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High-dimensional neural network potentials for magnetic
systems using spin-dependent atom-centered symmetry
functions
Marco Eckhoff 1✉ and Jörg Behler 1,2✉

Machine learning potentials have emerged as a powerful tool to extend the time and length scales of first-principles quality
simulations. Still, most machine learning potentials cannot distinguish different electronic spin arrangements and thus are not
applicable to materials in different magnetic states. Here we propose spin-dependent atom-centered symmetry functions as a type
of descriptor taking the atomic spin degrees of freedom into account. When used as an input for a high-dimensional neural
network potential (HDNNP), accurate potential energy surfaces of multicomponent systems can be constructed, describing multiple
collinear magnetic states. We demonstrate the performance of these magnetic HDNNPs for the case of manganese oxide, MnO. The
method predicts the magnetically distorted rhombohedral structure in excellent agreement with density functional theory and
experiment. Its efficiency allows to determine the Néel temperature considering structural fluctuations, entropic effects, and
defects. The method is general and is expected to be useful also for other types of systems such as oligonuclear transition metal
complexes.
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INTRODUCTION
In recent years, machine learning potentials (MLPs), which allow
extending the time and length scales of first-principles quality
atomistic simulations1–3, have become a rapidly growing field of
research. Increasingly complex systems have been investigated,
driving developments and extending the applicability of MLPs.
Many of the current MLPs can be classified into four generations
as follows4,5: the first generation of MLPs proposed already in
19956 typically employs a single or a few feed-forward neural
networks, making them applicable to low-dimensional systems7,8.
In 2007, second-generation MLPs have become available with the
introduction of high-dimensional neural network potentials
(HDNNP)9–12. These MLPs are applicable to systems containing
thousands of atoms by making use of the locality of a large part of
the atomic interactions. For this purpose, the potential energy is
calculated as a sum of local environment-dependent atomic
energies defined by a cutoff radius. Most modern MLPs belong to
this second generation, e.g., HDNNPs9,13, Gaussian approximation
potentials14, moment tensor potentials (MTPs)15, and many
others16–18. The third generation of MLPs includes long-range
interactions, mainly electrostatics but also dispersion, beyond the
cutoff radius. The electrostatic interactions can be based on
element-specific fixed charges14,19 or local environment-
dependent atomic charges expressed by machine learning
(ML)20–22. Finally, fourth-generation MLPs take non-local or even
global dependencies in the electronic structure into account, and
consequently the atomic charges can adapt to non-local charge
transfer and even different global charge states. The first method
of this generation has been the charge equilibration neural
network technique23 and further methods such as Becke
population neural networks (BpopNN)24 and fourth-generation
HDNNPs25 have been introduced recently.

In spite of these advances, which extended the complexity of the
systems and the physical phenomena that can be studied, a
remaining limitation of MLPs is the inability to take different spin
arrangements and thus magnetic interactions into account. The
reason for this limitation is that typically MLPs are trained to
represent the potential energy surface (PES) of one electronic state
as a function of structural descriptors—most often but not
necessarily the ground state of a system. With the exception of
different global charge states in fourth-generation potentials,
describing multiple electronic states usually requires to train
separate MLPs for each state26–30 or to use one MLP yielding a set
of output energies corresponding to the different excited states31–34.
The unique structure–energy relation of a given state is a central
component of nowadays MLPs and energy changes resulting from
different spin arrangements give rise to contradictory information in
the training process. Only very recently, magnetic MTPs (mMTPs)35

have been proposed as an example of an MLP, which is able to
describe magnetic systems containing a single element such as iron.
For studying magnetic materials, the description of a single

magnetic state is insufficient, as the atomic magnetic moments
fluctuate at finite temperatures. Atomic spin flips often play a role
already at ambient temperatures, as the energy differences
between different spin configurations are typically in the order
of a few meV atom−1 only. For example, the Curie and Néel
temperatures, at which a material loses its ferromagnetic or
antiferromagnetic state, are typically below 1000 and 500 K,
respectively36. Magnetic transitions often give rise to structural
changes37. However, current implementations of MLPs are not
able to capture these effects, because the magnetic interaction is
not included explicitly. For example, if an antiferromagnetic
ground state is used for training the MLP, this state will be
retained in simulations at higher temperatures irrespective of the
magnetic ground state under these conditions.
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To calculate the energy of a magnetic configuration in an
atomistic simulation, models such as the Ising model38, the
Heisenberg model39, and the Hubbard model40 are widely used.
However, these models are based on lattices, and structural and
spin changes at finite temperatures cannot be considered
simultaneously. Conventional interatomic potentials, which are
able to take into account both contributions, have been
developed only for a few systems such as iron41–43. The only
generally applicable option is the use of ab initio molecular
dynamics, which is based on the explicit calculation of the
electronic structure in each step and thus is able to distinguish
different magnetic states. This approach, however, is inevitably
associated with high computational costs restricting simulations
to small systems and short timescales.
Beyond the field of PESs, several ML approaches have been

developed to address the properties of magnetic compounds, e.g.,
for the prediction of magnetic moments36 and ordering tempera-
tures44–46 from structural parameters. Moreover, ML methods are
able to classify ferromagnetic and antiferromagnetic ground-state
materials47 and to predict spin-state splittings and metal–ligand
bond distances in transition metal complexes48,49. Recently, a
high-dimensional neural network approach for the prediction of
oxidation and spin states (high-dimensional neural network spin
prediction (HDNNS)) has been developed50 and also the Atoms-in-
Molecules Network allows predicting atomic spins51.
In spite of these applications of ML to magnetic compounds,

with the exception of mMTPs35, to date there is no method
enabling large-scale first-principles quality atomistic simulations of
systems explicitly including magnetic interactions and different
magnetic states. The main reason is that current MLPs use
descriptors exclusively depending on the atomic structure, such as
atom-centered symmetry functions (ACSF)52, smooth overlap of
atomic positions53, and many others54. Exceptions are BpopNNs24

and the recently introduced fourth generation of HDNNPs25 in
which the atomic charges are included as additional information
besides the structural descriptors, to provide qualitative informa-
tion about the electronic structure.
Describing the spin configuration in a form suitable as input for

MLPs is very challenging, as not only the absolute spin values but
also the relative spin-up and spin-down arrangements and the
relative positions of the atoms are vital. Hence, to predict the
energy and forces as a function of the geometric and spin
configuration, spin-dependent descriptors are needed. Here we
propose spin-dependent ACSFs (sACSFs) to construct MLPs
simultaneously applicable to multiple magnetic states including
excited states. The sACSFs add the description of the magnetic
configuration for the case of collinear spin polarization corre-
sponding to spin-polarized density functional theory (DFT)
calculations, i.e., considering spin-up and spin-down electrons
without an associated spatial direction. They produce atomic
energies as a function of the local geometric and spin environ-
ment, and thus formally represent a second-generation potential
that can also be combined with third- and fourth-generation MLPs
to include additional physics such as long-range electrostatic
interactions. In this work, we will benchmark sACSFs employing
second-generation HDNNPs9, extending these potentials by an
explicit dependence on the full collinear spin configuration space
to describe magnetic interactions.
We choose manganese oxide, MnO, to assess the quality of the

resulting magnetic HDNNPs (mHDNNP) that can be constructed
using sACSFs, because of the well-characterized antiferromagnetic
ground-state configuration55,56, the Néel temperature of
TexpN ¼ 116 K57,58, and the rhombohedral distortion of the
antiferromagnetic phase with lattice constant aexp ¼ 4:430Å
and lattice angle αexp ¼ 90:62� at 8 K59, making this system a
very interesting and challenging benchmark case. The magnetic
unit cell is a 2 × 2 × 2 supercell of the geometric unit cell and is
built from (111) planes of ferromagnetically coupled Mn ions56.

These planes couple antiferromagnetically to the neighboring
planes. Spin-polarized DFT calculations employing the hybrid
functional PBE060,61 yield the correct magnetic ground state,
called antiferromagnetic type II (AFM-II), with the rhombohedral
lattice parameters aPBE0= 4.40Å and αPBE0= 90.88° in good
agreement with the experiment62. The rhombohedral distortion
is a consequence of the magnetic anisotropy, which arises from
the magnetic dipole interactions63.
Using the mHDNNP, we are able to perform first-principles quality

high-throughput studies of the equilibrium geometries and
energetics of different collinear magnetic configurations. We can
simulate the antiferromagnetic to paramagnetic phase transition to
determine the Néel temperature and the associated structural
changes. Moreover, the mHDNNP enables the inclusion of defects,
and in simulations including Mn vacancies we investigate the
formation of different oxidation states by using an additional
HDNNS to analyze the temperature dependence of the magnetic
moment of the obtained ferrimagnetic configuration.

RESULTS AND DISCUSSION
Magnetic high-dimensional neural network potential
The reference data set of the mHDNNP consists of 3101 2 × 2 × 2
bulk supercells of MnO and Mn0.969O in various magnetic states
and their corresponding HSE0664–66 DFT energies and forces. The
supercells include different displacements of the atomic positions
from the ideal rock salt lattice and distortions of the lattice
parameters as well. The construction of the reference data set is
described in detail in the Supplementary Methods67–69.
Training this data set with conventional ACSFs yields an energy

root mean squared error (RMSE) of about 11 meV atom−1 in the
best potential we were able to construct. This RMSE is an order of
magnitude larger than the usual HDNNP accuracy of 1 meV
atom−1, because the ACSFs can only provide geometrical
information to assign the energy. Thus, HDNNPs based on ACSFs
only predict an averaged potential energy ignoring the magnetic
configurations, whereas e.g., the HSE06 DFT functional yields an
energy difference of 45.9 meV atom−1 between the AFM-II order
and the ferromagnetic (FM) order for the ideal rock salt MnO
structure using the experimental lattice constant aexp.
By including sACSFs to distinguish the magnetic configurations,

the energy RMSE is reduced by one order of magnitude to about
1 meV atom−1. The energy difference between the AFM-II and FM
orders is resolved and is predicted to be 46.3 meV atom−1 in
excellent agreement with the HSE06 reference. Both results
demonstrate the ability of the sACSFs to accurately describe the
different magnetic configurations. The energy and force compo-
nent prediction errors are plotted as a function of the reference
values in Fig. 1a, b. The underlying number of MnxO reference
structures and key performance indicators such as RMSEs,
maximum absolute errors, and fractions of data points with high
errors are compiled in Table 1 for the training and test data sets.
Even when including various magnetic states, the accuracy of the
mHDNNP is in the typical region of state-of-the-art MLPs of 1 meV
atom−1 and 0.1 eV a�1

0 for energies and forces with a test set
energy RMSE of 1.11 meV atom−1 and a test set force components
RMSE of 0.066 eV a�1

0 . a0 is the Bohr radius. In comparison, the
RMSE of a recent mMTP for defect-free body centered cubic iron
restricted to a fixed lattice parameter is 2.0 meV atom−1 35, i.e., in
the same order of magnitude.
The absolute atomic spin values ∣MS∣, equivalent to the half-

difference of the number of spin-up and spin-down electrons, can
be predicted by a separate HDNNS. This HDNNS is trained on the
same reference structures covering the range of 1.7 < ∣MS∣ < 2.4 in
case of Mn spins. The resulting RMSE value for these Mn spins is
0.03 for both the training and test set. Only 0.25% of the test data
exhibits an error > 0.1, whereby the maximum absolute error is
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0.20 (Supplementary Fig. 1). Consequently, information about
different Mn oxidation states and the magnetic moments can be
obtained with accuracy comparable to the underlying first-
principles method.

Magnetic configurations
Besides the accurate description of the energetics, the sACSFs
enable to predict structural changes arising from the magnetic
configuration. For example, for the rhombohedral MnO global
minimum structure with AFM-II order (Fig. 2a), an unconstrained
optimization yields the lattice parameters amHDNNP= 4.433Å and
αmHDNNP= 90.77° in very good agreement with the HSE06 DFT
results aHSE06= 4.434Å and αHSE06= 90.89°, as well as experi-
mental data aexp ¼ 4:430Å and αexp=90.62°59.

Further, also excited magnetic configurations are predicted in
excellent agreement with HSE06. For example, the lattice
parameter of the resulting cubic lattice of the FM configuration
(Fig. 2d) is amHDNNP

FM ¼ 4:461Å compared to aHSE06FM ¼ 4:462Å. The
energy difference to the global minimum is 45.8 meV atom−1 in
excellent agreement with the HSE06 value 45.5 meV atom−1. The
longer distances between ferromagnetically compared to anti-
ferromagnetically interacting Mn ions in MnO are emphasized by
the optimized lattice parameters of the AFM-I configuration (Fig.
2c) with tetragonal lattice parameters amHDNNP

AFM-I ¼ 4:461Å and

cmHDNNP
AFM-I ¼ 4:414Å (aHSE06AFM-I ¼ 4:459Å and cHSE06AFM-I ¼ 4:420Å), as

the lattice is elongated in both directions of FM interactions to the
nearest neighbors. In conclusion, the lattices of FM (cubic), AFM-I
(tetragonal), and AFM-II orders (rhombohedral), as well as other
magnetic configurations can be distinguished due to the
magnetic interaction. Further, the mHDNNP can provide informa-
tion about the influence of defects on the magnetic order. For
example, one spin-flip in the AFM-II configuration per 2 × 2 ×
2 supercell reduces the rhombohedral distortion by 0.09° (HSE06:
0.11°). The corresponding energy increase is 1.5 meV atom−1

(HSE06: 1.5 meV atom−1).
The efficiency of the mHDNNP in combination with a basin-

hopping Monte Carlo (MC) scheme70 in which MC spin flips are
employed instead of atomic displacements enables high-
throughput searches of the minima in spin configuration space,
which would be computationally too demanding employing DFT.
The spin-flip basin-hopping MC simulations of 2 × 2 × 2 MnO
supercells and molecular dynamics (MD) simulations including MC
spin flips (MDMC) of 6 × 6 × 6 MnO supercells confirmed the
rhombohedral AFM-II magnetic order to be the global minimum in
agreement with experiments56. However, if the lattice is restricted
to be cubic, two degenerate global minima exist: the AFM-II
configuration shown in Fig. 2a and another antiferromagnetic

Fig. 1 Accuracy of the mHDNNP. a Energy errors ΔE= EmHDNNP−
EHSE06 as a function of the reference energy EHSE06 and b force

component errors ΔF= FmHDNNP− FHSE06 as a function of the reference

force components FHSE06.

Table 1. Details of the mHDNNP fit.

Training set Test set

Nstruct(MnO) 1387 156

Nstruct(Mn0.969O) 1421 137

RMSE(E) 0.86 1.11

ΔEmax 3.4 4.3

ΔE > 2.5 1.07% 4.44%

RMSE(F) 0.067 0.066

ΔFmax 0.81 0.73

ΔF > 0.25 0.98% 0.89%

Number of MnxO structures Nstruct in the training and test set, and the key
performance indicators RMSE, maximum absolute error, and fraction of
data points with energy and force errors of the mHDNNP higher than
2.5 meV atom−1 and 0.25 eV a�1

0 , respectively. The reference energy range
is −5236.6 meV atom−1 ≤ E ≤−5021.2 meV atom−1 and the reference force
components range is jFj � 2:31 eV a�1

0 . Energies are provided in meV
atom−1 and force components in eV a�1

0 .

Fig. 2 Different magnetic orders of MnO. a Rhombohedral MnO
global minimum structure with AFM-II order, b magnetic order
degenerate to the cubic AFM-II order, c AFM-I order, and d FM order
of MnO. Small red balls represent O atoms, large violet ones Mn
atoms with spin-up, and large blue ones Mn atoms with spin-
down95. Different perspectives of the magnetic orders a and b are
shown in the Supplementary Fig. 3.
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order shown in Fig. 2b, which is not based on (111) planes of
ferromagnetically coupled Mn ions. DFT calculations confirm this
result. Radial distribution functions (Supplementary Fig. 4) show
that the same ferromagnetic and antiferromagnetic interactions
are present in the two configurations. This second cubic global
minimum configuration stays cubic in an unconstrained optimiza-
tion. The rhombohedral distortion of the AFM-II order can
therefore be identified as the origin of the energetic preference.
The energy gain by the rhombohedral distortion is 1.9 meV
atom−1 (HSE06: 2.1 meV atom−1).

Magnetic interactions
For the ideal cubic structure, a Heisenberg spin Hamiltonian can
be constructed,

H ¼ � J1kB
2

X
i

X
ni

SiSni �
J2kB
2

X
i

X
mi

SiSmi ; (1)

which includes the magnetic interactions of atom i with its nearest
neighbors ni and next nearest neighbors mi. The strengths of the
magnetic coupling between the vector spin operators Si and Sni ,
as well as Si and Smi , are given by the exchange coupling
constants J1 and J2, respectively. kB is the Boltzmann constant. The
exchange coupling constants can be determined employing
energy differences (per atom) between the FM, AFM-I, and AFM-
II configurations. Rearranging Eq. (1) for these systems yields

J1 ¼ EAFM-I � EFM
4S2kB

; (2)

J2 ¼ 4EAFM-II � 3EAFM-I � EFM
12S2kB

; (3)

with the spin S ¼ 5
2 of the high-spin MnII ions (Supplementary

Discussion). Using mean field theory71, the Néel temperature can
be calculated as

TN ¼ �2SðSþ 1ÞJ2 : (4)

Employing the HSE06 DFT energies for the lattice constant aexp,
we obtain JHSE061 ¼ �13:9 K, JHSE062 ¼ �14:5 K, and THSE06

N ¼ 255 K.
The mHDNNP results match these values almost perfectly with
JmHDNNP
1 ¼ �14:0 K, JmHDNNP

2 ¼ �14:6 K, and TmHDNNP
N ¼ 256 K.

This agreement underlines the accuracy of the sACSFs and of
the mHDNNP method in describing the multiple PESs of the MnO
magnetic states.
The overestimation of HSE06 compared to the experimental

Néel temperature TexpN ¼ 116 K57,58 was also found for other
hybrid DFT functionals in previous studies. For example, the PBE0
functional yields TN= 240 K62 and the HSE03 functional TN=
230 K72. Similar to these functionals, HSE06 predicts too negative
exchange coupling constants of MnO compared to the experi-
mentally determined values Jexp1 ¼ �8:5 K and Jexp2 ¼ �9:6 K73,74.
Therefore, the strength of antiferromagnetic interactions is
overestimated favoring the stability of the antiferromagnetic
phase. The Néel temperature is consequently overestimated by
the mHDNNP as well, which is based on HSE06 reference data.
This overestimation is thus not an inherent error of the mHDNNP
method and the agreement with experiment could be improved
by using another reference method.

Néel temperature
Mean field theory misses the influence of specific magnetic
configurations of MnO on the Néel temperature. Moreover, the
underlying Heisenberg spin Hamiltonian restricts the system to a
fixed lattice. Employing the mHDNNP, we can overcome both
limitations step by step to reveal their influences on the Néel
temperature. Conventional MC spin-flip simulations use a fixed
lattice but allow exploring the specific states of MnO. Using

isothermal–isobaric (NpT) MD trajectories in MDMC simulations,
both the atomic positions and the lattice parameters can adapt to
the magnetic configurations including thermal fluctuations.
The phase transition temperature is observable as peak in the

molar heat capacity as a function of the temperature. The molar
heat capacity at constant volume CV can be obtained from MC
spin-flip simulations and the molar heat capacity at constant
pressure Cp from MDMC simulations as described in section
“Simulation analysis.”
To identify the AFM-II to PM transition, the temperature

dependence of the order parameter C defined in section
“Simulation analysis” can be used. This order parameter takes
into account the maximal alignment of the magnetic configura-
tions to an AFM-II configuration. The order parameter is C= 1 if
the magnetic configuration corresponds to AFM-II during the
entire simulation. It is C= 0.5 in case of the second cubic global
minimum. The variety of paramagnetic (PM) configurations leads
to a smaller value C≲ 0.2, as the PM orders are not correlated to
the AFM-II order.
MC spin-flip simulations of a cubic 6 × 6 × 6 MnO supercell

using the lattice constant aexp yield a transition temperature of
300 K (MCAFM- II

cub and MCcub in Fig. 3). We note that these
simulations are different from MC simulations using only J1 and
J2 coupled interactions, because here the full PES from the HSE06
reference data is explored. The order parameter of these
simulations (MCAFM- II

cub and MCcub in Fig. 4) proves that the
transition temperature belongs to the antiferromagnetic to PM
transition. The Néel temperature is the same for the disordering
process (MCAFM- II

cub ) and the ordering process (MCcub), i.e., no
hysteresis is present. The AFM-II to PM (MCAFM- II

cub ) and the second
cubic global minimum to PM (MC2nd

cub) transition temperatures are
identical because of the equal interactions of both cubic global
minimum configurations. The ordering process can consequently
also end in the second cubic global minimum configuration as
had happened in the MCcub simulations at 120, 160, and 200 K.
However, below the Néel temperature, the interconversion of
both cubic global minima is kinetically hindered. In summary, the
inclusion of specific state information increases the Néel
temperature of MnO by about 50 K compared to the mean field
theory.
The restriction to a cubic lattice is an approximation, because

the AFM-II minimum energy configuration has a rhombohedral

Fig. 3 Temperature dependence of the heat capacity. Molar heat
capacity at constant volume CV (MC) and pressure Cp (MDMC)
divided by the Boltzmann constant kB and the Avogadro constant
NA as a function of the temperature T obtained in different
simulation methods for 6 × 6 × 6 MnO supercells. The superscript
of the simulation method defines the initial magnetic configuration
(cubic AFM-II or second global minimum), otherwise random initial
magnetic orders are used. The subscript cub indicates the restriction
to the cubic lattice with aexp=4.430Å and the subscript min
indicates an optimization of the initial structure prior to the MC
simulation.
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lattice. Employing the rhombohedral lattice (MCAFM- II
min ) increases

the Néel temperature to about 480 K. This increase can be
explained by the mean energies of the AFM-II and PM
configurations. Although the energy difference is 7.0 meV atom−1

for the experimental cubic lattice, it is 10.6 meV atom−1 for the
rhombohedral lattice. To obtain similar Boltzmann factors during
the MCAFM- II

min simulation compared to the MCAFM- II
cub simulation, the

temperature has to be raised by the same factor of 1.5, which is
similar to the increase of the Néel temperature (Supplementary
Discussion). The data of the PM phase were calculated from 1000
PM configurations, whose magnetic orders were obtained during
the 10 ns MDMC simulation at 400 K. On the other hand, an
optimized lattice of the initial PM configuration (MCmin) leads to a
Néel temperature of about 290 K. In conclusion, the choice of a
specific fixed lattice can change the Néel temperature by about
200 K. Adapting the lattice and the atomic positions to the
magnetic order is consequently of major importance to obtain
reliable results.
NpT MD enables to sample the thermodynamic equilibrium of

the given magnetic configuration at pressure p and temperature T
to get rid of simulation artifacts due to a restricted geometric
structure. The MDMC simulations are therefore a much better
representation of experimental conditions. MDMC simulations
predict an AFM-II to PM transition at 300 K (MDMCAFM-II and
MDMC in Figs. 3 and 4). This temperature is similar to the result of
the cubic lattice due to a compensation of two main factors: the
optimized AFM-II lattice (at p= 1 bar) leads to an energy gain of
1.9 meV atom−1 compared to the cubic lattice with aexp, whereas
the mean energy gain of the PM configurations is 1.3 meV atom−1.
In addition, thermal fluctuations of the atomic positions are
included in MDMC simulations leading to thermal expansion of
the MnO lattice with increasing temperature. To quantify the
energy increase due to the larger lattice volume, optimizations at
various pressures of the AFM-II and PM configurations were
performed. If the optimized volume at p= 1 bar is increased to the
volume given at 300 K in the MDMC simulations (Fig. 5), the
energy of the AFM-II configuration is increased by 1.7 meV atom−1

and the mean energy of the PM configurations by 1.1 meV atom−1

(Supplementary Fig. 575,76).
The cube root of the mean lattice volume, i.e., a hypothetical

averaged cubic lattice constant, shows a discontinuous increase of
0.005Å at the Néel temperature (Fig. 5). This increase is similar to
the difference of the optimized AFM-II and PM values, which also
differ by 0.005Å. In accordance with the simulations,

experimentally an increase of about 0.004Å has been observed
at the Néel temperature77. The mean lattice angle decreases from
90.77 to 90.00° at the Néel temperature as shown in the
Supplementary Fig. 6 matching the experimental PM angle of
90.00°77. This discontinuous change of the lattice volume and
shape confirms a first-order magnetic phase transition78,79.
The linear thermal expansion coefficient of the PM phase has

been measured to be αexpL ¼ 12 � 10�6 K�1 at 400 K80. Employing
the data from the MDMC simulations of the PM phase αmHDNNP

L ¼
14 � 10�6 K�1 at 400 K is obtained in good agreement with the
experiment.
In conclusion, mHDNNPs combine the accuracy and generality

of first-principles methods with an efficiency close to spin lattice
models. The Néel temperature of MnO calculated by mean field
theory differs by about 50 K from the MC result, which explicitly
samples the magnetic configurations. Including structural fluctua-
tions in the prediction of magnetic transition temperatures is
essential, because fixing the lattice to the low- or high-
temperature configuration can lead to differences of about
200 K. mHDNNP-driven MD simulations including MC spin flips
reveal a small volume increase and the disappearance of the
rhombohedral distortion at the Néel temperature of MnO, as the
method is able to provide mean geometric and thermodynamic
data of the PM phase.

Defects
Magnetic properties of bulk materials differ from those of
nanoparticles and doped materials. Surfaces, interfaces, defects,
and doping can change the magnetic order leading, e.g., to net
surface spins or lower transition temperatures81–83. Surface layers
with different stoichiometries can lead to different magnetic
orders, such as antiferromagnetic MnO nanoparticles with
ferrimagnetic Mn3O4 shells84. To confirm that such systems can,
in principle, be described by mHDNNPs, we predict the impact of
Mn vacancies using the mHDNNP. Mn vacancies alter the
magnetic order and increase the oxidation states of the remaining
Mn ions to compensate the oxygen excess ensuring overall charge
neutrality. In principle, it is also possible to study the role of
surfaces and doping, but our current parameterization is based on
MnxO bulk data only, with x= 0.969 and 1, and thus the present
mHDNNP is not applicable to these situations.
From the heat capacities shown in the Supplementary Fig. 7

and the order parameters in Fig. 6, the Néel temperatures can be
determined to be (298 ± 1) K for MnO, (296 ± 1) K for Mn0.999O,
(275 ± 1) K for Mn0.991O, and (233 ± 1) K for Mn0.969O. The
increasing Mn vacancy concentration decreases the Néel

Fig. 4 Temperature dependence of the order parameter. Order
parameter C as a function of the temperature T obtained in different
simulation methods for 6 × 6 × 6 MnO supercells. The superscript of
the simulation method defines the initial magnetic configuration
(cubic AFM-II or second global minimum), otherwise random initial
magnetic orders are used. The subscript cub indicates the restriction
to the cubic lattice with aexp ¼ 4:430Å and the subscript min
indicates an optimization of the initial structure prior to the MC
simulation. Lines are only drawn to guide the eyes.

Fig. 5 Thermal expansion of MnO. Cube root of the mean volume
per unit cell

ffiffiffi
V3

p
as a function of the temperature T obtained in 10 ns

NpT MD simulations including MC spin flips of 6 × 6 × 6 MnO
supercells and the optimized values at p= 1 bar of the AFM-II and
PM configurations. The straight lines represent linear fits for the
high- and low-temperature regions.
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temperature. The more Mn vacancies are present, the lower is the
average number of magnetic neighbor ions whose interactions
can support the stability of the ordered phase against
temperature-induced fluctuations. Consequently, the Néel tem-
perature can be used as a hint for the regularity of a material’s
crystal structure. This trend is in accordance with experiments that
observe an increase of the magnetic transition temperature with
higher contents of magnetic ions81.
Employing the HDNNS, we are able to calculate the absolute

magnitude of the atomic spins whose signs are provided in the
input of the mHDNNP. In this way, we can investigate the impact
of defects on the Mn oxidation states and the magnetization. For
this purpose, we optimized the MnO and Mn0.969O structures with
AFM-II order using the mHDNNP. For MnO, we observe 16 Mn ions
with MS= 2.26 and 16 with MS=− 2.26 per magnetic unit cell,
whereas for Mn0.969O we find 2 Mn ions with MS= 1.83, 14 with
2.24 ≤MS ≤ 2.26, and 15 with −2.26 ≤MS ≤−2.24. Consequently, in
MnO all Mn ions are MnII and in Mn0.969O two Mn ions per Mn
vacancy are MnIII, whereas the others are MnII. The difference of
the MS values from the expected values of 2 and 5

2 is also obtained
in the HSE06 reference data. As expected, the excess of O ions due
to the Mn vacancy is compensated by increased oxidation of Mn
ions. To retain a small net magnetization, MnIII is formed at
magnetic lattice sites, which do not have the same spin sign as the
missing Mn ion. The sum of the atomic spins per magnetic unit
cell is MS ¼ 1:42 for Mn0.969O.
MDMC simulations of 6 × 6 × 6 supercells analyzed by the

HDNNS reveal that the magnetization of MnO is always zero as
shown in Fig. 7, because it is either antiferromagnetic or
paramagnetic. However, as the Mn vacancies are placed on an
equidistant grid, the constructed Mn0.969O structure is ferrimag-
netic at low temperatures. Below the transition temperature, the
magnetization is finite but decreases with increasing temperature,
because more and more spin flips happen. At the transition
temperature of 233 K, a sudden drop to zero occurs as the system
becomes paramagnetic. The average number of MnIII ions during
all MDMC simulations of Mn0.969O at different temperatures is
predicted to be about 1.9 employing the criterion ∣MS∣ < 2.025.
This value is slightly smaller than the ideal value of 2 such that
most of the MnIII are identified correctly. In total, 99.5% of the MnII

and MnIII ions are assigned correctly.
In conclusion, Mn vacancies lead to a reduced Néel temperature

and the formation of MnIII ions. The net magnetization induced by
Mn vacancies drops to zero at the transition temperature.
Consequently, different stoichiometries and associated oxidation
states changes are accurately described by the mHDNNP, high-
lighting the generality and applicability of this method.
Beyond the present work, we expect the mHDNNP method to

be a powerful tool for highly accurate, large-scale atomistic

simulations of systems involving different magnetic states, such as
a variety of magnetic materials and molecular transition metal
complexes containing spin-polarized atoms. Theoretical predic-
tions of the magnetic, geometric, and thermodynamical implica-
tions of surfaces, interfaces, defects, and doping can provide
interesting control tactics for material properties and finally for
technological applications.

METHODS
High-dimensional neural network potential
The MLP used in this work is a second-generation HDNNP9. In this method,
the potential energy E is constructed as a sum of atomic energy
contributions,

E ¼
XNelem

m¼1

XNm
atoms

n¼1

Emn ðGm
n Þ ; (5)

for a system containing Nelem elements and Nm
atoms atoms of elementm. For

each element, an individual neural network is trained, which can provide
the atomic energy as a function of the local chemical environment and
which is evaluated as often as atoms of the respective element are present.
The structural descriptors Gm

n are vectors of many-body ACSFs52, which
fulfill the mandatory translational, rotational, and permutational invar-
iances of the PES and serve as input vectors of the atomic neural networks.
ACSFs describe the local atomic environment as a function of the positions
of all neighboring atoms inside a cutoff sphere of radius Rc. To include all
energetically relevant interactions, the cutoff radius has to be sufficiently
large. Besides the positions of the atoms, only the elements have to be
specified leading to a potential being able to describe the making and
breaking of bonds. The dimensionality of the ACSF vectors can be
predefined for each element individually and does not depend on the
atomic environments. This ensures that the number of input neurons of
the atomic neural networks remains constant during MD simulations. After
optimizing the parameters of the atomic neural networks in a training
process using the potential energies and force components of reference
systems obtained from DFT, the HDNNP can be applied in large-scale
simulations at a small fraction of the computational costs. More details
about HDNNPs, their construction, and validation can be found in several
reviews5,10–12.

Atom-centered symmetry functions
Two types of ACSFs are most commonly used for the construction of
HDNNPs: the radial symmetry functions,

Grad
i ¼

X
j

e�ηR2ij � f c Rij
� �

; (6)

and the angular symmetry functions,

Gang
i ¼ 2�ζ

X
j

X
k≠j

1þ λ cos θijk
� �� �ζ � e�η R2ijþR2ikþR2jkð Þ � f c Rij

� � � f c Rikð Þ � f c Rjk
� �

;

(7)

Fig. 6 Impact of Mn vacancies on the temperature dependence of
the order parameter. Order parameter C as a function of the
temperature T obtained in MDMC simulations for 6 × 6 × 6 supercells
of MnO, Mn0.999O, Mn0.991O, and Mn0.969O.

Fig. 7 Temperature dependence of the magnetization. Sum of the
atomic spins per magnetic unit cell MS as a function of the
temperature T obtained in optimizations and MDMC simulations for
6 × 6 × 6 supercells of MnO and Mn0.969O.
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with the cutoff function

f c Rij
� � ¼ 1

2 cos
πRij
Rc

� �
þ 1

2 for Rij � Rc

0 otherwise

(
: (8)

Rij is the distance between central atom i and neighboring atom j. θ is the
angle j− i− k involving two neighbors j and k. η, λ, and ζ are parameters
defining the spatial shapes of the ACSFs. Consequently, the ACSF values
only depend on the local geometric environment of the atoms. For
multicomponent systems containing several elements, ACSFs for all
element combinations are explicitly included. A detailed discussion of
the properties of conventional ACSFs and further functional forms can be
found in ref. 52.

Spin-dependent atom-centered symmetry functions
In many cases, the representation of atomic oxidation and spin states, i.e.,
the absolute magnitude of the atomic spins, is possible in an indirect way
even with conventional ACSFs as shown in our previous studies50,69 and in
the Supplementary Figs. 1 and 2 of this work. The reason is that different
absolute spins in most cases change the geometric structure of the atomic
environments. These different environments allow constructing the
structure–energy relationship for the ground state by HDNNPs, as long
as there is a unique relation between the geometric structure and the
electronic configuration. Therefore, ACSFs are able to indirectly capture the
energetic effects of the atomic spin magnitude via the geometric structure.
Examples are different oxidation states or high- and low-spin states of
transition metal ions, for which the different orbital occupations can give
rise to structural changes in the local atomic environments such as
different bond lengths or Jahn–Teller distortions.
However, the relative parallel and antiparallel arrangement of an atomic

spin with respect to the spins of all other magnetic atoms in its
environment is not captured by ACSFs. This information is required to
distinguish different magnetic configurations and to predict the corre-
sponding potential energies. To extend the applicability to arbitrary
collinear spin arrangements, the signs of the atomic spins have to be
known explicitly. In principle, also the explicit inclusion of absolute spin
values is of interest, but we leave this aspect to future work here.
To describe the magnetic configuration, we introduce an atomic spin

coordinate,

si ¼ 0 for jMSj<Mthres
S

sgnðMSÞ otherwise

(
; (9)

with

MS ¼ 1
2
ðn" � n#Þ : (10)

MS is the half-difference of the number of spin-up electrons n↑ and spin-
down electrons n↓ of an atom i in a collinear spin-polarized calculation. The
atomic spin coordinate is equal to the sign of MS, unless the absolute
atomic spin value is smaller than a threshold value Mthres

S . The threshold is
introduced to filter out noise in the spin reference data arising from the

ambiguity in assigning spins in electronic structure calculations. In this
work, Mthres

S is set to 0.25. The set of atomic spin coordinates can represent
all possible collinear magnetic configurations enabling to identify
ferromagnetic and antiferromagnetic spin arrangements, as well as non-
magnetic interactions.
To integrate the spin coordinates into the radial ACSFs, the radial spin-

augmentation function (SAF) Mx(si, sj) is employed,

Grad
i ¼

X
j

Mxðsi ; sjÞ � e�ηR2ij � f c Rij
� �

: (11)

Different radial SAFs, with x= 0,+ ,− , are used to describe the
interactions of same (ferromagnetic interactions) and opposite spin signs
(antiferromagnetic interactions), respectively,

M0ðsi ; sjÞ ¼ 1 ; (12)

Mþðsi ; sjÞ ¼ 1
2
sisj
		 		 � si þ sj

		 		 ; (13)

M�ðsi ; sjÞ ¼ 1
2
sisj
		 		 � si � sj

		 		 : (14)

The radial SAFs Mx(si, sj) are non-zero only for specific combinations of the
spin coordinates of the atom pairs as summarized in Fig. 8. This spin
augmentation filters the contributions to the radial sACSF in Eq. (11), to
distinguish the different magnetic interactions. Only interactions between
atoms of parallel spins contribute to sACSFs containing M+ and only
interactions between atoms of antiparallel spins contribute to a sACSFs
containing M−. If s= 0 for one or both of the interacting atoms, M+ and
M− are zero, leaving only a contribution to the sACSF containing M0.
Taking the absolute values in M+ and M− ensures that the descriptor only
depends on the relative spin arrangement. In this way, a simultaneous sign
change of all atomic spins does not change the value of the sACSFs,
ensuring the invariance of the potential energy with respect to the
absolute spin arrangement. M0 is used to describe the non-magnetic,
purely geometry-dependent interactions between an s ≠ 0 atom and an
s= 0 atom or between two s= 0 atoms, which are not included in the
other terms.
When constructing an mHDNNP, it is sufficient to use sACSFs only as

input for the atomic neural networks of elements exhibiting atoms with
non-zero spins. For the atomic neural networks of all other elements,
conventional ACSFs can be used, which is equivalent to using only M0 and
M00 in the sACSFs of these elements. In the same way as ACSFs, sACSFs are
constructed for all element combinations. The choice, which SAFs, i.e., only
M0 or both M+ and M-, are required for a given element combination, can
be made before constructing the potential, because in most systems the
atoms of a given element are either all characterized by s= 0 or by s ≠ 0.
For instance, in MnO the Mn atoms exhibit s ≠ 0 and the O atoms
correspond to s= 0. Still, the method is also applicable to other systems
including partly magnetically active elements. These systems require the
use of M0� (Supplementary Methods) instead of M0, to explicitly separate
non-magnetic from magnetic interactions, as well as a careful choice of
Mthres

S to assign physically meaningful spin coordinate values. For element
combinations of partly magnetically active elements with (partly)
magnetically active elements, all radial SAFs, M0� , M+, and M−, are
required.
In a similar way, angular sACSFs can be defined as

Gang
i ¼ 2�ζ

X
j

X
k≠j

Mxxðsi ; sj ; skÞ � 1þ λ cos θijk
� �� �ζ � e�η R2ijþR2ikþR2jkð Þ � f c Rij

� � � f c Rikð Þ � f c Rjk
� �

;

(15)

containing the angular SAFs Mxx(si, sj, sk). They allow distinguishing three
different interactions of a central s ≠ 0 atom i with two neighboring s ≠ 0
atoms j and k: (1) si= sj= sk, (2) si ≠ sj= sk, and (3) si= sj ≠ sk. The fourth
possibility si= sk ≠ sj is equivalent to (3), as the sums over j and k in the
angular sACSFs include the interactions j− i− k and k− i− j, as both j and
k sum over all contributing neighbor atoms to exclude any dependence on
the order of the atoms. An efficient separation of these interactions is

M0 

M+ 
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Fig. 8 Interactions resulting in non-zero values of the radial and
angular spin-augmentation functions. Red circles with a zero
represent atoms with s= 0, purple circles with a plus sign atoms
with s= 1, and blue circles with a minus sign atoms with s=−1. The
first atom of each entry is the central atom i of the sACSF. The order
of the neighbor atoms in the angular interactions is insignificant.
The inverse interactions (i.e., switching “+” and “−”) yield the same
result and are not shown for clarity.
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given by the functions,

M00ðsi ; sj ; skÞ ¼ 1 ; (16)

Mþþðsi ; sj ; skÞ ¼
1
2 sij j � si þ sj þ sk

		 		� 1
� � for sj ≠ 0 ^ sk ≠ 0

for sj ¼ 0 ^ sk ¼ 0



1
2 sij j � si þ sj þ sk

		 		 otherwise

8><
>: ; (17)

M��ðsi ; sj ; skÞ ¼
1
2 sij j � si � sj � sk

		 		� 1
� � for sj ≠ 0 ^ sk ≠ 0

for sj ¼ 0 ^ sk ¼ 0



1
2 sij j � si � sj � sk

		 		 otherwise

8><
>: ; (18)

Mþ�ðsi ; sj ; skÞ ¼ sisjsk
		 		 � si þ sj � sk

		 		� 1
� �

; (19)

as depicted in Fig. 8. M00 is required to describe interactions including
more than one s= 0 atom or if atom i is s= 0. M++, M−−, and M+− yield 1
for the interaction types (1), (2), and (3), respectively, and 0 for the other
types in case of s ≠ 0 atoms. For the interactions of two s ≠ 0 atoms with
one s= 0 atom, whereby atom i is s ≠ 0, only M++ and M−− are required,
separating the ferromagnetic and antiferromagnetic interactions similarly
as in the radial sACSFs. For systems in which atoms of the same element
can be MS ≠ 0 and MS= 0, M00� (Supplementary Methods) has to be used
instead of M00 to distinguish non-magnetic and magnetic interactions, and
the contributions of M++ and M−− have to be further split as described in
the Supplementary Methods and Supplementary Table 1.
In summary, the combination of both the arrangement of the spins and

the geometry-dependent determination of the atomic spin magnitudes is
essential to provide all the information necessary to construct reliable PESs
in the case of collinear spins. The functional form of the sACSFs might look
similar to an Ising-like description at first glance, but the method allows us
to study all systems that can also be addressed by collinear DFT
calculations, because the mHDNNP simultaneously depends on the
geometric structure, indirectly on the atomic spin magnitudes, and on
the atomic spin arrangements. For energy and force predictions, the
specification of the elements, atomic coordinates, and atomic spin
arrangements is required as input covering the full geometric and
magnetic configuration space. Both the training of only several selected
magnetic configurations and also the training of the full magnetic
configuration space including excited magnetic states are possible using
mHDNNPs.

High-dimensional neural network spin prediction
HDNNS50 can be used to obtain the absolute magnitude of the atomic
spins ∣MS∣ as a function of the geometrical structure. From the absolute
atomic spins, the oxidation and spin states can be derived. HDNNSs use
the same atomic neural network topology as employed in HDNNPs.
However, instead of atomic energy contributions, the absolute atomic
spins are predicted, which can be directly obtained by the atomic neural
networks without taking the sum in Eq. (5).

Simulation analysis
Employing NpT MD simulations, the heat capacity at constant pressure Cp
can be obtained from the fluctuations of the total energy,

Cp

kBNA
¼ Natoms

k2BT
2Nsteps

XNsteps

n¼0

EtotðnÞ � Etot
� �2

; (20)

with Natoms atoms in the simulation cell, the mean simulation temperature
T, the total energy per atom Etot(n) as a function of the MD time step n for
the total number of simulation steps Nsteps, and the mean total energy per
atom during the simulation Etot. kB is the Boltzmann constant and NA is the
Avogadro constant.
From MC spin-flip simulations, the influence of the magnetic degrees of

freedom on the heat capacity at constant volume CV can be calculated,

CV

kBNA
¼ 3þ Natoms

k2BT
2Nsteps

XNsteps

n¼0

EðnÞ � E
� �2

: (21)

The contribution of the atomic motions to CV is taken into account by
3kBNA, as the atomic motions are not considered in the conventional MC
spin-flip simulations. The energy fluctuation is calculated from the
potential energies per atom E(n) as a function of the MC step n for the
total number of steps Nsteps compared to the mean potential energy per
atom E.

The order parameter C is defined as

C ¼ 1
Nsteps

XNsteps

n¼0

max
sð111Þ � sðnÞ

jsð111Þj � jsðnÞj
				

				; sð111Þ � sðnÞ
jsð111Þj � jsðnÞj

					
					; sð111Þ � sðnÞ

jsð111Þj � jsðnÞj

					
					; sð111Þ � sðnÞ

jsð111Þj � jsðnÞj

					
					

" #
;

(22)

with s being the vector of the atomic spin coordinates si of each atom i in
the simulation cell,

s ¼ s1; ¼ ; sNatomsð ÞT : (23)

The atomic spin coordinates are equal to the sign of the atomic spins as
defined in Eq. (9). The vector s at step n is compared with the vectors s(111),
sð111Þ, sð111Þ, and sð111Þ, which are the possible AFM-II configurations in
different spatial orientations. For normalization both vectors are divided by
their lengths. The maximum agreements of the relative magnetic
configurations at each step are averaged over the simulation length, i.e.,
the most similar of the four AFM-II spatial orientations is used.

Computational details
The collinear spin-polarized DFT reference calculations were performed
employing the Fritz-Haber-Institute ab initio molecular simulations (FHI-
aims) code (version 200112.2)85,86. The screened hybrid exchange-
correlation functional HSE06 (ω= 0.11 a0)64–66 and the “intermediate”
FHI-aims basis set of numeric atom-centered functions excluding the
auxiliary 5g hydrogenic functions were employed. A Γ-centered k-point
grid of 2 × 2 × 2 was applied to calculate the 2 × 2 × 2 supercells of MnO
(64 atoms without vacancies). The convergence criterion for the self-
consistency cycle was set to 10−6 eV for the total energies and 10−4 eVÅ−1

for the forces. Hirshfeld spin moments87 were used to determine the
atomic spin coordinates. Further details are given in the Supplementary
Tables 2 and 3. An extensive benchmark for MnO employing hybrid DFT
functionals can be found in our previous work88.
The sACSFs were implemented in a modified version of the RuNNer

code version 1.0011,12,89 to construct the mHDNNP and HDNNS. A cutoff
radius of Rc= 10.5 a0 was used. A list of the employed parameters of the
nmG sACSFs for each element m in the mHDNNP is given in Tables 2 and 3.
The atomic feed-forward neural networks of mHDNNP and HDNNS consist
of nmG input neurons, three hidden layers with 20, 15, and 10 neurons,
respectively, and one output neuron. The mHDNNP was trained using the
cohesive energies, i.e., the total energy minus the sum of the free atom
energies, and using atomic force components obtained from DFT
calculations of reference structures in different magnetic states. The
HDNNS was trained on the absolute values of the Hirshfeld spin moments
of the same reference structures. Ninety percent of these data were used
for training the neural networks. The remaining data were used as test set.
Further details about the training can be found in the Supplementary
Tables 4 and 550,69.
mHDNNP-driven MD simulations in combination with MC spin flips were

carried out using the Large-scale Atomic/Molecular Massively Parallel
Simulator90,91 and the neural network potential package (n2p2)92 as library
for potentials generated with RuNNer. The n2p2 code was modified to
enable the usage of sACSFs. The MD simulations with MC spin flips
(MDMC) employed 6 × 6 × 6 MnxO supercells referring to the geometric
unit cell, with x= 0.969, 0.991, 0.999, 1, i.e., 1701, 1720, 1727, and 1728
atoms. They were run in the NpT ensemble at a pressure of p= 1 bar with a
time step of 1 fs applying the Nosé–Hoover thermostat and barostat with
coupling constants of 0.1 and 1 ps, respectively93,94. MC spin flips were
performed after each time step. The spin-flip rate is not set to measured or
calculated rates to study dynamic properties but to sample the
thermodynamic equilibrium efficiently. In all MDMC simulations, the

Table 2. Employed radial sACSFs.

i-j Mx η ½a�2
0 �

O-O M0 0, 0.00117, 0.00246, 0.00389, 0.00550

O-Mn M0 0, 0.00369, 0.00882, 0.01636, 0.02809

Mn-O M0 0, 0.00369, 0.00882, 0.01636, 0.02809

Mn-Mn M+, M− 0, 0.00085, 0.00176, 0.00274, 0.00381

All combinations of SAFs and symmetry function parameters are applied
for the given element pairs using Rc= 10.5 a0.

M. Eckhoff and J. Behler

8

npj Computational Materials (2021)   170 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



system was equilibrated for 1 ns before the acquisition period of 10 ns. In
all conventional MC spin-flip simulations, i.e., no MD steps in between the
MC spin flips, the equilibration was performed for 106 steps and the
acquisition consisted of 107 steps.

DATA AVAILABILITY
The data sets generated and analyzed during the current study are available from the
corresponding author on reasonable request.

CODE AVAILABILITY
The modified versions of RuNNer and n2p2 to enable the usage of sACSFs are
available from the corresponding author on reasonable request. The modifications
will be implemented in coming release versions under the GPL3 license.
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