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A tree of leaves: Phylogeny and historical
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Phylliidae)
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The insect order Phasmatodea is known for large slender insects masquerading as twigs or

bark. In contrast to these so-called stick insects, the subordinated clade of leaf insects

(Phylliidae) are dorso-ventrally flattened and therefore resemble leaves in a unique way. Here

we show that the origin of extant leaf insects lies in the Australasian/Pacific region with

subsequent dispersal westwards to mainland Asia and colonisation of most Southeast Asian

landmasses. We further hypothesise that the clade originated in the Early Eocene after the

emergence of angiosperm-dominated rainforests. The genus Phyllium to which most of the

~100 described species pertain is recovered as paraphyletic and its three non-nominate

subgenera are recovered as distinct, monophyletic groups and are consequently elevated to

genus rank. This first phylogeny covering all major phylliid groups provides the basis for

future studies on their taxonomy and a framework to unveil more of their cryptic and

underestimated diversity.
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The numerous defensive strategies that evolved in response
to predation pressure are astounding and particularly
diverse in insects. Many commonly known predator–prey

interactions involve defence tactics that actively deter an attack,
for instance by active escape, counter-attack or deimatism1–3.
However, the primary defensive mechanism is to avoid detection
itself. Being misidentified as an inedible item by a visually hunting
predator and therefore reducing predation risk altogether may be
achieved by masquerading as plant parts4–6. Although com-
paratively rare7,8, such adaptations have evolved repeatedly
among insects, for instance in butterflies, grasshoppers or
mantises9. Among the most prominent examples are stick and
leaf insects, an entire lineage of plant mimics referred to as the
insect order Phasmatodea.

The majority of the over 3,000 described species of Phasma-
todea exhibit slender, elongated body forms resembling twigs10.
Several lineages have independently developed additional mor-
phological structures to conceal themselves in other habitats aside
from branches and foliage such as moss, lichen, leaf litter or bark.
A leaf-like habitus is however rather rare and generally con-
sidered the most elaborate plant masquerade11,12. While plant
and gymnosperm leaf mimicry has been documented for insects
from as early as the Middle Permian13 and more frequently from
the Mesozoic9,12,14, the simulation of angiosperm leaves is a
phenomenon that arose as a result of the recent diversification of
flowering plants. Hence, these adaptations appear to only occur in
few insect orders15–18, one of them being the phasmatodean
lineage of leaf insects or walking leaves (Phylliidae).

Distributed across the tropical regions of Asia, Australasia and
the Pacific, Phylliidae uniquely exhibit a nearly impeccable leaf

masquerade accomplished by a dorso-ventrally flattened body
form with a leaf-like venation pattern and lobe-like extensions on
the abdomen and legs (Fig. 1). Although predominantly green,
leaf insects show a considerable diversity in colour and pattern
representing different stages of leaf decay (Fig. 1b-d). However,
colouration appears to be a response to specific environmental
conditions (i.e., phenotypic plasticity) and may vary between
conspecifics (see Fig. 1a, b). Males can be easily distinguished
from females by several pronounced dimorphic traits (Fig. 1e, f).
Besides being larger, females have reduced hind wings but
enlarged tegmina covering most of the abdomen, whereas males
possess fully-developed hind wings and shorter tegmina19. The
capability of active flight in males along with the presence of long
antennae appears to play a vital role in mate search, while the
inconspicuous female may use its short antennae for defensive
stridulation1,20. Other behavioural adaptations revolve around
perfecting leaf masquerade in the inactive phase during the
daytime. While phylliids are mostly found in a motionless posture
(adaptive stillness) with their head resting in a notch formed by
the fore femora (Fig. 1 a-c), disturbance may trigger a swaying
motion simulating the movement of leaves in light wind1,21.

The distinctness of leaf insects from the remaining phasma-
todeans is indisputable and led to the designation of a separate
order (Phyllioptera) as sister taxon to all other phasmatodeans in
the past22. Although all phylogenetic studies agree on Phylliidae
as a member of the Euphasmatodea (=Phasmatodea excl.
Timema), its phylogenetic position has long remained unclear.
Zompro23 proposed Phylliidae as a sister group to all other
Euphasmatodea (excl. Agathemera=Verophasmatodea therein),
while more recent molecular analyses recovered them as sister to

Fig. 1 Photographs of leaf insect specimens (Phylliidae). a,b phenotypic variations of Phyllium elegans females, c female of Phyllium letiranti, d female of
Phyllium hausleithneri, e couple of Phyllium rubrum and (f) male of Phyllium letiranti. Photographs by Bruno Kneubühler.
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the remaining Neophasmatodea (=Euphasmatodea excl.
Aschiphasmatidae)24–26. However, the majority of phylogenetic
studies based on morphological, genetic and even genomic data
recover leaf insects as a rather subordinate lineage within
Euphasmatodea19,27–34. The sister group of leaf insects remains a
matter of debate, whereas their internal relationships have never
been the subject of a comprehensive analysis.

While Bradler and Buckley10 noted that Phylliidae only
account for <2% of the phasmatodean diversity with about 50
known species, the number of described species has now doubled
within just a few years. Misidentification, overestimation of spe-
cies’ distributions and the unreliability of the highly variable
morphological traits35 had resulted in a chaotic taxonomy that
only recently started to be overcome by extensive morphological
examinations (e.g., Cumming et al.36,37). Captive breeding and
molecular analysis have further helped to shed light on the
phylogenetic relationships and to match up males and females of
leaf insects38–40. According to the most recent studies, Phylliidae
currently includes six genera (Chitoniscus, Cryptophyllium,
Microphyllium, Nanophyllium, Phyllium and Pseudomicro-
phyllium) with most species pertaining to Phyllium, which is
further divided into four subgenera (Comptaphyllium, Phyllium,
Pulchriphyllium and Walaphyllium). Both Phyllium and Pulchri-
phyllium have undergone further intra-generic systematisation
and were classed in several species groups by Hennemann et al.35.
One of these species groups was recently revealed to be distinct to
the remaining phylliids and was therefore transferred to the
newly erected genus Cryptophyllium40. Molecular analyses pre-
ceding this study had already repeatedly demonstrated that
Phyllium (and Chitoniscus) are paraphyletic and that the Phyl-
liidae are in need of revision24,25,29,40.

Here, we present the first phylogeny covering all major phylliid
lineages and confirm the paraphyly of the genera Chitoniscus and
Phyllium. Based on our results, we were able to render Phyllium
monophyletic by elevating its monophyletic subgenera to the rank
of genus. Our divergence time estimation and reconstruction of
the group’s historical biogeography suggest an origin of extant
Phylliidae in the Australasian/Pacific region in the Palaeogene.
Subsequent dispersal and radiation are discussed in light of the
co-evolution with angiosperms.

Results and discussion
Phylogeny and systematics. For 77% of all analysed taxa, we
obtained the sequences of five or six genes and for 3% of the
included taxa we could generate sequences of only one or two
genes (for further details, see Supplementary Data 1). Both ML
and BI phylogenetic analyses have produced mostly congruent
phylogenies with comparable support values (Fig. 2, Supple-
mentary Figs. 1–5). The outgroup taxa adapted from Bank et al.26

were found to present a similar topology with minor differences
in regard to weakly supported sister group relationships (Sup-
plementary Fig. 1). The Neophasmatodea are maximally sup-
ported and all clades with the exception of Bacillinae were
recovered with reliably high node support (i.e., UFBoot >95%;
posterior probability (PP) and SH-alrt >80%). Standard non-
parametric bootstrap (BS) values were found to be generally
lower, but also to support the majority of taxa. The weakly sup-
ported deeper nodes are consistent with the assumption of a
neophasmatodean rapid radiation that is unresolvable using a
limited set of loci25.

Phylliidae are recovered in all trees as the sister group to the
remaining Neophasmatodea, a topology that was also obtained in
some previous studies based on just seven or fewer loci24–26. This
might actually be artificial due to a bias resulting from the
similarity of these loci to Aschiphasmatidae, which were recently

estimated to be the sister group to Phylliidae41. In contrast,
mitogenomic studies showed Phylliidae as an early diverging
lineage closely related to Lonchodinae42–46, whereas phylotran-
scriptomic analyses recovered them as deeply nested within the
Oriophasmata33,34. While both transcriptomic studies were based
on the same dataset, only Simon et al.33 recovered the Phylliidae
as the sister group to the European Bacillus and related to
Malagasy taxa. The ensuing inclusion of Bacillinae specimens in
our analysis, however, could only confirm the close relationship
of Bacillinae with the Malagasy stick insects25,33,34,41. Although
the subordinate placement among Oriophasmata can be con-
sidered more conclusive due to the larger amount of data, it is
noteworthy that only a single phylliid species (Phyllium
philippinicum) was actually included. Thus, the sister group of
Phylliidae still remains uncertain and requires further investiga-
tion in a phylogenomic context including several leaf insect
species and more outgroup representatives.

All our phylogenetic inferences corroborate the monophyly of
Phylliidae with maximum support (Fig. 2 and Supplementary
Figs. 2–5). However, Chitoniscus and Phyllium are recovered as
paraphyletic, which was already shown in previous studies based
on molecular data24,25,29,40,41. The Chitoniscus spp. from the Fiji
islands and from New Caledonia are found to be distinct,
unrelated clades on whose taxonomical status we cannot
elaborate without the inclusion of the type species C. lobiventris
(Fiji). In contrast, the Phyllium type species (Phyllium (Phyllium)
siccifolium) could be confirmed as a member of Phyllium
(Phyllium). Moreover, the distinct yet monophyletic and highly
supported clades of polyphyletic Phyllium are in fact correspond-
ing to its four subgenera (with the exception of two species, see
below). Hence, in order to render Phyllium monophyletic, we
elevated the remaining subgenera to genus rank (see the new
classification in Fig. 2; please refer to Supplementary Discussion
and Supplementary Notes 1, 2 for more details on taxonomical
acts and an identification key, and to Supplementary Data 2 for a
checklist of all phylliid species). Two species originally assigned to
Phyllium were not found to belong to any of the former Phyllium
groups: Phyllium (Pulchriphyllium) brevipenne and Phyllium
(Phyllium) geryon. The former had previously been suggested to
be closely related to the frondosum species group35, a clade that
was recently revealed to belong to Nanophyllium39. As our
phylogenetic inferences recover P. brevipenne as the sister taxon
to Nanophyllium, the species is hereby transferred to Nanophyl-
lium as Nanophyllium brevipenne comb. nov. (Supplementary
Discussion). The second species, P. geryon, was recovered as the
sister group to Pseudomicrophyllium. While both Microphyllium
and Pseudomicrophyllium are mainly distinguished from the
remaining genera by their smaller size, we were able to identify
several morphological characteristics to link the larger P. geryon
to Pseudomicrophyllium, which is therefore transferred to
Pseudomicrophyllium as Pseudomicrophyllium geryon comb.
nov. Moreover, we recovered the Sri Lankan population of
Pulchriphyllium bioculatum (subspecies agathyrsus) as unrelated
to Pu. bioculatum, which prompted us to reinstate its former
status as a full species (Supplementary Discussion).

Of the five Phyllium species available on GenBank, which were
not processed by and included in Cumming et al.38,40, only one
identification could be confirmed as correct (P. giganteum). The
Phyllium celebicum from Thailand29 was identified and bred in
captivity as such, despite the fact that the type species is from
Sulawesi. Here, we recovered the specimen as the sister group to
Cryptophyllium westwoodii, which is also distributed in Thailand.
Similarly, the female Phyllium sp. from Papua New Guinea47 was
found to be nested within the Australasian Nanophyllium. The
specimen was probably believed to be a member of the frondosum
species group (see above), whose species were recently transferred
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to Nanophyllium. The limited number of unambiguous morpho-
logical characteristics impedes accurate identification, particularly
if type material is unavailable. The cryptic diversity of leaf insects
constitutes yet another problem: Several specimens that are
morphologically indistinguishable are recovered as distinct species

in the molecular phylogeny (e.g. P. ericoriai, P. mabantai; see also
Cumming et al.40). However, only the inclusion of type material in
the molecular analysis allows to reveal which specimens can be
assigned to a described species. Hence, in addition to the 15
undescribed phylliid species, we present five other putative new
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Fig. 2 Maximum likelihood (ML) phylogenetic relationships of Phylliidae. The topology is derived from the best-scoring ML tree in IQ-TREE using six
nuclear and mitochondrial loci. UFBoot node support values are depicted at each node. The probability values resulting from the species delimitation
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*Data solely obtained from GenBank.
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species, which the species delimitation analysis determined as
distinct (Fig. 2). Future studies need to explore the potential of the
putative new species and clarify their status.

Phylogeny and evolution of Phylliidae. Our taxon sampling
covers the majority of described species (~66%), one-third of
which are type material (Fig. 3). The species coverage per genus
lies above 50% for seven of the nine genera, with the species-rich
Cryptophyllium, Phyllium and Pulchriphyllium being represented
by 75%, 84% and 63% of the described species, respectively. The
low species coverage of the Australasian taxa suggests a sampling
bias between these regions and SE Asia. The high amount of
putative new species as well as cryptic species points to the
conclusion that species diversity must be assumed to be highly
underestimated, in particular for the Australasian and Pacific
islands.

Our comprehensive taxon sampling of leaf insects and the
combined usage of molecular and morphological data allow new
insights on their phylogenetic relationships involving all genera.
As stated above, all genera are recovered as distinct clades in both
ML and BI inferences. In contrast to morphological
studies11,23,48, where Nanophyllium as the only member of the
tribe Nanophylliini48 was hypothesised as the sister group to the
remaining phylliids (Phylliini), our results reveal the genus to be a
subordinate clade within Phylliidae. The proposition of Nano-
phyllium as a high-ranking phylliid clade was based solely on
males, which bear morphologically unique characteristics39,48.
The recent unveiling of Nanophyllium females (as already
described species within Pulchriphyllium39) indicated a potential
closer relationship of Nanophyllium to one of the Phylliini (sub)
genera and our inferences corroborate that the tribal subdivision
does not reflect the phylogenetic relationships of Phylliidae.
Instead of Nanophyllium, we recover the Chitoniscus from Fiji as
the earliest diverging taxon as was shown by previous molecular
analysis24,25,29,41. Corresponding to the same studies, we also
found that the Chitoniscus from New Caledonia (NC) are
unrelated to the Fiji lineage. In fact, our results concur according
to a geographical pattern and reveal a lineage with the
Australasian/Pacific distribution that forms the sister group to
the remaining phylliids. Within this clade, Chitoniscus (NC) are
found as the closest relative to Comptaphyllium, while it remains
uncertain whether Walaphyllium is the sister group to

Nanophyllium+ (Chitoniscus+ Comptaphyllium) (ML tree) or
is more closely related to Nanophyllium (BI tree). Regarding the
remaining phylliid taxa, BI and ML results show an incongruence
concerning Cryptophyllium, which is recovered as the sister group
to the remaining lineages under ML and as more closely related to
Pulchriphyllium+ (Microphyllium+ Pseudomicrophyllium)
under BI. However, both hypotheses are only weakly supported
and thus the position of Cryptophyllium remains unclear. Despite
the uncertain relationship of the aforementioned two lineages,
our phylogeny based on an increased taxon sampling is largely
robust and provides a sound basis for future studies.

Divergence times and the evolution of the leaf habitus. Both
BEAST analyses converged and resulted in identical topologies
except for the weakly supported positions of Phyllium mindorense
and the clade of P. siccifolium+ (P. mamasaense+ P. letiranti)
(Supplementary Figs. 4 and 5). Divergence times are largely
congruent, with the origin of Phasmatodea estimated at ~73.8
million years ago (mya) (90.2–58.9 mya) for the fossil-calibrated
(FC) tree and ~77.8 mya (89.7–65.73 mya) for the root calibration
(RC) with estimates derived from Simon et al.33. The divergence
of Phylliidae was estimated to have started at ~49.9 mya (55.5 –
47.1 mya) and at ~51.1 mya (64.0–38.2 mya) for FC and RC
analyses, respectively, with the clades established as genera largely
originating in the Oligocene. While our estimates are comparable
to previously obtained divergence times25,33 and within the
credibility intervals of others24,41, the analyses by Tihelka et al.34

and Forni et al.45 have presented a much older origin of
Euphasmatodea (Jurassic) and Phylliidae (Cretaceous) (Fig. 4).
The choice of unequivocal fossils and appropriate calibration
points is essential and their inconsistent application may lead to
substantial discrepancies among studies on phasmatodean evo-
lution (but see previous discussions10,26,49).

The life history of stick and leaf insects was largely shaped by the
co-evolution with land plants. Adapted to a tree-dwelling life style,
phylliid masquerade is achieved by simulating the broad leaves of
flowering plants and the additional imitation of the diffuse growth
of leaf veins in the female forewing venation19 that has perfected
their cryptic appearance in the foliage. This uniform adaptation is
best described as a nonadaptive radiation in which the diversifica-
tion was not accompanied by relevant niche differentiation50,
resulting in taxa with little or no ecological and phenotypic
variation51, as has been recently suggested for a clade of uniformly
ground-dwelling stick insects26. Both the broad leaf habitus and the
net venation of Phylliidae are evidently linked to the eudicot
angiosperm evolution. While it had been argued before that leaf
mimicry predated the more common twig mimicry of extant forms,
since fossil stem-Phasmatodea as well as members of Timematodea,
the sister taxon of Euphasmatodea, exhibit leaf mimicry14,52, it
appears undisputed that phylliid leaf insects derived from twig-
imitating forms11 and secondarily evolved angiosperm leaf
imitation more recently. While the origin of angiosperms is still
under debate (see Silvestro et al.53 and references therein), recent
studies based on fossil and molecular data appear to agree on high
diversification rates and radiation events of several families during
the Cretaceous53–58. With the beginning of the Cenozoic, and in
strong correlation with the gradual extinction of gymnosperms59,
angiosperms became increasingly dominant in most terrestrial
ecosystems53,56,58,60. Our divergence time estimation places the
origin of Phylliidae in the Early Eocene (i.e., Early Cenozoic)
following the preceding burst of angiosperm diversification (Fig. 4).
Although the abundance of flowering plants and their dominance
within tropical rain forests should be regarded as a prerequisite for
the evolution of leaf insects, recent studies34,41,45 have challenged
the Cenozoic origin of leaf insects and proposed an earlier
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Fig. 3 Pie chart of species coverage. The majority of Phylliidae are sampled
with 66% of described species covered in this study, including type
material of 24 species and 11 non-type specimens from the type localities
(Supplementary Data 2). While the material for 30% of described species
was not available, sequence data for 15–20 additional and putatively new
species were included in our study.
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divergence in the Cretaceous or Jurassic. In particular, large parts of
the lower ages estimated by Forni et al.45 (approximately 170–90
mya) appear to be too old given that eudicot angiosperms are
hypothesised to have been subordinate herbs until the mid-
Cretaceous55,61, a span of time only covered by the upper
confidence interval in Forni et al.’s study45. The first forest trees
may have occurred from that time on, but rainforests dominated by
angiosperm trees probably arose at the end of the Cretaceous61–64.
Interestingly, the origin of other leaf-mimicking insects such as
members of the orthopteran Tettigoniidae17,65 or the Kallima
butterflies16,66 appear to coincide with our age estimates for
Phylliidae, supporting our claim that leaf masquerade involving
angiosperm leaf imitation cannot have evolved at a time predating
the angiosperm predominance.

Historical biogeography. Both BI trees (Supplementary Figs. 4
and 5) resulted in similar ages for the Phylliidae, with estimates
differing by only 1 or 2 million years. We decided to carry out the
ancestral range estimation based on the FC tree, mainly due to
smaller confidence intervals. Despite the few weakly supported
phylogenetic relationships, we deem it unlikely that our estima-
tion is biased or negatively affected. The only crucial incon-
gruence with the ML tree, the position of Cryptophyllium, appears
to be irrelevant in regard to the biogeographical pattern, since the
dispersal involving Borneo (Sundaland) must inevitably be
assumed.

We found that the historical biogeography estimated in
BioGeoBEARS was best represented with the highest likelihood
under the DEC model (Fig. 5; see all results in Supplementary

Fig. 6). According to our analysis, extant Phylliidae originated in
the Early Eocene (55.5–47.1 mya) in the Australasian/Pacific
region (Fig. 6). Considering the Oriental origin of
Oriophasmata33 and that the fossil stem group leaf insect
Eophyllium messelense was distributed in Europe11, it is likely
that the ancestors of crown group Phylliidae were distributed in
Southern Eurasia. With the beginning of the Eocene, climatic
changes and the continental collision of India led to an increased
biotic migration towards the continuously tropical regions of SE
Asia67–70. Being conserved in their climatic niche, leaf insects
were most likely also influenced by these processes and dispersed
in a similar pattern, as for instance reported for tropical spiders70.
Based on our inference, the origin of extant Phylliidae is in the
Southwest Pacific region, which suggests an oceanic
long–distance dispersal from continental Asia (Sundaland). The
geological history of this region is extremely complex and
impedes adequate biogeographical reconstruction71–73. There-
fore, we can only assume that extant leaf insects derived from a
lineage that colonised a landmass in this region such as the proto-
Papuan archipelago74,75 or the South Caroline arc, which allowed
subsequent dispersal to the Pacific Islands and to New Guinea.

Since the estimated divergence time of Fijian Chitoniscus
(38.7–18.4 mya), which form the sister group to the remaining
leaf insects, is coinciding with the emergence of Viti Levu76, it is
likely that the colonisation of Fiji occurred via the Vitiaz
arc72,77–79 (Fig. 6a). This chain of emergent volcanic islands
facilitated dispersal from the Philippines over the South Caroline
arc and the Solomon Islands to Fiji from the Early Oligocene on
and was linked to the eastwards dispersal of other arthropod
groups26,80–83. The only leaf insect from the Solomon Islands
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(Pulchriphyllium groesseri comb. nov., not included in this study)
suggests a possible relationship with Chitoniscus (Fiji) as a
remnant of the ancient migration to Fiji. Since the traditional
taxonomy of Phylliidae is found to be unreliable, the possibility
that this species might not belong to Pulchriphyllium is
compelling. However, without material available for its inclusion
in a phylogenetic analysis, we cannot exclude that Pu. groesseri
colonised the Solomon Islands at a later time.

New Guinea or a related landmass being the source area for the
dispersal to Fiji is further substantiated by the early diverging
Australasian clade consisting of Chitoniscus (NC), Comptaphyl-
lium, Nanophyllium and Walaphyllium. Their diversification
started ~40.9 mya (48.1–34.2 mya), an estimate that is in fact not
consistent with geological hypotheses concerning the more recent
emergence of New Guinea72,84,85. However, our results suggest
that a proto-New Guinean landmass was already emergent,
probably a fragment of former island arc (Oliver et al.79), which is
in line with several biogeographical studies that proposed similar
hypotheses74,86–90. This also appears to correspond to New

Guinea’s high endemism and biotic difference to (Eastern)
Australia91,92. The lineages currently found on New Guinea,
Comptaphyllium and Nanophyllium, diversified in the Oligocene
and Miocene, a range of ages, which is in agreement with the
diversification of other lineages such as butterflies and curculio-
nid beetles83,90,93–95. Subsequent dispersal to Australia (Wala-
phyllium, 19.5–6.3 mya) and to New Caledonia (Chitoniscus,
4.5–1.0 mya) may have occurred more recently and may be
explained by long–distance dispersal events.

A dispersal event to the West gave rise to the lineages of SE Asia
including the Philippines and Wallacea. Our inference proposes an
origin in the Late Eocene in Borneo/Wallacea, which we interpret as
a transit zone to Sundaland. The clade comprising Cryptophyllium,
Microphyllium, Pseudomicrophyllium and Pulchriphyllium split
from Phyllium ~41.9 mya (48.68–35.3 mya), followed by its
diversification in Borneo ~40.2 mya (46.8–33.6 mya). Cryptophyl-
lium appears to have dispersed in the Early Miocene (26.3–16.8
mya) across Sundaland to mainland Asia before high sea-level
stands disallowed the transgression of the Isthmus of Kra for a
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prolonged period of time96. Their distribution expanded to India
and Nepal as well as to Southern China40. Yet, one lineage migrated
southward to Wallacea via Sundaland by dispersing over the
narrowing Makassar Strait to Sulawesi (C. celebicum+C. echidna),
corroborating the permeability of Wallace’s Line in the Late
Miocene95,97. Its sister group remained in Sundaland, splitting into
C. chrisangi and C. westwoodii, whereas the latter dispersed
northward before the transgression of the Isthmus of Kra was
again limited in the Pliocene96.

The sister group of Cryptophyllium is estimated to have a
Bornean (Sundaland) origin in the Late Eocene and split into two
lineages. While Pulchriphyllium appears to have diversified from
the Late Oligocene on (30.8–19.71 mya) and clearly shows a
Sundaland distribution with a few representatives nowadays
found on mainland Asia and the islands of the Indian Ocean, a
separate dispersal introduced the common ancestor of Micro-
phyllium and Pseudomicrophyllium to the Northern Philippines at
about the same time (33.2–18.6 mya). A migration via Palawan is
unlikely, since Palawan was not associated with Borneo until the
end of the Miocene (Fig. 6a, b). Alternatively, dispersal may have
occurred via a volcanic island arc formed by different fragments
of the Philippines (Luzon-Sulu-Sabah arc72); however, it is not
certain that these islands were continuously emergent84.

Our results suggest that Phyllium has its origin in Borneo/
Wallacea in the Mid Oligocene (35.0–23.2 mya). However, due to
the widening marine barrier of the Makassar Strait between Borneo
and Sulawesi and the early divergent lineages that clearly diversified
on Borneo, we favour a Bornean origin as suggested by the results
based on the DIVALIKE or BAYAREALIKE biogeographic models
(Supplementary Fig. 6c, d). A transition via Wallacea is however
highly likely regarding the Australasian P. elegans, which split from
its Bornean sister group in the Late Oligocene (29.1–19.4 mya) and
reached New Guinea probably via long–distance dispersal across
the Wallacean islands of the Banda arc and Sula Spur84,98,99 (Fig. 6).
From Borneo, several lineages have independently colonised the
islands of the Philippines and Wallacea, as well as Western
Indonesia and the Malay Peninsula. While the Philippines were
most likely colonised from Borneo via the Sulu archipelago100,101,
the colonisation from Wallacea probably occurred across the island
arc of the Sangihe-Talaud archipelago26,99,100,102. In contrast to the
other leaf insect genera, Phyllium colonised multiple islands and
regions, resulting in a high number of independent speciation
events. Interestingly, most species appear to have originated in the
Miocene, substantiating their early divergence from sister taxa and
explaining the high incidence of endemic leaf insects across oceanic
SE Asia.

Methods
Taxonomic sampling. We selected 96 phylliid specimens with representatives of
each genus and subgenus to be included in our phylogenetic analysis covering
about two-thirds of the currently known diversity103. Molecular data for 37 species
had already been published and were available on GenBank29,38,40,47,104. We chose
to resample some of these due to the high probability of species having been
misidentified in the past. For 29 of the recently published species by Cumming
et al.38,40, we used the voucher specimens to generate sequences for missing genes
and data for 59 phylliid specimens were generated de novo. We used the same
outgroup with representatives of each major phasmatodean lineage as outlined by
Bank et al.26 and added five of the Heteropterygidae species published therein.
Because the African Bacillus had been inferred as the sister taxon to Phylliidae in
the transcriptomic study by Simon et al.33, we included five species of Bacillinae,
adding up to 73 outgroup species and 169 specimens in total (see Supplementary
Data 1 for more details).

Molecular laboratory and phylogenetic analysis. All specimens were either
preserved in ethanol (70–100%) or dry-pinned prior to the removal of the femoral
muscle tissue from the hind or mid leg. In a few cases, newly hatched nymphs were
used. DNA extraction, PCR and sequencing followed the protocols outlined by
Bank et al.26. While Bank et al.26 targeted three nuclear and four mitochondrial
markers (18 S, 28 S, H3, and COI, COII, 12 S, 16 S), the amplification of the 12 S

rRNA gene was repeatedly unsuccessful for phylliid samples, so we decided to
exclude this locus. We deposited the newly obtained sequences in GenBank
(Supplementary Data 1).

Multiple sequence alignment, trimming and concatenation for the six loci of
169 taxa were done as described by Bank et al.26. We partitioned the supermatrix
(4694 bp) in 12 subsets based on the three ribosomal genes (16 S, 18 S, 28 S) and the
three codon positions of the three protein-coding genes (COI, COII, H3). The
optimal partitioning scheme and best-fit substitution models under the corrected
Akaike information criterion (-m MF–merge -merit AICc) were determined with
IQ-TREE v.2.1.1105–107, which kept all partitions separate except for the first codon
position of the COX genes (see Supplementary Data 3). We used the resulting
scheme to perform 50 independent tree searches under the Maximum Likelihood
(ML) criteria and based on a random starting tree, smaller perturbation strength
and an increased number of unsuccessful iterations before stopping (-p -t RAND
-pers 0.2 -nstop 200). Node support was estimated from 10,000 ultrafast bootstrap
trees (UFBoot108) and 300 standard non-parametric bootstrap (BS) trees, with the
number of replicates being a posteriori determined as sufficient by the bootstopping
criteria of RAxML v. 8.2.12109. Subsequently, we mapped the support values on the
tree for which the highest log-likelihood had been calculated in IQ-TREE (-z
option). We further assessed node support using the SH-aLRT single branch test110

with 10,000 replicates and an independent tree search. Tree visualisation and
rooting with Aschiphasmatidae were done in FigTree v.1.4.4 (https://github.com/
rambaut/figtree).

Divergence time estimation and historical biogeography. Divergence times
were estimated simultaneously with a Bayesian phylogenetic inference (BI) in
BEAST v. 2.6.1111. While we used the same partitioning scheme as for the ML
analysis, the optimal substitution model was selected by the bModelTest v.1.2.1112

package implemented in BEAST. Trees and clocks were linked across all partitions
employing the Yule tree prior and a relaxed molecular clock113 with a clock rate of
1e−7 and assuming an uncorrelated lognormal distribution clock model (UCLD).
In order to render Aschiphasmatidae as the outgroup, we constrained the
remaining taxa as monophylum (=Neophasmatodea). Two runs were performed
for 100 million MCMC generations sampled every 2,000 generations with different
calibrations to explore the divergence time of Phylliidae. For the first, a fossil
calibration was set applying a lognormal distribution (offset= 47; mean + stdev =
1.0) based on the leaf insect fossil Eophyllium messelense11. Since meaningful fossils
are scarce among Euphasmatodea and the respective taxa are not included in our
taxon sampling, we applied a secondary calibration derived from Simon et al.33 for
our second divergence time estimation and calibrated the root of the tree
(Euphasmatodea) with a normal distribution (mean= 80.3; sigma = 6). After
validating the convergence in Tracer v.1.7.1114 and removing 10 and 15% burn-in
from the Eophyllium- and Euphasmatodea-calibrated trees, respectively, maximum
clade credibility trees were obtained for both from the tree posterior distributions
in TreeAnnotator v. 2.6.0 (BEAST package111).

The ancestral range estimation was based on the fossil-calibrated BEAST tree
and performed with BioGeoBEARS v.1.1.2115,116 as implemented in R 3.5.3117

following the instructions given by Bank et al.26. Although the Southeast (SE) Asian
geographical range of the taxon therein coincides with the phylliid distribution, the
distributional pattern differs in regard to the pacific islands east of Wallace’s Line
as well as to Australia. Hence, in addition to the five proposed areas therein, we
subdivided the area defined as “Eastern SE Asia” by Bank et al.26 into three,
resulting in the following eight geographical areas: (A) Mainland Asia, (B) Malay
Peninsula+Western Indonesia including Sumatra and Java, (C) Borneo+
Palawan Island, (D) Wallacea, (E) Northern Philippine Islands, (F) Southern
Philippine Islands, (G) Australasia and (H) Pacific. We allowed only single or two
adjacent areas as well as the three areas that connected Sundaland and continental
Asia (A+ B+ C), adding up to 22 ranges to be used in the analysis (see
Supplementary Data 4).

Species delimitation. The available (voucher) material was morphologically
inspected and identified and wherever possible, we included the type material to
eliminate the possibility of misidentification. Regarding the non-type material, we
compared the voucher specimen morphologically with the original type specimens.
The inclusion of species of which sequence data are already available online
allowed for the detection of potential misidentification by previous authors. Since
molecular investigation has revealed the presence of several cryptic leaf insect
species38,40, we have conducted a species delimitation analysis using the tree-based
approach bPTP118 in addition to our morphological examination and the inclusion
of type material. We used the ML tree as input on the web server (http://species.h-
its.org/) and ran 100,000 generations with default settings.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study are available
within the supplementary information files. Newly generated sequence data were
deposited in GenBank under the accession numbers MW686032–MW686200,
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MW698871–MW698927, and MW703187–MW703369 (for more details, please refer to
Supplementary Data 1). Supplementary Data 5 contains the final supermatrix including
the partitioning scheme in nexus format that was used for all phylogenetic inferences.
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