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Abstract
In a general sense, a metacommunity can be considered as a network of communities, the coherence of which is based on 
characteristics that are shared by members of different communities, whatever forces were responsible (dispersal, migra-
tion, local adaptation, etc.). The purpose is to show that by basing the assessment of coherence on the degree of nestedness 
of one community within another with respect to the shared characteristics, coherence components can be identified within 
the network. To assess coherence, a measure of nestedness is developed, and its application to complex (variable) object 
differences (including multiple traits or characters) is investigated. A community network is then viewed as a graph in which 
the nodes represent the communities and the edges connecting nodes are weighted by the reverse of the degrees of nested-
ness between the corresponding communities. Given this framework, it is argued that a minimum requirement for a set of 
communities to be coherent is the existence of a spanning tree known from graph theory, i.e. a subgraph that connects all 
nodes through a cycle-free sequence of edges with positive weights. Of all spanning trees, minimum spanning trees (MST, 
or spanning trees with the minimum sum of edge weights) are most indicative of coherence. By expressing the degree of 
coherence as one minus the average weight of the edges of an MST, it is uniquely determined which communities form a 
coherent set at any given level of community distinctness. By this method, community networks can be broken down into 
coherence components that are separated at a specified distinctness level. This is illustrated in a worked example showing 
how to apply graph theoretical methods to distinguish coherence components at various threshold levels of object difference 
(resolution) and community distinctness. These results provide a basis for discussion of coherence gradients and coherence at 
various levels of distinctness in terms of MST-characteristics. As intuitively expected and analytically confirmed, coherence 
is a non-decreasing function of the object difference threshold, and the number of coherence components is a non-increasing 
function of both the object difference and the community distinctness thresholds.

Keywords Coherence index · Coherence component · Graph theory · Metacommunity coherence · Minimum spanning 
tree · Nestedness · Overlap · Variable type differences

1. Introduction

Consider a metacommunity as a network of communities. 
From the network perspective, the units are the communi-
ties, and the communities are connected by relations that 
compare structural characteristics of the communities’ 
compositions. Communities themselves are conceived in 
a wide sense as collections of hypothetical or real bio-
logical objects that have some defined feature in com-
mon. For individuals as real objects, such features could 
include their existence in a specified spatial region during 
a specified period of time (see, e.g. Palmer and White 
(1994)). The same generalizing conception is applied to 
metacommunities as communities of communities. For 
this reason, the associated structural characteristics of 
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metacommunity states are not limited to the outcome of 
colonization-competition dynamics that conform with the 
traditional concept of a metacommunity.

This network perspective differs from common 
approaches that are directed towards characteristics of the 
distribution of type variation (species, genotypes, etc.) 
within and among communities (such as partitioning diver-
sity into � -, � -, �-components, or differentiation among 
communities or populations, see, e.g. Sokol et al. (2017)). 
Differentiation studies, in particular, are usually based on 
differences among species or the genetic compositions of 
communities or populations. They are, however, also per-
formed with the aim of discovering spatial gradients among 
communities with respect to their species compositions. 
The absence of such gradients is then understood to be an 
indication that the communities lack coherence and thus do 
not function as a metacommunity (see, e.g. Presley et al. 
(2010)).

Especially in the context of discovering spatial gradients 
in species composition, existing methods essentially rest on 
verification of special (idealized) patterns of community-
species (or site-species) associations that result from vari-
ous kinds of interspecific or species-environment interac-
tions (represented by site-by-species incidence matrices). 
In recent overviews, Schmera et al. (2018) and Presley et al. 
(2019) take a critical position as to the validity of those 
methods when special emphasis is placed on details of the 
underlying concepts and measures of coherence and nest-
edness among communities. Most of their criticism refers 
to the framework within which coherence is based on spe-
cies ranges (developed by Leibold and Mikkelson (2002)), 
whereas network perspectives are actually viewed from a 
community perspective (see, e.g. Shevtsov et al. (1992)).

Transitions between community compositions (including 
ecotone characteristics), as are typical of gradients, play a 
particular role, since they cannot be detected with the help 
of summarizing differentiation statistics (such as the above-
mentioned measures of �-diversity, or measures such as 
G

ST
 that are used in population genetics to quantify meta-

population structure). This calls for a generalizing perspec-
tive that allows aspects of coherence to be viewed within 
an established scheme, such as within networks with their 
intuitively straightforward connotations of connectedness 
and thus coherence.

Community networks can be conceived as graphs with 
nodes (vertices) in place of the single communities and edges 
specifying the relations between the communities (cf., e.g. 
Urban and Keitt (2001) or Thompson et al. (2017)). Edges 
can be endowed with weights that are defined by the kind of 
relations between the nodes (communities). In metacommu-
nities, relations are determined by the degrees to which the 
single communities share or differ in characteristics of their 
members. The representation of these characteristics across 

communities sets the limits within which metacommunity 
coherence is to be assessed.

A minimum requirement for coherence in a collection of 
communities is the existence of a connection between any 
two communities via a sequence of communities, each of 
which is related to its adjacent communities in the sequence 
by shared characteristics. This is known in graph theory as 
a path. Paths that return to their initial nodes (cycles) do 
not add to this minimum requirement of coherence, nor do 
multiple paths between nodes. The set of such unique paths 
establishes a tree graph that spans all nodes (i.e. connects all 
communities in the collection). The existence of a spanning 
tree therefore is a prerequisite for coherence of the collection 
and thus for its assessment as a metacommunity.

Since a connected graph may well have several spanning 
trees that may vary in the sums of their edge weights, those 
trees that have the minimum weight sum (known as mini-
mum spanning trees or MSTs) would be of primary interest. 
The reasoning is that the minimum weight sum specifies a 
tree with the minimum sum of differences between adjacent 
communities and thus with the maximum sum of shared 
characteristics within the tree. Consequently, the strength of 
coherence realized in a graph becomes most clearly evident 
when such trees are viewed. MSTs and their properties will 
therefore have an important part in the following analyses. 
Recall that according to the general concept of metacom-
munity applied here, connections between communities are 
not limited to the outcome of migrational events.

A distinction is made between connectedness and coher-
ence, in that the former refers to the plain numerical values 
of the edge weights, while the latter additionally includes 
qualitative aspects. Whereas edge weights are quantified in 
terms of amounts of shared characteristics of communities 
(or differences between species compositions), coherence 
adds properties to these values that refer to aspects such as 
complete distinctness in species composition or nestedness 
of one community in another. While determination of an 
MST simply rests on the edge weights, the assessment of 
metacommunity structure additionally considers coherence 
properties as well as their strength as reflected in the MST.

The present paper treats these structural aspects with 
special reference to complex differences among community 
members that go beyond simple qualitative traits (characters) 
such as species affiliation or genetic type (for more details on 
the concept of trait, see, e.g. Violle et al. (2007)). To provide 
a proper basis for the subsequent analysis of coherence and 
its implications, the following section (Section 2) begins 
by arguing elementary features of difference measurement 
between communities or more general sets of objects (or 
individuals), then recalls how these features enter common 
perceptions of differentiation among community composi-
tions (Section 2.1), and introduces a method that allows vari-
ably defined object differences (variable object differences, 
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for short) to be considered within this framework of dif-
ference measurement between communities (Section 2.2). 
The graph theoretical foundation of coherence characteris-
tics based on the introduced measures of community differ-
ence is then specified (Section 3), where MSTs are shown 
to provide the conceptual means for determining coherence 
components (Section 3.1). It is reasoned that methods for 
quantifying strength of coherence are meaningfully referred 
to total MST length (Section 4). In conclusion, several appli-
cations are suggested, such as the partitioning of commu-
nity collections into one or more metacommunities based 
on a given level of distinction, assessment of their degree 
of fragmentation, or determination of coherence gradients 
(Section 5). The summary in Table 1 provides a stepwise 
reference to accompany the development of these concepts 
and methods.

In order to address a wider range of questions relating 
to metacommunity coherence, we rely on a more general 
definition of metacommunity that allows not only for sets 
of interacting communities that are linked by the dispersal 
of multiple, potentially interacting species and are spatially 
separated (Leibold et al. (2004)). Interaction within and 
between communities may also be defined by reproduction, 
which turns communities into populations and metacom-
munities into metapopulations. Moreover, factors other than 
space could have effectively separated communities (popu-
lations), examples of which are non-overlapping flowering 
periods among plant species (e.g. Degen et al. (2006)) or 
positive assortative mating for differential characters among 
animal species (e.g. Hinton et al. (2018)). Different commu-
nities may exist here in sympatry, and this can be extended to 
many other forms of interaction within and among species.

More basically, however, a clear distinction must be made 
between the forces that give rise to certain structures (forces 
that are rarely, if ever, amenable to precise observation) and 

the observable structural characteristics themselves, which 
are usually identified via characteristics that are or are not 
shared by members of different communities. While in a 
conceptual context, metacommunities are defined by abstract 
relations (dispersal, etc.), the realization of these relations 
can be determined only by viewing the observable con-
sequences of these relations. In this context, the methods 
developed in the following are to be classified as descriptive, 
with the focus on detecting signs of coherence as they can be 
caused by the forces forming metacommunities. Among the 
numerous examples of the application of descriptors relating 
to metacommunity structure that are comparable to those 
introduced in the following and that specifically treat prob-
lems of stability in metacommunity networks, the paper by 
Thompson et al. (2017) may be a useful guide.

2. Basic features of representation 
or nestedness among sets of objects

As indicated above, any statement of coherence between 
communities rests on the possibility to draw connections 
between their compositions. Most basically, this requires the 
detection of characteristics of members of one community 
that can also be found among the members of another. The 
implied direction of perspective is commonly associated 
with connotations of inclusion and thus with the nested-
ness of one community in another. Inclusion relationships 
between two sets A and B of objects are primarily deter-
mined by the degree to which the objects in one set can be 
considered to be represented in the other set with respect to 
a specified trait. Whether or not the communities actually 
overlap is irrelevant here. Depending on the definition of 
community, the same individual can in effect be a member of 
different communities. Even though set inclusion is implied, 

Table 1  Stepwise reference to accompany the development of concepts and methods

(1) Determine type abundances and type differences across the total collection of communities (the term ‘type’ is used in this paper as a proxy 
for trait-, character-, variable-state or characteristic).

(2a) For discrete (qualitative, etc.) traits (characters), determine the type abundances within each community and assign each object (or indi-
vidual) from one community without replacement to an object of same type in a second community; the non-assignable objects from the 
first community define its difference from the second.

(2b) For variable object differences, apply the G-clustering method to the total collection of communities and consider the partition of the total 
collection into G-clusters at a specified threshold level of distinctness (differences between clusters exceed the threshold while within 
clusters they do not). Consider the clusters of the partition as types (or states of a discrete trait or character) and apply to these types the 
specification of community differences just as in (2a).

(3) Consider communities as nodes of a graph and the pairwise community differences as weights of edges connecting the nodes. Coherence 
relationships between communities are then defined by characteristics of paths in the graph that connect the nodes corresponding to the 
communities. The shorter the totality of such paths, the stronger is the coherence of the community collection. The corresponding graph 
theoretical structure is provided by a minimum spanning tree (MST).

(4) Community collections can be decomposed into coherence components based on appropriate levels of distinctness. They result as subtrees 
of the MST by cutting all MST-edges with weights (community differences) exceeding the selected threshold level of distinctness. 
Coherence is stronger within than between the components.
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the directedness aspect seems to justify our preference for 
the term “nestedness” over “overlap”.

For a discrete trait, the inclusion relationships can be 
obtained from application of the following recursive assign-
ment algorithm which corresponds to sampling pairs of 
objects without replacement: 

(1) take any object from A and look for an object from B 
with the same trait state,

(2) if there exists such a pair, remove the two objects from 
their respective sets,

(3) continue step (1) and (2) for the respective remainders 
of A and B until no further such pairs can be formed.

The objects remaining in A (if any) after completion of 
the assignment constitute the difference of A from B. There 
may be several such assignments, but all of them necessar-
ily yield the same number of non-assigned objects from A.

If the number of non-assigned objects from A is zero, A 
is understood to be (completely) nested in B. The number of 
objects in A minus the number of non-assigned objects from 
A then specifies the number R(A, B) of objects from A that are 
“represented” in B. If a

i
 and b

i
 denote the number of objects 

with the i-th trait state in set A and in set B, respectively, 
then the number of objects from A represented in B amounts 
to the well-known quantity R(A,B) ∶=

∑
i
min{a

i
, b

i
} . In 

the same way, one obtains the number of objects from B 
represented in A as R(B,A) =

∑
i
min{b

i
, a

i
} , from which 

R(A,B) = R(B,A) follows. Accordingly, with N
A
 and N

B
 as 

numbers of objects in A and B, respectively, one obtains 
the absolute dif ferences d

a
(A,B) = N

A
− R(A,B) and 

d
a
(B,A) = N

B
− R(B,A) as the number of objects from A 

not represented in B and the number from B not represented 
in A, respectively (compare, e.g. equations 1b and 1c in 
Baselga (2017)).

The corresponding relative differences are then obtained 
as  d

r
(A,B) = [N

A
− R(A,B)]∕N

A
= 1 − R(A,B)∕N

A
 and 

d
r
(B,A) = 1 − R(B,A)∕N

B
 , for which d

r
(A,B) < d

r
(B,A) if 

and only if N
A
< N

B
 . Complete nestedness of A in B is now 

indicated by d
a
(A,B) = 0 (and thus, d

r
(A,B) = 0 ), while 

complete distinctness of A from B is reached for R(A,B) = 0 
and thus, d

r
(A,B) = 1 . Clearly, d

r
(A,B) = 1 is equivalent to 

d
r
(B,A) = 1.
Note that R(A,B) =

∑
i
min{a

i
, b

i
} =

1

2

∑
i
(a

i
+ b

i
) −

1

2∑
i
�a

i
− b

i
� = 1

2
(N

A
+ N

B
) −

1

2

∑
i
�a

i
− b

i
� so that d

a
(A,B)

+d
a
(B,A) =

∑
i
�a

i
− b

i
� , which is known as the “Manhattan  

distance” between A and B. While this metric and its sta-
tistics are well known, its significance in quantifying nest-
edness via the absolute and relative directed differences 
d
a
 and d

r
 seems to have escaped notice so far. Other well-

established indices such as Jaccard’s index (which is iden-
tical to the Tanimoto index) can also be derived from the 
Manhattan distance (Gregorius, 1996) but have likewise 

not been applied to measuring nestedness in the above-
specified sense.

However, when the abundances of types are ignored, so 
that only the presence of types is counted in communities (as 
is done in the site-by-species incidence matrices), then all 
a
i
 ’s and b

i
 ’s are either 1 or 0. If N

A
≤ N

B
 holds in addition, 

then d
r
(A,B) equals the measure of nestedness suggested by 

Almeida-Neto et al. (2008).

2.1 Replacement and nestedness aspects 
of community difference

The absolute or relative set differences are particularly suited 
for qualifying and quantifying the common notions of nest-
edness and replacement, where the latter term is frequently 
used when addressing turnover events (for a review of the 
terms see, e.g. Legendre (2014)). In common perception, 
replacement refers to individual exchanges with the charac-
teristic result that the total set size remains the same. Hence, 
replacements within A to yield B require that N

A
= N

B
 

and therefore d
a
(A,B) = d

a
(B,A) hold (or equivalently 

d
r
(A,B) = d

r
(B,A) ). The number of objects to be replaced 

in A in order to arrive at B then equals d
a
(A,B).

On the other hand, if N
A
≠ N

B
 , it is helpful to return to the 

above assignment method, which by definition specifies the 
number of objects from A that need not be replaced when try-
ing to mirror the composition of B. Consequently, if N

A
< N

B
 , 

then d
a
(A,B) reports the number of objects that have to be 

replaced in A so that it becomes completely nested in B. There-
fore, d

a
(A,B) and especially its relative version d

r
(A,B) can be 

interpreted alternatively as specification of the deviation from 
complete nestedness. This reveals more explicitly the rela-
tionship between the terms nestedness, replacement, and (set) 
difference. It provides justification for generally considering 
differences in set compositions from a nestedness perspective 
and gives meaning to ideas of “partial nestedness”.

In fact, in the case N
A
> N

B
 , it is not possible to achieve 

complete nestedness of A in B by making replacements in 
A. Yet, reversing the direction of view reveals that d

a
(B,A) 

is the appropriate measure of deviation from complete nest-
edness. The observation of d

a
(A,B) − d

a
(B,A) = N

A
− N

B
 

emphasizes the fact that the asymmetry in the absolute set 
differences is solely due to the difference in the set sizes. 
Compositional characteristics of the sets have no effect. 
When applied to the relative set differences d

r
 , one obtains 

(1 − d
r
(A,B))∕(1 − d

r
(B,A)) = N

B
∕N

A
 , in which case the 

effect of set sizes on set differences is expressed in terms 
of ratios with the relative differences replaced by their cor-
responding similarities ( 1 − d

r
).

Especially when allowing for nestedness to be partial, 
its affinity to the concept of replacement and set differ-
ence becomes apparent. In effect, all three terms refer to 
the same initial concept of individual assignments and 
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are summarized by the same measure of set difference 
with d(A,B) = 0 indicating complete nestedness of A in B, 
d(A,B) = d(B,A) indicating that the difference between A 
and B is solely due to replacement, and d

r
(A,B) = 1 indicat-

ing complete distinctness between the sets (d without an 
index refers to absolute as well as relative difference). Since 
d(A,B) = d(B,A) can also be conceived of as mutual partial 
nestedness between the two sets, nestedness presents itself 
as an overarching idea of set difference. Numbers of trait 
states (frequently referred to as richness or diversity) may 
indirectly affect the d-measures. Richness differences are 
occasionally treated as a separate component of dissimilarity 
measurement (cf., e.g. Legendre (2014); Baselga (2017)).

The notions of representation, replacement, and nested-
ness become indistinguishable when set sizes are equal. The 
relative set differences d

r
 are symmetric in this case and do 

not depend on set size, since relative type frequencies take 
the place of (absolute) type abundances together with set 
sizes. Hence, whenever information on community com-
positions is restricted to relative type frequencies, analyses 
of metacommunity coherence cannot consider directions of 
difference or change.

2.2 Variable object differences

When species are distinguished by multiple traits or phy-
logenetic relationships and genotypes are distinguished by 
their gene differences, the assessment of differences between 
the individuals with respect to this characterization varies 
beyond simple binary statements of identity. In this case, the 
above idea of representation or nestedness among communi-
ties requires definition of a threshold difference � between 
objects (individuals), above which two objects are consid-
ered not to be sufficiently similar to represent each other. 
Alternatively, � could be referred to as the resolution with 
the understanding that only objects that differ by more than 
� are considered to be distinguishable in a specified context. 
Application of the above assignment algorithm then reads 
for the first step: (1) take any object from A and look for 
an object from B that differs by not more than � from the 
former. The other two steps are the same, so that the objects 
remaining in A after completion of the assignment determine 
the degree to which A is represented in B. Yet, this would 
make sense only if all admissible assignments lead to the 
same number of remaining objects.

The approach for discrete traits can be transferred to the 
situation of variable object differences when considering ultra-
metrics as difference measures. With ultrametrics, a relation 
of ‘identity’ between objects can be defined in the sense that 
any two objects are considered ‘identical’, if their ultrametric 
distance does not exceed a selected threshold difference. The 
thus defined relation among objects establishes an equivalence 
relation, which, in turn, specifies a partition of the set into 

equivalence classes. Within each class, the objects differ by not 
more than the threshold, while among classes the difference 
exceeds the threshold.

The approach to characterizing nestedness relationships for 
discrete traits can then be applied identically to these equiva-
lence classes when they are conceived of as states of a dis-
crete trait. This requires that the ultrametric be defined on the 
totality of objects under consideration. Step (1) of the assign-
ments is then realized, since differences between objects do 
not exceed the threshold only when they belong to the same 
class. Consequently, when abundance of objects with a given 
trait state is replaced by abundance of objects that belong to a 
predetermined class, all of the above statements on measuring 
differences between sets apply identically.

This suggests transformation of an arbitrary difference 
measure to the ultrametric cophenetic distance that results 
from application of a hierarchical clustering method, such 
as single-linkage. Cutting stems in the resulting tree (or den-
drogram) at a height corresponding to the desired thresh-
old difference (or resolution) produces a partition of the set 
of objects into the above-mentioned equivalence classes. 
Herewith, it must be taken into account that the cophenetic 
differences may not directly reflect the original difference 
measures, since the cophenetic differences depend on the 
clustering method as well as on the totality of objects under 
consideration. Nevertheless, the special problem at hand 
may justify replacement of the original differences by the 
cophenetic differences. The closeness to the original differ-
ences can be assessed with the help of cophenetic correla-
tions, for example.

There exists a clustering method, however, that realizes 
step (1) as stated at the beginning of the present subsec-
tion without any transformation of the original difference 
measure. It rests on the definition of G-clusters as groups 
of objects within which the maximum difference (the group 
diameter) is less than the minimum difference from objects 
outside the group. G-clusters are either mutually distinct or 
one is contained in the other (hierarchical ordering). Denote 
a G-cluster as a G-cluster at level � , if it has diameter ≤ � 
and if any other G-cluster properly containing it has diam-
eter > 𝜆 . The set of all G-clusters at level � can be shown 
to form a partition of the set of all objects that is analogous 
to the above partition into equivalence classes (Gregorius 
2012). See Box 1 for an example.

Recall that G-clusters are to be formed on the totality 
of objects under consideration. For a collection of commu-
nities (a presumed metacommunity), this totality amounts 
to the union of all constituent communities. As opposed 
to other clustering methods, G-clusters obey the require-
ment that objects from the same cluster differ by not more 
than the threshold level determined for the original scale 
of difference measurement. Transformation of cophenetic 
distances into directly interpretable differences is therefore 
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unnecessary. All of the above statements on set differences 
apply identically. One thus arrives at the desired result that 
the assignments of objects between communities do not 
exceed the threshold level and the number of objects remain-
ing after the assignment does not depend on the particular 
assignment.

3. Graph theoretical treatment of nestedness 
and coherence

In this section, the above considerations are cast into a graph 
theoretical framework. For an arbitrary number of sets, asym-
metric measures of pairwise difference define a directed weighted 
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graph in which each set is a node. Each pair of nodes is con-
nected by two edges pointing in opposite directions and weighted 
by the respective set difference. The nodes themselves could be 
weighted by the set sizes, but these are already incorporated in 
the set differences, as implied by the above assignment method.

When the sets are communities, such graphs help to detect 
structural relationships among the communities based on their 
species compositions, for example. Since structural relation-
ships are determined primarily by the degrees to which the 
communities share species or show more general conformity 
in their species characteristics, they are described most basi-
cally by nestedness relations among the communities. Since 

coherence is mediated by nestedness, structural relationships 
among communities can be assessed by coherence. The trans-
lation of aspects of metacommunity coherence into type of 
graph is then guided by the connectedness among nodes.

Though two nodes can be connected in many ways in the 
original graph, coherence is chiefly determined by the short-
est connections between the nodes. Since shortest connections 
appear as paths within spanning trees, only spanning trees of the 
graph are relevant for consideration of presumed metacommu-
nity coherence. In particular, minimum spanning trees (MST) 
minimize the totality of one-step connections (edges) across 
the whole tree. Box 2 shows MSTs for the example in Box 1.

401Theoretical Ecology (2021) 14:395–408



1 3

3.1 MST characteristics and coherence

When applying set differences as edge weights in a graph, 
MSTs have several properties that accord well with the 
idea of connectedness via nestedness. To see this, recall 
that for any tree, when adding an edge connecting two 
nodes of the tree, a cycle results. Removing another edge 
(not its incident nodes) of this cycle then results in a new 
tree that connects the same nodes. If the removed edge 
has a higher weight than the added edge, then the sum of 
edge weights in the new tree is smaller than in the old tree. 
Therefore, the possibility of any such transformation in an 
MST would corrupt the minimum property of the result-
ing tree (occasionally called the cycle property). Hence, 
only the smaller of the reciprocal differences d(A, B) and 
d(B, A) (whether absolute or relative) enters the con-
struction of an MST. The smaller of the two is, however, 
exactly the one that determines the degree of nestedness.

The cycle property also implies that none of the edges 
of an MST-path that connects two nodes can have more 
weight than the edge connecting the two nodes. This very 
basic and important MST characteristic will repeatedly 
be made use of in the following. It conforms with the 
intuitive understanding of communities that spread and 
differentiate in space and time without losing coherence.

Loss of coherence in a presumed metacommunity is 
impending if there are communities A and B with d

r
(A,B) = 1 . 

Loss of coherence of a metacommunity is, however, not tanta-
mount to loss of connectedness in the general graph theoreti-
cal sense (i.e. d

r
(A,B) = 1 does not indicate disconnectedness 

of the “nodes” A and B). To understand the implications of 
this situation within an MST, suppose that the MST contains 
an edge of weight 1. Removing this edge creates two subtrees 
for which it holds that any edge connecting two nodes, one 
from each subtree, has weight not less than 1 according to the 
cycle property. Hence, between the two sets of nodes present 
in the two subtrees, all differences equal d

r
= 1.

In terms of coherence, this graph theoretical situation 
corresponds to two sets of communities with complete dis-
tinctness between the sets. Hence, coherence is completely 
absent between these sets of communities. Moreover, the 
subtrees in the two sets of nodes are again MSTs, since 
otherwise there would exist subtrees with lower edge sum 
and reconnection of these would yield a spanning tree of 
the entire graph with reduced total edge sum. This would 
contradict the MST property of the original tree. Conse-
quently, additional edges of weight 1 could be identified 
in each subtree, implying a further decomposition of the 
nodes. At the end, one arrives at a decomposition into dis-
joint sets of nodes, such that the edge between two nodes 
from different sets has weight 1 and an MST-edge between 
two nodes from the same set has weight less than 1.

These sets will be termed coherence components of the 
network, since they correspond to the connected compo-
nents in general graphs. Within a coherence component, 
each pair of communities is connected by a sequence 
of non-distinct communities that follows an MST-path. 
Hence, in order for all communities in a collection of com-
munities to form a single coherence component, all MST-
edges must have d

r
-weight less than 1. In terms of tree 

graphs, the components result from removing (cutting) 
MST-edges of weight 1, with the result that each compo-
nent is provided with an MST that is a subtree of the over-
all MST. Note that within a coherence component, each 
community need not be directly connected to every other.

If several edges are of equal weight, more than one MST 
can possibly be formed. Accordingly, several alternative 
structures of network coherence among the communities 
are possible. Again, the above cycle property can be called 
on to characterize the alternatives. For example, when the 
weight of an edge not yet used in a particular MST equals 
that of another edge which belongs to an MST-path con-
necting the adjacent nodes of the first edge, a new MST can 
be formed by adding the new edge and removing the old 
one. It therefore is of central importance to know whether 
alternative MSTs may lead to different decompositions into 
coherence components. The proof provided below confirms 
the important insight that indeed the formation of coherence 
components is not affected by the existence of alternative 
MSTs (for a generalization see Section 5.2). This also dem-
onstrates the appropriateness of relating coherence compo-
nents to functional metacommunities.1

Complete nestedness of all communities, meaning 
that min{d(A,B), d(B,A)} = 0 for all A and B, marks the 
extreme state of coherence. In this case, the MST degen-
erates to a single path and indicates that the total col-
lection effectively consists of a single community. This 
follows from the fact that d(A,B) = d(B,C) = 0 implies 
d(A,C) = 0 , so that d(A,B) = 0 defines a relation between 
two communities that is transitive. While this is obvious 
for discrete traits, it is seen to extend to variable object 
differences when considering G-cluster partitions of the 

1 Consider an MST-edge that has its two incident nodes within the 
same coherence component. These two nodes cannot belong to differ-
ent coherence components from any alternative MST, since otherwise 
this would imply that the weight of the edge is less than 1 in the first 
MST and equal to 1 in the alternative MST. Hence, all nodes along an 
MST-path within the coherence component of an MST appear in the 
same coherence component of any alternative MST. Symmetrically, 
all nodes in a coherence component of an alternative MST appear in 
the same coherence component of a given MST. Thus, one concludes 
that the coherence components are the same for all alternative MSTs. 
Therefore, the decomposition of a graph into its coherence compo-
nents is unique.
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totality of objects under consideration at specified thresh-
old differences, as explained above.

For variable object differences, the community differ-
ences d

r
 depend on the respective threshold difference � . In 

particular, as � approaches zero the corresponding G-cluster 
partition becomes finer, with the result that fewer objects 
belong to the same G-cluster at level � . The opportunities to 
find objects (individuals) in the same cluster between two 
communities therefore decrease and d

r
 increases. This in 

turn increases the chances for communities to be completely 
distinct and thus of lower coherence.

Conversely, as � becomes large in relation to the maxi-
mum object difference, G-clusters at this level become 
fewer and larger. Opportunities for object assignments 
within the same cluster increase between communities, 
and this implies smaller d

r
-values indicating stronger 

coherence.
To prevent possible misinterpretation, it seems apt to 

mention that it is possible that two nodes in a coherence path 
(with all of its edge weights less than 1) appear as distinct 
communities. This does not contradict the general idea of 
coherence, even though it may happen that one community 
shares types with a second, and the second shares types with 
a third, but the latter types are not shared between the first 
two communities. Hence, one community, in this case the 
second, would comprise types from two distinct commu-
nities. A typical example would be selective colonization, 
where two distinct species groups of a community colonize 
different habitats. Coherence is still realized in a stepwise 
fashion along coherence paths, but the directions of the steps 
vary along a path.

Another example is provided by community collections 
extending along riverbanks. In such arrangements, it is con-
ceivable that complete distinctness is reached between the 
communities at either end via stepwise replacement of spe-
cies or genetic types. The MST would ideally mirror this 
situation by consisting of a single path.

4. Measuring degrees of coherence

It is argued in the previous explanations that coherence 
in a collection of communities (a presumed metacommu-
nity) is defined from an MST perspective by coherence 
paths and coherence components in particular. Therefore, 
total coherence is basically invalidated if several coher-
ence components exist (all communities are divided into 
several non-overlapping coherence components). Con-
sequently, it is meaningful to consider degrees of coher-
ence for each coherence component separately. Recall 
that an MST of a coherence component is a subgraph of 

an MST of the total graph (with weights of all subgraph 
edges less than 1).

An intuitively obvious measure of the strength of coher-
ence is the sum of edge weights of an MST of the coher-
ence component, where coherence increases with decreas-
ing sum. At the extreme, complete coherence is realized if 
all communities in the component are completely nested, 
which makes the sum zero and reveals that the coherence 
component effectively consists of a single community. 
Given the number of communities in the component, the 
sum of MST-edge weights d

r
 always remains below the 

number of nodes minus 1 as its supremum. This suggests 
normalization of the sum by the number of component 
nodes minus 1, which yields the average edge weight of the 
MST of the coherence component. The closer this average 
approaches 1, the less coherent the component becomes 
and the more it successively disintegrates into independent 
communities. The separation from the other components, 
if there are any, is not lost.

It was shown above (footnote in Section 3.1) that the 
decomposition of the collection of communities into 
coherence components is independent of the existence of 
alternative MSTs. Since the subtrees within each com-
ponent are again MSTs, the average MST-edge weight 
is well-defined in each coherence component. This fact 
suggests definition of a coherence index as 1 minus the 
average MST-edge weight in the respective coherence 
component. The index equals 1 for complete coherence 
(complete nestedness), and it approaches 0 as coherence 
declines towards complete distinctness of all communities 
in the component.

The extreme values of the average MST-edge weight 
are reminiscent of ordinary differentiation measurement 
in that a value of 0 is obtained in the absence of differ-
entiation among communities, i.e. if all communities are 
identical for their type distributions, and a value of 1 is 
realized for complete differentiation, i.e. where communi-
ties share no types. Yet, since differentiation measures are 
symmetric by definition and apply to relative frequencies 
(independently of sample sizes) or to absolute frequencies 
for equal sample sizes, they cannot be used to explicitly 
distinguish between aspects of nestedness or replacement 
(turnover) in the assessment of community differences. 
Moreover, measures of differentiation summarize the dif-
ferences among all communities under consideration and 
are therefore not qualified for the detection of metacom-
munity structure, as is inherent in the coherence compo-
nents of MSTs. The latter becomes particularly evident 
from the above examples, in which coherence can be 
reached despite the fact that some communities are com-
pletely distinct.
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5. Concluding remarks

Because the specification of coherence relationships among 
communities could involve multiple traits, the probably 
most relevant characterization of community members 
(as objects) is by object differences that summarize the 
differences in the contributions of the relevant traits in a 
meaningful way (see, e.g. Gower (1971); Gregorius (2006); 
Pavoine et al. (2009); Scheiner et al. (2017)). Besides spe-
cies affiliation or genetic type, traits that are related to 
coherence aspects include, for example, geographical, 
spatial or ecological conditions. In fact, a common view 
maintains that “species should occupy a coherent range of 
sites along environmental gradients (i.e. no gaps or discon-
tinuities should exist in the fundamental niche of a species)” 
(Presley et al., 2019). Difference measures that jointly cover 
these aspects of coherence are therefore needed, and this 
confirms that variable object differences are likely to be 
the most relevant differences in the analysis of coherence 
in community networks.

Since variable object differences require specification of 
threshold differences (or resolutions) in coherence analy-
sis, the first question to be answered is how an increase in 
the threshold (decrease in resolution) affects community 
differences. As indicated above (also see Box 2), commu-
nity differences are expected to decline with increasing 
threshold difference (or decreasing resolution). An explicit 
and straightforward proof is obtained by recalling that the 
G-clusters at higher threshold levels result from union of 
G-clusters at lower threshold levels according to the hier-
archical nature of G-clustering. The assignment method 
for obtaining the community differences then implies that 
all of the assignments at the lower level also apply to the 
higher level, so that the number of assignments for the 
higher level cluster is at least as large as the sum of assign-
ments realized for the included lower level clusters. The 
number of non-assignable objects and thus the commu-
nity difference can therefore not increase with increasing 
threshold level.

The community differences reach their extremes for a 
threshold level of zero and for a threshold level equal to 
the maximum object difference. The first case includes 
the situation of discrete traits, and in the second case the 
smaller in each pair of communities is completely nested 
in the larger because all objects are considered “identical”. 
Hence, as the threshold level increases from its lower to 
its upper value, the assessment of the collection of com-
munities approaches the situation of complete coherence 
(also see Box 2).

During this passage, it might happen that for particular 
threshold levels, several communities are united to form 
a coherence component within the community collection. 

At the latest, when all relative community differences 
d
r
 are less than 1, the collection of communities forms 

a single coherence component. The minimum threshold 
level � above which this happens therefore identifies the 
resolution below which the collection is recognized as 
a single and proper metacommunity (“proper” meaning 
that no two communities are completely distinct). Since 
it may occur that at level � = 0 all relative community 
differences d

r
 are already less than 1, the community col-

lection could be classified as a proper metacommunity 
for all resolutions (threshold levels). It should be recog-
nized, however, that complete coherence at low levels of 
resolution is ecologically meaningless. One could argue 
that an increase in coherence that is solely the result of 
a decrease in resolution is a methodological artefact that 
fails to reflect the true relations among the objects within 
the communities.

5.1 Coherence gradients

As mentioned above, coherence is frequently associated 
with environmental or spatial gradients of the species 
compositions of communities. The community-network 
analogue of this approach requires inclusion of envi-
ronmental conditions or spatial traits into the measure-
ment of differences between communities as network 
nodes. Here, it has to be considered that communities 
may overlap in their species as well as in their environ-
mental conditions and possibly also with respect to their 
spatial extensions. Hence, community differences can 
be assessed jointly by the differences of their members 
for species affiliation and for environmental conditions 
(or spatial location). Once a joint object difference is 
defined, determination of community differences is again 
provided by formation of G-cluster partitions at specified 
threshold levels. Coherence gradients can then be identi-
fied by the corresponding coherence paths in the MSTs 
of the community network. Note that this concept of gra-
dient differs from what is called “abundance gradient” by 
Baselga (2017), which is simply a series of completely 
nested communities.

Before several object differences can be combined into 
a single joint measure, their commensurability has to be 
established. This can be achieved in many ways (see, e.g. 
Gregorius (2006)) but is most frequently done by nor-
malization via the maximum of the observed differences 
(see, e.g. Pavoine et al. (2009)). The former author sug-
gested a method of combining commensurable difference 
measures into a single joint measure, where the meas-
ures can be given variable weights and their asymmetries 
can be taken into consideration. Differences in species 
characteristics and spatial distances, for example, may 
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then be weighted according to the desired significance 
of their effects on coherence issues. In the same way, 
adverse effects of the two difference categories can be 
taken into consideration (for more details see Gregorius 
(2006)). Thus, if similarity in species characteristics, 
for example, is considered to be more significant in the 
assessment of coherence than spatial distance, the former 
receives higher weight.

To affirm that the joint object differences capture 
coherence relations among communities at a specified 
threshold level, recall that assignment between commu-
nities takes place only among those individuals that are 
sufficiently similar in their species characteristics and are 
spatially sufficiently close (according to the joint thresh-
old difference). The resulting community differences thus 
count only those individuals for which this correspond-
ence is not realized and which therefore do not add to 
coherence at the specified level. Complete distinctness 
is now realized between communities, the members of 
which are either spatially too far apart or belong to spe-
cies with characteristics whose joint differences exceed 
the threshold level.

Coherence in spatial gradients of species composition is 
usually determined by continuity (or the absence of gaps) 
in the occurrence of species (see, e.g. the above citation 
of Presley et al. (2019)). The detection of gradients there-
fore depends on prior specification of the spatial transects. 
In the present approach, in contrast, such transects are 
revealed in the coherence paths of the community network 
and are therefore a possible outcome rather than a precon-
dition of the analysis. Coherence may therefore be observ-
able even though similar species exist at higher (spatial) 
distances or in reverse. Gradients of coherence are then 
determined by the coherence paths in the MST.

5.2 Coherence at various levels of distinctness

The above specification of coherence components can be 
extended so as to include arbitrary thresholds for the assess-
ment of distinctness or coherence between communities. For 
example, migration below well-argued rates is not expected 
to have a significant effect on community differentiation, 
since the rates are not sufficient to guarantee establishment 
(as is considered in the species-sorting and mass-effect 
paradigms of the traditional metacommunity concept, see, 
e.g. Leibold et al. (2004); Logue et al. (2011)). In a sense, 
distinctness can be effectively realized in such cases below 
the state of complete distinctness. Beyond this, it could 
simply be of interest to reveal the existence of collections 
of communities that are separated to a certain degree from 
other such collections, while coherence can be meaningfully 
stated within each collection. The coherence components 
corresponding to these collections would then be required to 

realize MST-edges of weight less than the threshold, while 
edges connecting nodes from different components would 
show weights equal to or greater than the threshold.

Indeed, the proof is exactly analogous to that for complete 
distinctness given in Section 3.1 (including the footnote), 
where essentially the original MST is decomposed into sepa-
rate subtrees by removing (cutting) MST-edges of weight 
equal to or greater than the threshold value. With each such 
cut, the weights of edges connecting nodes between the 
resulting subtrees are equal to or greater than the weight 
of the cut edge by the cycle property of MSTs. Ultimately, 
this procedure leads to the above decomposition into coher-
ence components. Similar thoughts apparently led Xu et al. 
(2002) to the design of clustering algorithms akin to single-
linkage clustering. In fact, the present decomposition into 
coherence components at specified threshold levels could be 
conceived of as a method of clustering communities.

As an illustration, Box  3 shows the coherence com-
ponents (square boxes) of the four MSTs in Box 2 at two 
thresholds of community distinctness � . The figures confirm 
three relations: 

(1) The number of coherence components for given � is a 
non-increasing function of � . For �=0.05 , the deletion 
of the two edges of weight 0.400 for �=0.3 but not for 
�=0.5 causes the four components for �=0.3 to collapse 
to two components for �=0.5 . Analogously, for �=0.15 , 
the edge of weight 0.300 determines that the three com-
ponents collapse to two.

(2) The number of coherence components for given � is 
a non-increasing function of � . By increasing � , the 
resolution between object types is lowered, leading to 
a reduction in the distinctness of the communities. For 
�=0.3 , the number of components falls from four to 
two with increasing � , while for �=0.5 , the number of 
components equals two for all four � . Other pairs of 
components maintain their distinctness over all � and � 
(e.g. 0.667 between the component containing B and 
that containing C).

(3) In cases where the same set of communities forms a 
coherence component for given � but different � , the 
coherence of the component is a non-increasing func-
tion of � . The reduction in the community distinctness 
as � increases implies that the mean edge weight does 
not increase with � . For �=0.5 , the mean edge weight 
of component AB falls from 0.400 to 0.200 to 0 and the 
mean edge weight of the component CDEF falls from 
0.289 to 0.189 to 0.078 to 0.056 as � increases.

5.3 Extensions

Frequently, the conceptual consistency of a method becomes 
most apparent in its extreme realizations. The present concept 
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considers a collection of objects that can be decomposed (or 
partitioned) into classes, within which the objects are con-
ceived to be indistinguishable or equivalent at a specified 
threshold difference. The decomposition is performed by 
G-clustering at the respective threshold. It does not depend 
on the community affiliations of the objects. Communi-
ties can therefore be determined in various ways, includ-
ing the extreme situation where each object is regarded as 

a community of its own. In this case, the present method 
arrives at community differences that are 0 or 1 according to 
whether the respective objects belong to the same or to dif-
ferent G-clusters. The coherence components thus coincide 
with the G-clusters. While this may appear trivial and relates 
to ordinary clustering of individuals into communities at a 
specified level of similarity, it yet demonstrates the consist-
ency of the present method of coherence assessment.
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In less extreme situations, decomposition of the total col-
lection may not be explicitly characterized by community 
properties. Relevant structures may not even be directly 
observable but may rather be suspected to exist as a result 
of cryptic fragmentation or migration barriers, for example. 
Decomposition into potential communities could then be 
motivated by the observation of a discontinuity in the spa-
tial distribution of environmental factors. Depending on the 
factor under consideration, various decompositions could be 
of interest, each with its specific degree of coherence. Com-
parisons between the factors as to their associated degrees of 
coherence would then allow the factors to be ranked accord-
ing to their involvement in fragmentation.

The method of coherence assessment is also applicable, 
for example, to ”interactions” in the metanetwork analyses 
of Emer et al. (2018) and Li et al. (2020) in fragmented for-
est landscapes. An interaction between a frugivorous bird 
and a plant is present in a fragment (community), if the bird 
is observed to feed on a fruit of the plant. Each such inter-
action can be considered as a single object that consists of 
a pair characterized by the species affiliations of the bird 
and the plant or by their respective sizes. In this way, each 
object is assigned a type, such as the pair (bird species, plant 
species) or one of the four combinations (large/small bird, 
large/small seed). This corresponds to the general setting 
of discrete traits in the present approach and consequently 
allows application of the above methods for the assessment 
of coherence, including the decomposition of the collection 
of forest fragments into coherence components.

5.4 Coherence and variable differences

If differences between objects vary, ideas of nestedness 
among communities and associated coherence relation-
ships could be problematic, since type identity between 
assigned objects may practically not exist. In this case, 
clusters or classes of objects take the position of types, with 
the restriction that clusters are less strictly separated from 
each other. While the individual objects are distinct entities 
by definition, their separation for trait characteristics may 
become the more ambiguous, the more continuously these 
characteristics vary. Particularly for G-clustering with its 
untransformed reference to the measured differences, this 
could imply that little clustering is possible above the level 
of individual objects. Thus, finding objects in different com-
munities that belong to the same G-cluster is unlikely, so 
that communities tend to be largely distinct, and coherence 
among them is consequently low.

At first sight, this might contradict intuitive expectations 
in that small differences among objects should exclude siz-
able community differentiation, so that all communities 
would be assessed to form a single coherence component.  

Yet, identification of objects that represent each other 
depends on the chosen level � of resolution. If this is low, 
identification of objects from different communities is 
indeed rarely possible. On the other hand, as � increases in 
such a situation, no further G-clustering could occur until 
all objects finally end up in a single G-cluster, in which case 
all communities form a single coherence component. Well-
argued levels of resolution must therefore be specified in 
studies involving variable object differences.

A note on implementation of the method: Numerical cal-
culations of the method as applied in the example in Boxes 
1-3 were programmed by EMG. The Fortran program, which 
implements the data clustering utilities “cluster” and “den”  
of P.C.J. Kleiweg (https:// www. let. rug. nl/ kleiw eg/ clust ering), 
is available from this author.
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