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Modern AI supported research holdsmany promises for basic and applied science.
However, the application of AI methods is often limited becausemost labs cannot,
on their own, acquire large and diverse datasets, which are best for training these
methods. Data sharing and open science initiatives promise some relief to the
problem, but only if the data are provided in a usable way. The FAIR principles state
very general requirements for useful data sharing: they should be findable,
accessible, interoperable, and reusable. This article will focus on two
challenges to implement the FAIR framework for human neuroscience data.
On the one hand, human data can fall under special legal protection. The legal
frameworks regulating how and what data can be openly shared differ greatly
across countries which can complicate data sharing or even discourage
researchers from doing so. Moreover, openly accessible data require
standardization of data and metadata organization and annotation in order to
become interpretable and useful. This article briefly introduces open
neuroscience initiatives that support the implementation of the FAIR principles.
It then reviews legal frameworks, their consequences for accessibility of human
neuroscientific data and some ethical implications. We hope this comparison of
legal jurisdictions helps to elucidate that some alleged obstacles for data sharing
only require an adaptation of procedures but help to protect the privacy of our
most generous donors to research . . . our study participants. Finally, it elaborates
on the problem of missing standards for metadata annotation and introduces
initiatives that aim at developing tools tomake neuroscientific data acquisition and
analysis pipelines FAIR by design. While the paper focuses on making human
neuroscience data useful for data-intensive AI the general considerations hold for
other fields where large amounts of openly available human data would be helpful.
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1 Introduction

Making data publicly available is considered beneficial for
scientific research in many respects including improving
reliability of results by increasing transparency and quality,
increasing efficiency of the (public) money spent, accelerating
innovation by enhancing interdisciplinarity, and enabling the use
and development of new analysis techniques (Milham et al., 2018;
Niso et al., 2022). For these reasons, opening up the currently mostly
closed scientific research, e.g., by encouraging data sharing (among
other research products and practices) is one of today’s pressing
issues.

Replication and reproducibility issues recently elicited growing
concerns in the biomedical and life sciences over the credibility of
claims raised in scientific studies and the economic efficiency of
research. The OPEN SCIENCE COLLABORATION (2015) tried to
replicate 100 highly influential studies published in top-tier
psychology journals and found that in only 36% of these studies
statistical significance of the results could be reproduced. Glasziou
and Chalmers (2018) argue that due to fundamental deficiencies in
the design and conduct of studies in clinical research, globally
around 85% of the money being spent is wasted because many
findings cannot be reproduced, nor can the respective data be re-
used. Moreover, the authors concluded that many findings can or
should not be implemented into practice due to their low reliability.
Similarly, a meta-analysis of past studies on the cost of non-
reproducible research has revealed that in the US over 50% of
the preclinical research cannot be reproduced and therefore
complicates cumulative knowledge acquisition (Freedman et al.,
2015). According to the authors, this amounts to approximately
28 billion US dollars per year being misspent in the US alone. Today
a common notion is that, among others, open sharing of data and
research products is one important measure to make research more
efficient in its resource use (Niso et al., 2022). The 2020 EU scoping
report on “reproducibility of scientific results in the EU”
(Europäische Kommission et al., 2020) and the 2019 report of
the US National Academies of Sciences, Engineering, and
Medicine on “Reproducibility and replicability in science”
(National Academies of Sciences, 2019) list, among others, data
sharing as one important scientific practice to enhance
reproducibility and replicability. This includes, training for data
sharing, the establishment and improvement of data sharing plans in
publicly funded research, support for data sharing, the resolution of
data sharing problems, and FAIRification of shared data. Sharing is
also considered a measure to trigger a change in scientific practice
from closed research to open sharing of research products to
increase the quality and transparency of research practices.

One way to estimate an increase in efficiency of resource use by
data sharing is to estimate potential monetary savings. This is of
relevance as most research in public institutions is financed by
public money. Employing a bibliometric analysis of the re-use of five
openly shared large scale neuroimaging datasets provided by the
International Neuroimaging Data-sharing Initiative (INDI, Mennes
et al., 2013) Milham and others estimate savings of 900 million up to
1.7 billion US dollars compared to re-acquisition of the data for each
of the approximately 900 papers published on the basis of these
datasets (Milham et al., 2018). Likewise, the European Commission
has issued a report in 2019 suggesting that better research data

management would save 10.2 billion euros per year in Europe
(European Commission and Directorate-General for Research
and Innovation, 2019). They even argue that potentially the gain
would be even bigger (up to an additional 16 billion euros) due to the
generated innovation, e.g., faster accumulation of knowledge and
potential savings of money spent on data acquisition.

Beyond improving credibility, reliability, and efficiency of
research, individual researchers may personally benefit as well
from sharing their data. Data sharing can increase their visibility
and reputation by licensing the data and making it a citable object.
This offers new opportunities for publications and can increase the
number of citations, raise media attention, open new collaborations
with researchers who do not belong to the narrow group of the
individual research field, and finally can offer new funding and
position opportunities (Markowetz, 2015; McKiernan et al., 2016;
Allen and Mehler, 2019; Hunt, 2019; Niso et al., 2022; Nosek et al.,
2022). However, it is important to note, that practices such as data
sharing or proper description of the data through metadata imposes
additional work for the individual researcher. For this reason, it is
important to facilitate the implementation of these practices into
workflows in order to lift some weight off the shoulders of the
individual researcher. In other words, usability must be a critical
aspect of tools for sharing or organizing data.

In the light of the issues with closed research and the potential
advantages of sharing data and other research products the general
reluctance of researchers to share their data appears surprising
(Houtkoop et al., 2018). Recently, however, the importance of
data sharing and research data management (RDM) moved from
a small community of open science enthusiasts into the focus of
funding agencies and journals as policy reinforcers to address these
issues. Funding agencies are beginning to implement a top-down
strategy for publicly funded research to expand data sharing for
more efficient data use and accessibility of research results (de Jonge
et al., 2021; Niso et al., 2022). Some funding agencies require RDM
plans, openly accessible publications, and dissemination plans
beyond journal publications. In addition, an increasing number
of journals offer open access options and require authors to make
their data publicly available (Niso et al., 2022). In parallel
stakeholder institutions like the Organization for Human Brain
Mapping (OHBM)1, the International Neuroinformatics
Coordinating Facility (INCF)2 and the Chinese Open Science
Network (COSN)3, coordinate the development of data standards
and best practices for open and FAIR research data management.

Data sharing in standardized data formats and enriched with
metadata are important requirements for novel data-driven
Artificial Intelligence (AI) analysis techniques. AI technologies
are expected to propel and transform scientific research in the
near future and are meanwhile key technologies in medical
research, diagnostic procedures, etc. They learn generalizable
structure in complex data which is unrecognizable to humans
and make it possible to predict e.g., disease risks or cognitive

1 https://www.humanbrainmapping.org/i4a/pages/index.cfm?pageid=1;
last accessed: 26.10.22.

2 https://www.incf.org/; last accessed: 26.10.22.

3 https://open-sci.cn/; last accessed: 26.10.22.
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functions in new data. This development is supported by the
increasing capacity of computing machines that enable more
complex computations on ever-growing data sets. However,
many AI algorithms estimate extremely complex models from
the data. This requires huge amounts of data. The limited
amount of available data within single labs (with known data
structure and metadata) and the limited amount of well
structured, meta-data annotated, and exhaustively documented
publicly available data is a common bottleneck for the reliable
application of complex but powerful AI methods. Therefore, data
sharing and making experimental data interoperable (i.e., common
data and annotation standards help to make the data computer
interoperable) has become an important goal for the neuroimaging
community.

Several fields in life science and medicine have recognized the
potential of publicly available data early and started large scale
initiatives to make data collected in individual labs accessible for
other research groups in order to maximize the scientific benefits.
The forerunners were the Human Genome Project4, launched in
1990, in which the Bermuda principles were developed. These
required the timely sharing of annotated sequence data (Collins
et al., 2003). This policy initially boosted progress in genomic
research and in related fields such as computer science and AI
based data analysis (Rood and Regev, 2021). Hence it fostered
interdisciplinary research approaches, digitization of life science
research and the development of novel analysis methods (Gibbs,
2020). Over the years, the increase in size and complexity of available
data, the lack of data standards, the scattering of data across various
databases, and data privacy issues, in particular when the genetic
data were enriched with “phenotype”metadata, have triggered a re-
thinking of the current relatively unstructured sharing approach.
This re-thinking was mainly due to the fact that it became more and
more evident that this unstructured approach likely has a negative
impact on the usability and usefulness of the shared data in current
and future usage scenarios (Powell, 2021). Moreover, while the
domain of genetics developed a relatively generous and open data
culture, recent developments indicate a return to closed data policies
with reluctance to share data or only under certain conditions, for
example, data sharing policies in the commercial sector and in China
(Koch and Todd, 2018; Chen and Song, 2018; PIPL Art. 38–43&53).
This closed policy cuts international public genetics research off
from huge data sources. In neuroscience, the later funded Human
Connectome Project (launched in 2009) and the EU Human Brain
Project (launched in 2013) also collect massive amounts of complex
datasets consisting of diverse data types (e.g., brain imaging data
recorded with different measuring techniques or devices, behavioral
data, data about the experimental paradigm, genetic data, bio
samples, clinical diagnostics, psychological testing, etc.). This was
done to provide datasets, that enable tackling a range of research
questions by different researchers, even questions unrelated to the
original study. In general, acquiring more diverse data in an
experiment, exceeding those needed for the original research
question, would help to increase the efficiency of data re-use.

While some efforts have been made to create publicly open
databases to make the data accessible, common standards on
how to store such datasets are only emerging (e.g., Teeters et al.,
2015; Gorgolewski et al., 2016).

Publicly open databases which contain well described and
standardized datasets help to make the data better
understandable not only for humans but also for computers.
Accordingly, such datasets can serve as training data for the
development of new analysis approaches but also as realistic
benchmark datasets to compare the performance of novel AI
algorithms. Well-structured data enhanced with metadata and
many accessory observational data are also attractive for
researchers who have no access to the expensive experimental
infrastructure, be they from different fields, like computational
neuroscientists, developers of AI algorithms or experts from
countries or research sites with less financial resources. In these
cases, data sharing can make science more interdisciplinary and
diverse by adding hitherto excluded modelers, methods developers,
and researchers without access to neuroimaging resources to a
research community.

In sum, data sharing offers benefits for the individual researcher
as well as research communities besides improving transdisciplinary
integration of research and thereby enhancing its development. So
why is so little of the myriads of data produced in biomedical and life
science publicly shared (Houtkoop et al., 2018)? There are many
possible reasons, ranging from motivation and literacy to
infrastructural problems at the level of FAIRification as well as
legal and ethical issues, that create uncertainty under which
conditions human research data can be shared and with whom
(Paret et al., 2022). In this paper we will focus on two related issues.
First, we want to outline the heterogeneous legal frameworks with
respect to data privacy in different geopolitical zones. The focus of
this analysis will be on comparing the goals of the frameworks and to
explicate the constraints they impose on sharing of sensitive human
data. Second, we discuss approaches for data organization and
metadata annotation in the domain of neuroscience. In other
words, standardized vocabularies or ontologies for turning data
into meaningful and interpretable information. Finally, we will
highlight initiatives and tools, that were developed to help the
individual researcher to practically implement data sharing into
their workflows.

2 Challenges for useful data sharing

Although data sharing is generally regarded as a good and desirable
practice, it creates technical as well as ethical and legal challenges.
Depending on how well these are met, the effects of data sharing can
range from useful to harmful. As always, a good intent does not
guarantee a good deed. Two big challenges to the useful sharing of
human neuroimaging data will be highlighted in the following.

A first challenge for sharing data from humans arises when they
include personal data or become personalizable (e.g., when
biometric data such as genetic information or pictures of a
person are included). Then legal and ethical restrictions may
require higher control levels for data sharing. Complications arise
from the fact that legal and ethical data protection levels vastly differ
between states and cultures around the world and that it is often

4 https://www.genome.gov/human-genome-project; last accessed: 26.
10.22.
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unclear what combination of features can make the data
personalizable. A second challenge arises from the fact that data
from experiments with human participants are oftentimes complex,
leaving the experimenter a lot of freedom with respect to organizing
and describing them. Then metadata, data describing data, is
required to make the data useful and interpretable for other
researchers or automated analysis pipelines. We call this the
metadata description challenge.

It should be noted that technical challenges like provision,
maintenance and setting up of databases, and the technical
implementation of safeguards for these repositories etc. is not in the
scope of the paper. Moreover, in this article we focus on neuroimaging
data. However, some of the points discussed, in particular the legal
frameworks, also apply to other types of human data, like genetic data.

2.1 Legal and ethical frameworks around
data sharing

Privacy issues can arisewhen the humanneuroimaging data allow for
re-identification of the person from whom they were recorded. By re-
identification we mean, that the data may provide information, that
makes it possible to tell whether it was recorded from let’s say Jane Roe or
Henry Wade. For example, anatomical magnetic-resonance-imaging
(MRI) scans can contain an image of the face which might allow for
re-identification of the person. Schwarz and others demonstrated that
individual subjects could be re-identified by matching the faces
reconstructed from MR-scans with pictures from the subjects that
originated from social media (Schwarz et al., 2019). Another study
showed that blurring the face in the MRI-scan may not be sufficient
to prevent re-identification. Using Generative Adversarial Networks, it
was shown that blurred faces could be reasonably well reconstructed to
allow for re-identification. However, completely removing the facial
features from the anatomical MRI scans greatly reduced the success
of the method (Abramian and Eklund, 2019). In the field of
neuroimaging this debate is most relevant for high resolution
structural imaging techniques that can provide anatomical images,
such as certain magnetic resonance imaging techniques.
Electrophysiological recordings, such as EEG and MEG, or fNIRS do
not provide detailed anatomical information. For that reason, data from
these devices are less likely to be re-identifiable (Jwa and Poldrack, 2022;
White et al., 2022). There is an ongoing discussion, however, to what
extent neuroimaging data in general contain individual signatures, similar
to genetic data. It has thus been suggested to consider them as a kind of
biometric data, i.e., somedata that is not alone identifiable but sufficient to
single out data from an unidentified individual X in a group of datasets
(Bannier et al., 2021). Whether the fear that human neurophysiological
data allow for direct re-identification or singling out and subsequent
identification of an individual is in general realistic or whether these are
overly conservative assumptions still needs to be shown (Jwa and
Poldrack, 2022). Moreover, it is not clear how future developments
like increasing data availability, complexity, and progress inAI techniques
contribute to the problem.

Such considerations are necessary because privacy and data
protection laws across jurisdictions offer protection against
processing of information from which a person may be re-
identified. Therefore, a basic prerequisite of shared neuroimaging
data and accompanying metadata is that the natural person from

whom it was recorded cannot be re-identified. This can create a
tension between the desire to have rich datasets with lots of metadata
describing the individual (including phenotypic data), and privacy
protection. Potential privacy breaches can have different
consequences in different legal, ethical and cultural regions
because data privacy and data protection is weighted very
differently across regions and respective jurisdictions. This can
make sharing of neuroimaging but also other “biometric” or
“identifiable” data across borders very difficult (Eke et al., 2022).
The main existing legal frameworks appear to revolve around three
agents: a natural person who donates data, private institutions with
commercial interests in the donated data, and governmental
institutions with various goals regarding the data. Below, we
provide an overview of the laws/regulations from three
representative jurisdictions EU, United States, and China. These
are the regions with the largest data resources and they span a
spectrum of regulatory frameworks in which the different and
potentially conflicting interests of the three agents are balanced
and weighted differently. Readers looking for a quick overview of the
regulations relevant for sharing human research data internationally
can refer to Table 1. Details and sources to each point are provided in
the text. A list of points researchers should consider when planning
to acquire data for sharing is provided in Table 2 at the end of the
chapter.

We would like to point out that the following section only
provides an informative overview with pointers to regulations we
considered relevant for the comparison. They should not be
considered as legal advice.

2.1.1 The European Union
In the EU the General Data Protection Regulation (GDPR) came

into effect in 2018. The GDPR was a major step to harmonize the
legal regulations for acquisition, processing, and sharing of personal
data across the jurisdictions of the Member States. This was
necessary to ensure free movement of data between EU member
states and states providing comparable data protection. It is based on
codified legal principles relating to the protection of personality and
most parts were implemented in the laws of the EU member states
before. It is directly applicable as a regulation in all Member States
without the need for further national implementation. However,
there are supplementary national and local regulations specifying
the rules and the GDPR is open for deviating national legislation in
some cases. In a sense the GDPR follows the European tradition of
the enlightenment as it aims to put the individual at the center and it
follows the tradition of civil law. One motivation contributing to the
design of the GDPR was to empower the individual against
economic interests of companies which often consider the
acquired data as their property which they can use without
further accountability. The examples for questionable or
unethical acquisition, use and (not-) sharing of user data by the
big tech companies are legion (e.g., The European Data Protection
Supervisor (EDPS)5, 2020; Koch and Todd, 2018; Kurtz et al., 2022;

5 European Data Protection Supervisor. (2020). A Preliminary Opinion on
Data Protection and Scientific Research. URL: https://edps.europa.eu/
sites/edp/files/publication/20-01-06_opinion_research_en.pdf; last
accessed: 25.10.2022.
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Spector-Bagdady, 2021). In addition, the opaque handling of
collected data, research practices and goals, created suspicions
that these practices raise barriers for research and that egoistic
economic goals of research can severely conflict with the interests of
the individual as well as society. We will briefly review the
regulations relevant for scientific data sharing in the following
sections.

The GDPR’s enormous impact is due to the broad scope that
reaches beyond institutions established in the EU. It applies to
any processing (e.g., analysis and sharing) of personal data in the
context of the activities of a data controller (person who has
control over the data) or a data processor (person who processes
the data), regardless of whether these activities take place in the
Union or not (GDPR Art. 3 (1)). The GDPR also restricts
collection and processing of personal data by states. In short,
the GDPR provides regulations for the protection of personal
data of natural persons by establishing binding principles (e.g.,
transparency, purpose limitation and data minimization, GDPR
Art. 5) and by defining a set of lawful processing purposes (GDPR
Art. 6). One way to implement legal processing is to obtain
consent from the person who donates data (data subject). The
GDPR also defines rights of data subjects (GDPR Art. 12–23), and
mechanisms to enforce their rights (GDPR Art. 77–84).

The GDPR defines personal data broadly as “any information
relating to an identified or identifiable natural person”, the data
subject (GDPR Art. 4 (5)). One measure to protect personal data is
to pseudonymize it (GDPR Art. 25), meaning that the data are
processed in a way that they cannot be directly related to the data
subject. This can be achieved, for example, by separating all personal
information, that would allow re-identification, e.g., data to handle
the compensation for participation like name, address, bank account
etc., from the data to be processed. The link between data and
personal information is stored in a coding list which is kept separate
from the data. Pseudonymization is a safeguard for sharing that is
provided in other regulations too (see Sections 2.1.2, 2.1.3) and in
practice most neuroimaging labs already implement such a policy.
Moreover, the coding list would be in the hands of the data
controller, who determines the means and purposes of the data
processing, but it would not be accessible to the data processor. This
is not always possible, e.g., when the data controller and the data
processor are the same person. However, there are ways to deal with
such problems, e.g., by handing coding list and personal information
to another trustworthy person. Importantly, the coding list must not
be shared and a third-party data processor must not gain access to
the content of the coding list. It should be noted that pseudonymized
data are still in the scope of the GDPR as they can be associated with

TABLE 1 Overview of data protection regulations for publicly funded research.

Aspect EU United States China

Relevant laws and regulations GDPR and local data protection laws as instances
of it.

Dependent on applicable regulator: e.g.,
HIPAA, Common Rule, special rules.

CSL, DSL, PIPL, CCC, and field specific
regulations by MOST

What is protected All processing of identifiable, pseudonymized, or
special personal data. Anonymized data are
exempted.

Common Rule: only identifiable private
information collected during research.

Personal information (includes sensitive
information, such as biometric and medical
health data) and data sovereignty of China.

HIPAA: personal health related data.

What is personal information Any information related to identified or
identifiable natural person

Common Rule: Information from which
the identity of the subject be readily
ascertained

Information related to identified or
identifiable natural persons.

HIPAA: individually identifiable health
information.

Measures of responsible
person (e.g., researchers) to
protect personal data

Pseudonymization (e.g., replace identifiable
information with code), anonymization (no
identifiable and sensitive information)

Common Rule: Unclear De-identification, anonymization (impossible
to identify person)

HIPAA: de-identification e.g., by Safe
Harbor Method (similar to
pseudonymization) and DUA

Consent required for All processing (here sharing) of personal,
pseudonymized and sensitive data. Extended
consent possible. For non-sensitive data other
legal grounds Art. 6 I

Common Rule: Broad consent.
Secondary use without consent.

Separate consent for different processing
purposes. Sensitive data additionally require
special purpose. New purposes require new
consent.

HIPAA: written informed consent for
data sharing or DUA

IRB required Yes and legal assessment Yes IRB not mentioned. Sharing might be
restricted by state institutions (e.g., genetic
data).

With whom can adequately
protected data be shared

Researchers in EU and adequacy region. Consent
and DUA may allow widening scope.

Common Rule: policy evolving. HIPAA
rules sufficient.

Sharing outside mainland requires several
safety measures and local safeguard.

HIPAA: With consent and/or DUA no
restriction.
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a data subject by means of other information (e.g., the coding list,
Recital 26). Conversely, anonymous data, which cannot be related to
a natural person, is not covered by the GDPR (Recital 26), meaning
that processing of anonymized data is outside the scope of the
GDPR. However, this is not true for the processing up to the point of
anonymization, for which a legal ground is still necessary. The
GDPR does not suppose that means for personal data protection are
perfect and unbreakable. Therefore, it adopts a risk-based protection
assessment. The risk of re-identification or other misuse of the data
should be minimized by considering state-of-the-art technology, but
the data controller should also consider the costs for protection and
re-identification, as well as the likelihood and severity of risks arising
for the natural person from re-identification (GDPR Art. 25, 32,
Recital 26).

As the GDPR promotes privacy by design and default (GDPR
Art. 25) it has been argued that personal data cannot be shared with
other researchers under the GDPR and that the GDPR therefore
poses an obstacle for free international dataflow and hence scientific
research (Eke et al., 2022). Unfortunately, this is a widely adopted
misconception. The GDPR weights the value of scientific research
and offers a range of derogations from the strict protection of
personal data for scientific research and academic expression
(GDPR Art. 85, Art. 5 (1) (b), (e)). However, some safeguards
(GDPR Art. 89) must be met. The European Data Protection
Supervisor (EDPS 2020)6 lists transparency and being in the
public interest as central features of scientific research. Moreover,
the safeguards that need to be implemented include explicit
informed consent to the sharing of personal data and
independent ethical oversight, e.g., by an ethics committee.
Personal data can be processed to make them suitable for
archiving in public interest, meaning they can be pseudonymized
and made available in research data repositories in pseudonymized
form. Moreover, the data can be processed for scientific, historical,
and statistical purposes (GDPR Art. 89) and for other purposes than
those for which they were initially collected if consent was collected
and recognized ethical standards for scientific research are met
(GDPR Recital 33, 50). Privacy by design and default can be
supported by Codes of Conduct like the “Code of Conduct on
privacy for mobile health applications”7 though that has not yet been
adopted. Moreover, the position paper “A preliminary opinion on
data protection and scientific research.” by the EDPS (2020)8

provides some advice for the interpretation of the GDPR in that
respect.

The GDPR, like other regulations (see Sections 2.1.2, 2.1.3), puts
particularly strong restrictions on the processing of special categories
of data (e.g., health data or biometric data, Art. 9 GDPR). Some
processing purposes are allowed and explicit consent for the

processing is required (Art. 9 GDPR). But the GDPR also
acknowledges the importance of science and research for society
and provides some privileges for research purposes, to balance
research with the rights of the individual (see Wiebe, 2020) and
permits derogations to the prohibition of the processing of special
data in accordance with GDPR Art. 89. Of special relevance are
processing permissions for scientific purposes in Art. 9 (2) (j) GDPR
that are specified by national legislation. For example, in Germany,
the weighing of interests is a prerequisite for lawful processing (§
27 German Data Protection Statute, BDSG). Article 7 (2) (h) of
GDPR defines permissions for medical and (public) health related
processing. However, specific measures to safeguard the
fundamental rights and interests of the data subject must be
implemented. For neuroimaging data sharing, explicit consent,
mechanisms for access control and contracts in the form of data
use agreements have been suggested (Bannier et al., 2021; Staunton
et al., 2022). The exact scope of these permission with respect to the
development and use of AI systems in the health sector has still to be
developed, in connection with appropriate safeguards.

In the context of scientific research, data fulfilling the outlined
requirements of the GDPR can and should be freely exchanged
between researchers in the EU member states and those states with
an adequacy decision, which means that they are recognized to offer
data protection at a comparable level as the GDPR (see here9 for a list
of countries for which such adequacy decisions have been made).
The Data Governance Act202210 seeks to enhance data sharing by
removing technical and organizational obstacles to data sharing and
provide a secure infrastructure for data sharing within the EU. It
includes the promotion of the development of data intermediation
services and the development of arrangements to facilitate data use
on altruistic grounds, i.e., to make data available voluntarily, without
reward, to be used in the public interest. E.g., Art. 25 of the Data
Governance Act foresees the development of a European data
altruism consent form, which shall allow the collection of
consent or permission across Member States in a uniform
format. Moreover, the European Commission issued plans to
build a European Health Data Space which provides individual
persons control over their health data in concordance with the
GDPR (Directorate-General for Health and Food Safety, 2022)11.
However, currently, due to a very restrictive decision of the
European Court of Justice12, transfer of personal data to third
countries are very difficult to pursue lawfully with very high
requirements on safeguards in the target country and their
practical effectiveness. This applies to each country for which no
adequacy decision, as stated above, exists, including countries like
China and the United States. On the political level, efforts are
underway to establish a renewed “safe harbor” for transfers to

6 European Data Protection Supervisor. (2020). A Preliminary Opinion on
Data Protection and Scientific Research. URL: https://edps.europa.eu/
sites/edp/files/publication/20-01-06_opinion_research_en.pdf; last
accessed: 25.10.2022.

7 https://digital-strategy.ec.europa.eu/en/policies/privacy-mobile-health-
apps; last accessed: 25.10.22.

8 European Data Protection Supervisor. (2020). A Preliminary Opinion on
Data Protection and Scientific Research. URL: https://edps.europa.eu/
sites/edp/files/publication/20-01-06_opinion_research_en.pdf; last
accessed: 25.10.2022.

9 https://ec.europa.eu/info/law/law-topic/data-protection/international-
dimension-data-protection/adequacy-decisions_en; last accessed: 24.
10.2022.

10 http://data.europa.eu/eli/reg/2022/868/oj; last accessed: 25.10.22.

11 https://health.ec.europa.eu/publications/communication-commission-
european-health-data-space-harnessing-power-health-data-people-
patients-and_en; last accessed: 21.10.2022.

12 https://www.europarl.europa.eu/RegData/etudes/ATAG/2020/652073/
EPRS_ATA(2020)652073_EN.pdf; last accessed: 28.10.2022.
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the U.S. However, this does not mean that personal or special
category data cannot be shared with researchers in countries
outside the EU or if no adequacy decision exists. For the transfer
of special data to a third country without adequacy decision, explicit
consent to the transfer by the data subject can be a potential legal
basis if the transfer is not done on a regular basis (GDPR Art 49;
EDPS, 202013).

In sum, the GDPR defines a legal framework for the processing
and transfer of personal data that aims to protect the individual and
harmonize the legal frameworks across member states in order to
simplify privacy protection and data exchange between states. It
establishes as world-wide “gold standard” and serves as a blue print
for most recently developed personal data protection laws
(Greenleaf, 2022), among many others in multiple US-states
(California, Wyoming, Ohio New York), in Canada, Brazil, and
in some parts for the recently enacted Personal Information
Protection Law of China.

2.1.2 The United States of America
In comparison to other nations the US has relatively weak

personal data protection laws and data transfer legislations
(Pernot-Leplay, 2020; Jwa and Poldrack, 2022). However, at the
same time, in the United States the situation is complex and follows
the tradition of case law that aims to regulate actions of agents. The
regulations under which data are shared have been developed by
several bodies with different fields of competence. Consequently, the
regulation under which human data is shared might depend on the
goal of the research (e.g., FDA for medical device development) and
where it was collected (e.g., HIPAA for healthcare providers or the
Common rule which defines a baseline standard for almost any
government-funded research in the US). In addition, specific rules of
funding bodies may apply. These regulations were developed to
support the basic ethical principles of respect for persons (autonomy
supported by informed consent), beneficence (assessment of risks
and benefits), justice (selection of participants) stated in the Belmont
Report (National Commission for the Protection of Human Subjects
of Biomedical and Behavioral Research, 1979)14. The regulations are
not laws as they were developed by federal regulatory bodies but not
by congress (Kulynych, 2007; Clayton et al., 2019). Therefore,
sanctioning of violations of the regulations is done by the
regulatory departments of the funding bodies. Individual research
participants may have only limited means for legal action (Spector-
Bagdady, 2021). Generally, this may be sufficient for publicly funded
neuroimaging research but it has been questioned if the Common
Rule is sufficient to guarantee privacy rights to research subjects in
the private sector, for example, for companies who collect genetic
data to build database for commercial secondary use (Koch and

Todd, 2018; Meyer, 2020). The existing situation leaves a large space
for a field of unregulated research on human subjects and data
processing/brokering, e.g., in privately funded research (Price and
Cohen, 2019; Price et al., 2019; Meyer, 2020). The situation is
sufficiently complex that we can provide here only a coarse
overview. More in depth reviews are provided, for example, by
Kulynych (2007) and Spector-Bagdady (2021). In the following, we
will briefly go through a few aspects of the above-mentioned
regulations relevant for data sharing.

The most basic fallback regulation if no other specific regulation
applies (see below) is the Common Rule (45 CFR 46), it was defined
by the Department of Health and Human Services and has been
adopted by a number of federal agencies that fund or conduct
research. In addition, institutions not covered may voluntarily
submit an assurance to comply with it. Virtually all academic
research institutions in the US are covered by the Common Rule
under these premises. However, there is research on humans that is
not covered by the Common Rule because it is exempt, the
institutions are not federally funded, do not want to provide an
assurance, or because they are covered by a different regulation
(Meyer, 2020). The Common Rule has a broad action-oriented
definition of research as “a systematic investigation, including
research development, testing, and evaluation, designed to
develop or contribute to generalizable knowledge.” (45 C.F.R.
46.102(l)). The definition of research on human subjects is also
action oriented. It involves a living individual, about whom an
investigator obtains information or biospecimens through
intervention or interaction with the individual, and uses, studies,
or analyzes it; or obtains, uses, studies, analyzes, or generates
identifiable private information or identifiable biospecimens
(45 CFR 46.102 (e)). Identifiable private information is private
information for which the identity of the subject is or may
readily be ascertained by the investigator. (45 CFR 46.102(e) (5)).
As a consequence, research that neither interacts with the human
subject (i.e., does not collect the data) nor uses data with identifiable
personal information (i.e., de-identified data) does not fall under the
Common Rule (Koch and Todd, 2018). Thus, secondary research on
not individually identifiable data that has been obtained, for
example, from a public database likely does not fall under the
Common Rule. It may neither need IRB approval nor consent
(Meyer, 2020). The Common Rule is not clear about the
standards for what counts as identifiable personal information
and acknowledges the risk that such information could be
generated (e.g., by re-identification of non-identifiable data or by
merging of information from different sources like coding lists). It
therefore implements a regular process of re-examining the
definition of identifiable data. The Common Rule suggests that
“broad consent” should be collected from the participants if
identifiable data will be stored, maintained, or processed in
secondary research. However, there are also several conditions
under which the requirement to obtain consent are waived for
research on subjects performed in covered institutions (Koch and
Todd, 2018). The control of adherence to the Common Rule of
covered research is done by the Office for Human Research
Protections (OHPR). Enforcement measures can range from
termination of the research, including termination of funding, to
the exclusion of the investigator from federal funding. However, the
Common Rule does not implement options for legal action for

13 European Data Protection Supervisor. (2020). A Preliminary Opinion on
Data Protection and Scientific Research. URL: https://edps.europa.eu/
sites/edp/files/publication/20-01-06_opinion_research_en.pdf; last
accessed: 25.10.2022.

14 National Commission for the Protection of Human Subjects of
Biomedical and Behavioral Research. (1979). The Belmont report:
Ethical principles and guidelines for the protection of human subjects
of research. U.S. Department of Health and Human Services. Retrieved
from https://www.hhs.gov/ohrp/regulations-and-policy/belmont-
report/read-the-belmont-report/index.html; last accessed: 26.10.22.
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human participants, e.g., in case of privacy breaches or insufficient/
inaccurate informed consent (Kulynych, 2007).

The Health Insurance Portability and Accountability Act
(HIPAA) covers protected health information (PHI) collected by
covered entities and their business associates. PHI means
individually identifiable health information (45 CFR 160.103).
This can include neuroimaging, genetic and other health related
data. Covered entities can be hospitals (and their neuroimaging
units), healthcare providers etc. Under HIPAA research is defined as
“a systematic investigation, including research development, testing,
and evaluation, designed to develop or contribute to generalizable
knowledge” (45 CFR 160.501). This definition differs from the
Common Rule as it does not require interaction with the
participants and therefore secondary data use is not automatically
out of the reach of HIPAA. Data protection is implemented by a
privacy and a security rule. The latter comprises storing and
handling of data while the former defines limits of data sharing
and rights of individuals. PHI can be shared with business associates
under a contract ensuring adherence to the HIPAA rules. HIPAA
requires written informed consent for data sharing (Kulynych, 2007).
In principle identifiable neuroimaging data could be shared if waiver
was granted by an IRB on the basis that the research cannot be
performed with de-identified data (Kulynych, 2007; Spector-
Bagdady, 2021). However, de-identified neuroimaging data can
be publicly shared (disclosed in HIPAA terminology). In contrast
to the Common Rule HIPAA provides a set of approaches to de-
identify data, of which at least one must be implemented (45 CFR
164.514). In concordance with GDPR it requires that “the risk is very
small that the information could be used, alone or in combination
with other reasonably available information, by an anticipated
recipient to identify the individual who is a subject of the
information”. The Expert Method requires some expert (e.g., a
statistician) to confirm that the risk of identification is low.
Alternatively, the Safe Harbor Method requires that faces,
biometric, and a list of 16 other identifiers15 are removed from
the data. A code can be assigned for de-identification that allows a
restricted number of persons, with access to the code, re-
identification. This is similar to pseudonymization under GDPR.
HIPAA also requires sparseness regarding people with access to PHI
and the amount of information released. It grants the release of de-
identified PHI under a Data Use Agreement (DUA) and defines a
minimal set of requirements that must be included in these DUAs,
such as the prohibition of re-identification. Moreover, participants
have the right to access the stored data, to correct it, and the right to
restrict the uses and the disclosure (sharing) of the data (Wolf and
Evans, 2018). Thus, individuals may have access to raw data and
interpreted results. This is in stark contrast to the Common Rule but
similar to GDPR. Another important difference to the Common
Rule is that individuals have the right to complain to the covered
entity and the Secretary if HIPAA rules are violated and the
Department of Health and Human Services (HHS) can sanction
non-adherence with a civil monetary penalty.

Additional or other regulations hold for research with a different
scope. For example, human data collected in NIH funded research
fall under a Certificate of Confidentiality policy and FDA regulations
apply if human data was collected in the context of medical device or
drug development/testing (see e.g., regulation of the test kits for
direct-to-consumer genetic testing, Spector-Bagdady, 2021). This
multitude of regulations is not only a burden for researchers and
human research participants. They also pose a problem for data
scientist who want to make use of the data and become even more
virulent when the neuroimaging data is augmented by meta- or
other data. Rosati (2022) points out that the scopes and concepts of
the definitions of de-identified data differ among the Common Rule,
HIPAA, and the NIH Data Management and Sharing policy. As a
consequence, the same data can be analyzed under different
regulatory regimes depending on who analyses them, for what
purpose and whether they are de-identified or identifiable.

In sum, a host of regulations exists in the US which cover
different institutions and types of research. Despite that, the
protection of data from humans voluntarily donating their data
for research appears relatively weak. Even the fallback option
“Common Rule” does not cover all research uncovered by other
regulations. As a simple example the Common Rule does not apply
to citizen scientists when they obtain human data (Meyer, 2020).
The regulations create space for a field of unregulated research on
human subjects and data processing/brokering gained in such
research, e.g., privately funded research (Meyer, 2020). Also,
research on publicly shared data obtained from open repositories
often neither needs ethical review nor consent. Note that the GDPR
would still cover secondary data use (e.g., downloaded from a
database) and pseudonymized (de-identified) data. The current
combination of weak protection of research participants by
federal law and case law which favors data collection and access
over participants’ autonomy (Kulynych, 2007; Price et al., 2019;
Spector-Bagdady, 2021) triggered the development of new data
privacy laws like the California Consumer Privacy Act (CCPA),
which is strongly oriented along the GDPR. Although CCPA
explicitly excludes data regulated under HIPAA, this may be the
starting point for a more principled regulation with a wider scope
that closes gaps left by existing regulations (Price et al., 2019). On the
federal level there is now the American Data Privacy and Protection
Act (ADPPA)16 in the legislative process, that will largely pre-empt
state laws if it comes into force.

2.1.3 China
China’s data protection has been suggested to implement a third

way between EU’s GDPR, which implements a basic right for
protection of personal information and control by the individual
data subject with extraterritorial reach, and the decentralized,
application field and data processor oriented regulations issued
by different authorities in the US (Pernot-Leplay, 2020). China
builds on a hierarchy of laws of which the higher level ones, the
Cyber Security Law (CSL), the Data Security Law (DSL), the
Personal Information Protection Law (PIPL), and the Civil Code

15 https://www.law.cornell.edu/cfr/text/45/164.514; last accessed: 01.03.
2023.

16 https://www.dataguidance.com/jurisdiction/usa-federal; last accessed:
28.10.22.
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of the People’s Republic of China (CCC), constitute a normative,
systematic, and complete personal information framework that is
supposed to guide regulations released by domain specific
institutions (Pernot-Leplay, 2020; Wang et al., 2022). This is
reminiscent of the EU approach. The “lower level” regulations are
then supposed to provide the framework for the handling of data by
specific actors in specific fields. This is reminiscent of the situation in
the US, where regulations are flexibly defined within certain
domains and are only valid there.

The CSL was enacted 2016, 5 years before PIPL, DSL, and CCC
which were enacted in 2021. The CSL and the DSL focus on the
protection of national security and public interest, while the PIPL
and CCC (Art. 1034–1039) focus on the protection of personal
information. The CSL and DSL implement the principle of data
sovereignty of China, by giving the state control of over the data
acquired on the mainland of China. The DSL categorizes data in the
three groups of national core data, important data, and general data
where national core data can be subject to cross border protection if
they are relevant for national security or public interest (Creemers,
2022; S. Li and Kit, 2021).

The PIPL and the CCC (Art. 1034–1039) protect personal
information rights and interests of natural persons and seek to
promote the appropriate use of personal information (PIPL Art. 1;
Cheng, 2022, see Presentation 1 in Supplementary Material for
original Chinese version of this publication and Table 1 for a
translation into English of the important sections). They
distinguish private and non-private information; sensitive and
non-sensitive personal information. PIPL is superficially
reminiscent of the GDPR but has important differences as it puts
more emphasis on the governance model under the principle of
national sovereignty. PIPL considers it the state´s task to safeguard
personal data at the national and international level and delegates
protection to other laws, administrative regulations, and
infrastructure programs.

In Article 4 PIPL17 defines personal information as information
related to identified or identifiable natural persons as opposed to
anonymous information. Anonymous information is defined in a
very strict sense as “impossible to distinguish specific natural
persons and impossible to restore” (PIPL Art. 73 (4)). Data
handlers must de-identify personal information to ensure it is
impossible to identify specific natural persons without the
support of additional information (PIPL Art. 73 (3)). This is
similar to the concept of pseudonymization in the GDPR or de-
identification under HIPAA.

PIPL does not distinguish data controller from data user and
subsumes the concepts under the term data handler. The data
handler is responsible for the security of the personal
information they handle (PIPL Art. 9). Articles 51–59 define
their duties and Articles 66–71 define legal punishments for
violations of the laws and regulations on personal information
handling, including monetary penalties. Interestingly, they also

define penalties for the responsible person(s) for failures of state
organs to protect personal information.

PIPL requires informed consent from the data subject for
personal information handling (PIPL Art. 13) but provides many
exceptions, including other laws and regulations. The consent must
be detailed (e.g., purposes of data handling, transfer abroad etc.) and
must be obtained again if new purposes of data handling are
intended (PIPL Art. 14) but it can be withdrawn by the data
subject (PIPL Art. 15). Interestingly, at the level of PIPL there is
no mention of independent review boards in the sense of IRBs.

PIPL additionally defines sensitive personal information which
includes, among others, biometric characteristics and medical health
data (PIPL Art. 28 (1)). The handling of sensitive personal
information should comply with the principle of “specific
purpose” plus “separate consent” (Wang, 2022, see Presentation 2
in Supplementary Material for original Chinese version of this
publication and Table 1 for a translation into English of the
important sections). Firstly, the handling of sensitive personal
information must be for a specific purpose and with sufficient
necessity, as well as with strict safeguards (PIPL Art 28 (2)).
Secondly, the separate consent must be obtained for handling
sensitive information (PIPL Art. 29). However, the concept of a
“specific purpose” is indistinct. In addition, many details of the
practical implementation of handling sensitive information is
delegated to other laws and regulations.

Article 36 of PIPL requires personal information handled by
state organs to be stored on mainland China. This likely includes
the majority of neuroimaging, genetic and other research data.
Articles 38–43 regulate sharing of personal information across
borders. They require justifications for sharing abroad, security
assessments, standard contracts, notification of the data subjects,
and put the burden to control adherence of the foreign receiving
party to the regulations onto the data handler. In addition, Article
53 requires from the extraterritorial data handler the
appointment of a representative on China mainland who must
be reported to the relevant departments. This could mean that a
collaborator from China is necessary when human research data
from there are processed abroad. Articles 44–50 provide data
subjects the right to require data handlers to provide, correct,
transfer, or delete their data. Articles 60–65 define departments
responsible for the oversight over the personal information
protection, putting the Cybersecurity and Information
Department at the top of the hierarchy. Here it is also stated
that everyone has the right to complain about unlawful personal
information handling activities.

PIPL is a relatively new law and the future will show which
effects it has on sharing of neuroimaging data. Even before PIPL
came into effect, several constraints on international research data
exchange (e.g., the access of foreign researchers to genetic data
collected on mainland China) were implemented in laws and
regulations for state reasons. In March 2018, the State Council
issued the “Measures for the Management of Scientific Data”, or
short “The Measures”18. The Measures are binding for research
institutions. They state that a scientific data archive system should be

17 Creemers R. and Webster G. (2021) Translation: Personal Information
Protection Law of the People’s Republic of China–Effective Nov. 1, 2021.
Retrieved from https://digichina.stanford.edu/work/translation-
personal-information-protection-law-of-the-peoples-republic-of-
china-effective-nov-1-2021/; last accessed 24.10.2022. 18 https://www.sciping.com/33787.html; last accessed 24.10.2022.
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established and that government-funded scientific data should be
submitted to this data center (The Measures Art. 12 & 13). For data
produced in government funded research the Ministry of Science
and Technology (MOST) can decide whether data can be shared or
not. Among the criteria for restricting sharing are whether the
scientific data contain personal information or concern national
security. The adherence to the privacy laws is supposed to be
implemented at the level of the data center policies which are
currently evolving (Li et al., 2022). The complex and domain
specific regulatory framework and its consequences for
international sharing has been mostly analyzed in the field of
human genetic data where China has considerable data resources.
Chen and Song (2018) provide an overview of the laws and
regulations and conclude that while data privacy plays a role in
the regulation of data transfers, the national interest and security
became a main reason for their protection by restricting their
processing to the China mainland and requiring researchers from
abroad to collaborate with a Chinese researcher or institution if they
want to process genetic data collected in China (Chen and Song,
2018; Mallapaty, 2022). Sharing of neuroimaging data may be less
affected by national interests as long as they are not considered
health data. Regulations like safety assessment, data use agreement,
data protection impact assessments, and consent for transfer may
apply only from a certain size of the data sets upwards (PIPL Art. 52,
Mallapaty, 2022). Moreover, the MOST has recently released a very
general set of ethical norms for the use of AI in China which also
covers the use and protection of personal information (Dixon,
2022).

In sum PIPL has superficial similarities to the GDPR in that
it provides data subjects similar protection mechanisms
(personal data, special data, requirement of consent for
processing, right to withdraw consent, right to obtain
information, correction/deletion of data etc.) and
mechanisms to enforce their rights. These protection rights
are sometimes even stronger than in the GDPR. However, it is
formulated in a very general way and relies on domain specific
regulations implemented by the respective authorities, similar
to the data protection regulations in the US. With the additional
CSL and DSL it implements mechanisms that allow state
authorities to control the transfer and processing of data
collected in the mainland of China to researchers abroad,
thereby establishing mechanisms to enforce data sovereignty
of the state. These export restrictions already have some effects
in the field of human genetics. As PIPL and DSL are relatively
new laws and the specific regulations are currently emerging it
remains to be seen what impact they will have on the exchange
of neuroimaging data.

2.1.4 Summary
The review of the three systems must remain incomplete in breadth

as well as in depth. However, it highlights some convergences and
differences between the regulations in three geographic and cultural
regions that can be considered as among the top scientific data generators
and their regulations span a spectrum in which most of the currently
emerging data privacy regulations may be contained. Convergent among
the regulations is that they all have regulations to protect private
information and sensitive data. They all require explicit informed
consent for the acquisition and sharing of data and, in general,
require that the data is at least de-identified/pseudonymized or
anonymized before data processing and sharing. They all suggest or
require some form of contractual agreement between the data supplier
and the data receiver to ensure that the data is processed in concordance
with the regulations of the country in which they were acquired. While
there is agreement in the subject of protection and some general means
for protection of human research data, there is a great diversity in the way
how the regulations are implemented and in their reach of protection.
While the EU GDPR puts the protection of the individual at the center
and seeks to balance it with the interest of science, theUS regulations tend
to favor the accessibility of data for science and economy over privacy.
Laws and regulations in China emphasize both the protection of the
individual as well as state interest and data sovereignty. Moreover, the
regulations differ considerably with respect to accountability, liability, and
sanctioning with the most lenient regulations in the US and potentially
the most comprehensive definitions of responsibilities in China’s laws.
Importantly care should be taken when matching terminology across
jurisdictions (Eke et al., 2021). The same terms may have somewhat
different meanings and some functional roles that may be distinguished
in one context (e.g., data controller and data processors in GDPR) but
lumped into one role in another (data handler in PIPL). It is, however,
encouraging that there appears to be sufficient overlap that a limited set of
measures could allow neuroimaging data sharing in a way that is
compatible with all three sets of regulations for privacy protection.
Table 2 provides an overview of such measures for the three
jurisdictions. However, this should be further analyzed and
corresponding procedures should be developed.

2.2 The (meta)data description challenge

Even when legal regulations are met and datasets are publicly shared,
it is not guaranteed that the information in them is accessible and useful
for a data processor. The FAIR principles (Wilkinson et al., 2016) state
some general requirements of how scientific data should be handled and
documented to make them useful for others. The acronym FAIR stands
for Findable, Accessible, Interoperable, and Reusable. Findability means

TABLE 2 Some points researchers need to consider when sharing data or using shared data.

EU United States China

IRB, approval of lawfulness of processing,
pseudonymization (anonymized data not covered by
DPR). Specific consent important for legal sharing.

Under HIPAA: IRB, de-identification or anonymization
(e.g., Safe Harbor Method), consent for sharing and/or
DUA, depending on type of data.

De-identification. Very high standard for
anonymization. Detailed consent for all forms of
processing.

Lawful sharing possible within EU an states with
adequacy decision. DUA to restrict processing purposes
of data recipient outside EU.

No restriction for sharing into different countries. Complex procedure for sharing outside mainland
China. May require collaborator in China or be
impossible depending on data classification.
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that the data is either aggregated in a way (e.g., on a server) that the user
knows where to look for them or that they are equipped with descriptive
metadata such that some sort of search engine can retrieve their location.
In addition, data should have a persistent identifier, such as a digital object
identifier (doi), to assure findability over a long time period. Accessibility
refers to the ability of a human or a computer to either retrieve the data
from their storage location or to run them through an analysis pipeline on
a remote server without retrieving them. Interoperability means that data
should integrate into different data analysis ecosystems as well as the
integration of data with other data. In particular with big data,
interoperability is necessary to use the data on computers without or
with minimal human interaction. Reusability aims at efficient data use
which is of particular importance for data that are rare or expensive to
produce. Itmeans that data should not only be useful for the purpose they
were originally collected for (Bigdely-Shamlo et al., 2020; Niso et al.,
2022).

To match these requirements, research data need to be
organized according to some standard. Using a standardized data
structure alone, however does not suffice to ensure that shared data
become findable, interoperable, or reusable, for example, in large-
scale meta studies. Proper description of the data is another
requirement. This has been pointed out, among others, by the
European Commission expert group for FAIR data. The expert
group recommended comprehensive documentation of research
products, such as experimental data or analysis pipelines,
through metadata (European Commission and Directorate-
General for Research and Innovation, 2018). Ideally, these
metadata are based on standard vocabularies or ontologies, which
add semantics to the terms of the vocabulary.

The domains for metadata range from descriptions of the
human participants, the experiment, the nature of the
experimental data, additional tests and surveys, to consent and
usage restrictions. Even though, many publicly shared datasets
contain some metadata, these are likely not descriptive enough to
effectively re-use them and working with such data can be error-
prone and tedious (Niso et al., 2022). Additionally, metadata are
often described in idiosyncratic terminology of the researchers, who
share the dataset, making them hard to interpret for (other) humans
and impossible for machines. This severely restricts findability,
interoperability, and reusability. The latter particularly in the
context of big data research efforts. One way to cope with this
problem is to define vocabularies or even ontologies, which can then
be used to annotate the data in a standardized manner. For example,
a neuroimaging dataset with standardized event annotation can be
re-used for purposes it was not originally collected for (Bigdely-
Shamlo et al., 2020; Niso et al., 2022), simply because the experiment
may include events, that were unrelated to the original research
question but necessary for the structure of the experiment (e.g.,
button press events that require motor responses which might not
have been in the scope of the original study). Ideally, if augmented by
rich metadata, complex datasets can be used in many studies with
different purposes (e.g., United Kingdom Biobank19, Study
Forrest20)

Recently, the neuroimaging community elaborated open
standards for data storage yielding common structural
organizations of raw datasets from different modalities (Teeters
et al., 2015; Gorgolewski et al., 2016; Niso et al., 2018; Pernet et al.,
2019). The most commonly used is the Brain Imaging Data
Structure (BIDS21, Gorgolewski et al., 2016). Importantly, many
neuroimaging data analysis tools have adopted the standard and
interoperate on it to some degree. However, the standardization is
still not comprehensive enough to guarantee the full FAIRification of
datasets including derivatives. Moreover, other scientific
communities may have different standards that may be less
developed or lack standards at all. The reasons for that can be
manifold, including but not restricted to the lack of a culture
supporting sharing, the ubiquitous use of closed commercial
systems, or particularly strong data protection constraints due to
commercial interests, as in industry or in the health domain. Since
we cannot cover the wide range of data standards in this paper, we
focus on BIDS as a showcase for structured data storage enriched
with some metadata.

2.2.1 BIDS
BIDS is a community driven project to abstract and standardize

the representation of neuroimaging data. Essentially it breaks down
to a hierarchical directory structure with specific data-file and folder
naming conventions plus some standardized metadata for the
description of the image acquisition and the event annotations of
the experiment (given that the experiment deploys a task-based
structure). Importantly, BIDS is not only defined as a human
readable directory hierarchy but also as a computer interoperable
schema, which allows for more flexibility, is less error-prone with
respect to maintenance of the standard, and facilitates the usage of
automated processing pipelines on BIDS datasets. Moreover, the
metadata and some of the data (e.g., timing of events) are also
human readable, which eases the understanding of the dataset. Such
a unifying data structure carries the potential to make
neuroscientific research more transparent and encourages data
sharing between researchers and labs.

These advantages of BIDS only apply if the data structure is
widely accepted and used. For this reason many experts from the
neuroimaging community were consulted during the development
of BIDS to create a data format which is intuitive and easy to use
while being able to handle a variety of experimental data, e.g., from
different modalities such as fMRI (Gorgolewski et al., 2016), EEG
(Pernet et al., 2019), MEG (Niso et al., 2018), behavioral data, and
many more. It can thus be used for most experiments and even
across imaging techniques for the standardized storage of
multimodal datasets. Since BIDS is a rather young development
and open source, it is constantly evolving to describe more aspects of
the data acquisition and the respective analyses applied.

BIDS defines some basic data acquisition related metadata and
strongly recommends to include them in every dataset. Additionally,
BIDS requires that metadata are stored in the Java Script Object
Notation (JSON), an open and text-based file format consisting of
attribute-value pairs that are both human and machine readable.

19 https://www.ukbiobank.ac.uk; last accessed: 26.10.22.

20 https://www.studyforrest.org/; last accessed: 26.10.22. 21 https://bids.neuroimaging.io/; last accessed: 26.10.22.
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Even though these JSON files are not mandatory according to the
BIDS specification, they are most often included in (publicly shared)
BIDS datasets, simply because the tools that convert datasets from
the vendor specific format to BIDS extract them from the former and
write them to the JSON-files of the latter. These conversion tools are
currently best developed in the MRI domain, e.g., HeuDiConv
(Halchenko Y. et al., 2021) and dcm2bids22, but there are
ongoing community efforts to facilitate the conversion to BIDS
for other modalities, such as MEEG (MNE-BIDS23, Appelhoff et al.,
2019). However, these basic metadata defined in BIDS do not suffice
for exhaustive description of the raw data nor for the description of
analyses employed to obtain data derivatives, e.g., results of an
analysis. One of the reasons is that BIDS defines a framework for
several data acquisitions modalities, all of which require domain
specific metadata. Additionally, different fields of research may
require different metadata which again adds complexity to the
task of developing an exhaustive, overarching and modality
agnostic metadata standard within BIDS.

2.2.2 HED tags and the neuroimaging data model
(NIDM)

In the neuroimaging domain the Hierarchical Event Descriptor
standard (HED24, Bigdely-Shamlo et al., 2016; Robbins et al., 2021) is
an infrastructure which defines rules for controlled and
hierarchically organized vocabularies. Terms from these
vocabularies can then be used to describe the nature and time
course of an experiment, that was performed while brain data
was recorded, by tagging the data with keywords while assuring
findability of these tags during downstream analyses. The HED base
schema defines a hierarchical vocabulary for the description of basic
stimuli, responses, tasks and experimental conditions. However,
more specialized or domain specific vocabularies/schemas can be
added to the standard as long as they adhere to the rules for
schemata defined by HED. One example is the SCORE
vocabulary for clinical EEG annotation (Beniczky et al., 2013,
2017), which has been converted to an HED schema and is
currently under community review. Moreover, existing
vocabularies can be extended to cover a wider range of
applications or use cases. HED was developed in a community
effort, recently fully integrated into the BIDS ecosystem and since
the release of BIDS 1.8.0. tagging data with terms from, multiple
vocabularies is accepted25.While far from being able to completely
annotate all research products, like analysis pipelines, the HED
vocabularies are an important ingredient to make data sets machine
actionable and reduce ambiguity for human researchers. Moreover,
tagging your data with these standardized HED-tags allows for
better collation of separately recorded datasets.

The Neuroimaging Data Model (NIDM26, Keator et al., 2013;
Maumet et al., 2016) complements HED by providing additional

functionality, such as the description of analysis workflows and
results (though currently limited to MRI-data). Importantly it
provides methods to describe the provenance of research
products, i.e., the way they were generated. Provenance
documentation is expected to increase reproducibility and to
improve the usefulness of sharing analysis methods. NIDM
employs different components to model different aspects of the
data: NIDM Experiment for capturing and annotating experimental
metadata (similar scope as HED), NIDM Workflow for the
standardized description of analysis workflows, and NIDM
Results (Maumet et al., 2016) for standardized description of
results including provenance information. It should be noted,
however, that these components are at different stages of
development, with the NIDM Results being the most
sophisticated. NIDM is a spin off from the US Brain Initiative
and is based on Semantic Web technology. It is mainly based on the
PROV (provenance) vocabulary (Moreau et al., 2015). However, it
also incorporates terms from several other vocabularies or
ontologies such as the Dublin Core27 for file description and the
STATisical Ontology (STATO)28 for the annotation of statistical
methods like General Linear Models. Additionally, the NIDM
developers have started to map terms/study variables, commonly
used in openly shared datasets, to concepts from existing ontologies/
vocabularies, such as the Cognitive Atlas (Poldrack et al., 2011) or
the InterLex information resource. This initiative is called the
NIDM-Terms29 and community efforts to expand this ontology
are welcome.

In practice an immense amount of data and metadata standards
exist even within such a small research field as neuroscience. Many
of those standards are very narrow in their range of application, lack
community/institutional support, and are potentially overlapping.
This could lead to suboptimal use of human as well as financial
resources. In an effort to integrate the different standardization
approaches, the open Metadata Initiative for Neuroscience Data
Structures (openMINDS30), which emerged from the EU Human
Brain Project, aims to collect and integrate metadata standards into
an overarching ontology to connect terminologies used in various
fields of neuroscience. In addition, they also collect frequently used
brain atlases and common coordinate spaces for neuroimaging data.
Similar to NIDM, the openMINDS project is subdivided into several
modules, which differ with respect to their level of development.

2.2.3 Metadata and privacy protection
Metadata annotations and privacy protection in legal

frameworks may appear as two different challenges to the same
problem, the lack of useful openly shared data. However, they are
potentially connected. Data which is equipped with rich metadata is
more likely to be de-identified and hence the developers of
vocabularies or metadatmodels need to be cautious when

22 https://unfmontreal.github.io/Dcm2Bids/; last accessed:02.02.2023.

23 https://mne.tools/mne-bids/stable/index.html; last accessed: 30.11.22.

24 https://www.hedtags.org/; last accessed: 25.10.22.

25 https://bids-specification.readthedocs.io/en/stable/appendices/hed.
html#hierarchical-event-descriptors; last accessed: 30.11.2022.

26 http://nidm.nidash.org/; last accessed: 25.10.2022.

27 https://www.dublincore.org/specifications/dublin-core/dcmi-terms/;
last accessed: 30.11.2022.

28 http://stato-ontology.org/; last accessed: 30.11.2022.

29 https://nidm-terms.github.io/info.html?#about; last accessed: 26.10.
2023.

30 https://ebrains.eu/news/new-openminds-metadata-models/; last
accessed:25.10.2022.
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including terms which could be mapped to identifiable information.
More general, there is a trade-off between data which is perfectly
described by metadata and minimizing the risk of re-identification.
Additionally, the safeguards that need to be implemented and the
metadata that need to be removed or “filtered” can vary depending
on the legal regulations that apply to the data. However, little is
currently known to what extend comprehensive sets of metadata
may impact privacy protection in practice, how metadata could be
exploited by future AI techniques, and how safety assessments
would change with increasing volumes of findable, openly
accessible, and properly annotated data.

3 Practical solutions

So far, we have covered important factors that may have a
negative impact on useful data sharing, i.e., lawful sharing of data,
that can be easily understood and interpreted. We also covered the
benefits for the individual researcher and society. In this last section
we want to introduce some tools, practices and initiatives that
support the individual researcher in reducing the additional
effort/labor associated with data sharing. Some of these may be
specific to data from human neuroimaging but others might be more
general, applying to a wide range of data types from different fields.

3.1 Consent and anonymization

A recent survey on open science practices in the functional
neuroimaging community revealed that 41% of the researchers did
not share their data due to the fact that their consent forms excluded
the option for data sharing (Paret et al., 2022). Hence, researchers
who plan to share data should take care to design the consent form
in a way that data can be shared on a lawful basis or include a
consent form that was specifically designed for that purpose.
Obtaining explicit consent is one central building block for
lawful data sharing. However, researchers should be aware that
the informed consent to participate in the experiment does not entail
consent to sharing the data with others. The explicit consent to
sharing the data can be integrated into the informed consent form,
though. This must be done in a way, such that the data subject clearly
understands that their data might be shared with the research
community in a pseudonymized form. Moreover, data subjects
should understand the researcher’s role in mitigating the risk of a
privacy breach through re-identification. In order to simplify that
step, the Open Brain Consent (OBC) working group (Bannier et al.,
2021) provides template consent forms in many languages on their
website31. They are designed to meet the requirements for explicit
consent under the GDPR. Table 2 lists some points to consider for
lawful data sharing in different jurisdictions. It should be noted here
however, that the final decision whether obtaining informed consent
for public sharing of pseudonymised data is in the hands of the data

protection office of the research facility, and in practice their
assessment may vary between institutions.

Besides obtaining consent, anonymization, de-identification or
pseudonymization (in case anonymization is not possible) of the
data are required in any of the legal frameworks covered here. There
are numerous techniques for anonymization, de-identification and
pseudonymization. If unsure which technique to use, the European
Data Protection Working Party has issued an opinion on
anonymization techniques32 in 2014, highlighting benefits and
potential pitfalls of several anonymization approaches including
differential privacy, randomization, noise addition, permutation,
generalization, and L-diversity/T-closeness. Additionally, several
free and open-source tools exist to apply these techniques. For
example, the ARX anonymization tool33 (Prasser et al., 2014)
provides functionality to anonymize data and additionally
analyze the risk of re-identification for the chosen
anonymization/de-identification technique. These general tools
are useful for metadata. Neuroimaging data are more complex,
since not only metadata need to be curated to achieve
anonymization. In the case of fMRI all facial features need to be
eliminated, a process called defacing. The OBC working group
(Bannier et al., 2021) again provides links to some useful tools
on their website34, e.g., tools for sanitizing the DICOM header and
tools for defacing. For example, BIDSonym35 (Herholz et al., 2021)
provides an interface for BIDS data which allows defacing using
different techniques.

3.2 Data user agreements and databases

Data user agreements (DUA) are one option to bind the data
processor (entity that receives the data) to some set of predefined
conditions when accessing the shared data. This is particularly
important when they belong to the category of sensitive data.
DUAs have become a prominent way to mitigate the misuse of
data and are applicable in different jurisdictions. A DUA is a
contract between the data controller and an external entity or the
person seeking to access the data. It defines a set of rules around the
shared data. With such agreements a data controller can control
with whom or for what purposes they want to share the data. For
example, data can be shared under the constraint that no re-
identification will be attempted, or for scientific research
purposes only, thereby excluding the use of the shared data for
economic purposes. DUA’s are endorsed by the European
government and are a step towards fulfilling the principle of
privacy by design, as required by the GDPR. An exemplary
template of a DUA is provided on the OBC’s webpage36.

31 https://open-brain-consent.readthedocs.io/en/stable/index.html; last
accessed 22.01.2023.

32 https://ec.europa.eu/justice/article-29/documentation/opinion-
recommendation/files/2014/wp216_en.pdf; last accessed: 24.01.2023.

33 https://arx.deidentifier.org/anonymization-tool/; last accessed 22.01.
2023.

34 https://open-brain-consent.readthedocs.io/en/stable/index.html; last
accessed 22.01.2023.

35 https://github.com/PeerHerholz/BIDSonym; last accessed: 12.02.2023.

36 https://open-brain-consent.readthedocs.io/en/stable/index.html; last
accessed: 22.01.2023.
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Providers of public data platforms or repositories need to
implement a mechanism to handle and store such (digital)
contracts. Moreover, these platforms need some kind of access
control and identification mechanisms, since DUAs are legally
binding contracts. Unfortunately, many well-known public and
open neuroimaging data repositories, e.g., OpenNeuro
(Markiewicz et al., 2021), Distributed Archives for
Neurophysiology Data (DANDI)37, and the International Data-
Sharing Initiative (INDI)38 have hitherto not or only partially
implemented infrastructure for DUAs or access control
mechanisms. While this might be sufficient to share some data
acquired in the US, it may not suffice for data acquired under
HIPAA, the GDPR and Chinese laws and regulations. However,
there are also several data platforms that allow lawful sharing under
the GDPR with the required safeguards. For example, Ebrains39

provides a platform for sharing several kinds of data. There,
uploading data is only possible if certain technical and
organizational measures for safeguarding the individual’s right to
privacy are met. There the data needs to be de-identified,
anonymized or pseudonymized and is additionally safeguarded
(encrypted) via the Human Data Gateway. Moreover, the users
who want to access data need to comply to a given set of conditions,
one of which is the acceptance of an additional DUA. Another
example is the OpenMEGArchive (OMEGA, Niso et al., 2016). This
is a data repository specialized on MEG data. It implements a
controlled access mechanism (institutional credentials are
necessary to create an account) and requires signing a DUA
before data access. A list of some online data repositories with
information on the safeguards that these databases have
implemented can be found in Eke et al. (2021).

3.3 User-to-data

The concept of user-to-data describes an alternative approach to
data custodianship to avoid legal issues revolving around shared
data. The idea behind this concept is that data does not need to
change its location (the server or computer it is stored on) to be
useful to many people. Instead, users can be “moved” to the data by
giving them means to work on the data and run analyses on them
without having full access rights, e.g., researchers can not see or copy
the data. Consequently, this requires the host websites to provide
some kind of interface for working with the data on their servers.
One example of this approach is brainlife40. This platform also
provides sufficient computing power to run analyses, test algorithms
or to benchmark software and has streamlined access to data from
various open databases. However, brainlife does not entirely exclude
the option to download data processed on their servers. A Data Safe
Haven provides a secure environment for the analysis of sensitive
data with appropriate technical and informational governance
mechanisms. Data Safe Havens have been developed at several

institutions and universities, such as the UCL41, or the university
of Hull42. The Turing Data Safe Haven43 is a resource that comprises
general information on Data Safe Havens as well as scripts and
templates to set-up and maintain such secure environments.
Moreover and very recently, several initiatives have emerged
targeting the facilitation of setting up privacy preserving
frameworks for the analysis of sensitive data, such as Vantage644

or OpenMined45. Vantage6 is an open source infrastructure for
privacy preserving analysis. It provides functionality for servers,
which allow setting up “data stations” which securely store the data.
Algorithms can be delivered to these “data stations” and results will
be sent back to the user. OpenMined is a movement, which is
composed of three programs: the build, the educate, and the impact
program. The build program is about developing tools to help
setting up privacy preserving data analysis environments. This is
similar to Vantage6, though with a strong focus on running AI
methods on the data. The educate program clearly is about
education of remote data science, especially since this is a
comparatively new field of data science. They provide several
courses to learn more about remote data science and working
with their PySyft46 library. The impact program is about showing
that the developed tools work by teaming up with partners from
public and private organizations to test the generalizability and
usability of them in a variety of use cases. The user-to-data approach
seems to be promising to enable data access for many people with
minimal legal constraints, however, it needs to be considered that
limited compute and storage capacities might be the bottleneck of
this approach. Additionally, the maintenance of the infrastructure is
complex and expensive. Smart data management tools, such as
Datalad (Halchenko Y. O. et al., 2021), can promise some relief
to the resource problem by employing a decentralized structure
(Hanke et al., 2021), e.g., servers for databases need not be at the
same physical location. Detailed information on Datalad, e.g., its
usage and range of application, can be found in the Datalad
Handbook (Wagner et al., 2021). Finally, the speed of technical
development might also mitigate the issues with resources.

3.4 Tools for data and (meta)data handling

Making a dataset useful for other researchers can be costly. Data
and metadata standards support this task. Fortunately, tools exist
that help implementing these standards in everyday scientific
practice. They support data transformation, metadata annotation,
and data handling in general. This can include software for the
conversion into a given data storage standard or file format, software
for data management, parsers for specific file formats, tools to filter

37 https://dandiarchive.org/; last accessed 24.01.2023.

38 http://fcon_1000.projects.nitrc.org/; last accessed: 24.01.2023.

39 https://ebrains.eu/service/share-data; last accessed: 21.10.2022.

40 https://brainlife.io/projects; last accessed:21.10.22.

41 https://www.ucl.ac.uk/isd/services/file-storage-sharing/data-safe-
haven-dsh; last accessed: 12.02.2023.

42 https://datasafehaven.hull.ac.uk; last accessed: 12.02.2023.

43 https://alan-turing-institute.github.io/data-safe-haven/develop/
overview/index.html; last accessed: 12.02.2023.

44 https://distributedlearning.ai; last accessed: 12.02.2023.

45 https://www.openmined.org; last accessed: 14.02.2023.

46 https://github.com/OpenMined/PySyft; Last accessed: 14.02.2023.
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the dataset for specific metadata, ideally with many options for
queries, tools for validation of adherence to a given standard, and
tools for metadata extraction or editing of metadata files.

In Section 2.2.1 we mentioned some tools that help with the
conversion of rawdata into BIDS, covering several modalities and
programming languages. In addition, the BIDS community offers a
web-based tool for the validation process. For interaction with the
BIDS converted data stored locally, BIDS-Matlab (Gau et al., 2022)
and PyBIDS/ancpBIDS (Yarkoni et al., 2019) are commonly used
tools. Both allow for complex queries on the data, hence many
filtering options and provide an API for their integration into
custom workflows or pipelines. Moreover, the DataLad
(Halchenko Y. et al., 2021) family provides useful functionality
for decentralized data management (i.e., data that is stored on
several servers or repositories), while additionally tracking the
provenance of all files in a dataset. Extensions to DataLad target
more specific aspects of data handling. For example, MetaLad47 is a
tool which is specifically designed to facilitate the handling of
metadata. It can deal with various file formats and provides
useful functionality, such as filtering existing metadata, e.g., for
specific keys, or the extraction and aggregation of metadata. On top
of that, DataCat48 is another DataLad extension, which eases user
interaction with the metadata by providing browser-based and easy-
to-navigate-through metadata catalogues, i.e., a user interface which
facilitates metadata inspection and handling. Note, that DataCat is
still under development and no stable version exists yet.

Additional tools are available for working with the metadata
standards mentioned in Section 2.2.2. The NIDM team has
developed a python-based command line tool (PyNIDM49) and
an additional web application which allow the user to convert
BIDS data into NIDM files, interactively map terms (e.g., study
variables from a tabular sidecar file) to concepts in existing
ontologies/vocabularies or to define new terms. These tools also
allow the creation of JSON-formatted data dictionaries, e.g., with
provenance information, which are then stored as sidecar files
alongside the data. Additionally, the developers of HED provide
several online tools50. They include tools for validation,
summarization and generation of BIDS compatible events-files,
tools for the generation, validation, transformation, extraction
and merging of respective JSON sidecar files, which are designed
to semantically describe the columns of the events-files. Moreover,
HED offers a tool to validate and convert new schemas or extensions
to existing schemas (vocabularies). All of these tools are intuitive and
easy to use and provide a self-explaining browser-based user
interface and unlike command line tools, the HED online tools
do not require any prior experience in programming or any
operation system specific knowledge since they are browser
based. Technically, this should also enable the user to make use
of these tools on mobile devices, such as tablets.

The scope of this paper does not allow for an exhaustive list of
tools and practices for open neuroimaging. Therefore, we refer the

interested reader to Niso et al. (2022) and, in particular, the table in
the supplementary material, for a more detailed overview of
available open science tools and practices, that support
transparent and reproducible research at every stage of the
research cycle.

4 Conclusion

Despite the manifold benefits of shared data for individual
researchers, the scientific community and society, only a small
fraction of data generated in life sciences is made openly
available (Houtkoop et al., 2018). Moreover, the data, that is
openly shared, is often of limited use because it is not saved in a
standardized way and/or insufficiently described. This renders
them hardly understandable for humans and prevents
automated computer interoperability. Here, we cover the two
important factors contributing to these problems: insecurities
around the lawfulness of data sharing as well as missing
metadata and standardized data organization. Many
individual researchers withhold their data because they lack
knowledge about options for sharing and are afraid of legal
implications of privacy protection laws (Eke et al., 2022). In
order to shed light on options and constraints for sharing
human neuroimaging and comparable human data, we
provided an overview of relevant legal frameworks in the
three geographic regions with the largest data resources,
provided an accessible tabular overview, provided a concise
overview of points to consider when planning to share data, and
introduced platforms and procedures that support lawful
human research data sharing. In order to ease the burden of
standardizing data organization and annotation we introduced
initiatives, that develop standardized data structures and
vocabularies for the description of neuroimaging data.
Additionally, we provided an overview of free, community
developed, and open source tools and databases that simplify
the construction and reproduction of analysis pipelines by
integrating standards and practices, covered here, into the
research workflow. The mentioned tools/initiatives/practices
can drastically reduce the over-head for FAIR and lawful
data sharing for the individual researcher, increase the
efficiency of data handling, and increase the reusability of
the data and thereby their value for the individual
researcher, the scientific community, and society.

At a first glance, the three legal frameworks covered here appear
very different and they are, when scrutinizing details like the
definitions of terminologies, their reach of protection and the
implemented mechanisms for sanctioning. However, at a
practical level, there is quite some overlap among the
requirements for research data sharing: A combination of IRB,
detailed explicit consent, and pseudonymization is at the core of
all regulations and established practice in the majority of
(neuroimaging) labs handling human data. Additionally, DUAs
help with sharing data requiring special protection. However,
there are several domains, in which further improvements are
desirable. In the foreseeable future, DUAs and user-to-data
platforms may play a bigger role if the volume of internationally
shard data increases. More and better tools are required to support

47 https://github.com/datalad/datalad-metalad; last accessed: 03.02.2023.

48 https://github.com/datalad/datalad-catalog; last accessed: 03.02.2023.

49 https://github.com/incf-nidash/PyNIDM; last accessed: 27.01.2023.

50 https://hedtools.ucsd.edu/hed; last accessed: 26.01.2023.
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this development as only few and often local user-to-data platforms
exist and the handling of DUAs is still in its infancy and not really
useful in AI applications aiming to include datasets from distributed
sources in addition to, or instead of, centralized large databanks.
Moreover, the assessment of risk for re-identification seems
underdeveloped for neuroimaging data compared to some
common metadata, for which risk-assement procedures and tools
already exist. However, the interactions between neuroimaging and
metadata in risk assessment seems unexplored although such
interactions can be expected. At the level of legal regulations, it
has been reported that the GDPR serves as a blueprint for many
privacy protection laws that are currently developed or updated in
countries around the world (Greenleaf, 2022). This trend may
support the homogenization of privacy protection laws across
jurisdictions and as a consequence allow the development of
some generalizable core practices for sharing, although local
regulatory idiosyncrasies, that need to be met, will likely continue
to exist.

Shared data must meet some requirements to be useful.
Among others are adherence to a well-established open data
standard that is supported by tools for data conversion, data
handling and frequently used analysis tools. Moreover,
standardized metadata are necessary to make them
understandable. So far only few tools exist to augment the
core data with metadata and to process them.
Standardization of data storage formats and metadata is core
to make a dataset FAIR and useful for humans and machines.
Most researchers may have searched for a data reader because
the favorite analysis tool cannot processes the format of the
desired data. Many may be familiar with the guessing whether
“RT” in one dataset may mean the same as “index” in another,
and “button press” in a third. Such obstacles can, in principle, be
removed when open data standards are used. However, when it
comes to choosing a standard the blessing of many options can
turn into a burden. Our own approach to the choice problem is
to consider a) wide acceptance and adoption in the community,
b) the existence of tools that support the application to the data,
c) support of the standard by tools used in the analysis workflow
or even automation of it, d) sustainability supported by a strong
community that continuously develops the standard and
respective tools, e) that time to develop idiosyncratic
solutions for an individual lab is often wasted and better
invested in the support of community developments.
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