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Memory consolidation and improvement by
synaptic tagging and capture in recurrent neural
networks
Jannik Luboeinski 1,2✉ & Christian Tetzlaff 1,2✉

The synaptic-tagging-and-capture (STC) hypothesis formulates that at each synapse the

concurrence of a tag with protein synthesis yields the maintenance of changes induced by

synaptic plasticity. This hypothesis provides a biological principle underlying the synaptic

consolidation of memories that is not verified for recurrent neural circuits. We developed a

theoretical model integrating the mechanisms underlying the STC hypothesis with calcium-

based synaptic plasticity in a recurrent spiking neural network. In the model, calcium-based

synaptic plasticity yields the formation of strongly interconnected cell assemblies encoding

memories, followed by consolidation through the STC mechanisms. Furthermore, we show

for the first time that STC mechanisms modify the storage of memories such that after

several hours memory recall is significantly improved. We identify two contributing pro-

cesses: a merely time-dependent passive improvement, and an active improvement during

recall. The described characteristics can provide a new principle for storing information in

biological and artificial neural circuits.
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In biological neural systems, memories have a wide repertoire
of dynamics; most importantly, they can be encoded, stored,
recalled, and consolidated. While these dynamics are relatively

well-explored at the behavioral and brain-region level1–3, the
underlying synaptic and neuronal processes remain mainly
elusive.

Most generally, learning describes the ability of humans and
other animals to obtain knowledge about an entity. This knowl-
edge or information is stored as a memory. The encoding of such
a memory in a neural network is commonly assumed to happen
in the way as described by Hebb in his seminal work4–6: a group
of recurrently connected neurons that receives the information by
an external input starts to fire stronger than the rest of the net-
work. This increased firing yields strengthening of the efficacy of
the recurrent synapses within this particular group such that a so-
called Hebbian cell assembly is formed, which represents a
memory of the input. On the other hand, low firing rates typically
cause weakening of connections between neurons, which can lead
to either disruption or refinement of a cell assembly. Strength-
ening and weakening of synapses at timescales relevant to
memory is the result of long-term synaptic plasticity7–9.

Long-term synaptic plasticity creates long-lasting changes of
the synaptic efficacy. To become strengthened, synapses undergo
a cascade of molecular processes that leads to an increase in the
number of postsynaptic receptors, which is called long-term
potentiation (LTP, refs. 9–12). Analogously, for weakening,
another cascade of processes yields a decrease in the number of
receptors, which is called long-term depression (LTD,
refs. 9,10,12). The signaling cascades of both LTP and LTD are
triggered by the calcium concentration in the postsynaptic spine.
The spiking activities of the presynaptic and the postsynaptic
neurons drive the calcium concentration and, by this, determine
whether LTP or LTD of the synaptic efficacy is induced7,13–16. In
general, long-term synaptic plasticity consists of at least two
different phases. Changes of the synaptic efficacy in the early
phase last for several hours, while efficacy changes in the late
phase can be maintained for several days11,17. The transfer from
the early to the late phase has been described by the synaptic-
tagging-and-capture (STC) hypothesis18,19. Following the STC
hypothesis, the transfer depends on the stimulation of the specific
synapse, as well as on the stimulation of other synapses at the
same postsynaptic neuron. More precisely, the transfer at a
synapse occurs if the synapse is tagged, which means that it is
primed for transfer, and if proteins necessary for the late phase
are abundant or have been synthesized. The tagged synapse then
“captures” proteins causing the transfer to the late phase by
increasing for instance the number of receptor slots at the post-
synaptic site19. The formation of a tag at a synapse is related to its
own early-phase change, while protein synthesis depends on the
early-phase state of many synapses15,18–20. The total or effective
synaptic efficacy of a synapse consists of the sum of the early- and
late-phase contribution15,20.

In general, consolidation of memories means the progressive
transfer of memories into a state in which they stay stable over
long time intervals1,3,21. There a two major categories of memory
consolidation: systems consolidation and synaptic (or initial)
consolidation1,22. The basic idea of systems consolidation is that a
memory is transiently stored in the hippocampus and possibly
transferred to the neocortex, in which it is maintained for a longer
period. The question, whether a memory is first encoded in the
hippocampus and then transferred to the neocortex or whether
the encoding of a memory occurs simultaneously in both regions
(multiple trace theory, refs. 1,23), is subject to an ongoing debate.
In both cases, however, the newly formed memory has to be
initially consolidated before systems consolidation sets in. This
initial consolidation process is related to local molecular and

cellular processes at individual neurons and synapses, and is
therefore named synaptic consolidation24–26.

The STC hypothesis provides a potential explanation of the
neuronal and synaptic processes underlying the synaptic con-
solidation of memories1,18,19, which is supported by several the-
oretical studies focusing on single synapses or feed-forward
networks12,15,20,27,28. However, a clear link between the STC
hypothesis and memory consolidation is still missing as the
encoding of memories in neural circuits is mainly associated with
strongly recurrently connected groups of neurons (cell assem-
blies). Another study of recurrent networks with multiple cell
assemblies already found that cue-triggered recall was only pos-
sible after 20min if a type of synaptic consolidation was present29.

In this study, we developed a theoretical model of recurrently
connected spiking neurons with the synaptic efficacies being
altered by calcium-dependent synaptic plasticity and the core
mechanisms of the STC hypothesis. The individual components
of the implemented model reproduce various plasticity phe-
nomena as the ones described above18,30–39, and for verification,
we matched the temporal evolution of individual synapses in our
model with experimental data. Our network simulations show the
synaptic and neuronal dynamics underlying the formation of a
memory representation, its recall, and its long-term development.
The latter indicates that the STC mechanisms in a recurrent
circuit lead to the consolidation of a memory. Finally, the
simulations and analytical results suggest a new implication of the
STC mechanisms on memory representations, which is the
enhancement of the storage of the memory. This enhancement
exhibits a new type of memory dynamics, which could be bene-
ficial for biological, as well as for artificial memory systems.

Previous theoretical studies40–43 investigated general compu-
tational principles emerging from multiple-timescale plasticity.
For instance, using rather abstract models of multiple-timescale
plasticity based on binary40 and discrete-valued42 synaptic
weights, Elliott and colleagues predicted the possibility of the
improvement in memory strength with the passage of time.
However, the underlying dynamics have not been linked to spe-
cific biological mechanisms. While Päpper et al.44 identified that
STC mechanisms can trigger an improvement in memory life-
time, we show that improvement in memory strength can also be
related to the biologically plausible mechanisms of STC together
with calcium-dependent plasticity.

Results
We aimed to set up a biophysically plausible network model of
the neuronal and synaptic dynamics underlying synaptic con-
solidation. For this, based on previous studies13,15,20, we utilized a
synaptic model that integrates the local calcium dynamics to
trigger synaptic plasticity, and the mechanisms of STC (Fig. 1a).
We used this synaptic model in conjunction with a leaky
integrate-and-fire model, axonal delay, and a finite synaptic time
constant to cover the most important aspects of signal generation
and transmission in neural networks, with parameters based on
experimental findings (see “Methods” section, refs. 45,46). The
network itself was sparsely coupled and received input such that it
resembled connectivity and firing rates as present in the hippo-
campus during exploratory wake state (refs. 47–50; see also Sup-
plementary Fig. S3). By applying an additional, strong input
stimulus to a particular subset of excitatory neurons, cell
assemblies were formed (Fig. 1b). In the following, we will first
introduce the key principles of the synapse model and compare
its dynamics to experimental data, before we present the char-
acteristics of the network model.

Comparison of synapse model with experimental data. In
general, the model assumes that the membrane potential of a
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neuron determines its spiking dynamics, which drives together
with presynaptic spiking the postsynaptic calcium concentration
(Fig. 1a). The calcium concentration determines the occurrence of
early-phase LTP and early-phase LTD, represented by changes in
the early-phase component (or weight) of the synaptic efficacy.
Large changes of the early-phase weight trigger the formation of a
synapse-specific tag. A sufficient body of early-phase changes at
many synapses of the postsynaptic neuron triggers protein
synthesis. Once an adequate amount of proteins is available and
the synapse is tagged, the late-phase component of the synaptic
efficacy is altered; thus, the synapse “captures” proteins. The sum
of the early- and late-phase weight yields the total synaptic effi-
cacy that determines the magnitude of postsynaptic potentials
arriving at the neuron, influencing its membrane potential. The
interplay between these different processes is investigated in
standard plasticity induction experiments19,35,51,52. In these
experiments, a strong tetanus stimulation (STET) is used to
induce late-phase potentiation, while weak tetanus stimulation
(WTET) is used to induce early-phase potentiation only. For late-
phase depression, a strong low-frequency stimulus (SLFS) is used,
while for early-phase depression, a weak low-frequency stimulus
(WLFS) suffices. As proof of concept of our synaptic model, we
reproduced the outcome of these experiments by considering a
single plastic synapse between two neurons, and applying similar
stimulation protocols to the presynaptic neuron (see Supple-
mentary Fig. S1 for details). The resulting time traces of the
synaptic efficacy in response to the four induction protocols
(Fig. 2) match the findings from experiments, as discussed above
and from previous theoretical studies15,20,27,28. The fluctuations

and local maxima in our STET and SLFS simulations are within
the common range for late-phase plasticity paradigms (cf.
refs. 35,51,52). The results indicate that our synaptic model pro-
vides a reasonable description of the underlying biomolecular
dynamics. Thus, based on this synaptic model, in the next step,
we will introduce our analysis of the synaptic and neuronal
dynamics in a recurrent neural network.

Network model with synaptic consolidation enables functional
memory representations. Employing our synaptic model, we
simulated a patch of tissue with hippocampal network char-
acteristics, consisting of 2000 neurons with 20% being inhibitory
and a 0.1 average probability of two neurons being connected by a
synapse (Fig. 1b). Synapses between excitatory neurons (blue,
dark blue) feature plasticity mechanisms, as described above.
Inhibitory neurons provide feedback inhibition; their connections
are nonplastic (purple, red). All neurons in the patch received
additional inputs from outside the network, which have particular
characteristics for the encoding and recalling of a memory.
During learning, a specific stimulus is provided to a group of
neurons and should trigger the formation of particularly strong
connections between these neurons, which then represent a
Hebbian cell assembly or memory (Fig. 1b, dark blue). During
recall, only a subset of the group of neurons that received the
learning stimulus received specific external stimulation.

To investigate the synaptic and neuronal dynamics implied by
the STC mechanisms, throughout this study, we focused on two
time spans. We evaluated the state of the neural network ~10 s

Fig. 1 Schematics of the synaptic model and the network model. a The synaptic model integrates the interplay between various mechanisms of calcium-
dependent synaptic plasticity and the STC hypothesis. For more details see the main text. b Schematic of a part of the neural network that consists of
excitatory (blue and dark blue circles) and inhibitory neurons (red circles), and receives external input from other brain areas (green arrows). Only
synapses between excitatory neurons (blue and dark blue arrows) undergo plastic changes by the processes shown in a. A Hebbian cell assembly
represents a memory and consists of a group of strongly interconnected neurons (dark blue).
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after the learning stimulus to analyze the short-term dynamics
and after ~8 h to investigate the long-term effects of the STC
mechanisms.

The learning stimulus consisted of three subsequent pulses of
0.1 s each, strongly activating a random subset of neurons. In
experiments, strong tetanus stimuli of ~100 Hz are used to evoke
late-phase synaptic potentiation18,35,51. To resemble this, we
applied stimulation of similar strength via 25 putative input
neurons. A necessary consequence of this strong input is the fact
that during stimulation, the stimulated neurons spike at their
maximum. As expected, the stimulus caused tremendous changes
of the synaptic efficacy of diverse synapses in the network
(compare Fig. 3a, b). Synapses associated with the stimulated
neurons (first 150 neurons Fig. 3a–c) mainly experienced LTP
(red). The synapses between stimulated neurons (black box in
Fig. 3a–c) are strengthened particularly, indicating the correct
formation of a cell assembly. By contrast, synapses between non-
stimulated neurons underwent LTP as well as LTD (blue). After 8
h, the synaptic changes between non-stimulated neurons fade,
such that mainly changes associated with the stimulated neurons
and, thus, with the cell assembly remain (Fig. 3c). To validate that
the formed cell assembly encodes a memory, next, we tested the
ability of recall. For this, we applied a recall stimulus that activates
for 0.1 s 50% of the neurons that were stimulated by the learning
signal, and analyzed the resulting spread of activation within the
network (Fig. 3d, e). The externally stimulated neurons (“as”)
have the highest activity. By the strong recurrent connections in
the cell assembly, the average activity of the non-stimulated
neurons in the cell assembly (“ans”) is significantly higher than
the activity of the remaining non-stimulated neurons (“ctrl”).
This is not the case for control stimulation applied before
learning. In other words, the activity of the recall stimulus spreads
via the stimulated neurons to the other cell assembly neurons and
yields a type of pattern completion or recall (in the literature
sometimes also called retrieval). Please note that, under basal/

standby conditions, the mean firing rate of all excitatory neurons
resembles the average value of 0.5–1.0 Hz for pyramidal cells in
the hippocampus during exploratory wake states (refs. 49,50; see
also Supplementary Fig. S3). We further analyzed the spread of
activity by considering the mean firing rate correlations between
the neuronal subpopulations (Fig. 3f). The correlations generally
increase with learning and consolidation, which is in line with the
previous finding of increased mean firing rates. Furthermore, we
found that correlations within the cell assembly (“as” and “ans”)
are larger than correlations with control neurons (“ctrl”), which
again indicates functional memory recall and further leads to the
expectation of more LTP for connections involving “as” and “ans”
neurons. This already suggests an “active improvement” of the
cell assembly, which we will investigate in a later section. On the
other hand, the fact that correlations between cell assembly
neurons and control neurons are also increased by recall
stimulation shows that control neurons indirectly contribute to
recall. This is corroborated by previous work53 and by the
distribution of synaptic weights, which exhibits tremendously
increased weights from control to cell assembly neurons
(“incoming” weights in Fig. 3b, c and Supplementary Figs. S4
and S5). In summary, the results presented in this section show
that calcium-dependent synaptic plasticity and the STC mechan-
isms enable the encoding of memory and its maintenance for
several hours in a recurrent neural network. Thereby, our findings
support the idea that the STC mechanisms account for the
synaptic consolidation of memories. In the next section, specific
measures for memory recall will be presented.

Memory functionality depends on network inhibition and size
of the representation. In the following, we investigate the
influence of different parameters, such as inhibition and cell
assembly size on the learning, recall, and consolidation of
memory representations.

Fig. 2 Impact of strong and weak tetanic and low-frequency stimulation protocols at a single synapse. Each protocol (see Supplementary Fig. S1 for
details) leads to the induction of a different type of synaptic plasticity: a late-phase potentiation, b early-phase potentiation, c late-phase depression, and d
early-phase depression. The late-phase weight (blue line) is only changed by strong stimulation (STET, SLFS). The early-phase weight (red line) is affected
by all protocols. Weak stimulation protocols (WTET, WLFS) suffice to drive the early-phase weight across the threshold of tag formation (θtag, dashed red
line), but not across the threshold of triggering protein synthesis (θpro, dashed green line). The total weight or synaptic efficacy (orange) is the sum of
early- and late-phase weight. Averaged over 100 trials; error bands show the standard deviation. The late-phase weight has been shifted for graphical
reasons (cf. “Methods” section).
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In general, one role of inhibition in neural networks is to
prevent the network activity from runaway or epileptiform
dynamics. This kind of dynamics is characterized by neurons
constantly exciting each other and firing at the maximum possible
rate. On the other hand, if inhibition is excessively strong,
neuronal activity is confined, resulting in a more or less silent
network. We adjusted the level of inhibition in our network by
varying the coupling strength from inhibitory neurons to
excitatory neurons (wie) and the coupling strength from
inhibitory to inhibitory neurons (wii). For every set of these
parameter values, we simulated the network dynamics during
learning and recall, as described before. At two different points in
time (10 s and 8 h after learning), we evaluated the memory
functionality that consists of learning, consolidation, and recall of
a memory by measuring the recall quality. To measure the recall
quality, we used two different quantities (cf. “Methods” section):
on the one hand, the pattern completion coefficient Q describes
by how much the activity in the non-stimulated part of the input-

defined cell assembly is raised during recall, as compared to the
activity of the control neurons; on the other hand, the mutual
information MIν describes how similar the network activity state
during recall is to the network activity state during learning. We
quantitatively defined memory functionality by an average
pattern completion coefficient of Q ≥ 0.03. This criterion
demands that, upon stimulation of half of the assembly neurons,
the other half of the assembly be activated much stronger than the
background neurons, which remain at a low activity level (cf.
Fig. 3e). Please note that the values of the pattern completion
coefficient appear small because we normalize by the activity of
the stimulated neurons (cf. Eq. (17)).

High values of the I→ I coupling strength together with low
values of the I→ E coupling strength imply a low level of
inhibition, which impedes memory functionality in our network
model (see Fig. 4a, c for the recall performance 10 s after learning
and Fig. 4b, d for 8 h after learning). This impairment goes along
with the runaway dynamics discussed before, as indicated by the

Fig. 3 Formation and temporal development of a Hebbian cell assembly and its functionality. a–c The matrix of total (early- plus late-phase) synaptic
weights sorted by the stimulated neurons (first 150): a before learning, b ~10 s after learning, and c ~8 h after learning. The insets show the spiking during
recall stimulation of the neurons in the cell assembly (colors as in d, e) and of a random 5% fraction of the neurons in the remaining excitatory (blue) and
inhibitory (red) populations. d Schematic of the three subpopulations during recall stimulation: the fraction of externally stimulated cell assembly neurons
(“as”), the fraction of cell assembly neurons that are not stimulated (“ans”), and the remaining excitatory neurons acting as control group (“ctrl”). e The
mean firing rates of the three subpopulations defined in d, before learning and without recall (standby), before learning during control recall stimulation,
upon recall 10 s after learning, and upon recall 8 h after learning. fMean firing rate correlations (presynaptic multiplied by postsynaptic firing rate, averaged
over neuron pairs) within and between subpopulations for the same protocols as in e. Synaptic weights, mean firing rates and mean correlations were
averaged over ten trials. Error bars show the standard deviation. Parameters: wie/h0= 4, wii/h0= 4.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-021-01778-y ARTICLE

COMMUNICATIONS BIOLOGY |           (2021) 4:275 | https://doi.org/10.1038/s42003-021-01778-y | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


extreme level of population activity in this parameter regime
(Fig. 4e, f). In general, if a network is in such an “epileptiform”
state, a recall stimulus does not exclusively activate the neurons
that belong to the cell assembly - it also activates a large fraction
of control neurons, overshadowing memory recall. On the other
hand, low values of the I→ I coupling strength together with high
values of the I→ E coupling strength lead to extensive levels of
inhibition, suppressing the neuronal activity during recall. In
other words, the activity induced by a recall stimulus will
immediately be suppressed by the high level of inhibition, also
impeding memory recall. As a result, the level of inhibition has to
be within a specific regime to enable learning, consolidation, and
successful recall of memories (indicated by the red box; Q(10s-
recall) ≥ 0.03). This regime is characterized by medium levels of
population activity. The functionality is relatively stable given
variations in the mean background current I0 (Supplementary
Fig. S6), while also the mean firing rate only weakly depends
on the mean background current (Supplementary Fig. S3b).

Furthermore, the recall quality remains relatively high at low
learning and recall stimulus frequencies, except for very low
frequencies, where the memory functionality ceases (Supplemen-
tary Fig. 7). This resilience is partially due to the number of 25
putative input neurons. In summary, the level of inhibition within
the described regime of functionality seems to be sufficient to
prevent the overly activation of control neurons, while it remains
low enough to allow the desired activation of the non-stimulated
neurons within the cell assembly. Please note that such a regime is
related to the network state of loosely balanced excitation and
inhibition (ref. 54; also see “Discussion” section).

The regime of memory functionality is the same either 10 s or
8 h after providing the learning stimulus. However, the higher
values of Q and MIν after 8 h compared to the 10 s case indicate a
positive influence of long-term dynamics on the memory
functionality. We further investigate and discuss this result in
the next section.

As further parameter, we examined the influence of the size of
the cell assembly on the memory functionality (Fig. 5a, b). We
controlled the size by varying the number of neurons being the
subgroup that is stimulated by the learning stimulus. Following
our definition of memory functionality, requiring that the
coefficient Q ≥ 0.03, we found that learning and recall is only
possible if the cell assembly is large enough. In the following, we
will focus on a particular set of parameter values for the inhibition
(wie/h0= 4, wii/h0= 4). All derived conclusions apply to all sets
within the specific regime of inhibition discussed before (red box
in Fig. 4). For small cell assemblies (here ~100 neurons), the
group of neurons is too small to exhibit functional pattern
completion (threshold indicated by the dotted red line in Fig. 5a,
b). For large cell assemblies (here >500 neurons), the activity of
the cell assembly becomes self-sustained. This means that after
learning the neurons within the cell assembly stay active,
preventing the typical dynamics of memories we are looking
for. Moreover, the measures of the recall quality exhibit local
maxima. The occurrence of these maxima cannot be explained by
the relationship between the mean firing rate and the cell
assembly size, because this relationship is strictly monotonic and
does not feature any maximum (Supplementary Fig. S3a).
Therefore, we reason that the maxima emerge from the additional
stimulation by the recall cue. Finally, similar to Fig. 4, the pattern
completion coefficient and mutual information become higher
8 h after learning compared to 10 s after learning for a large range
of cell assembly sizes, which will be examined further in the next
section.

Consolidation improves memory recall. Comparing the recall
quality of the cell assembly 10 s after learning with the recall
quality 8 h after learning for different paradigms (Figs. 4 and 5a,
b), we found that 8 h after learning the system generally exhibits
an improved recall quality. In other words, the specific state of the
cell assembly after 8 h, resulting from the interplay between
calcium-dependent synaptic plasticity and the STC mechanisms,
seems to facilitate recall. To elucidate the magnitude of the
improvement effect, we computed the relative gain in recall
quality between the state 10 s after learning and the state 8 h after
learning, and present results for the particular inhibition setting
that we chose before (Fig. 5c, d). It becomes obvious that
improvement in recall quality can occur by >200% with respect to
the pattern completion coefficient, and by as much as 30% with
respect to the mutual information.

To test the robustness of the improvement effect across the
specific inhibition regime identified before, we averaged MIν and
Q over the range of parameter settings of this regime and
calculated the relative gain in recall quality (Fig. 5e, f). For the

Fig. 4 Quality of the recall 10 s and 8 h after learning as a function of
the I→ E (wie) and I→ I (wii) coupling strengths. Sufficient memory
functionality is found within a certain regime, marked by a red box
(Q(10s-recall)≥ 0.03). Two measures of recall quality are shown:
a, b the pattern completion coefficient Q (with nonsignificant values set
to zero, see “Methods” section); c, d the mutual information MIν between
the neuronal activities in the network during learning and during recall.
e, f For comparison, the neuronal activity averaged over the whole
excitatory population is shown. All three observables were averaged
over ten trials. Parameters: nCA= 150, I0= 0.15 nA.
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chosen inhibition setting wie/h0= 4, wii/h0= 4 (Fig. 5c, d), as well
as for the averaged results (Fig. 5e, f), we observed a positive gain
across all cell assembly sizes. Positive gain means that 8 h after
learning the performance was better than 10 s after learning.
Thus, for a wide range of parameter settings, the passage of time
yields an improvement of the recall quality.

What are the underlying principles that lead to this improve-
ment of the recall quality? We could identify two processes, both
being related to the STC mechanisms: an active and a passive
improvement.

The active improvement is related to the dynamics of the early-
phase weights. The recall stimulus provided 10 s after learn-
ing only leads to minor variations of the average early-phase

weight in the cell assembly (dashed red line at “R” in Fig. 6a). By
contrast, 8 h after learning the recall stimulus triggers a
substantial increase of the average early-phase weight which in
turn results in a stronger total synaptic weight (dashed red and
orange line at “R” in Fig. 6b). Thus, 8 h after learning the average
total synaptic weight of the cell assembly increases during the
recall, which improves the recall performance (Fig. 5). By
comparing the state of the neural network between both time
points, we find that the average early-phase weight before the
10s-recall resides on a much higher level than before the 8h-recall
(Fig. 6c). This difference in early-phase weight before recall
stimulation could explain the different dynamics of the early-
phase weights during the recall. Considering the mathematical

Fig. 5 Recall quality 10 s and 8 h after learning and resulting relative gain as a function of the cell assembly size. a Pattern completion coefficient 10 s
(orange) and 8 h (purple) after learning. The dotted red line indicates the threshold for memory functionality (Q≥ 0.03). b Mutual information of the
neuronal activities 10 s (yellow) and 8 h (green) after learning. c Relative gain in pattern completion coefficient between 10 s and 8 h after learning. d
Relative gain in mutual information of the neuronal activities between 10 s and 8 h after learning. a–d Averaged over ten trials; parameter values: wie/h0=
4, wii/h0= 4. e Relative gain in pattern completion coefficient, f relative gain in mutual information, averaged over the mean gain values (from ten trials) of
all inhibition parameter sets that yielded functional memory for the respective cell assembly size (i.e., the sets with Q(10s-recall)≥ 0.03, for size 150 cf. the
red boxes in Fig. 4). Error bars indicate in a, b, the standard deviation across ten trials, in c, d, the error propagated from a, b, and in e, f, the error
propagated from the standard deviations (from ten trials) of the functional parameter sets.
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formulation of the model, one can see that the change of the
early-phase weight depends on the distance of the actual early-
phase weight h from its initial or equilibrium value h0. Hence,
larger changes occur if the early-phase weight is closer to the
equilibrium state, while the changes remain smaller if the early-
phase weight is close to its maximum value. Thus, the learning
stimulus “pushes” the early-phase synaptic weight into a regime
in which the subsequent recall cannot trigger further strengthen-
ing. However, with the passage of time the early-phase weight
decays (while the late-phase weight increases) until it reaches the
vicinity of its initial value (Fig. 6b, c). In this regime, a recall
stimulus can again trigger an increase of the early-phase weight,
supporting pattern completion. The detailed weight distributions
for all cases presented in Fig. 6c and additional data revealing the
weights between subpopulations of the network are shown in
Supplementary Figs. S4 and S5. To further scrutinize the relation
between the early-phase dynamics during recall and the improved
recall quality, we performed simulations in which we switched off
or blocked early-phase plasticity after learning. Comparing the
resulting recall performances with the simulations with early-
phase plasticity (Fig. 7), for both measures Q and MIν, we did not
find an influence of the blockage during 10s-recall but during 8h-
recall. These results further support our finding that the dynamics
of the early-phase weights within the cell assembly are one
essential part underlying the improvement of the recall quality.

The other part of the improvement of the recall quality is
related to the dynamics of the late-phase weights within the cell

assembly. We refer to this part as passive improvement. As
expected, 8 h after learning the STC mechanisms yield a decrease
of the average early-phase weight (red line in Fig. 6b)
accompanied by an increase of the average late-phase synaptic
weight in the assembly (blue line) that indicates the process of
synaptic consolidation. However, if we compare the average total
synaptic weight within the assembly before the 10s-recall with the
one before the 8h-recall (Fig. 6), we identify an increase that
suggests a second component underlying the improvement of
recall quality. This is also indicated by the relative gain in Q and
MIν without early-phase plasticity (Fig. 7). Hence, although the
dynamics of the early-phase weights (active improvement)
explains the gain in recall quality to a large extent, there is a
remaining part that is related to the dynamics of the late-phase
weights (passive improvement).

Parameter dependency of the passive improvement. We have
found that the mean total weight of a cell assembly can increase
over time, and refer to this phenomenon as passive improvement
(cf. Fig. 6c). This effect is elicited by the mechanisms of STC and
occurs if the mean normalized late-phase weight ~z � h0 after 8 h
becomes higher than the mean early-phase weight ~h after learn-
ing. To investigate and predict the circumstances under which
this effect occurs, namely, different settings of late-phase-related
constants, we considered an analytical approach that we present
in the following.

Fig. 6 Synaptic dynamics related to memory formation, consolidation and improvement. a During the first seconds after the learning stimulus (“L”), the
average early-phase weight (red) of the synapses connecting the stimulated neurons increases, while the average late-phase weight remains constant
(blue). A recall stimulus (“R”), provided 10 s after the learning stimulus, does not exert a substantial effect on the synaptic weights. b Several hours after
learning, the average early-phase weight decays, while the late-phase increases such that the average total synaptic weight remains on a high level.
Providing a recall stimulus 8 h after learning triggers an increase of the average early-phase weight and, thus, of the total synaptic weight. a, b Averaged
over ten trials; the error bands (representing the standard deviation) are too small to be visible. c Mean early- and late-phase weights within the assembly
and within the non-assembly (control) population immediately before and immediately after the 10s and 8h-recall. A.i. active improvement component
(difference between solid blue and blue hatches); P.i. passive improvement component (difference between orange grating and blue hatches). Data from
one sample network. Error bars show the standard deviation across the subpopulation. See Supplementary Figs. S4 and S5 for detailed distributions of the
underlying data. Parameter setting: wie/h0= 4, wii/h0= 4, nCA= 150.
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To investigate the parameter dependency of consolidation and
improvement of a cell assembly, we analytically solve the linear
first-order differential equation describing the dynamics of late-
phase LTP (cf. Eq. (14)) with a variable coefficient introduced by
the time-dependent amount of proteins (Eq. (15)). Since L-LTP is
vastly predominant between cell assembly neurons, we neglect
here the L-LTD dynamics.

Thus, the analytical expression for the mean late-phase weight
after time t after learning in the case of persistent tags and protein
synthesis is:

zf ðtÞ ¼ 1� ð1� z0Þ � exp � τpðα� p0Þ � e
� t

τp þ αt � ατp þ p0τp
τz

0
@

1
A
ð1Þ

depending on the protein time constant τp, the late-phase time
constant τz, the initial protein amount p0, the initial late-phase
weight z0, and the protein synthesis rate α. Note that this equation
only holds if tags have been set and as long as they have not
vanished, which we will address later. This solution can be further
simplified under the condition that the initial late-phase weight z0
and the initial protein amount p0 are zero. The mean increase in
late-phase weight due to the STC mechanisms is then:

zsðtÞ ¼ 1� exp �
α t þ τp � e�

t
τp � τp

� �
τz

0
@

1
A ð2Þ

For Eq. (2), we considered that the synapses within the cell
assembly are always tagged, triggering changes of the late-phase
weights. However, after learning the early-phase weight decays
(Fig. 6b) and falls at a certain point in time below the tag-
sufficient threshold. Thus, first, we have to calculate the decay of
the mean early-phase weight and, then, use it to determine at
what time the tag will have vanished. The average decaying early-

phase weight follows

hdðtÞ ¼ ~h� h0
� �

� exp �0:1
t � tal
τh

� �
þ h0 ð3Þ

depending on the mean early-phase weight after learning ~h, the
time after learning tal, the initial weight h0, and the early-phase
time constant τh. The time tal is a time after learning (for instance,
10 s) at which ~h, the mean learning-induced increase in early-
phase weight, is measured. Setting hd(t) to the value of the tagging
threshold θtag+ h0 yields the point in time ttag at which the
synaptic tags will have vanished on average:

ttag ¼ 10 τh � ln
~h� h0
�� ��
θtag

 !
þ tal: ð4Þ

The synaptic tags typically vanish before the synthesis of new
proteins stops and, thus, ttag determines the end of late-phase
changes, such that the average late-phase weight is described by

zstðtÞ ¼
zsðtÞ if t ≤ ttag;

zsðttagÞ if t > ttag:

(
ð5Þ

Hence, for parameter sets yielding ttag < 8 h (cf. Eq. (4)), the
mean late-phase weight before the 8h-recall is the same as by the
time the tags vanished (see also Fig. 6b, blue line):

~z ¼ zsðt ¼ ttagÞ: ð6Þ
In Fig. 8a, we plot the mean weights within the cell assembly,

using our numerical results for early-phase LTP during learning
and recall to compute the late phase via the analytical function in
Eq. (5) and the decay of the early-phase weight as detailed in
Eq. (3). As expected, we find that this analytical approach predicts
very well the mean weight dynamics of our numerical simulations
(dashed gray line in Fig. 8a, cf. Fig. 6b).

Fig. 7 Recall quality measured for recall 10 s and 8 h after learning with and without early-phase synaptic plasticity during recall. The effect of early-
phase synaptic plasticity on the total improvement is significant (compare 8h-recall with 8h-recall no pl.: A.i. active improvement), but it does not cover the
complete level of improvement (compare 10s-recall with 8-h recall no pl.: P.i. passive improvement). a Pattern completion coefficient Q; b mutual
information MIν; and c relative gain in Q and MIν from 10s-recall to 8h-recall. All observables averaged across ten trials. Error bars indicate standard
deviation across the ten trials in a, b and the propagated error in c. Parameter setting: wie/h0= 4, wii/h0= 4, nCA= 350 (value of the maximum in Fig. 5c, d).
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When we compare the mean total weight 8 h after learning w(t
= 8 h) with the mean total weight 10 s after learning w(t= 10 s),
we obtain an expression for the passive weight change realized by
the STC mechanisms, thus, of the passive improvement:

Δw ¼ wðt ¼ 8 hÞ � wðt ¼ 10 sÞ ¼ ~z � h0 � ~h: ð7Þ
If Δw > 0, the system shows a passive improvement with the

passage of time, which is given for a wide range of parameter
values. For instance, by considering different values of the protein
synthesis parameters, namely the time constant of the protein
amount τp (Fig. 8b) and protein synthesis rate α (Fig. 8c),
depending on the time scale of the late-phase dynamics τz, we can
determine the influence of protein synthesis on the pas-
sive improvement. We find that, if the protein time scale
becomes too high or the synthesis rate becomes too low, the
passive weight change switches from improvement to deteriora-
tion. However, the protein dynamics can be much slower than in
our numerical simulations (red box) and still the STC mechan-
isms yield an improvement. For the protein synthesis rate, there is
just as well a wide range of values that gives rise to improvement.
Thus, the encountered improvement effect is robust to parameter
variations.

Our analytical results lead to the following predictions: if the
time scale of the protein dynamics is manipulated, the resulting
memory behavior should switch between passive improvement
and deterioration. In addition, manipulating the speed of
signaling cascades that are involved in late-phase LTP should
have a similar effect. Taking this into account, our predictions can
be useful to narrow down the set of possible proteins and
processes involved in STC.

Intermediate recall further amplifies memory improvement.
There are several psychological studies that investigate hyperm-
nesia/improvement by considering the memory strength after
multiple recalls55–57. Therefore, we also investigated the impact of
an intermediate recall on the memory dynamics. For this, we
computed the gain in the pattern completion coefficient Q and in
the mutual information MIν between 10s-recall and 8h-recall
after applying an additional, intermediate recall stimulus to
randomly drawn neurons.

We varied the time of occurrence of this intermediate stimulus
(Fig. 9). The gain in recall quality for early intermediate recall
(minutes after learning) shows little difference to the gain without
intermediate recall (data point at time zero). For late intermediate
recall, the gain reaches values that are much higher compared to
the case without intermediate recall. Hence, additional recall
improves the recall quality even further, which is consistent with
the experimental findings55–57.

Discussion
In this study, we developed a recurrent network model to
show that the mechanisms of STC15,18–20 provide a biological
basis for encoding, consolidation, and recall of memories. We
found that these mechanisms also cause an improvement in the
recall quality of memories, which is robust across a large space of
parameter settings. While the possibility of such improvement
was proposed previously based on an abstract plasticity model
featuring multiple timescales40,42, we show that memory
improvement can arise from the STC mechanisms. Previous
theoretical studies of STC focused on molecular pathways12,

Fig. 8 Analytical investigation of the long-term weight dynamics and passive improvement depending on late-phase time constants. a The early-phase
values immediately after learning (“L”) and after recall (“R”) were taken from the average over numerical simulations (Fig. 6b) and inserted into the
analytical equations for the late-phase dynamics (Eq. (5)) and the early-phase decay (Eq. (3)). The curves are in very good match with the simulated
results, the total weight of which is shown here for comparison by the dashed gray line (cf. Fig. 6b). b, c Varying the time constants for late-phase dynamics
τz and protein amount τp (b), as well as the protein synthesis rate α (c), shows that for slower time scales and lower synthesis rate, the passive weight
change becomes negative, i.e., there is a passive deterioration instead of improvement. The black separatrix line demarcates the two regimes of
improvement and deterioration. The red boxes indicate the parameter values used in our numerical studies.
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single synapses15,20,27,28, and feed-forward networks28, and
thereby provided fundamental insights into the processes
underlying the synaptic consolidation of memories. However, to
the best of our knowledge, there have not yet been studies tar-
geting the effects of STC in recurrent networks, which are
essential for the encoding of memories. We set out to close this
gap and we were able to characterize emergent effects that arise
from the conjunction of STC with strongly recurrently connected
groups of neurons (cell assemblies).

Detailed models describing the molecular dynamics underlying
synaptic plasticity and STC have been shown to be compatible to
and to offer a complementary view on simpler statistical
models12,13,20,27,58. We use a model for synaptic plasticity based
on calcium dynamics because this approach captures a wide range
of experimental findings, including spike-timing-dependent
phenomena and rate-coding behavior13,16,30–33,37–39. For STC,
we use a model based on generalized plasticity-related proteins
that account for the crucial aspects of tagging, capture, and cross-
tagging15,19,20,34–36. Thereby, our model contains the essential
features of a biologically more detailed model, while still being
computationally tractable.

By varying the size of the cell assembly, we found different
recall dynamics of the system. We found that there is a lower
bound to the size, below which the amplification of recall sti-
mulation does not suffice for functional recall. On the other hand,
large cell assemblies show attractor behavior, meaning that after
the application of a recall stimulus they become fully activated
and stay activated. Investigating this attractor regime is beyond
this study. Nevertheless, considering attractor dynamics in our
model could reveal interesting implications, since long-term
memory representations exhibiting attractor dynamics can serve
as working memory59,60, possibly in conjunction with additional
transient dynamics61. Varying the inhibitory synaptic weights, we
found a regime of parameters yielding functional memory
dynamics. This regime seems to correspond to “loosely balanced”
network states, which are characterized by a dynamic equilibrium
of excitation and inhibition54. In contrast to that, “tightly
balanced” network states feature inhibition that closely follows
excitation, and in some cases seem to enable more efficient
coding. By introducing inhibitory plasticity62,63, our network
could possibly enter a tightly balanced state. This would increase
the complexity of our model tremendously, but could be subject
to future studies on more efficient memory encoding.

Synaptic plasticity such as LTP is widely considered to be the
main mechanism that underlies memory, as it is expressed by the
synaptic plasticity and memory hypothesis6,9. LTP of synapses
has been subdivided into three different types: LTP1, which
depends on stimulation only, LTP2, which depends on translation
of existent mRNA, and LTP3, which depends on transcription in
the soma9,64,65. LTP2 and LTP3 are often subsumed as late-phase
LTP, whereas LTP1 is called early-phase LTP9,18, which paradigm
is followed by our study. Similar phenomena and processes as the
ones discussed for LTP are found for LTD9,12,35. In addition to
synaptic plasticity, there are hints to other, cell-intrinsic
mechanisms that might be relevant for the storage of memory9,
such as noncoding RNAs that produce learning-related epigenetic
changes in neurons66. However, the potential effects of such non-
synaptic memory mechanisms on the results of our study and on
memory consolidation in general remain unknown and require
further investigations.

Following their encoding, memories can become consolidated
to last for hours, days, or even years, depending on conditions like
strength of the learning stimulus and neuromodulation1,24,65. In
principal, one can distinguish two different paradigms related to
memory consolidation. On the level of brain areas, systems
consolidation describes the transfer of newly formed memories,
mainly from the hippocampus to the neocortex1,24, as it was first
discovered in the case of the patient H.M.67. This type of con-
solidation is related to sleep and rest50,68,69. On the other hand,
there is synaptic consolidation, which denotes the in-place sta-
bilization of changes in the strength of synaptic connections24,26,
and thereby is a synonym for LTP2 and LTP3, or late-phase LTP
as discussed before9. Blocking of hippocampal LTP has been
shown to prevent long-term memory during wake in the first
hours after learning67,70, which is why the hippocampus seems to
be the central region for this first stage of memory consolidation.
In our study, we do not consider sleep- or rest-dependent con-
solidation, which would require the presence of activity patterns
like shape-wave/ripples, spindles, or slow oscillations26,49,50.
Instead, we target the encoding and the in-place synaptic con-
solidation of memories. This occurs for instance during
exploratory wake state in hippocampal networks24,26,70.
Although our model resembles some characteristics of hippo-
campal networks, it could describe a network in any other brain
region that features similar processes. Moreover, extending our
model by sleep-related activities69,71 could yield interesting

Fig. 9 Relative gain in recall quality between 10 s and 8 h after learning, affected by an intermediate recall stimulus at varying times. a Gain in pattern
completion coefficient Q; b gain in mutual information MIν. Parameter values: wie/h0= 4, wii/h0= 4, nCA= 150. Averaged over ten trials. Error bars
indicate the error propagated from the standard deviations across ten trials for both 10s-recall and 8h-recall. The data points at time zero show the case
without intermediate recall (as in Fig. 5c, d).
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insights into the interplay between synaptic and systems
consolidation.

Sometimes it is being suggested to use the term cellular con-
solidation instead of synaptic consolidation1,19, since the pro-
cesses involved are not only located at the synaptic site. This is
mostly due to the fact that mRNA and proteins are synthesized in
the soma, from where they are transported to the dendrites and
spines1,19,20,65. Nevertheless, there can also be local protein
synthesis in the dendrites72–75, which could confine the here
identified protein-dependent dynamics of consolidation and
improvement to specific dendritic branches of a neuron. How-
ever, due to synaptic clustering76, local protein synthesis would
not necessarily yield different results as compared to our model.

The most important finding of our study is that for many
parameter settings, the quality of recall 8 h after learning is much
better than the quality of recall 10 s after learning. In psycholo-
gical literature, such an increase in recall quality over time is
referred to as memory improvement or hypermnesia77. It has
been found particularly, but not exclusively, in picture
memory56,57,77. In our simulations and analyses, we found the
improvement effect to occur already at the very first recall
attempt, while in psychological experiments the effect of
improvement has mostly been measured over the course of sev-
eral recall attempts. Our model accounts as well for improvement
by multiple recalls, as we showed using a protocol with an
intermediate recall stimulus. Nevertheless, there are experiments
indicating that recall can already be improved in the first
attempt77. It would be desirable to have more experimental data
on very early recall, as well as on recall after 8 h without previous
recall.

Our model explains another interesting, seemingly fundamental
feature of memory consolidation. As studies on positive effects of
memory disuse have proposed78,79, learning will be most powerful
after a break, when the storage strength is still quite low and the
retrieval strength has again decreased. Attempts to retrieve will
then result in a strong increase in storage strength. If the retrieval
strength is still high, the gain in storage strength upon this (“easy”)
retrieval will be low. This theory seems to be partially consistent
with our results, considering that the storage strength correspond
to the late-phase synaptic weight, and retrieval strength to the
early-phase synaptic weight. In our model, increases in early-phase
weights upon stimulation are much larger if the early-phase
weight is low before the stimulation than if it is high. Since
increases in early-phase weight lead to changes in late-phase
weight, the gain in late-phase weight (i.e., presumably, the storage
strength) indeed inversely depends on the early-phase weight
(retrieval strength) before the stimulation. Nevertheless, further
investigations would have to resolve how our model could match
the psychological finding that retrieval at small retrieval strength
should take long78,79, while at the present our model exhibits fast
recall even in the case of low early-phase weights.

Behavioral tagging is a phenomenon that could be the beha-
vioral analog of synaptic tagging, describing the finding that the
memory of a weak input perceived around the same time as
strong novel stimulation becomes consolidated along with the
memory of the strong stimulus80–82. While by now, there is
plenty of evidence relating behavioral tagging to synaptic tagging,
the knowledge gap is not yet closed22. Using their theoretical
model of a feed-forward network, Ziegler and colleagues28 pro-
vided a connection between STC mechanisms and behavioral
tagging, focusing on an inhibitory avoidance paradigm. For this,
they considered dopamine modulation to model novelty. By
extending our model by such dopamine modulation, for instance
via the protein synthesis threshold, more experimental data could
be matched to provide further evidence for the relatedness of
behavioral tagging and synaptic tagging.

Our model predicts an active and a passive improvement of
memories by the STC mechanisms for a wide range of parameter
values. In the following, we discuss how these predictions can be
verified in experiments on the behavioral level, on the network
level, and on the synaptic level. At the behavioral or psychological
level, our findings can be tested with subjects that need to learn a
set of items, like words or pictures, and then recall the items after
a very short time (~10 s). The performance of this recall should
then be compared with the performance of the same subjects in a
similar task but with other items, and recall after 8 h. Ideally, to be
comparable to our results, there should not be any attempt to
recall during the 8 h, which could be hard to manage for the
subjects. However, at least trying to avoid intermediate recall
would provide some new insights, as compared to previous
psychological studies that were based on intermediate recall55–57.
In in vitro networks, multielectrode arrays (MEAs) can be used to
stimulate many neurons at the same time, as well as to measure
their activity83. For our purposes, an MEA could be used to
trigger plasticity, forming a strongly interconnected cell assembly.
After the formation, a partial recall stimulus should be applied
and the resulting activity be measured. The activity during 10s-
recall (10 s after learning) and during 8h-recall (8 h after learning)
can then be compared, as it was shown in Fig. 3e. If the activity in
the cell assembly following 8h-recall is higher, then there will be
experimental evidence for memory improvement. Another pro-
mising approach to test the memory improvement at the network
level would be to use optogenetic stimulation in combination with
activity measurements through calcium imaging, which is an
established method that is very suitable for in vivo
experiments84,85, and can be tuned to deliver precise learning and
recall stimulation86–88. Our study also yields predictions for the
synaptic level. To test these, first, synaptic potentiation has to be
induced applying a strong “learning” stimulus to a nerve fiber.
Later application of a shorter “recall” stimulus to the fiber should
then cause a response that depends on the time that has passed
since learning. Following our predictions, the response, which can
be measured as a relative field excitatory postsynaptic potential
(often abbreviated %fEPSP), should be larger 8 h after learning
than 10 s after learning, corresponding to the mean total synaptic
weight shown in Fig. 6. Furthermore, after the application of two
“recall” stimuli, the response should even be higher, as we showed
in the section on intermediate recall. Finally, in any experiment,
blocking the dynamics that lead to early-phase plasticity should
diminish the improvement effect significantly, because we predict
that active improvement is triggered by the early-phase dynamics
(cf. Fig. 7c). Such experiments could be realized by using NMDA
receptor antagonists or by blocking exocytosis before the pre-
sentation of a recall stimulus. In addition, blocking or slowing
down late-phase-related signaling cascades and protein dynamics
should, beyond a certain level, prevent passive improvement and
thereby also diminish the total improvement effect (cf. Fig. 8b, c).

Please note that for several of the potential extensions of our
model discussed above, it would be useful to improve the com-
putational efficiency of the numerical simulation. For that, it is
very promising to implement our network model on neuro-
morphic hardware89,90. Neuromorphic hardware enables the
simulation of larger networks and thereby the storage of many
cell assemblies. In this way, storage capacity and the interference
between cell assemblies could be investigated. The neuromorphic
approach would not only facilitate scientific investigations but,
due to its good performance and energy efficiency90,91, also offer
great opportunities for the technical application of our model.
Implemented on neuromorphic hardware, our model could be
used for fast, energy-efficient self-improvement of information
storage after a few presentations. In conclusion, our theoretical
model provides a further piece of evidence that the STC
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mechanisms are essential for memory dynamics, and it predicts
that these STC mechanisms also allow the improvement of
memories, which can be beneficial for biological, as well as arti-
ficial memory systems.

Methods
Model. To simulate the dynamics of memory representations, we use a network
model with hippocampal characteristics that comprises spiking neurons and
synapses with detailed plasticity features. In the following, we first present our
mathematical description of neurons and synapses, which is depicted in Fig. 1a.
After that, we explain how our network is structured at the population level. The
parameters we use are given in Tables 1 and 2.

The dynamics of the membrane potential Vi(t) of the leaky integrate-and-fire
neuron i is described by92:

τmem
dViðtÞ
dt

¼V rev � ViðtÞ þ R
X
j

X
tkj

wji=s � exp �ðt� tkj � tax;delayÞ=τsyn
� �

þ R IbgðtÞ þ IstimðtÞ
� �

ð8Þ

with reversal potential Vrev, membrane time constant τmem, membrane resistance
R, synaptic weights wji, spike times tkj , axonal delay time tax,delay, synaptic time
constant τsyn, external background current Ibg(t), and external stimulus current
IstimðtÞ. If Vi crosses the threshold Vth, a spike is generated. The spike time tni is
then stored and the membrane potential is reset to Vreset, where it remains for the
refractory period tref. Apart from learning and recall stimulation, the membrane
potential dynamics is mainly driven by a background noise current that accounts
for synaptic inputs from outside the network, described by an Ornstein–Uhlenbeck
process:

τsyn
dIbgðtÞ
dt

¼ I0 � IbgðtÞ þ σwn � ΓðtÞ ð9Þ

with mean current I0 and white-noise standard deviation σwn. Note that in this
equation, Γ(t) is Gaussian white noise with mean zero and variance 1/dt that
approaches infinity for dt→ 0 (ref. 93). The Ornstein–Uhlenbeck process has the
same colored-noise power spectrum as the fluctuating input to cortical neurons
coming from a large presynaptic population94. Therefore, it is well-suited to model
background noise in our model. In addition to the background noise, a second
Ornstein–Uhlenbeck process is used to model the stimulus current IstimðtÞ for
learning and recall, which is described in the subsection “Learning and recall
procedure” below.

Table 1 Values were used as given in this table, unless stated otherwise.

Parameters for neuron and static network dynamics

Symbol Value Description Refs.

Δt 0.2 ms Duration of one time step for numerical computation
τmem 10ms Membrane time constant 92,96

τsyn 5 ms Synaptic time constant, also for external background current 92,96,99

tax,delay 3 ms Axonal spike delay 92,100

tref 2 ms Duration of the refractory period 96,101

R 10MΩ Membrane resistance 96

Vrev −65mV Reversal (equilibrium) potential 96

Vreset −70mV Reset potential 96

Vth −55mV Threshold potential to be crossed for spiking 96

σwn 0.05 nA s1/2 Standard deviation for Gaussian noise in external background current
I0 0.15 nA Mean of the external background current
Ne 1600 Number of neurons in the excitatory population
Ni 400 Number of neurons in the inhibitory population
pc 0.1 Probability of a connection existing between two neurons 48

h0 0.420075 nC Initial excitatory→ excitatory coupling strength 15

wei 2h0 Excitatory→ inhibitory coupling strength
wstim h0 Coupling strength of synapses from putative input neurons
Nstim 25 Number of putative input neurons for stimulation
fstim 100 Hz Frequency of learning/recall stimulation from putative input neurons 15,51

r 0.5 Fraction of assembly neurons that are stimulated to trigger recall

Table 2 Values were used as given in this table, unless stated otherwise.

Parameters for synaptic plasticity

Symbol Value Description Refs.

tc,delay 0.0188 s Delay of postsynaptic calcium influx after presynaptic spike 13

cpre 1 (0.6) Presynaptic calcium contribution (network adjustment) 13,15,95

cpost 0.2758 (0.1655) Postsynaptic calcium contribution (network adjustment) 13,15,95

τc 0.0488 s Calcium time constant 13,15

τh 688.4 s Early-phase time constant 13,15

τp 60min Protein time constant 15,20

τz 60min Late-phase time constant 15,20

γp 1645.6 Potentiation rate 13,15

γd 313.1 Depression rate 13,15

θp 3 Calcium threshold for potentiation 15

θd 1.2 Calcium threshold for depression 15

σpl 0.290436 nC s1/2 Standard deviation for plasticity fluctuations 13,15

α 1 Protein synthesis rate 15,20

θpro 0.210037 nC Protein synthesis threshold 15

θtag 0.0840149 nC Tagging threshold 15
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If there is a synaptic connection from some neuron j to neuron i, all spikes
k that occur in j are transmitted to i. The postsynaptic current caused by a
presynaptic spike depends on the weight of the synapse. The total weight or
strength of a synaptic connection from neuron j to neuron i is given by:

wji ¼

hji þ h0 � zji for E ! E;

wei for E ! I;

wie for I ! E;

wii for I ! I;

8>>><
>>>:

ð10Þ

where E and I stand for excitatory and inhibitory neurons, respectively. Thus, in
our model, all synaptic connections involving inhibitory neurons are constant. The
weight of E→ E connections, however, consists of two variable contributions
providing the core of the STC mechanisms: the early-phase weight hji, and the late-
phase weight zji. We followed15 and used h0 as the normalization factor for z to
obtain a quantity of the same dimension as h. The value of the normalization factor
is in accordance with experiments investigating late-phase LTP/LTD.

The dynamics of the early-phase weight is given by

τh
dhjiðtÞ
dt

¼ 0:1 ðh0 � hjiðtÞÞ þ γpð1 nC� hjiðtÞÞ � Θ½cjiðtÞ � θp�
� γdhjiðtÞ � Θ½cjiðtÞ � θd� þ ξðtÞ;

ð11Þ

where Θ[ ⋅ ] is the Heaviside function, τh is a time constant, and cji(t) is the calcium
concentration at the postsynaptic site. The first term on the right-hand side describes
a relaxation of the early-phase weight back to its initial value h0, the second term
describes early-phase LTP with rate γp for calcium above the threshold θp, the third
term describes early-phase LTD with rate γd for calcium above the threshold θd, and

the fourth term ξðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τh½ΘðcjiðtÞ � θpÞ þ ΘðcjiðtÞ � θdÞ�

q
σpl ΓðtÞ describes

calcium-dependent noise-driven fluctuations with standard deviation σpl, and
Gaussian white noise Γ(t) with mean zero and variance 1/dt. The calcium
concentration cji(t) at the postsynaptic site depends on all past presynaptic and
postsynaptic spikes n and m, respectively:

dcjiðtÞ
dt

¼ � cjiðtÞ
τc

þ cpre
X
n

δðt � tnj � tc;delayÞ þ cpost
X
m

δðt � tmi Þ; ð12Þ

where δ(⋅) is the Dirac delta distribution, τc is a time constant, cpre is the contribution
of presynaptic spikes, cpost is the contribution of postsynaptic spikes, tnj and tmi are
spike times, and tc,delay is the delay of calcium triggered by presynaptic spikes.

The calcium-based plasticity model (Eqs. (11) and (12)) that we use to describe
the early phase of LTP and depression is based on previous theoretical
studies13,15,95. Similar to Li et al.15, the first term on the right-hand side of Eq. (11)
describes a relaxation to the initial condition to which the early-phase weight
returns or decays on a timescale of a few hours. This decay accounts for the fact
that early-phase changes are transient, providing an accurate description of the
experimentally verified dynamics of the STC mechanisms18.

The calcium parameters provided by Graupner and Brunel13 were obtained by
fitting experimental data from in vitro experiments39. Since extracellular calcium
concentrations are much lower in vivo than in vitro, the parameters need to be
corrected for modeling in vivo networks. Following Higgins et al.95, the calcium
influx into the postsynaptic spine can be assumed to decrease proportionally to the
ratio of in vivo and in vitro extracellular calcium concentrations, which leads to a
factor of 0.6. Therefore, in our network model, we adjust the values provided by
Graupner and Brunel13 by this factor.

Driven by the calcium-based early-phase dynamics, the late-phase synaptic
weight is given by

τz
dzjiðtÞ
dt

¼ piðtÞ � ð1� zjiðtÞÞ � Θ½ðhjiðtÞ � h0Þ � θtag� ð13Þ

�piðtÞ � ðzji þ 0:5Þ � Θ½ðh0 � hjiðtÞÞ � θtag�; ð14Þ
with the protein amount pi(t), the late-phase time constant τz, and the tagging
threshold θtag. The first term on the right-hand side describes late-phase LTP, while
the second term describes late-phase LTD. Both depend on the amount of proteins
being available. If the early-phase weight change jhjiðtÞ � h0j exceeds the tagging
threshold, the synapse is tagged. This can be the case either for positive or for
negative weight changes. The presence of the tag leads to the capture of proteins (if
pi(t) > 0), and thereby gives rise to changes in the late-phase weight.

The synthesis of new proteins depends on the early-phase weights, but the
amount of proteins also inherently decays exponentially20:

τp
dpiðtÞ
dt

¼ �piðtÞ þ α Θ
X
j

hjiðtÞ � h0

��� ���
 !

� θpro

" #
: ð15Þ

Using the neuron model and the synapse model explained above, we set up a
neural network consisting of 1600 excitatory and 400 inhibitory neurons (depicted
in Fig. 1b). This ratio between excitatory and inhibitory neurons is commonly used
for cortical and hippocampal networks47. Some of the excitatory neurons receive
specific inputs to learn and recall a memory representation (see next subsection).
As described before, only the synapses between excitatory neurons are plastic. The

inhibitory population serves to provide realistic feedback inhibition. The overall
connectivity across both populations is 10%, meaning that there is a probability of
0.1 that the link from any neuron to another one in the whole network exists. The
value is reasonable for hippocampal region CA348.

Learning and recall procedure. Before we stimulate our network, we first let the
initial activity settle for 10.0 s. After that, we apply our learning protocol, which
delivers three stimulus pulses, of 0.1 s duration each, to the neurons belonging to the
desired cell assembly (for instance, to the first 150 neurons in the network). The
pulses in our protocol are separated by breaks of 0.4 s. During the pulses, stimu-
lation IstimðtÞ enters the neuronal membrane potential given in Eq. (8). The sti-
mulation is modeled by the following Ornstein–Uhlenbeck process (also cf. Eq. (9)):

τsyn
dIstimðtÞ

dt
¼ wstim � Nstim � f stim � IstimðtÞ þ wstim �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nstim � f stim

p
� ΓðtÞ; ð16Þ

with Gaussian white noise Γ(t) and the synaptic time constant τsyn. Mean and
standard deviation of the process are defined by putative input spikes from N stim
neurons, occurring at the frequency f stim and conveyed by synapses of weight wstim
to the selected neurons of our network93,96. For the reproduction of previous single-
synapse investigations (ref. 15, Fig. 2), we stimulated the presynaptic neuron with
Poisson spikes that were generated using the same number of input neurons N stim
and the same frequency f stim as for learning a cell assembly, conveyed with the same
synaptic strength wstim.

After 20.0 s, we save the state of the whole network and then apply a recall
stimulus, equally modeled by the process given in Eq. (16) with the same
parameters as the learning stimulus (except for Supplementary Fig. S7), for 0.1 s to
half of the neurons in the cell assembly (regarding the example above, to 75
randomly drawn neurons). We refer to this as “10s-recall”. Next, we load the
previously saved network state again, such that the network is back in the state
where it was immediately before recall. This time, we let the network run for
28810.0 s until we apply the recall stimulus, which we refer to as “8h-recall”. For
one part of our study, we apply a further, intermediate, recall stimulus at a time in
between 10 s and 8 h. Following this intermediate recall, we do not reset the
network by loading an earlier state, such that it in fact affects the later 8h-recall.

Measures of recall performance. To investigate the effects of recall stimulation,
we divide the excitatory population into three subpopulations: control neurons that
are not directly stimulated neither by learning nor by recall stimulation, cell
assembly neurons that are stimulated by both learning and recall stimulus, and cell
assembly neurons that are stimulated during learning but not during recall (cf.
Fig. 3d). The mean activities of these three subpopulations are given by:

● �νas: mean activity of the neurons stimulated by the learning stimulus and the
recall stimulus

as ¼ 00assembly; stimulated00;

● �νans: mean activity of the neurons stimulated by the learning stimulus but not
by the recall stimulus

ans ¼ 00assembly; not stimulated00;

● �νctrl: mean activity of the neurons stimulated by neither of the two stimuli

ctrl ¼ 00control00:

Based on these mean activities, the recall quality can be measured by computing
a coefficient for the quality of pattern completion:

Q� :¼ �νans � �νctrl
�νas

: ð17Þ
The coefficient typically lies within the interval (0, 1). To achieve pattern

completion of the learning-defined cell assembly, the non-stimulated assembly
neurons have to be indirectly activated following the activation of the rest of the
core neurons, while control neurons should remain relatively silent:

�νctrl � �νans ≤ �νas: ð18Þ
Hence, for good pattern completion or good recall, the value of Q* will be

significantly larger than zero or even approach unity. On the other hand, if it
approaches zero, there is either no pattern completion, which means that
�νctrl � �νans, or the network activity diverges, which means that �νctrl � �νans � �νas.

In addition to the subpopulation-based quantity Q*, we measure the mutual
information MIν between the activity distribution during the recall phase and the
activity distribution during the learning phase. The mutual information does not
directly relate to pattern completion, but it has the advantage that it is independent
of any predefined patterns such as the learning stimulus.

The mutual information of the activity distribution is calculated from the
entropy during the learning phase at time tlearn= 11.0 s, the entropy during the
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recall phase at time trecall∈ {20.1 s, 28810.1 s}, and the joint entropy between both:

MIν :¼ H ν t ¼ tlearn; nð Þð Þ þ H ν t ¼ trecall; nð Þð Þ � H ν t ¼ tlearn; nð Þ; ν t ¼ trecall; nð Þð Þ:
ð19Þ

The firing rate function ν t; nð Þ returns the firing rate of a given neuron n at a
given time t, computed using a sliding window of 0.5 s.

Statistics and reproducibility. The pattern completion effect is not necessarily
robust across trials for every parameter setting, even though Q*≫ 0 may be given
for a single trial. Therefore, we average over trials:

Q :¼ hQ�i: ð20Þ
For Fig. 4, due to the lack of error bars, we have to indicate the cases in which

no robust pattern completion occurs. Thus, we use the following conditional
definition for the pattern completion coefficient:

Q :¼ hQ�i ifhQ�i>ΔQ;

0 else:

�
ð21Þ

Put in words, the robustness criterion requires the mean 〈Q*〉 to be
nonnegative, and its absolute value to be larger than the standard deviation ΔQ.
If this is not fulfilled, pattern completion is assumed absent and Q is set to zero.

To achieve equal statistics for our results, we also average the mutual
information value over multiple trials and use the standard deviation as error.

The relative gain in recall quality after 8 h as compared to recall quality after

10 s is computed by Qð8 hÞ�Qð10 sÞ
Qð10 sÞ for the coefficient Q, and hMIν ð8 hÞi�hMIν ð10 sÞi

hMIν ð10 sÞi
for the mutual information. The error of the relative gain is computed by
propagation of error from the recall quality at 10 s and at 8 h, such that it isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΔQð10sÞ�Qð8hÞ
Qð10sÞ2

� �2
þ ΔQð8hÞ

Qð10sÞ
� �2r

for Q and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔMIν ð10sÞ�hMIν ð8hÞi

hMIν ð10sÞi2
� �2

þ ΔMIν ð8hÞ
hMIν ð10sÞi
� �2r

for the mutual information.
Our approach to determine significant effects is to compute and compare

standard deviations of observables from at least ten trials. The number of
simulation trials (100 for single-synapse simulations, 10 for learning and recall
simulations) was chosen such that the effects that we describe would be significant
with p < 0.006 in a t test. This is the case for a single observable being greater than
zero, if zero is not within the standard deviation of the observable (one-sided test),
and also for the inequality of two observables if their standard deviations do not
overlap (two-sided test, cf.97), because for the chosen number of trials the standard
deviation is greater than the 98.8% confidence interval.

The network structure that we used to obtain the results presented here is
provided with our code98. The code automatically generates a different network
structure with the same connectivity pc if no predefined structure is used. We did
not encounter unexpected deviations with such different network structures.

Computational implementation and software used. We used C++ in the ISO
2011 standard to implement our simulations. To compile and link the code, we
employed g++ in version 7.4.0 with boost in version 1.65.1.

Random numbers were generated using the generator minstd_rand0
from the C++ standard library, while the system time served as the seed. We
implemented a loop in our code which ensured that for each distribution a
unique seed was used.

For the creation of plots, we used gnuplot 5.0.3, as well as Matplotlib
2.0.0 with Python 3.6.8 and NumPy 1.16.4.

The network simulations that we needed to perform for this study were
computationally extremely demanding. Fortunately, we had the opportunity to use
the computing cluster of the Gesellschaft für wissenschaftliche Datenverarbeitung
mbH Göttingen (GWDG), which enables fast computation on a large set of
processing units. However, despite this strong computational power and the usage of
compiled C++ code, running our spiking network simulations in full detail still took
unacceptably long. Thus, to be able to simulate our network faster, we used an
approximation that neglects the spiking dynamics in periods without external
stimulation. In these periods, we just computed the late-phase dynamics and the
exponential decay of the early-phase weights. Supplementary Fig. S2 shows that this
approach is justified because the weight dynamics of a synapse does not change if
sparsely occurring spikes are neglected. Furthermore, the mutual information
conveyed by 8h-recall is in the same regime for full and approximating computation.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data underlying the results presented in this study can be reproduced using the
simulation code and the analysis scripts that we have released98. Furthermore, we provide
the Source data for the Figures in this article in Supplementary Data 1 and 2.

Code availability
Our simulation code, along with scripts to analyze the data, has been released at https://
doi.org/10.5281/zenodo.4429196 and can be retrieved freely98.
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