impact
of changes to the software. Entities involved in software evolution are the develop-
ers since the perform the changes to the software, software artifacts since they are
changed, and bugs since they may be introduced due to changes.

Important research topics reach from developer contribution behavior (Lima et al.
2015; Bhattacharya et al. 2014), the nature of OSS and its evolution (Khondhu et al.
2013; Fernandez-Ramil et al. 2008; Alfayez et al. 2017), software changes (Shi-
hab et al. 2012; Kim et al. 2008), or the causes, localization and prediction of
bugs (Lamkanfi et al. 2010; Wiese et al. 2015; Rahman and Devanbu 2011).

We start our investigations from the inside of the software projects, i.e., examining
the work performed by the developers. Their changes directly impact the growth of the
software system. Dependencies between the different actors in software evolution like
developers, software artifacts, and bugs, can be represented by networks. Following
these strategies, we can analyze the evolution of the work of developers and related
software growth as well as the evolution of structural properties of the software system.
Respected data can be retrieved from VCSs, Issue Tracking Systems (ITSs), and
mailing lists by software repository mining.

Mockus et al. (2002) presented an interesting case study of two major OSS projects:
Apache and Mozilla. The authors aim to understand the nature of OSS software
projects. For this, they analyze different aspects of the software evolution process,
e.g., team structure, the role of core members, communication, and bug fixing behav-
ior.

@ Springer

3 Page4of37 Automated Software Engineering (2021) 28:3

Developer behavior and roles

The work of developers, especially in OSS projects, depends on many factors like
knowledge, experience (Bhattacharya et al. 2014), background, interests, and moti-
vation (Li 2012). All of these can vary over the time. To measure the contributions
performed by individual developers, no general method exist. Developers’ contribu-
tion can be described as the entire list of activities a developer performs during the
development of the software (Gousios et al. 2008). Several approaches try to express
the contribution of a developer in a timespan by, e.g., the number of commits per-
formed in this interval, the number of Lines Of Code (LOC) written (Yamauchi et al.
2018; Bird et al. 2011), or the number of feature requests solved.

To sort developers who behave similarly, developers can be classified by their role
in the software project. A common approach for this task is the onion model (Crow-
ston and Howison 2006) which assumes that 80% of the work performed in a software
project is done by the top 20% of the developers. This leads to a structure where the
top contributors present the core developers whereas the rest are peripheral develop-
ers. This core/periphery structure is utilized for many studies (Yu and Ramaswamy
2007; Amrit and van Hillegersberg 2010; Terceiro et al. 2010). Joblin et al. (2017)
evaluated the findings from count based contribution measures and compare them with
metrics retrieved from hierarchy networks. As a result, they found that count-based
metrics deliver consistent results, but enriched with information from collaboration
networks it can support research in this direction. Taking this into account, we propose
a count-based model reflecting different contribution activities and different roles of
developers.

Software changes and growth

Software changes to affected software entities, e.g., file, classes, or software mod-
ules (Turski 1996), impact the growth of the software system directly. The addition
and deletions of files change the file count whereas modifications also change the LOC
count (total number of LOC). Both are common measures for the size of the software.
Godfrey and Tu (2000) showed that such growth behavior often follows sub-linear
trends, but also other patterns are possible, e.g., super-linear growth patterns (Herraiz
et al. 2006). In our work, we take the number of files (NOF) as measurement for the
system size into account.

Changes to the software can have different purposes. Usually, a change set of files
is changed for solving one or more tasks. These tasks can represent a feature addition,
a bug fix, or other maintenance activities. Since developers also incidentally fix bugs,
complete various tasks at once or commit work in progress, it is not easy to map
developer activities to their intentions, i.e., tasks, exactly (Konopka and Navrat 2015).
Several approaches exist to untangle these changes, e.g., Herzig and Zeller (2013);
Hindle et al. (2009). An issue which is especially relevant for our work is to identify
changes as bug fixing changes. To define the workload of different developer types,
it is important to know how many commits and bug fixes they perform. A common
approach is the SZZ algorithm (Kim et al. 2008) which does exactly this classification.

@ Springer

Automated Software Engineering (2021) 28:3 Page50f37 3

Since the SZZ algorithm has some disadvantages, e.g, many false positives, we use
validated data by Herbold et al. (2019) for our work.

Software networks

A software network can be defined as a set of nodes N which can represent any kind
of software entities, persons that are involved in the software development process, or
bugs that affect the software. Software entities can also be considered on the function
level, e.g., for constructing function call graphs. The relations between the different
nodes are defined by a set of edges E which link two nodes ny, ny € N. Generally,
networks can be directed or undirected depending on the kind of relationship. Here, we
only consider undirected networks. Software networks can represent structural proper-
ties of the software under investigation, e.g., call graphs (Bhattacharya et al. 2012) and
inheritance graphs, or collaborative properties, e.g., developer co-editing (Caglayan
et al. 2013), or bug assignments (Bhattacharya et al. 2012). Interesting research top-
ics using software networks in software engineering reach from the detection of core
developers (Huang and Liu 2005) over communication activities in OSS projects (Bird
et al. 2006) to bug prediction (Meneely et al. 2008).

In social network analysis, a common task is to detect communities within the
network. A community is defined as “...groups of vertices which probably share
common properties and play similar roles within the graph” (Fortunato 2010). In
software networks, communities can represent different entities, e.g., packages, related
test files, or teams of developers.

For finding evolutionary patterns in the growth of software networks, we trace
some network metrics over the time. To represent structural as well as semantically
related software entities, we take change coupling graphs into account (Ball et al.
1997; D’ Ambros et al. 2009). Change coupling is defined as “...the implicit relation-
ship between two or more software artifacts that have been observed to frequently
change together during the evolution of a software system” (D’ Ambros et al. 2009).
The analysis of change coupling evolution is often used for change recommendation
since software entities that have often been changed together in the past are likely to
be changed together in the future, or to detect design issues (Gall et al. 1998). Apart
from that, the evolution of itself as well as its impact, e.g., on defects, is of inter-
est (D’Ambros et al. 2009). We also consider communities of the change coupling
graph as well as respect the change coupling structure in the file change strategy of
developers.

2.2 Agent-based simulation

Agent-based simulation can model complex scenarios with rather simple rules. The
main challenge in ABMS is the model building process. This includes the description of
the behavior of the agents, which can be implemented rule-based. The model building
process involves finding a balance between assumptions you make on the model and
finding suitable changeable parameters. Agents are individuals with an autonomous
behavior which can be adapted (Macal and North 2005), i.e., the agents can learn over

@ Springer

3 Page6of37 Automated Software Engineering (2021) 28:3

the time. Moreover, agents can interact which each other. Agents can be active via
performing actions on their own as well as passive by just changing their state and
attributes. Applications of ABMS show a wide range from business market analysis
to health related issues, e.g., the humane immune system (Macal and North 2006).

In software engineering, ABMS is seldom used. Most similar to our approach is
the work of Smith et al. (2006) who propose an agent-based simulation model for
software evolution with developers, requirements, and modules as active agents. In
their work, they use a grid-based representation of the software project where the
agents can move around in their neighborhood each simulation round. Hence, the
developers can only work on nearby modules. Moreover, they can leave the project by
moving outside of the grid. Additionally, developers can leave the project according to
a motivation factor. Possible developer activities are the creation of new modules on
requirements, refactoring modules, and develop modules. For validation, the authors
compare empirical trends like the growth and the complexity of the software system
with simulated trends like we do in our research. Compared to Smith et al. (2006), we
reflect also structural properties of the software, the evolution of bugs, and developer
roles. Moreover, we use networks instead of a grid as a topology which makes the
simulation more flexible and able to represent different perspectives on the systems’
evolution, e.g., relationships between developers and evolution of logical coupling of
the software.

Garcia-Garcia et al. (2020) published a recent literature review on Software Process
Simulation Modeling. They identified 36 papers as state of the art from 2013 and 2019.
Within their study, agent-based simulation and Discrete-Event Simulation are the most
used paradigms with 25% each. Still, most of the work listed there focus on a defined
environment, e.g., process model, or a given task, e.g., predict the risk of the project
to fail or the training of junior system engineers and project managers. In our work,
we use ABMS for more general software evolution scenarios and trend prediction.

An interesting study related to our work is presented by Ali et al. (2018). The authors
also investigate whether an agent-based model of software evolution can reflect real
world processes. Different to our work, they reworked an existing System Dynamics
simulation into an agent-based framework and checked the appropriateness for this
purpose. For describing the complexity of a software project, they use Actor Network
Theory which include different actors and their interrelations, e.g, project managers,
developers, or mutable tools with the overall aim to measure the health of the system.
Furthermore, they performed an evaluation of the effect of attitude changes, e.g., by
the project manager. Their evaluation is based on an experts opinion instead of real-
world data, since their model requires a lot of project information to be instantiated
as a real software project.

2.3 Validation of simulation models

For the validation of simulation models, several approaches exist depending on the
purpose of the simulation. Sargent (2011) pointed out that simulation models should
be evaluated with respect to the answers the model is targeted to answer. Therefore,
one has to specify needed output variables as well as the extent of accuracy needed

@ Springer

Automated Software Engineering (2021) 28:3 Page70f37 3

to answer the questions adequately. Usually, tests are performed until the model is
valid for a sufficient set of experiments. The following aspects should be considered:
if model assumptions are valid, if it is well designed towards its intended purpose,
and checking if the system is implemented right. Furthermore, it is important to check
the output behavior of the simulation model (Sargent 2011). One of such approaches
is the comparison of empirical with simulated data. To support the internal validity,
it is also common to have several runs of a simulation to mitigate model variability.
An advantage of the approach presented in this paper is the facilitation of predictive
validation, since data can be taken as input for selected points in time. Thus, the
prediction results can be easily compared through the collaboration with the mining
framework.

3 Motivating scenario

Generally, the motivation of our work is two-fold. First, we aim to provide decision
support for software project managers by estimating the impact of different parameter
sets, i.e., project settings. Second, we want to support researchers who are interested in
the simulation of software evolution by providing a mining and simulation framework
which are closely working together. By this, different outputs are available for analysis
and for a smarter validation of simulation models. In the following, we only provide
an example scenario for the first layer, since the second layer emerges from the paper.

Scenario From the starting point of a project manager, it is an important task to
estimate the future effort spent by the developers. Usually, this is based on expertise.
This is not an easy task since OSS development is an undetermined environment. Our
idea is to use a simulation model based on previous evolution of the software. We
assume that such a project specific simulation model can yield realistic predictions.
For comparison, we assume that an average behavior taken from a set of OSS projects
is not adequate to forecast the ongoing in a software project sufficiently. As a result of
the comparison it gets clear whether an average model is powerful enough to predict
software evolution trends and how much empirical data can improve simulation results.

A concrete use case considers project managers monitoring the onboarding pro-
cess: The progress in many OSS projects hosted on, e.g., GitHub is controlled by the
incoming pull requests. Usually, every pull request needs to be reviewed by a core
developer and, thus, the number of commits is limited by the number of core develop-
ers (committer). An active core of the project is essential to keep the project healthy.
Hence, it is an important task for the project manager to determine the number of
developers to onboard.

Figure 1 shows the project manager thinking about an appropriate project setting,
e.g., to find out the appropriate number of new developers to onboard. He decides to use
the proposed simulation framework to test the impact of different factors. Changeable
parameters are the number of developers he plans with, the expected size of the software
system, and the development time in days. Then, the simulation runs and predicts the
estimated trends, e.g., the workload performed by the developers. It is possible to
adapt the parameter set if the simulation output is not in line with his conception. This
establishes a feedback loop for project managers and developers.

@ Springer

3 Page8of37 Automated Software Engineering (2021) 28:3

. 2 parameter set Run simulation tool
o S

consults Number of developers
Expected size

Development time

-«

feedback

Fig. 1 Usage scenario of proposed simulation framework

SimulationContext
Bug

- simRounds : int

- maxProjectSize : int

- agents : List

- categories : List —— + computelifetime() : int

- roundOfCreation : int
- roundOfClosing : int

- changeCouplingNetwork : Network
- fileDeveloperNetwork : Network
- bugFileNetwork : Network ‘

+ createDeveloper(i : int)

AdjustableParameters ; i
J + createCategories(: int) MajorBug MinorBug NormalBug

- initialRounds : int

- initialBoosFactor : real Category assigned to
- boostFactor : real

create -name : string
-size :int
Developer File

- commitCount : int creator : Developer
- fixCount : int ;

- pAddFiles : real e - owner : Developer —
tards
- pUpdateFiles : real touches : int
- pDeleteFiles : real

+errorProne(: boolean
+ computeLabel() : real

+work()
Maintainer KeyDeveloper MajorDeveloper MinorDeveloper
- pCommit : real - pCommit : real - pCommit : real - pCommit : real
- pFix : real - pFix : real - pFix : real - pFix : real

Fig.2 Agent-based simulation model

4 Methodology

In this section, we present our approach in detail. Since our goal is to analyze the
evolution of OSS projects using agent-based simulation, we start with the description
of our simulation model. We proceed to describe how we mine software repositories
to automatically estimate required parameters to instantiate the simulation model fol-
lowed by a description of the mining framework. Finally, we describe how the tools
presented here can be applied to almost any open source project.

4.1 Simulation model

The agent-based simulation model used for this evaluation is depicted in Fig. 2. The
main agents as well as their interaction is described below.

The SimulationContext represents the initial class of the simulation model. At
simulation start-up, it creates a given number of developers and is initialized with

@ Springer

Automated Software Engineering (2021) 28:3 Page9of37 3

project-specific parameters such as the maximum project size and the number of
rounds to simulate. Furthermore, the SimulationContext knows all instantiated agents
as well as all networks, representing dependencies between the agents, at runtime.
The simulation is round-based and one round in the simulation represents one day in
real life. Every turn each developer has the opportunity to work. Whether she makes
a contribution depends on her role and the associated probabilities.

The Developer is considered as active agent because its development work adds,
deletes, and updates files. This contribution makes the project evolve over time. Devel-
opment work means to apply a commit. How often a developer performs a commit
and how many files are affected per commit depends on the probabilities for the spe-
cific developer type based on the mining process. The developer types KeyDeveloper,
MajorDeveloper, and MinorDeveloper mainly differ in their commit frequency. The
Maintainer is similar to the KeyDeveloper, only with a particularly high number of
bugfixes. How the classification works in detail is described in the mining process.

Categories represent folders or packages of the software in which files are grouped
together in a logical context. When a file is created, it will be assigned to a category
with a certain probability depending on the size of the category. This allows us to
simulate the clusters of the change coupling more realistically.

To make a statement about the quality of the software under simulation, we use the
number of Bugs assigned to the Files. For this, bugs are weighted according to their
type. A bug is generated by the SimulationContext according to the creation probability
of the specific bug type. After the instantiation the bug will be assigned to an almost
randomly selected file. According to D’ Ambros et al. (2009), a property that makes
a possible assignment of a bug to a file more likely is the coupling degree of the file.
We model this by computing the error proneness based on the coupling degree, i.e.,
the number of links to other files, of the file in the change coupling network which is
introduced below. This behavior simulates the occurrence of bugs managed in an issue
tracking system and created by users, testers, or developers. Each commit a developer
can fix a bug with a certain probability depending on the type of the developer.

Dependency networks

To model a software system more accurately, dependencies between involved agents
have to be described. For this we use networks where the nodes represent the agents and
they can be connected by weighted edges. The following three networks are defined
for our simulation model.

File—developer network This network represents the dependency between a File
and a Developer. The first edge connected to a file is created when a developer cre-
ates the file. Further edges are created when a developer modifies a file that has not
previously connected to the developer. If a developer modifies a file and there already
exists an edge between them, then the weight of this edge will be increased. The state
of a file can change with every commit. An example of the file—developer network
is depicted in Fig. 3.

This network provides the the following properties of a file: the owner as the
developer that changed the file at most; the number of authors represented by the

@ Springer

3 Page100f37 Automated Software Engineering (2021) 28:3

Fig. 3 Example for a file—developer network. Touches are represented as weight of an edge. The red
marked edges represent the owner of a file. Behind the filename is named in brackets the creator of the file
(color figure online)

Fig.4 Example for a bug—file network. Any created issue is assigned to an already existing file

Fig.5 Example for a change
coupling network. The weights
of the edges represent how many
times files are changed together
in one commit. Bold printed
edges represent the membership
in a cluster

degree of the file in this network; the number of touches calculated by summing up
the weights of all connected edges.

Bug—file network After a Bug is created and the File to assign is selected, both
agents will be linked by an edge in this network.

The edge contains information whether a bug is closed or not. Thus, the bug does
not have to be deleted and we can reopen it, if required. An example for a bug—file
network is shown in Fig. 4.

Change coupling network This network describes dependencies between files that
are changed several times together in a commit. In Fig. 5 an example for a change
coupling network is presented.

This network provides the change coupling degree of a file. This is used, for exam-
ple, for the determination of error prone files (D’Ambros et al. 2009). The change
coupling network generates clusters of files that are changed often together. Accord-

@ Springer

Automated Software Engineering (2021) 28:3 Page 110f37 3

ing to Ball et al. (1997), files of one cluster are semantically related. Therefore, this
network is the most precise representation of the software under simulation.

Software changes and growth

A commit can consist of several file changes which can be additions, deletions or mod-
ifications. The growth of the software system as measured in the number of files (NOF)
results directly from these changes, i.e., the file additions and file deletions. Depend-
ing on the role of the developer, it is determined whether the developer works in this
simulation round and if so, how many file actions she performs. A model assumption
behind these probabilities is that the file actions are geometrically distributed (Hon-
sel et al. 2014). A geometric distribution counts the number of trials before the first
success. In our scenario, this means that necessary adoptions are modeled as failure
and a success is that the software is in a satisfactory state, thus, no adaption is needed.
This can be expressed by P(action) = (1 — p)¥p with p the probability for each
action = {create,update, delete} and k the number of attempts. In this version
of the geometric distribution, we have the expectation value £ = FTP and, thus,
P=m

To instantiate the simulation model, the parameters gathered by our mining frame-
work are used. If the mined parameters are not suitable to simulate growth realistically,
then we can use the adjustable parameters to tweak the developers contribution behav-
ior. This is particularly useful when there is strong growth in the initial phase of the
project.

Simulation framework

For simulation purposes we are using the agent-based modeling and simulation frame-
work Repast Simphony (North et al. 2013). It provides a Graphical User Interface
(GUI) to control and parameterize the simulation at runtime as well as time series or
histogram charts of desired properties during the simulation.

4.2 Mining software repositories

In our approach, we use real data as input for the simulation to gain realistic results.
This data stems from the history of software projects stored in VCSs, ITSs, and mailing
lists. In this section, we describe how we learn aspects required for an agent-based
simulation model of software evolution from this data. For the comparison of empirical
and simulated behavior, we need a set of metrics, which are introduced in the following
sections.

Developer behavior and roles
An important point in designing an agent-based simulation model for software evo-

lution are the changes to the software. For this, it is indispensable to get a deeper
understanding on the way developers work since they are responsible for the changes.

@ Springer

3 Page12of37 Automated Software Engineering (2021) 28:3

800~

600 -
- onion model threshold
E
£ role
Q —
O 400- W key
2 . major
@« .
‘é . minor
-5
Z

200~ ‘l

. ‘lllllilll-l!l LV ELL LR L
Developer

Fig.6 Developer classification own approach versus Onion Model

To grasp the structure of the software team constellation, developers are classified into
roles depending on their commit behavior. For this, we take heuristics about commits
and bug fixing commits into account. A bug fixing commit is a commit labeled as bug
fix as explained in Herbold et al. (2019).

For the developer classification, we tested different thresholds for the separation into
the following three types: core, major, and minor developer. We identified the following
classification as applicable for many software projects: A developer performing over
30% of the overall commits is defined as core developer, with over 2% of all commits
as major developer, and all developers with less commits are classified into minor
developers. A core developer can have the additional role of a maintainer, if she
performs over 15% of all bug fixes (Herbold 2019). To demonstrate the applicability
of this classification, we illustrate our approach for an existing open source project. For
this, we calculate all role separation thresholds both using our approach and the onion
model (Crowston and Howison 2006) for the OSS project Zookeeper. In Zookeeper, 87
developers were active in the observed timespan. Applying the thresholds mentioned
above, our approach identifies one core developer, ten major developers, and 76 minor
developers. Using the 80% percentile, the onion model generates 20 core developers
and 67 peripheral developers.

Figure 6 shows all developers of Zookeeper sorted by their total number of commits.
Our approach is colored for the different roles whereas the onion model threshold is
presented as blue line at 17 commits. Thus, all developers with at least 17 commits
are classified into core developers and the rest as peripheral developers. From this,
we construe that for projects with a long tail, i.e., many tiny developers, our model is
more suitable because the diversity of developer workload within the groups is quite
large using the onion model.

We observe this behavior for many OSS projects. Still, for projects where the
number of commits (NOC) are distributed more equally, the onion model splits the

@ Springer

Automated Software Engineering (2021) 28:3 Page130f37 3

developers similar to our approach. Then, core and major developers conform to core
developers and minor developers conform to peripheral developers.

We trace the evolution of the NOC performed by each developer regarding the
commit behavior over the time. The number of bug fixing commits are also taken into
account for modeling the probabilities of the different developer roles to fix a bug
within a commit.

Software changes and growth

As mentioned above, the commit behavior of the developers follows a geometric
distribution. In the used version of the geometric distribution, we have the expectation
value E = 1=2 and, thus, p = E+r1 Hence, for the estimation of parameters, we take
all observations from the version history belonging to the same developer role and
action and derive the probabilities p from the expectation value of the corresponding
observation sequence.

The probability whether a change introduces a new bug is based on the bug fixing
probabilities of the different developer types. For this, the ratio of bug fixing commits
and other development commits is calculated and taken as average for each developer
type. The bugs are categorized into major, normal, and minor bugs mirroring the occur-
rences retrieved from the ITS. Major bugs cover major bugs and worse, e.g., critical or
crash. The bugs evolution and lifetime is evaluated in our former work (Honsel et al.
2016a) and, thus, not in this paper.

Software networks

We consider different kinds of software networks for the simulation of software evolu-
tion: developer-file networks for the representation of collaboration, file-bug networks
for the distribution of bugs among the files, and change coupling networks for inter-
dependencies between the files. In this work, we concentrate on the change coupling
networks which we select to investigate the evolution of the structure of software
projects. In former studies (Honsel et al. 2015, 2016a), we already showed the appli-
cability of change coupling graphs for the simulation of software evolution, but the
mining part was done manually and, thus, the evaluation could not be performed on a
big scale. As defined in Sect. 2.1, a change coupling network consists of a set of nodes
N = fi1,..., fn including all files f;,i € {1, ..., n} and n the number of files that
have been changed together with another file in one commit at least twice. An edge
is the linkage of two nodes based on common changes in the commit history. Each
further co-change increases the weight of the edge by 1.

For a visual representation of these networks, we use the tool Gephi (Bastian et al.
2009) which supports network analysis and visualization. Besides the number of nodes
and edges over time, Gephi provides several statistics and network metrics. We use
the following for our analysis:

— Network modularity The modularity of a graph mod(G) is an indicator of how
good the graph can be divided into clusters. Clustering based on the modularity
uses a quality function to grasp the goodness of partitions (Fortunato 2010). The

@ Springer

3 Page140of 37 Automated Software Engineering (2021) 28:3

srcimain/javaldrgljson/XML java
srelmainijavalorg/j&oh/JSONObject java

kieList.java

src/mail nljava/orglj‘;iNXMl.Tokener.iava

[fS8niJSONArray.java

doRJsol

sroimainfjavaldrglison/CDL java
P e adad

e.Q /] ion.java
(o} n_ A . feon/JSONWriter java
o il JSONString.java 1
e src/mainfjavalorgliSORHTTPTokener.java
© OO 0O src/main/javaidrglison/Test java
@) 0 QO e} “
0o @) srcimainfjavalorgljson/Cookie.java
'@ o srcimain/javalorglison/HTTP java
¢ % » sre/mainfjavalorg/j€oR/JSONTokener java
@ ©) sroimainfjavalorgljson/JSONML java
(a) complete (b) zoomed

Fig.7 Change coupling graph of Giraph after the first year of development

actual graph is compared with the so-called null model, that preserves the structure
of the graph except for any community structure.

— Network density The network density sets the number of possible ties in a network
in relation to the actual ties. Thus, a network largely connected is dense.

Since this work aims to assess more the distribution and the overall connectivity of
files instead of ranking individual files, we neglect the node degree or other network
metrics indicating the importance of single nodes.

For detecting clusters within the change coupling graphs, we use the clustering
method based on the modularity function provided by Gephi. Gephi uses a greedy
optimization method to optimize the modularity (Blondel et al. 2008). In the change
coupling graph, these clusters represent logically related software entities, e.g., all
files implementing the GUI of a software product.

We present an example for a change coupling network in Fig. 7. Figure 7a shows the
full change coupling graph of Giraph. There, two large and one smaller communities
can be obtained. A closer look at the blue community (Fig. 7b) reveals that it is a
JSON package.

Usually, the used algorithm produces a structure similar to the actual packages, but
itis possible that some packages are clustered together due to strong interdependencies
or, vice versa, that packages are split into smaller ones, if they are not often changed
together or rarely changed at all.

In our software networks, also additional information like the owner of the file is
stored. The ownership is identified by the proportion of touches to the the file, i.e.,
the developer who performed most changes to it owns it. In the simulation, the files
the developer changes are selected randomly for the first file. If the commit includes
more than one file change, than the selection of further files depends on factors like
ownership, the category and former changed files by the developer.

@ Springer

Automated Software Engineering (2021) 28:3 Page150f37 3

- Identity merging
- Developer classification

= Developer Information Provider

Information about
- open bugs
- fixed bugs
based on ITS information

Bug Information Provider

Computes several commit probabilites

Commit Analyzer

Creates change coupling graph with additional
file information about

- developer touches and

- assigned categories

— Change Coupling Creator

Fig.8 Components of the overall process of automated parameter estimation

4.3 Mining framework

To gather required parameters for the instantiation of our simulation model, the follow-
ing mining framework is proposed. Our mining framework requires data that is created
by SmartSHARK (Trautsch et al. 2018). SmartSHARK contains a set of different tools
that collect data from VCS, ITS, and mailing lists. All collected data is stored in a
MongoDB. To generate the simulation parameters, the following four components,
depicted in Fig. 8, are essential.

Developer information provider This component collects all developers that are
authors of at least one commit of the analyzed project. Afterwards, two tasks are
performed. First, the identities of the developers are merged using an adapted
identity merging algorithm based on Goeminne and Mens (2013). This is neces-
sary, for example, if one and the same developer uses different email addresses.
Second, developers are classified into different types according to the simulation
model.

Bug information provider This component provides information about the number
of bugs that are created and fixed per year. Furthermore, all bug priorities of the
ITS are mapped to the priorities of our simulation model.

Commit analyzer This component investigates all commits of the analyzed project
and computes required probabilities to model the contribution behavior of the
developer types. This means, the number of updated, added, and deleted files

@ Springer

3 Page160of 37 Automated Software Engineering (2021) 28:3

SmartSHARK ’

\

selects projects I:>

Mining Framework

i and@

O simulation data set

4 commit id
snapshot of software project

number of files

instantiation
Project Manager/

Researcher
/ ke
(adapt) e o=
Simulation Framework |::> ; —_— e e

Simulation output

feedback

Fig.9 Overall process of parameter mining and simulation of software evolution

per commit as well as the number of commits by type are analyzed to calculate
the geometric distribution probabilities. Currently, we use two commit types:
an general commit type and a bugfix. The commit classification is based on
manually validated data by Herbold et al. (2019) is provided by SmartSHARK.

Change coupling creator This component creates the change coupling graph of the
analyzed project based on the revision history for every year or any selected point
in time. The change coupling graph is extended with additional file information
about developer touches and assigned categories. This information is used to
instantiate the simulation model at any given point in time.

The parameters generated by the first three components are exported as one JSON
file. A parameter set is required for every instantiation of the simulation model. The
change coupling graph is exported using the DOT format and will be used to instantiate
the simulation based on a snapshot of the analyzed software at any desired point in
time.

4.4 Overall process

Our approach combines the areas of software repository mining used for the automated
estimation of simulation parameters and agent-based simulation used to simulate soft-
ware evolution. The overall approach is depicted in Fig. 9.

This process is described in more detail below by explaining the individual steps
required to analyze any project. A more technical description of these steps can be
found in the general workflow! and in the documentation of the used tools.

1 https://github.com/dhonsel/SimSE/blob/main/docs/workflow.md.

@ Springer

https://github.com/dhonsel/SimSE/blob/main/docs/workflow.md

Automated Software Engineering (2021) 28:3 Page 170f37 3

1. Create a MongoDB with all required data to execute our parameter estimation tool.
For this, the desired open source project should be analyzed with SmartSHARK.?

2. Create simulation parameters and change coupling graphs with additional infor-
mation to instantiate the simulation model at any year. For this, the before created
MongoDB is required by the automated parameter estimation tool (Honsel 2020a).

3. Parameterize the simulation model (Honsel 2020b) with the parameters just
obtained. Then, the simulation can be executed.

4. To improve the simulation results or to compare two different simulation runs, the
runtime parameters can be changed before each simulation run as described in the
documentation. Furthermore it is possible to start the simulation on the basis of
real data on a desired year.

5. Evaluate the simulation results. Based on the research questions in mind, the
evaluation method is chosen. For the comparison between different simulation
runs as well as the assessment of the quality of simulation results, e.g., error
measures can be used. It is also possible to train models on the empirical data and
compare these with simulated results. An example for such an evaluation script is
the replication kit belonging to this paper (Herbold 2020) which compares different
simulation models gained from empirical project data.

This approach can be used to analyze several aspects of software evolution depend-
ing on your point of view. For researchers, the different snapshots of software projects
can be used for, e.g., the analysis of software evolution trends. For project managers,
simulation results can reveal important insights and, thus, can aid in decision making
for software project planning.

Furthermore, the runtime parameters allow a project manager to run through dif-
ferent project runs using a kind of feedback loop to improve the simulation result.

5 Evaluation

In contrast to former studies, we can perform a larger evaluation of the proposed
simulation model since the parameter estimation does not need to be done manually
anymore. We are especially interested in the quality of a basic model of software evo-
lution compared to models fed with different amounts of project-specific information.
In previous studies, we always initialized the simulation model with knowledge from
one project or the average behavior of a small set of OSS projects. The new mining
tool allows us to build project-specific simulation models. Overall, we aim to answer
the following research questions (RQs):

RQI Is a project-specific simulation of software evolution better than a simulation
with average project behavior?

We aim to assess the impact of a project-specific parameter estimation. One aspect
that did not become clear during our previous studies is if parameter tuning for the
behavior of agents, i.e., the developers, can yield better results. Besides, there exists
no evidence in literature (Herbold 2019) to which extent the usage of empirical data

2 https://github.com/smartshark.

@ Springer

https://github.com/smartshark

3 Page18o0f37 Automated Software Engineering (2021) 28:3

for parameter estimation is beneficial for the simulated results. This establishes an
extra motivation to perform different tests on this aspect.

We derive the following hypothesis belonging to this research question:

H1 We assume that a project-wise simulation model can yield significant better
results in terms of the NOC and the NOF than the baseline model.

The second research question aims the answer whether a simulation model that is
initialized after one third of the project can improve simulation results.

RQ2 How accurate is a long-term prediction of software evolution trends compared
to a short-term prediction?

H2 We expect that a snapshot-based simulation model can yield significant better
results in terms of the density and the modularity of the change coupling graph than
the project-wise simulation.

Taking a real snapshot for initialization could improve the change coupling metrics,
since in contrast to the other initialization setups, the structure of the change coupling
graphs is not solely controlled by the change behavior and change history of files.

5.1 Design and objectives

Since the proposed mining framework builds upon SmartSHARK, we evaluate our
approach using a subset of Apache projects contained in the SmartSHARK database.
We have selected 10 actively developed projects that differ in size, duration, and
contribution. Details of the projects are depicted in Table 1.

For our experiments we selected the following ten Apache? projects:

Commons Collections—an extension of the Java Collections Framework;
Commons 10—a collection of 1/0O utilities;

Commons Lang—additional functionality for classes in java.lang;

— DeltaSpike—a collection of portable CDI extensions;

Directory Fortress core—a standards-based authorization system using an LDAP
backend;

Giraph—an iterative graph processing system;

Gora—a framework that provides an in-memory data model and persistence for
big data;

— JSPWiki—a WikiWiki engine;

— Nutch—a production ready web crawler;

— Zookeeper—a centralized service for distributed systems.

The team constellation is determined using our proposed commit threshold based
approach (as described in Sect. 4.2). We target to achieve a high range in the system
size and team constellation within the selected projects, i.e., we consider a projects’
team size from ten to 139 developers.

For each examined software project, we instantiate the different simulation models
with project-specific parameters required for our comparison. Thereby, we have three

3 https://www.apache.org/.

@ Springer

https://www.apache.org/

Page 190f37 3

Automated Software Engineering (2021) 28:3

100lo1d oy Jo s1ouUTEIUTEW OS[E I8 YIIYM SIOAO[OASD Q10D SYIBW , Y,

8Tl OLIOT]41) 959 0v6T Tadoayooz
91 (191z110) 768 LOSE YN
01¢ (61141 7891 ¥8L8 Dimdsg
€01 WelttlsD LLY LTEl vIon
L6 (8zlotl«D geel LITI ydemnn
16 (LITleD 88 6091 2102-ssa110§ A1010211(
08 Orlsl.D YLLT 01€C idseaq
S61 (octl6lo) 659 T8LS Sue[-suowio)
4114 (6¥1610) (984 65TT OI-SUOWWOo))
11T osILID 6651 8G¢e€ SUOTIODN[OD-SUOWIWO)
syjuow ur uonern(y (douru|.1o [put]2.100) siadojarsq (so[Ly)xeIN SO 103fo1g

s100f01d Jo MIIAIOAQ | B]qe]

pringer

As

3 Page20of 37 Automated Software Engineering (2021) 28:3

different settings for each project included in the case study: the project-specific ini-
tialization, where all parameters are estimated individually, an average model, where
the average over the work of developers per commit is used, and a simulation fed with
project information from the first third of the observed project duration.

For ground truth, we utilize the empirical project data retrieved from our mining
framework. The mining process covers different aspects of software evolution. This
establishes the first step of our investigation since all models are parametrized based
on empirical data. Thus, the amount of developers of the obtained developer types is
determined including the effort spent by the developers when they perform a com-
mit, i.e., the addition, modification, and deletion probabilities of files. The amount
of changes contained in a single commit can vary a lot among the projects due to
different coding styles, commit behavior of involved developers, and also the size of
the changes. Besides the file change distribution and developer roles, we consider the
related growth in NOC and NOF which can be easily measured analyzing the VCS.
All metrics are calculated and compared yearly.

For the structural evolution of the project, we build the corresponding change
coupling networks for each year, i.e., the representation of the relationship between
co-changed files. Here, we trace the modularity as well as the density over the years
as described in Sect. 4.2. The growth of the graph is based on the behavior of the
developers as well as the package structure of the project in the average as well as
in the project-specific simulation. For the snapshot, the mined change coupling graph
after one third of the project is taken as input for the following remaining simulation
period. We chose one third of the project as offset for the snapshot simulation because
we assume this to be an sufficient timespan such that the initial phase is over, but that
the project is not yet in a mature state which could have the potential effect of over-
fitting. Besides, a sufficient amount of remaining years is required to establish a fair
comparison of simulation results. For the comparison of the resulting change coupling
networks, we compare the network modularity and the network density evolution.

In summary, we have for each project and each metric four observation sequences:
the empirical trend, the average simulation initialized with the average commit behav-
ior over all projects, the project-specific simulation, and the snapshot simulation
starting after one third of the software project.

5.2 Evaluation measures

First, we compare the prediction error introduced by the average simulation model
with the error occurring when using the project-specific simulation model for the ten
projects included in this case study to evaluate R Q1. The error is calculated considering
the deviation to the empirical trend. For answering R Q2, we compare the observation
sequences produced by the project-specific simulation with the sequence generated by
the snapshot model. Here, the comparison starts the first year after the offset which is
used as input for the snapshot, i.e., after the first third of the projects’ current lifespan.

For both test series we follow the same evaluation scheme:
1. Calculate MAE and RMSE

To measure the error of the prediction, i.e., in our case the simulation results,
compared with the empirical observation values, we use the Mean Absolute Error

@ Springer

Automated Software Engineering (2021) 28:3 Page210f37 3

(MAE) and the Root Mean Squared Error (RMSE) (Willmott 1982). Both are
commonly used to evaluate prediction models. Both, MAE and RMSE, measure
the average dimension of a set of prediction errors, but due to the square root in
the case of RMSE large errors are penalized more.

2. Test Normality
The choice of the statistical tests for comparing two populations depends on their
distributions. Thus, we test the normality of the two observation sequences using
the Shapiro-Wilk test (Shapiro and Wilk 1965). The null hypothesis for the Shapiro-
Wilk test is that the population is normally distributed. This means, that for a single
test a significance level of @ > 0.05 indicates a normal distribution. To counteract
incorrectly rejected null hypothesis occurring when testing multiple hypothesis,
we apply Bonferroni correction (Shaffer 1995) adjusting & = 7 with n the number
of Shapiro-Wilk tests. In our setup, we compare the MAE and the RMSE for the
project-specific and the average simulation for the four metrics (16 tests) in the
first test series. We do the same for the second test series with the snapshot based
simulation and the project-specific simulation initialized with a snapshot. Hence,
we have a significance level of 55 = 0.00156 for normality testing. Since we
identified nine out of the 32 populations as not normally distributed, we based the
choice of the following tests on this observation.

3. Assess Difference between Populations
For populations where at least one is not normally distributed, the Wilcoxon Signed
Rank Test (Wilcoxon 1945) can be applied to test whether the difference between
the observations is significantly high. The Wilcoxon test compares two popula-
tions. We perform the test 16 times. Applying Bonferroni correction, this implies
a significance level of @ = {¢z = 0.0031. Since not all observation sequences are
normally distributed, we report the median values as main trend of the data.

5.3 Results

In this section, we present the results of our case study and answer our research ques-
tions. Before we go into detail about the analysis performed for the two research
questions, we present some interesting mining results about the evolution of the
selected software projects. All used data is published in a replication kit (Herbold
2020).

Growth trends and network evolution

With our simulation model in combination with our mining framework, we are able
to reproduce different growth trends. As an example for common growth trends, we
plot the growth measured in the number of files for the three open source projects
Commons-io, Gora, and Zookeeper. These projects were selected because each of
them has a different growth trend. The results are depicted in Fig. 10.

The examples show an approximately sub-linear growth in the case of Zookeeper,
an approximately linear growth trend for Commons-io, and an approximately super-

@ Springer

3 Page22of37 Automated Software Engineering (2021) 28:3

Project Growth 500 Project Growth
700 4
600 | 7 400 1
500 1
€ € 300 A
3 400 3
o o
o 2
i 3004 @ 200 4
200
100 4
100 A
0 T T ™ ™ T 0 T ™ T ™
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000
Number of Commits Number of Commits
(a) Zookeeper (b) Commons-io

Project Growth
500

400

File Count
w
=]
S

N
1=
S

100

0 200 400 600 800 1000 1200 1400
Number of Commits

(c) Gora

Fig. 10 Different growth trends of real software projects. The real growth is represented by the blue line
and a linear fitted function by the red line (color figure online)

linear growth for the project Gora. According to Paulson et al. (2004), all growth
trends can be fitted with a linear function.

For the evolution of the change coupling networks, we observed that the network
density in the selected projects is always very low, i.e., lower than 0.25 as usual in
larger networks and over the time. In contrast, the modularity of change coupling
networks is rather high, i.e., between 0.5 and 0.8 in a mature state of the project (in
the beginning also lower values are possible).

We exemplify the evolution of change coupling graphs in Fig. 11 and in Fig. 12.
The graphs are presented for every two years of the projects lifespan. All graphs are
colored based on modularity clustering (Blondel et al. 2008). The first graph shows the
evolution of file dependencies of Zookeeper. There, a bigger, dense subgraph emerges
over the time with some smaller clusters around. This behavior can be often observed
for this kind of graphs. In our study, almost all projects showed this behavior. This
means that huge parts of the software are interrelated. The evolution of Commons Lang
is depicted in Fig. 12. This example shows an alternative behavior. Here, the graph
evolves similar in the beginning, but the size of the clusters is more balanced at the
end of the project. From the software engineering point of view such a development

@ Springer

Automated Software Engineering (2021) 28:3 Page230f37 3

© e,
@

2015 2017

Fig. 11 Evolution of the change coupling network of Zookeeper

2010 2012 2014 2016

Fig. 12 Evolution of the change coupling network of Commons Lang

is more desirable because file changes may not have so many dependencies entailing
further changes to other parts of the software.

The above observations can be explained considering the related evolution of the
modularity metric. From Fig. 13, that shows the evolution of the change coupling
modularity for Zookeeper for all simulation modes compared to the empirical trend, we
gather that the snapshot simulation can increase the proximity to the real evolutionary
trend. Compared with the same plot for Commons Lang in Fig. 14, we see that this
does not have to be the case. Additionally, the values for Commons Lang are higher
than for Zookeeper with a rise after half of the projects duration. This rise is also
visible in Fig. 12 comparing the change of the graph structure from the year 2008 to
the year 2010.

@ Springer

3 Page24of37 Automated Software Engineering (2021) 28:3

1.00 -
0.75
2 mode
5 e imulation
) o e == average simu
o 080 — empirical
] = project-specific simulation
e — — snapshot
0.25-
0.00 -

01 02 03 04 05 06 07 08 09 10 11
year

Fig. 13 Modularity of Zookeeper

1.00 -

0.75 -
\/N/—’/\ mode

== average simulation
empirical

modularity
o
3
I

\\ == project-specific simulation
Sl == snapshot
———)
0.25 - /\ S
0.00 -
01020304050607080910111213 141516

year

Fig. 14 Modularity of Commons Lang

RQ1 Is a project-specific simulation of software evolution better than a simulation
with average project behavior?

For answering RQ1, we compare two different simulation setups. The first setup
initializes our proposed simulation model for software evolution with project-specific
parameters as described in Sect. 4.1. We are interested in the improvement of such
a parameterized model compared to a model using the average commit behavior of
developers. This helps us to find out how important the distribution of changes of
developers is for the growth of the software as well as the structural evolution. We
measure this effect by comparing the two size related metrics NOC and NOF as well
as the two network metrics modularity and density over the time, i.e., for each year and

@ Springer

Automated Software Engineering (2021) 28:3 Page250f37 3

w mode w mode
Looe- B average gos- & average
B project-specific ‘ B project-specific
4 - 21 |

density modularity
metric metric

(a) density (b) modularity

1500 -

1000 - mode w mode

& average L 400~ & average
® project-specific ® project-specific

500~

Noc NOF
metric metric

(c) NOC (d) NOF

Fig. 15 Boxplots of MAEs for all projects

simulation type. Then, this two observation sequences are pairwise compared to the
empirical observations. Therefore, we follow our evaluation scheme from Sect. 5.2.
To determine the deviation from the simulation to the empirical values, we calculate
the MAE and RMSE for each metric and project.

Figure 15 shows the distribution of errors (MAE) among projects for each metric.
Here, it can already be seen that there generally is a larger margin for the average
simulation than for the project-specific one. This is due to the fact that an average
commit behavior may be appropriate for some projects, but may produce a larger
error in other projects, e.g., with many low or high contributing developers. Overall,
the differences between the two performances do not seem to be huge. We observed
the same for the RMSE values (see “Appendix A”. For measuring the significance,
we proceed with step two from our evaluation scheme. The Shapiro-Wilk test resulted
in not normally distributed for four out of sixteen populations. Thus, we check the
difference between the population using the Wilcoxon Signed Rank test (step 3).

Table 2 lists all retrieved median values. For this comparison, we could not detect
any significant results. Although no significant improvement can be determined, we
observed that the simulation using the average change probabilities of developers
performs best for mid-size projects. We illustrate this finding in Fig. 16. The NOF
correspond to the number of nodes in the change coupling graph. The yearly evolution
of this metric for the different simulation models as well as the empirical growth is
shown. The figures support the assumption that for smaller projects (Gora) measured
in the total number of commits, the average change behavior produces too few file
actions of developers, because the developers contribution frequency is lower. As
expected, mid-size projects like Zookeeper perform well with the average simulation

@ Springer

Automated Software Engineering (2021) 28:3

Page 26 of 37

3

89¢ orl1 1€C 81T HON

8LI €LT 091 (44! OON

20 See’o [4YAV) §Te0 Krempoy

9¢0°0 ¥L0°0 920°0 0¥0°0 Kisuoq

uone[nwIs a3eIoAt JSIAY uonenuwis oyroads FSIAY uone[WIs 93eIAR TVIA uonenwis oyroads gV SR

[epour uonenuits dy10ads-10afo1d o) pue a3eIoAt o 10J FSINY PUR TVIA JO SONeA URIPIN T 3|qel

pringer

As

Automated Software Engineering (2021) 28:3 Page270f37 3

mode
average simulation
— empirical
~ projectspecific simulation

mode @
average simulation 8 400-

— empirical g

~ project-specific simulation

01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 10 11
year year

(a) Gora (b) Zookeeper

mode
average simulation
— empirical
~ project-specific simulation

0102 03 04 05 06 07 08 09 10 11 12 13 14 15 16
year

(¢) Commons Lang

Fig. 16 NOF for a projects of different sizes

and for large projects (Commons Lang) it has the opposite effect. There, the average
change probabilities result in too many file changes.
Thus, we can answer R Q1 the following:

Inaverage, a project-specific initialized simulation model does not yield better results
than a simulation model where the file change behavior is parameterized over all
projects included in the case study. The average simulation model performs best for
projects with a medium amount of effort spent by the developers.

RQ2: How accurate is a long-term prediction of software evolution trends compared
to a short-term prediction?

For RQ2, we proceed the same way as for RQ1. For this question, we compare the
project-specific model with the model which takes a complete snapshot after one third
of the current lifespan as input. We use the same ten open source software projects for
this comparison and shorten the observation sequence produced by the project-specific
model that it fits the snapshot observations. The comparison starts after one year since
the snapshot initialization. Once again we follow our evaluation scheme described in
Sect. 5.2. In doing so, we first calculate our error measures.

In Fig. 17, the distribution of the MAE for all metrics is shown. Thus, it appears
that whereas the project growth metrics do not improve, the error rate for the network
metrics is lower for the snapshot simulation. The Shapiro Wilk test identifies three out
of sixteen populations as not normal. Hence, we apply the Wilcoxon test again.

Table 3 shows all median values. Significant differences in the populations are
bold. Thereby, a significant improvement in the modularity of the change coupling
network can be confirmed. This meets our expectations in so far that commit frequency

@ Springer

Automated Software Engineering (2021) 28:3

Page 28 of 37

3

el ovl 911 811 JON
¥0T €LT 081 671 J0ON

w610 SEE0 SSI°0 STE0 Ayrenpoy

€100 820°0 10°0 S€20°0 Asuaq

uonenurs joysdeus gSAY uonenuis oyroads gSINY uonenuis joysdeus gy N uone[nurs oyroads gy N OINIIA

[opowr uonenuurs joysdeus oy pue [opowr uonenUIIs dY1oads-10afo1d a1y 107 FSIAY Pue FVIA JO Son[eA UBIPI]N € d|qe]

pringer

As

Automated Software Engineering (2021) 28:3 Page290f37 3

0.075-

mode mode

w w
< 0.050- e < W rockasasi
= = et oz - e
0025~
0.1- {
0.000- " |
density modularity
metric metric
(a) density (b) modularity
. 400~
1500 -
300-
L 1000~ mode w mode
g ’ B project-specific < 200- & project-specific
® snapshot ® snapshot
500~
100~
0- v 0- .
NOC NOF
metric metric
(c) NOC (d) NOF

Fig. 17 Boxplots of MAEs for all projects

can be simulated easier than the distribution of changes among the files, since the
intention of the developers as not directly visible from mining. As the density of the
retrieved change coupling graphs of all OSS projects from the study is in almost all
cases below 0.25 or as in one case slightly higher in the beginning of the project,
we assume this to be the reason for no significance in the results in terms of the
density. Moreover, the density of change coupling graphs evolves slowly without
getting noticeably higher. From the perspective of software engineering, a steady and
low density is good because it indicates a separation of structural connected entities in
the commit behavior. Though, a high modularity can indicate hard to maintain areas.
We answer R Q2 the following:

In average, a simulation model based on a snapshot can yield better results than only
a parameterization with project-specific parameters. Most striking, the graph metrics
of the change coupling graph can be improved. The error rate for the modularity
yields significantly better results for the snapshot based model.

5.4 Discussion

In this paper, we compared different simulation models for the prediction of future
trends in software projects. We were especially interested in the growth of the sys-
tem in the number of files and the number of commits as well as the structural
evolution expressed by change coupling graphs which describe file dependencies
by common changes. We suggested to parameterize software evolution models with
project-specific parameters as well as to utilize a whole snapshot of a project as initial-
ization. To achieve this, we proposed a mining framework closely working together

@ Springer

3 Page300f37 Automated Software Engineering (2021) 28:3

with a simulation framework. For evaluation, we tested different initializations of soft-
ware project instances. We performed two experiments in our case study, one for each
research question. For the first question, we compared the project-specific simulation
with the simulation model using average change probabilities of developers. Here, we
observed no significant differences considering the system growth in NOC and NOF
as well as the change coupling evolution in density and modularity.

Hence, we reject H1 that a project-wise simulation model can yield significant better
results in terms of NOC and NOF than our baseline model.

This establishes a surprisingly good result for our baseline model, since it gives
evidence that the general commit behavior and file growth of OSS systems can be
mirrored by quite simple assumptions behind the agent-based simulation model.

The second research question compared the project-specific simulation with a sim-
ulation model which takes the whole state of a project snapshot after one third of the
lifespan as input. Here, we were able to prove significance for the metric modularity
for the snapshot initialization.

We reject H2 that a snapshot-based simulation model can yield significant better
results than the project-wise simulation model in terms of the modularity and the
density of the change coupling graph. Considering only the modularity of the change
coupling network, we can accept the hypothesis.

Implications for researchers and project managers

To summarize, these findings showed that for a prediction of the general trend the
baseline as well as the project-wise simulation models perform well. For deeper inves-
tigations of software quality, e.g., to control change coupling since a high change
coupling can indicate hard to maintain areas and structural issues such as architec-
ture decay (D’Ambros et al. 2009), the usage of the snapshot-based model can be
beneficial.

The overall goal of this study was to make the validation of simulation models
using real data more feasible. We believe that we reach this goal by the automation
of the parameter estimation steps and the usage of an analysis script. In doing so, we
work on the empirical data and have the possibility to process the same desired aspects
to predict in the simulation framework which already provides the foundation for the
validation. Still, if, e.g., the research focus is changed, it may require an adaption
of the analysis script and maybe also of the simulation itself. From our experience,
we recommend using empirical data for the calibration and validation of simulation
models.

Additionally, we think that the feedback loop established by testing different param-
eters, e.g., adding a developer to the project, can help project managers in decision
making. Coming back to our motivating scenario, the project manager can use the pre-
dicted number of files and commits under the current team constellation as decision
help for the onboarding process.

Compared to other prediction models which exist to predict, e.g., the effort of
developers, we present a more global view on the software project involving side

@ Springer

Automated Software Engineering (2021) 28:3 Page310f37 3

effects of distinct behavior. Considering other simulation models giving a global view
on software evolution, the models are too diverse to be compared directly.

5.5 Threats to validity

In this section, we address some threats to validity concerning our work. Considering
the internal validity, we recognize that the evaluation depends on the choice of the
metrics to describe the software evolution process. Thereby, it also depends on our
conception of software evolution. For the design of a simulation model it is required
to find a balance between model assumptions going into the model and knowledge
that comes from outside. Thus, we had to identify the most important factors driving
software evolution to prevent the model from becoming too complex. As such, devel-
opers and their behavior are very important to model accurately (Girba et al. 2005). We
already argued why we use our developer classification in Sect. 4.2. We measure the
growth of the system in NOF and NOC, because combined they reflect the trade-off
between the output and the frequency of work of developers. Also, we use change cou-
pling graphs and network metrics which are a common choice to model co-changes in
literature. Still, other metrics could reflect other growth and activity trends of software
evolution, e.g., size of the commits in LOC, number of active developers, number of
open bugs, or the number of pull requests.

The choice of the projects affects the external validity. For our case study, we
selected OSS projects of different size, duration, and team constellation to guarantee
representativeness and respect diversity of projects. Moreover, we consider different
growth trends via our project selection. Still, the findings from our case study may
not be representative for other projects and their context, especially for closed source
projects. The differences can lie in the motivation, background of developers, organi-
zation, timeline, or given process models. Hence, it would be worth investigating the
validity of the results for other project types.

In this study, we were specially interested in the validity of simulation studies
which raise special threats to validity in software engineering. De Franca et al. (2016)
take possible threats in software engineering studies using simulation techniques into
account and identified a set of guidelines to deal with them. For such studies, the
validity testing has to take place on different levels. First, since the simulation naturally
underlies some stochastic processes, it is needed to test the variance of the different
simulation runs and beyond several parameter sets. The stochastic itself also has to be
tested for the usage. The next level of validation specifies the balance between model
assumptions and knowledge from outside the model. An imbalance can diminish
the comprehensibility. By our mining process we satisfy two levels at once: First,
empirical findings are validated in advance before becoming part of the model and
second, we establish validity by the use of real software projects. However, the ground
truth generated this way again relies on the chosen projects. Moreover, changes in the
assumptions regarding the design of the simulation model for software evolution may
also change the results although we tried to keep the rate of inherent knowledge low.

@ Springer

3 Page32of37 Automated Software Engineering (2021) 28:3

6 Conclusion and future work

This paper presents an approach to use and validate agent-based simulation models
for the assessment and prediction of software evolution. Our investigation starts with
the main driver of software evolution, the developers. For the parameterization of the
simulation model, we identified developer roles, change probabilities and frequen-
cies, related file growth, and file dependencies. The process of software evolution is
controlled by the behavior of developers as active agents in the simulation. Starting
from this general description of software evolution, we build four simulation models
to evaluate how much project information is needed to avoid prediction errors. The
novelty of this approach lies in the combination of different techniques to achieve
this goal. For the parameter estimation, we use repository mining which enriches the
simulation with knowledge retrieved from empirical data.

Since a simulation can only be as good as its model, it is required to create the
model and choose its parameters carefully. Good models require some balance between
empirical realism and simplicity (Maria 1997). A big part of our model depends on
the work of the developers, since they create, update, and delete the files. This work
controls the file evolution of the software under simulation and thus, the size of the
change coupling graph. The structural evolution of this graph is based on assumptions
of the work of developers, e.g., that they tend to work on certain areas of the software
again if they already changed them before. As such, our model is fed with heuristics
from real software projects, e.g., how often the distinct developer types core, major,
and minor developers contribute to the project, but also some assumptions are made.
Our case studies showed that such a simulation can produce realistic results and, thus,
be very useful for trend prediction or to play the what-if game. In addition, we found
that a model initialized with a snapshot after one third of the project can yield better
prediction results, especially for the representation of the change coupling graph.

Possible directions of future work include a change of the focus of targeted software
evolution scenarios which can have an impact on the results and the scope of the
simulation. The current simulation model is extensible to other research questions,
one direction could for example be the impact of team structure dynamics. Therefore,
we plan to investigate the impact of phases with very low or high developer activity
and identify possible causes, e.g., a rise of activity before a release is planned. For
this, we aim to use the dynamic developer contribution model introduced in Honsel
et al. (2016b).

Since the current model does not reflect bug introduction properly, it would be
worth investigating how this could be modeled based on the changes by the developers.
Therefore, we also want to map the changes performed in a commit to certain tasks
and their difficulty. Then, based on the experience of the developer and the task she is
working on a probability can be calculated of the bug introduction. But, for this, we
will also need a task assignment strategy.

To maximize the generality of our results, we also plan to introduce more projects
of different size and complexity. We would especially be interested in experiments
in the closed source context, because we would expect some changes in the work
of developers there. Vice versa, it would be worth investigating of the specialty of

@ Springer

Automated Software Engineering (2021) 28:3 Page330f37 3

projects, e.g., whether sudden periods of inactivity or major design changes could be
predicted with a high certainty. *

Acknowledgements We would like to thank the Simulation Science Center Clausthal/Géttingen for par-
tially funding our work as part of the project Simulation-Based Quality Assurance for Software Systems.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Boxplots for RMSE for RQ1

Fig. 18 provides details about RQ1. It shows the boxplots for RSME for all projects
under the given setting.

w w

</> mode u mode

s & average So03- & average

x B8 project-specific @ B project-specific

0.1-
— .l

density modularity

metric metric
(a) density (b) modularity
2000~
750~
1500 -
W mode W s00- mode
= 10007 & average = & average
['4 B project-specific o ® project-specific
500~ 250~
0= v '
NOC NOF
metric metric
(c) NOC (d) NOF

Fig. 18 Boxplots of RMSE:s for all projects

4 https://www.simzentrum.de/en/research-projects/.

@ Springer

http://creativecommons.org/licenses/by/4.0/
https://www.simzentrum.de/en/research-projects/

3 Page34of37 Automated Software Engineering (2021) 28:3

B Boxplots for RMSE for RQ2

In Fig. 19 the boxplots for RSME for all projects containing details about RQ2 are
shown.

u mode o mode
=4 B3 project-specific = B3 project-specific
o & snapshot 0o2- B snapshot
0.05- |
0.00- i |
density modularity
metric metric
(a) density (b) modularity
2000 -
400~ I
1500 - I
300~
n mode u mode
= 10001 B project-specific s B project-specific
o 8 snapshot ¢ 200- & snapshot
500~
100-
0 . 0- .
NOC NOF
metric metric
(c) NOC (d) NOF

Fig. 19 Boxplots of RMSE:s for all projects

References

Alfayez, R., Behnamghader, P., Srisopha, K., Boehm, B.: How does contributors involvement influence
open source systems. In: 2017 IEEE 28th Annual Software Technology Conference (STC). https://
doi.org/10.1109/STC.2017.8234462 (2017)

Ali, S.M., Doolan, M., Wernick, P., Wakelam, E.: Developing an agent-based simulation model of software
evolution. Information and Software Technology. https://doi.org/10.1016/j.infsof.2017.11.013 (2018)

Anmrit, C., van Hillegersberg, J.: Exploring the impact of socio-technical core-periphery structures in open
source software development. J. Inf Technol. (2010). https://doi.org/10.1057/jit.2010.7

Ball, T., Kim, J.M., Porter, A.A., Siy, H.P.: If your version control system could talk. In: ICSE Workshop
on Process Modelling and Empirical Studies of Software Engineering (1997)

Bastian, M., Heymann, S., Jacomy, M., et al.: Gephi: an open source software for exploring and manipulating
networks. In: Proc. of the 3rd Intern. AAAI Conf. on Weblogs and Social Media (ICWSM) (2009)

Ben, X., Beijun, S., Weicheng, Y.: Mining developer contribution in open source software using visualization
techniques. In: Proceedings of the Third International Conference on Intelligent System Design and
Engineering Applications (ISDEA) (2013). https://doi.org/10.1109/ISDEA.2012.223

Bhattacharya, P, Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis and prediction for software
evolution. In: Proceedings of the 34th Intern. Conf. on Softw. Eng. (ICSE). IEEE (2012)

Bhattacharya, P., Neamtiu, I., Faloutsos, M.: Determining developers’ expertise and role: a graph hierarchy-
based approach. In: ICSME, IEEE Computer Society, pp 11-20 (2014)

@ Springer

https://doi.org/10.1109/STC.2017.8234462
https://doi.org/10.1109/STC.2017.8234462
https://doi.org/10.1016/j.infsof.2017.11.013
https://doi.org/10.1057/jit.2010.7
https://doi.org/10.1109/ISDEA.2012.223

Automated Software Engineering (2021) 28:3 Page350f37 3

Bird, C., Gourley, A., Devanbu, P., Gertz, M., Swaminathan, A.: Mining email social networks. In: Pro-
ceedings of the 2006 International Workshop on Mining Software Repositories, ACM, New York, NY,
USA, MSR 06, pp. 137-143 (2006). https://doi.org/10.1145/1137983.1138016

Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P.: Don’t touch my code!: Examining the effects
of ownership on software quality. In: Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, ACM, ESEC/FSE ’11, pp. 4-14
(2011). https://doi.org/10.1145/2025113.2025119

Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large net-
works. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008 (2008). http://
stacks.iop.org/1742-5468/2008/i=10/a=P10008

Caglayan, B., Bener, A.B., Miranskyy, A.: Emergence of developer teams in the collaboration network.
In: 2013 6th International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE). https://doi.org/10.1109/CHASE.2013.6614729 (2013)

Crowston, K., Howison, J.: Hierarchy and centralization in free and open source software team communi-
cations. Knowl. Technol. Policy 18(4), 65-85 (2006)

D’Ambros, M., Lanza, M., Robbes, R.: On the relationship between change coupling and software defects.
In: Proc. of the 16th Working Conf. on Rev. Eng., IEEE Computer Society (2009)

Fernandez-Ramil, J., Lozano, A., Wermelinger, M., Capiluppi, A.: Empirical studies of open source evolu-
tion. In: Mens, T., Demeyer, S. (eds.) Software Evolution: State-of-the-Art and Research Advances.
Springer Verlag (2008)

Fortunato, S.: Community detection in graphs. Physics Reports 486. https://doi.org/10.1016/j.physrep.2009.
11.002 (2010)

de Franca, B.B.N., Travassos, G.H.: Experimentation with dynamic simulation models in software engi-
neering: planning and reporting guidelines. Empirical Software Engineering (2016). https://doi.org/
10.1007/s10664-015-9386-4

Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on product release history. In: Proc.
of the Intern. Conf. on Softw. Maint. (ICSM), IEEE Computer Society (1998)

Garcfa-Garcfa, J., Enriquez, J., Ruiz, M., Arivalo, C., Jiménez-Ramérez, A.: Software process simulation
modeling: systematic literature review. Computer Standards & Interfaces (2020). https://doi.org/10.
1016/j.¢s1.2020.103425

Girba, T., Kuhn, A., Seeberger, M., Ducasse, S.: How developers drive software evolution. In: Proceedings
of the Eighth International Workshop on Principles of Software Evolution (2005)

Godfrey, M.W., Tu, Q.: Evolution in open source software: a case study. In: Proc. Int’l Conf. Software
Maintenance (ICSM) (2000)

Goeminne, M., Mens, T.: A comparison of identity merge algorithms for software repositories. Science of
Computer Programming (2013). https://doi.org/10.1016/j.scico.2011.11.004

Gousios, G., Kalliamvakou, E., Spinellis, D.: Measuring developer contribution from software repository
data. In: Proceedings of the 2008 International Working Conference on Mining Software Repositories.
https://doi.org/10.1145/1370750.1370781 (2008)

Herbold, S., Trautsch, A., Trautsch, F.. Issues with szz: an empirical assessment of the state
of practice of defect prediction data collection. arXiv preprint arXiv:191108938 (2019)
http://arxiv.org/abs/1911.08938v1

Herbold, V.: Mining developer dynamics for agent-based simulation of software evolution. Ph.D. the-
sis, Georg-August-Universitidt Gottingen. http://hdl.handle.net/21.11130/00-1735-0000-0003-C15C-
C (2019)

Herbold, V.: Asej—replication kit. online. https://github.com/vhonsel/sim_data_ASEJ_2020 (2020)

Herraiz, 1., Robles, G., Gonzalez-Barahon, J.u.M.: Comparison between slocs and number of files as size
metrics for software evolution analysis. In: Proceedings of the Conference on Software Maintenance
and Reengineering, IEEE Computer Society, CSMR °06. http://dl.acm.org/citation.cfm?id=1116163.
1116405 (2006)

Herzig, K., Zeller, A.: The impact of tangled code changes. In: Proceedings of the 10th Working Conference
on Mining Software Repositories, IEEE Press, MSR *13. http://dl.acm.org/citation.cfm?id=2487085.
2487113 (2013)

Hindle, A., German, D.M., Godfrey, M.W., Holt, R.C.: Automatic classication of large changes into main-
tenance categories. In: 2009 IEEE 17th International Conference on Program Comprehension. https://
doi.org/10.1109/ICPC.2009.5090025 (2009)

@ Springer

https://doi.org/10.1145/1137983.1138016
https://doi.org/10.1145/2025113.2025119
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
http://stacks.iop.org/1742-5468/2008/i=10/a=P10008
https://doi.org/10.1109/CHASE.2013.6614729
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1007/s10664-015-9386-4
https://doi.org/10.1007/s10664-015-9386-4
https://doi.org/10.1016/j.csi.2020.103425
https://doi.org/10.1016/j.csi.2020.103425
https://doi.org/10.1016/j.scico.2011.11.004
https://doi.org/10.1145/1370750.1370781
http://arxiv.org/abs/191108938
http://hdl.handle.net/21.11130/00-1735-0000-0003-C15C-C
http://hdl.handle.net/21.11130/00-1735-0000-0003-C15C-C
https://github.com/vhonsel/sim_data_ASEJ_2020
http://dl.acm.org/citation.cfm?id=1116163.1116405
http://dl.acm.org/citation.cfm?id=1116163.1116405
http://dl.acm.org/citation.cfm?id=2487085.2487113
http://dl.acm.org/citation.cfm?id=2487085.2487113
https://doi.org/10.1109/ICPC.2009.5090025
https://doi.org/10.1109/ICPC.2009.5090025

3 Page36o0f37 Automated Software Engineering (2021) 28:3

Honsel, D.: Development of agent-based simulation models for software evolution. PhD thesis, Georg-
August-Universitit Gottingen. http://hdl.handle.net/21.11130/00-1735-0000-0005-1318-B (2019)

Honsel, D.: Simparameter — estimation of simulation parameters. online https://github.com/dhonsel/
SimParameter (2020a)

Honsel, D.: Simse — simulation of software evolution. online https://github.com/dhonsel/SimSE (2020b)

Honsel, D., Herbold, V., Welter, M., Grabowski, J., Waack, S.: Monitoring software quality by means of
simulation methods. In: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ACM, ESEM " 16. https://doi.org/10.1145/2961111.2962617
(2016a)

Honsel, V., Honsel, D., Grabowski, J.: Software process simulation based on mining software repositories.
The Third International Workshop on Software Mining (2014)

Honsel, V., Honsel, D., Herbold, S., Grabowski, J., Waack, S.: Mining software dependency networks for
agent-based simulation of software evolution. The Fourth International Workshop on Software Mining
(2015)

Honsel, V., Herbold, S., Grabowski, J.: Hidden markov models for the prediction of developer involvement
dynamics and workload. In: 12th International Conference on Predictive Models and Data Analytics
in Software Engineering (PROMISE) (2016b)

Huang, S.K., Liu, K.m.: Mining version histories to verify the learning process of legitimate peripheral
participants. SIGSOFT Softw Eng Notes. https://doi.org/10.1145/1082983.1083158 (2005)

Joblin, M., Apel, S., Hunsen, C., Mauerer, W.: Classifying developers into core and peripheral: An empirical
study on count and network metrics. In: Proceedings of the 39th International Conference on Software
Engineering, IEEE Press, ICSE *17. https://doi.org/10.1109/ICSE.2017.23 (2017)

Khondhu, J., Capiluppi, A., Stol, K.J.: Is it all lost? a study of inactive open source projects. In: Open Source
Software: Quality Verification. Springer Berlin Heidelberg (2013)

Kim, S., Whitehead, E.J., Zhang, Y.: Classifying software changes: clean or buggy? Software engineering.
IEEE Transactions on. https://doi.org/10.1109/TSE.2007.70773 (2008)

Kocaguneli, E., Misirli, A.T., Caglayan, B., Bener, A.B.: Experiences on developer participation and effort
estimation. In: EUROMICRO-SEAA. IEEE (2011)

Konopka, M., Navrat, P.: Untangling development tasks with software developer’s activity. In: 2015
IEEE/ACM 2nd International Workshop on Context for Software Development. https://doi.org/10.
1109/CSD.2015.10 (2015)

Lamkanfi, A., Demeyer, S., Giger, E., Goethals, B.: Predicting the severity of a reported bug. In: 2010 7th
IEEE Working Conference on Mining Software Repositories (MSR 2010). https://doi.org/10.1109/
MSR.2010.5463284 (2010)

Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc. IEEE 68(9) (1980)

Li, Y., Tan, C.H., Teo, H.H.: Leadership characteristics and developers’ motivation in open source software
development. Inf. Manag. (2012)

Lima, J., Treude, C., Filho, F.F., Kulesza, U.: Assessing developer contribution with repository mining-based
metrics. In: Software Maintenance and Evolution ICSME), 2015 IEEE International Conference on.
https://doi.org/10.1109/ICSM.2015.7332509 (2015)

Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation. In: Proceedings of the 37th
Conference on Winter Simulation, Winter Simulation Conference, WSC *05 (2005)

Macal, C.M., North, M.J.: Tutorial on agent-based modeling and simulation part 2: How to model with
agents. In: Proceedings of the 38th Conference on Winter Simulation, Winter Simulation Conference,
WSC *06 (2006)

Maria, A.: Introduction to modeling and simulation. In: Proceedings of the 29th conference on Winter
simulation. IEEE Computer Society (1997)

Meneely, A., Williams, L., Snipes, W., Osborne, J.: Predicting failures with developer networks and social
network analysis. In: Proceedings of the 16th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, ACM, SIGSOFT ’08/FSE-16. https://doi.org/10.1145/1453101.
1453106 (2008)

Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two case studies of open source software development: Apache
and mozilla. ACM Trans. Softw. Eng. Methodol. 11(3), 309-346 (2002). https://doi.org/10.1145/
567793.567795

North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.: Complex adaptive
systems modeling with repast simphony. Complex Adaptive Systems Modeling (2013)

@ Springer

http://hdl.handle.net/21.11130/00-1735-0000-0005-1318-B
https://github.com/dhonsel/SimParameter
https://github.com/dhonsel/SimParameter
https://github.com/dhonsel/SimSE
https://doi.org/10.1145/2961111.2962617
https://doi.org/10.1145/1082983.1083158
https://doi.org/10.1109/ICSE.2017.23
https://doi.org/10.1109/TSE.2007.70773
https://doi.org/10.1109/CSD.2015.10
https://doi.org/10.1109/CSD.2015.10
https://doi.org/10.1109/MSR.2010.5463284
https://doi.org/10.1109/MSR.2010.5463284
https://doi.org/10.1109/ICSM.2015.7332509
https://doi.org/10.1145/1453101.1453106
https://doi.org/10.1145/1453101.1453106
https://doi.org/10.1145/567793.567795
https://doi.org/10.1145/567793.567795

Automated Software Engineering (2021) 28:3 Page370of37 3

Paulson, J.W., Succi, G., Eberlein, A.: An empirical study of open-source and closed-source software
products. IEEE Trans. Softw. Eng. (2004). https://doi.org/10.1109/TSE.2004.1274044

Rahman, F., Devanbu, P.: Ownership, experience and defects: a fine-grained study of authorship. In: Proc.
of the 33rd Intern. Conf. on Softw. Eng. (ICSE). ACM (2011)

Robles, G., Amor, J.J., Gonzalez-Barahona, J.M., Herraiz, I.: Evolution and growth in large libre software
projects. In: Eighth International Workshop on Principles of Software Evolution (IWPSE’05). IEEE
(2005)

Sargent, R.G.: Verification and validation of simulation models. In: Proceedings of the Winter Simulation
Conference, Winter Simulation Conference, WSC ’11. http://dl.acm.org/citation.cfm?id=2431518.
2431538 (2011)

Shaffer, J.P.: Multiple hypothesis testing. Annu. Rev. Psychol. (1995)

Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality (complete samples). Biometrika (1965).
https://doi.org/10.1093/biomet/52.3-4.591

Shihab, E., Hassan, A.E., Adams, B., Jiang, Z.M.: An industrial study on the risk of software changes. In:
Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering. https://doi.org/10.1145/2393596.2393670 (2012)

Smith, N., Capiluppi, A., Ferndndez-Ramil, J.: Agent-based simulation of open source evolution. In: Soft-
ware Process Improvement and Practice (2006)

Terceiro, A., Rios, L.R., Chavez, C.: An empirical study on the structural complexity introduced by core
and peripheral developers in free software projects. In: Software Engineering (SBES), 2010 Brazilian
Symposium on. IEEE (2010)

Trautsch, F., Herbold, S., Makedonski, P., Grabowski, J.: Addressing problems with replicability and validity
of repository mining studies through a smart data platform. Empir. Softw. Eng. (2018). https://doi.
org/10.1007/510664-017-9537-x

Turski, W.M.: Reference model for smooth growth of software systems. IEEE Trans. Softw. Eng. (1996)
http://dl.acm.org/citation.cfm?id=235681.235686

Wiese, LS., Kuroda, R.T., Re, R., Oliva, G.A., Gerosa, M.A.: An empirical study of the relation between
strong change coupling and defects using history and social metrics in the apache aries project. In:
Open Source Systems: Adoption and Impact, Springer International Publishing (2015)

Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. (1945) http://www.jstor.org/stable/
3001968

Willmott, C.J.: Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. (1982).
https://doi.org/10.1175/1520-0477(1982)063%3c1309:SCOTEO0%3¢2.0.CO;2

Yamauchi, K., Aman, H., Amasaki, S., Yokogawa, T., Kawahara, M.: An entropy-based metric of developer
contribution in open source development and its application to fault-prone program analysis*. Int. J.
Network. Distrib. Comput. (2018). https://doi.org/10.2991/ijndc.2018.6.3.1

Yu, L., Ramaswamy, S.: Mining cvs repositories to understand open-source project developer roles. In:
Proceedings of the Fourth International Workshop on Mining Software Repositories, IEEE Computer
Society, Washington, DC, USA, MSR ’07. https://doi.org/10.1109/MSR.2007.19 (2007)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1109/TSE.2004.1274044
http://dl.acm.org/citation.cfm?id=2431518.2431538
http://dl.acm.org/citation.cfm?id=2431518.2431538
https://doi.org/10.1093/biomet/52.3-4.591
https://doi.org/10.1145/2393596.2393670
https://doi.org/10.1007/s10664-017-9537-x
https://doi.org/10.1007/s10664-017-9537-x
http://dl.acm.org/citation.cfm?id=235681.235686
http://www.jstor.org/stable/3001968
http://www.jstor.org/stable/3001968
https://doi.org/10.1175/1520-0477(1982)063%3c1309:SCOTEO%3e2.0.CO;2
https://doi.org/10.2991/ijndc.2018.6.3.1
https://doi.org/10.1109/MSR.2007.19

	Investigation and prediction of open source software evolution using automated parameter mining for agent-based simulation
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Analysis and prediction of software evolution
	Developer behavior and roles
	Software changes and growth
	Software networks

	2.2 Agent-based simulation
	2.3 Validation of simulation models

	3 Motivating scenario
	4 Methodology
	4.1 Simulation model
	Dependency networks
	Software changes and growth
	Simulation framework

	4.2 Mining software repositories
	Developer behavior and roles
	Software changes and growth
	Software networks

	4.3 Mining framework
	4.4 Overall process

	5 Evaluation
	5.1 Design and objectives
	5.2 Evaluation measures
	5.3 Results
	Growth trends and network evolution
	RQ1 Is a project-specific simulation of software evolution better than a simulation with average project behavior?
	RQ2: How accurate is a long-term prediction of software evolution trends compared to a short-term prediction?

	5.4 Discussion
	Implications for researchers and project managers

	5.5 Threats to validity

	6 Conclusion and future work
	Acknowledgements
	A Boxplots for RMSE for RQ1
	B Boxplots for RMSE for RQ2
	References

