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Simple Summary: Pancreatic ductal adenocarcinomas (PDACs) with gene amplification or over-
expression of urokinase-type plasminogen activator receptor (uPAR) have a particularly dismal
prognosis. We show here that uPAR reinforces the MEK/ERK signaling pathway in tumor cells with
a KRAS mutation with the suppression of FAK and CDC42 signaling. This synergy keeps tumor cells
in a mesenchymal state that favors cell migration and proliferation, but also sensitizes them towards
gemcitabine. These observations highlight a potential therapeutic dilemma that applies to KRAS
and uPAR as emerging targets. Treatments targeting either KRAS or uPAR could induce cellular
dormancy and render the tumor more resistant to chemotherapy (such as gemcitabine). The clinical
benefit of adding autophagy inhibitors such as chloroquine in this situation remains to be shown.

Abstract: Background: Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal
cancers. Given the currently limited therapeutic options, the definition of molecular subgroups
with the development of tailored therapies remains the most promising strategy. Patients with
high-level gene amplification of urokinase plasminogen activator receptor (uPAR/PLAUR) have an
inferior prognosis. We analyzed the uPAR function in PDAC to understand this understudied PDAC
subgroup’s biology better. Methods: A total of 67 PDAC samples with clinical follow-up and TCGA
gene expression data from 316 patients were used for prognostic correlations. Gene silencing by
CRISPR/Cas9, as well as transfection of uPAR and mutated KRAS, were used in PDAC cell lines
(AsPC-1, PANC-1, BxPC3) treated with gemcitabine to study the impact of these two molecules on
cellular function and chemoresponse. HNF1A and KRT81 were surrogate markers for the exocrine-
like and quasi-mesenchymal subgroup of PDAC, respectively. Results: High levels of uPAR were
correlated with significantly shorter survival in PDAC, especially in the subgroup of HNF1A-positive
exocrine-like tumors. uPAR knockout by CRISPR/Cas9 resulted in activation of FAK, CDC42, and
p38, upregulation of epithelial makers, decreased cell growth and motility, and resistance against
gemcitabine that could be reversed by re-expression of uPAR. Silencing of KRAS in AsPC1 using
siRNAs reduced uPAR levels significantly, and transfection of mutated KRAS in BxPC-3 cells rendered
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the cell more mesenchymal and increased sensitivity towards gemcitabine. Conclusions: Activation
of uPAR is a potent negative prognostic factor in PDAC. uPAR and KRAS cooperate in switching
the tumor from a dormant epithelial to an active mesenchymal state, which likely explains the
poor prognosis of PDAC with high uPAR. At the same time, the active mesenchymal state is more
vulnerable to gemcitabine. Strategies targeting either KRAS or uPAR should consider this potential
tumor-escape mechanism.

Keywords: pancreatic cancer; uPAR; KRAS; FAK; MEK; ERK; dormancy; gemcitabine

1. Introduction

Pancreatic ductal adenocarcinomas (PDACs) are among the human tumors with the
worst prognosis. Most PDAC patients are already at an advanced stage at diagnosis, and
resection as the most effective treatment is only feasible in 20% of patients [1]. With gem-
citabine as a baseline combined with FOLFIRINOX, next to albumin-bound paclitaxel,
therapeutic options are limited [2–4]. The current clinical staging of PDAC cannot fully
predict tumor behavior, and the prognosis of patients receiving the same treatment varies
considerably. Therefore, it is essential to develop robust molecular classifications of PDAC
for more tailored therapeutic approaches [5]. An increasing number of molecular and
histological subtypes already define subtype-specific therapeutic vulnerabilities and pro-
vide the opportunity to supplement current pathological classifications. Recent studies
discovered many PDAC subtype-specific markers connected to different clinical behavior;
however, the three main subtypes remain classical, quasi-mesenchymal (QM-PDA), and
exocrine-like [6].

Nevertheless, there is now good evidence that cancer cells preserve cellular plas-
ticity [7,8]. Increased levels of urokinase-type plasminogen activator receptor (uPAR)
are associated with early invasion, metastasis, and poor prognosis in many solid and
hematological tumors, including PDAC [9–11]. uPAR is a GPI-anchored cell membrane
receptor without an intracellular domain that mediates the degradation of extracellular
matrix (ECM) components [12], including fibronectin and vitronectin [13]. It locally in-
creases plasmin activity that facilitates cell migration. Interaction of uPAR with integrins
occurs indirectly through stabilized binding to vitronectin [14]. This leads to intracellu-
lar activation of the Ras pathway, the focal adhesion kinase (FAK), and the Rho family
small GTPase Rac (reviewed in [15]). PDAC is also one of the tumors with the highest
frequency of KRAS mutations. KRAS has not only been shown to activate cell proliferation
through RAF/MEK/ERK [16]; it has also been reported to regulate uPAR expression by
AP1-dependent transactivation of the uPAR promoter [17]. Downregulation or blocking
of uPAR causes activation of FAK, Src, CDC42, and p38, resulting in cell-cycle arrest and
dormancy [18,19].

We have previously shown that 50% of PDACs show overexpression of uPAR due to
low or high-level amplifications of the uPAR gene PLAUR. These tumors are associated
with an inferior prognosis [20]. In this study, we functionally studied the role of uPAR in
cell lines and validated the results in a cohort of 67 PDAC patients with clinical follow-up
supplemented by TCGA data of 316 PDAC patient samples.

2. Materials and Methods
2.1. Human Tissue Samples

Tumor samples from 67 PDAC patients organized on a multi-tissue array (TMA) were
used for immunohistochemical staining (clinical data are summarized in Table 1). The
patient sample collection was approved by the ethics committee of the University Medical
Center Göttingen (GÖ 912/15).
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Table 1. Clinical data summary.

Patients 67

Male (%) 37 (55)
Female (%) 30 (45)

Age median (range) 68 (44–84)
Tumor grade (G)

1–2 (%) 6 (9)
2–3 (%) 41 (61.1)
3–4 (%) 20 (29.9)

Tumor stage (TNM)
T 1 (%) 1 (1.5)
T 2 (%) 3 (4.5)
T 3 (%) 58 (86.6)
T 4 (%) 5 (7.4)
N 0 (%) 14 (20.9)

N 1–3 (%) 53 (79.1)
Median follow-up time (range) [day] 417 (4–2768)

Reported deaths (%) 62 (92.5)

2.2. Immunohistochemistry

Immunohistochemical staining (IHC) of 2 µm paraffin sections was performed ac-
cording to standard methods. Briefly, after deparaffinization in serially diluted alcohol
and blocking endogenous peroxide in 0.3% hydrogen peroxide in PBS, antigen retrieval
was performed at 95 ◦C in either a low or high-pH Envision FLEX target retrieval solution
(Agilent, Santa Clara, CA, USA) using PT Link (Agilent). Subsequently, the stainings were
incubated for 1 h with primary antibodies, followed by washing in PBS and incubation
with the appropriate detection system for 30 min (Envision, Agilent). Antibodies were used
at predetermined optimal dilutions (Supplementary Table S3) with the proper positive and
negative controls. Staining was visualized by 3,3-diaminobenzidine tetrahydrochloride
solution, counterstained with hematoxylin, dehydrated, and mounted in Pertex. Using
an H-score, all tissue samples were evaluated for nuclear staining of p-p38, uPA, uPAR,
and PAI1. The H-score was calculated by 3 × the percentage of the strongest staining
signal + 2 × the percentage of a moderate signal + the percentage of a weak signal, re-
sulting in a value range from 0 to 300. HNF1A and KRT81 were graded for “low” or
“high” expression according to signal intensity. The optimal levels for the discrimina-
tion between high and low signals of uPAR, HNF1A, and KRT81 were determined using
the cutoff finder [21].

2.3. Cell Culture and Transient Expression of uPAR and KRASG12C

The human pancreatic cancer cell lines BxPC-3, AsPC-1, CAPAN-2, MIA PaCa-2,
PATU8988T, and PANC-1 were obtained from the American Type Culture Collection (ATCC)
(Supplementary Table S1). All cells were grown in RPMI-1640 medium (Gibco, Waltham,
MA, USA), supplemented with 10% FCS (Gibco), 1% L-glutamine (Gibco), and 1% Peni-
cillin/Streptomycin (Gibco) under humidified conditions at 37 ◦C and 5% CO2. PANC-1
was transfected with the pCMV-AC-GFP vector PLAUR (NM_002659) human-tagged ORF
clone (Origene, Rockville, MD, USA), and BxPC-3 with the pCMV6-Entry-KRASG12C vector
(Origene Technologies Inc., Rockville, MD, USA) using the X-tremeGENE HP DNA trans-
fection reagent (Merck, Darmstadt, Germany). Transfected cells were selected with G418
(400 ng/µL). uPAR protein levels were tested by ELISA as described above. KRASG12C-
expressing cells were selected using 2µg/mL puromycin.

2.4. Generation of ASPC-1 uPAR Knockouts by CRISPR/Cas9

The uPAR CRISPR/Cas9 knockout strategy is shown in Supplementary Figure S1.
Cells were transfected with two CRISPR/Cas9 constructs, pCMV-Cas9-RFP (target
site: 5′-GGACCCTGAGCTATCGGACTGG-3′), and pCMV-Cas9-GFP (target site: 5′-
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AGGTAACGGCTTCGGGAATAGG-3′) (Sigma-Aldrich, Darmstadt, Germany) using the
X-tremeGENE HP DNA transfection reagent (Merck, Rahway, NJ, USA) according to
the manufacturer’s instructions. After transient CRISPR/Cas9 activation, fluorescence-
activated cell sorting (FACS) of GFP/RFP double-positive cells was performed for clone
selection. PCR-screened clones for the gRNA target site or a potential deletion, as de-
scribed later (Supplementary Figure S1). Clones that were heterozygous for the deletion
were further screened for specific gRNA target site mutations by Sanger sequencing
(Supplementary Figure S2)

2.5. Genomic PCR and Sanger Sequencing

The gRNA target sites were amplified with the primers GFP F: 5′-CTGTCCCCATGGAG
TCTCAC-3′, GFP R:5′-CATCCAGGCACTGTTCTTCA-3′, RFP F: 5′-CTGGAGCTGGTGGAG
AAAAG-3′, and RFP R: 5′-GGATTGGGATGATGATGAGG-3′ using MyTaq™ Mix (Bioline,
London, UK) and the PCR products were analyzed via QIAxcel (Qiagen, Hilden, Germany).
The PCR product was purified with ExoSAP-ITTM (Applied Biosystems, Foster City, CA,
USA), and sequenced according to Sanger sequencing using the BigDye® terminator v3.1
cycle sequencing kit (Applied Biosystems, Waltham, MA, USA). Sequences were analyzed
using an ABI 3500 genetic analyzer (Applied Biosystems).

2.6. Cell Viability Assay

The CellTiter 96® AQueous one-solution cell-proliferation assay (MTS, Promega, Madi-
son, WI, USA) was performed according to the manufacturer’s recommendations. In brief,
1 × 104 cells were grown in a 96-well format in 100 µL/medium and treated with indicated
conditions over different periods, as described under results. Then, 20 µL of the MTS
reagent was added and incubated for 1–3 h at 37 ◦C, and the absorbance was measured at
490 nm and 655 nm. Relative cell viability after treatment was calculated by normalizing
each value by the mean of the untreated control replicates. Unless stated otherwise, all
experiments were conducted by pretreating cells with 80 nM of the specific siRNA or
inhibitors for 24 h and subsequent treatment with 0.1 µM gemcitabine for 72 h.

2.7. Wound Healing Assay

siRNA or mock-transfected cells were grown to almost 100% confluency before syn-
chronizing the cells by decreasing FCS to 1% for 24 h. Wounds were created by scratching
the cell monolayer with a 100 µL sterile pipette tip. Wound healing was monitored at 0, 24,
and 48 h. Relative wound healing was calculated by measuring the mean distance at three
defined positions of the scratch expressed as a percentage of the 0 h control.

2.8. siRNA Knockdown Experiments

siRNA transfection was performed using HiPerFect transfection reagent (Qiagen) as
described elsewhere [22]. In brief, 80 nM of gene-specific or negative control siRNA (all
Star Negative Control, Qiagen) was incubated with 12 µL HiPerFect in 100 µL transfection
medium containing serum-free RPMI at RT for 20 min and added to freshly seeded cells
(3 × 105 cells). After 24 h or 48 h incubation, cells were further processed as indicated. siR-
NAs used were purchased from Qiagen and are summarized in Supplementary Table S2.

2.9. Protein Extracts, Western Blot Analyses, and uPAR Quantification by ELISA

Cells at 60–70% confluency were treated as indicated in the results section. Cells were
washed in PBS and scraped in a 100 µL RIPA lysis buffer containing protease inhibitor
cOmplete (Roche, Mannheim, Germany), PMSF (1 mM), and orthovanadate (1 mM). Total
protein was quantified using a DC™ protein assay (Bio-Rad, Hercules, CA, USA). A total
of 15 µg of proteins was separated using gradient SDS gels (4–20%, Bio-Rad) and blotted
on nitrocellulose membranes by a Turbo Blot (Bio-Rad). Gene signals were detected as
described before [23].
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uPAR protein levels were determined by ELISA (DUP00, R&D Systems, Minneapolis,
USA) according to the manufacturer’s protocol. In brief, cell lysates from 105 to 106 cells
were 10-fold diluted in a RIPA lysis buffer, and 50 µL of cell lysates or standard was added
to 100 µL of assay diluent RD1W solution. The samples were incubated for two hours at
RT and washed four times with a 400 µL wash buffer. A total of 200 µL of human uPAR
conjugate was added and incubated for 2 h at RT. After four washing steps, 200 µL of
substrate solution was added and incubated for 30 min at RT protected from light before
adding 50 µL of stop solution. The optical density was measured at 450 nm with a reference of
540 nm on a Tecan reader Infinite 200 Pro. uPAR concentrations were calculated for 106 cells.

2.10. KRAS Activity Measurement

KRAS activity was quantified using the STA-400-K-T assay (Cell Biolabs) following the
manufacturer’s instructions. In brief, 1 mg protein was subjected to raf1 RBD agarose beads and
incubated at 4 ◦C for one h. Beads were pelleted, washed, and resuspended in 4× Laemmle
buffer. KRAS activity was quantified by Western blotting of 20 µg supernatant protein.

2.11. Statistical Analysis

Statistical analysis and AUC estimation were performed using GraphPad 8.3.0. Data
are shown as mean ± SEM. Two group comparisons were performed using Student’s
t-test. Two-way ANOVA was applied to compare cell growth and resistance analyses.
Survival was analyzed using the Kaplan–Meier test and significance was evaluated using
the log-rank (Cox–Mantel) test. A p-value of < 0.05 was considered significant (* = p < 0.05,
** = p < 0.01, *** = p < 0.001).

3. Results
3.1. uPAR Protein and mRNA Expression Levels Have Prognostic Significance in PDAC

Our previous study showed that uPAR gene amplification in PDAC correlates with
poor prognosis [24]. Immunohistochemical (IHC) staining for uPAR, its ligand uPA, and
the inhibitor PAI1 in a clinical cohort of 67 patients (Figure 1, Table 1) also confirmed a
prognostic relevance of uPAR on the protein level. Patients with high uPAR expression
(n = 46) had significantly shorter overall survival (OS) than patients with low uPAR levels
(n = 23) (median survival 320 days in uPARhigh vs. 603 days in uPARlow patients, log-rank
(Cox–Mantel) test, p = 0.0273) (Figure 1b) [25]. Using gene expression data from two TCGA
datasets including 312 PDAC patients [26,27], patients with high uPAR mRNA expres-
sion had a significantly reduced OS compared to patients with tumors of low expression
(log-rank (Cox–Mantel) test, p = 0.0099) (Figure 1c). IHC did not reveal any significant
difference in OS for uPA and PAI1 (Supplementary Figure S1b,c); however, on the tran-
scriptional level, high expression of both uPA and PAI1 showed a significantly decreased
OS (Supplementary Figure S1d,e).

3.2. Generation of CRISPR/Cas9 uPAR Knockout Clones in AsPC-1 Cells

Next, we wanted to investigate the molecular function of uPAR in PDAC cells. There-
fore, we measured the uPAR protein expression levels by ELISA in six PDAC cell lines
with known gene mutation status of KRAS, TP53, and PIK3CA as described in the Material
and Methods section (Supplementary Figure S2a,b and Supplementary Table S1). We then
generated uPAR knockout clones of the cell line with the highest uPAR expression (AsPC-1),
using two gRNAs directed against uPAR exons 3 and 4 (Supplementary Figure S2c). Two
clones with homozygous functional uPAR knockout (KO#1 and KO#2), carrying a deletion
on one allele and a gRNA target-site-specific frameshift mutation on the other, revealed a
virtually absent uPAR protein (Supplementary Figure S2d–g).
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Figure 1. Prognostic significance of uPAR expression in PDAC patients. (a) Exemplary immuno-
histochemical staining of PDAC with high vs. low expression of uPAR. (b) Statistically significant
difference in OS for n = 67 PDAC patients with high (orange, n = 45) vs. low (black, n = 22) im-
munohistochemical expression of uPAR. (c) Statistically significant difference in OS for n = 83 PDAC
patients with high (black) vs. n = 219 patients with low (orange) expression levels of uPAR mRNA
(source: TCGA dataset).

3.3. uPAR Influences Cell Growth, Cellular Plasticity, and the Response to Gemcitabine in AsPC-1
(KRASG12D)

Functional roles of uPAR have been described in cell proliferation, migration, and
cellular plasticity [28–31]. Both AsPC-1 uPAR−/− clones showed a significant decrease in
growth and migration capacity compared to the AsPC-1 WT controls (Figure 2a,b). To
evaluate the role of uPAR in cellular plasticity, we immunoblotted nine markers involved
in epithelial–mesenchymal transition (EMT) (Figure 2c).

Western blot revealed a marked upregulation of epithelial markers E-cadherin and β-
catenin. While the transcription factor Slug was slightly upregulated, Snail and TCF8/ZEB1,
together with claudin and ZO1, showed a decreased expression, further indicating the
mesenchymal to epithelial transition (MET) in uPAR−/− clones compared to AsPC-1 WT
(Figure 2c). In accordance with this phenotype, we detected a marked increase in chemore-
sistance against up to 1 µM gemcitabine in uPAR−/− cells (Figure 2d).
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Figure 2. Decreased cell growth, motility, and response to gemcitabine of AsPC uPAR knockout
clones. (a) Cell growth analysis (6 days) of uPAR−/− clones with a significantly slower proliferation
rate than WT controls (n = 3). (b) Reduced migratory capacity of AsPC-1 uPAR−/− clones compared
to uPARWT cells (n = 3). (c) Western blot analysis of 9 epithelial and mesenchymal markers in PANC-1,
AsPC-1, and uPAR−/− clones indicated mesenchymal to epithelial transition (MET) in uPAR−/− cells.
Uncropped Western blot images available in Supplementary Material File S1 (d) Increased resistance
of uPAR−/− clones to gemcitabine treatment (0.1, 0.5 and 1 µM) for 72 h (n = 4 biological replicates).
(KO#1 and KO#2, uPAR−/− clones) (*** p < 0.001).

3.4. Depletion of uPAR Activates FAK, CDC42, and p38 and Induces Autophagy

uPAR signaling has been described to involve FAK, Src, CDC42, p38, autophagy, and
RAS signaling [32]. In addition, Wu et al. reported that FAK signaling contributes to intrinsic
gemcitabine chemoresistance in pancreatic cancer cell lines [33]. By immunoblotting, we
detected the activation of FAK, CDC42, p38, and LC3B, while ERK was inactivated in AsPC-1
uPAR−/− cells (Figure 3a). The influence of FAK on Ras signaling has been described before [34].
However, in cells with aberrant KRAS activation, FAK-Ras regulation seems to be disturbed.

Knockdown of FAK in uPAR−/− cells using siRNAs led to decreased phosphoryla-
tion of CDC42, p38, and LC3B, and reactivation of ERK (Figure 3b). The diminished
FAK activity also partially restored the sensitivity towards gemcitabine (Figure 3c and
Supplementary Figure S3a). Knockdown of CDC42 and p38 also reactivated ERK, decreased
LC3B, and increased gemcitabine sensitivity (Figure 3d–g and Supplementary Figure S3b,c).
This indicates that CDC42 and p38 suppress ERK activity downstream of KRAS in the absence
of uPAR.

3.5. Re-expression of uPAR Restores the Migratory Capability and Gemcitabine Sensitivity of
uPAR−/− Cells

To evaluate whether uPAR re-expression could restore the WT phenotype, uPAR−/− cells
were transfected with a human uPAR gene expression vector as described in the Material
and Methods section. This recovered uPAR protein levels (Supplementary Figure S2h) and
significantly enhanced migratory capacity (Figure 3h). uPAR re-expression also recovered
gemcitabine sensitivity and induced resistance against the p38 inhibitor JX401 (Figure 3i and
Supplementary Figure S3d). Pharmacological inhibition of ERK with SCH772948 reduced
gemcitabine sensitivity only in uPAR WT but not in AsPC-1 uPAR−/− cells (Figure 3j and
Supplementary Figure S3e). Together, this indicates that uPAR mediates gemcitabine
sensitivity in an ERK-dependent manner.
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Figure 3. uPAR regulates CDC42, p38, LC3B, and ERK activity. (a) Immunoblot showing increased
signals for pCDC42, pSrc, p-p38, pERK, and LC3B in KO#1 and KO#2.). Uncropped Western blot
images could be found at in Supplementary File S1. Restoration of (b) the wild-type signaling pheno-
type after FAK siRNA knockdown in AsPC-1 uPAR−/− cells and (c) of the response to gemcitabine
(n = 4). Uncropped Western blot images could be found at in Supplementary File S1 (d) Knockdown
of CDC42 by siRNA and (e) response to gemcitabine and (f) siRNA knockdown of p38 and (g) the
corresponding gemcitabine response. Uncropped Western blot images available in Supplementary
File S1. (h) Increased cellular motility after transient uPAR expression in KO#2 (KO#2 rescue) com-
pared to AsPC-1 uPAR−/− cells (n = 4). (i) Gemcitabine (0.1 µM) and combinational treatment with
the p38 inhibitor JX401 for 72 h in AsPC-1 uPAR−/− and KO#1 uPAR rescue cells (n = 3). (j) Gemc-
itabine (0.1 µM) and combinational treatment with the ERK inhibitor SCH772948 in uPAR WT and
AsPC-1 uPAR−/− cells (KO#1). (k) Treatment of AsPC-1 WT and AsPC-1 uPAR−/− (KO#1) with either
gemcitabine (0.1 µM) or in combination with the autophagy inhibitors 3-MA (5 µM) or CQ (5 µM).
Relative viability is shown in response to gemcitabine and in combination with siRNA/inhibitors.
(n = 4 biological replicates (** p < 0.01, *** p < 0.001).

3.6. Resistance against Gemcitabine in AsPC-1 uPAR−/− Cells through Autophagy

The autophagy marker LC3B was induced in AsPC-1 uPAR−/− cells. Autophagy
promotes tumor cell survival and contributes to chemoresistance [35]. Increased autophagy
has been described to be responsible for the resistance of PDAC to gemcitabine that could
be partially reversed by specific inhibitors [36]. To investigate whether increased autophagy
in uPAR−/− clones was responsible for the observed gemcitabine resistance, we inhibited
autophagy with 3-methyladenine (3-MA) or chloroquine (CQ). Both inhibitors signifi-
cantly restored sensitivity towards gemcitabine in AsPC-1 uPAR−/− but not in AsPC-1 WT
(Figure 3k and Supplementary Figure S3f).

3.7. uPAR and Mutated KRAS Cooperate in Maintaining a Mesenchymal Phenotype

To evaluate the interplay of uPAR and mutated KRAS in response to gemcitabine, we used
the KRAS WT cell line BxPC-3 (uPAR high), the KRAS mutant cell line AsPC1 (uPAR high),
and the KRAS mutant cell line PANC-1 (uPAR low) (Figure 4a and Supplementary Figure S2a).
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AsPC1 responded best towards gemcitabine, PANC-1 showed a medium response, and
BxPC3 was the most resistant cell line (Figure 4b). KRAS has been described to induce uPAR
expression [17]. Silencing of KRAS in AsPC1 using siRNAs reduced uPAR levels signifi-
cantly (Figure 4c). Silencing of KRAS in AsPC1 reduced the response towards gemcitabine
whereas the expression of mutated KRAS in BxPC-3 cells increased gemcitabine sensitivity.
Transfection of uPAR in PANC-1 likewise increased gemcitabine sensitivity (Figure 4d).
uPAR and mutated KRAS switched cells to a mesenchymal phenotype (Figure 4e), at
the same time promoting activation of MEK and ERK and suppressing FAK and CDC42
signaling (Figure 4f).
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Figure 4. uPAR and mutated KRAS cooperate in maintaining a mesenchymal phenotype that also
regulates gemcitabine sensitivity. (a) Immunoblot showing uPAR, HNF1A, and KRT81 expression in
BxPC-3, AsPC-1, and PANC-1. Uncropped Western blot images available in Supplementary File S1
(b) IC50 of gemcitabine treatment (0–100 µM, 72 h) in BxPC-3 (1.323 µM), AsPC-1 (0.025 µM), and
PANC-1 (0.112 µM). (c) uPAR levels after KRAS siRNA knockdown in AsPC-1 (n = 3 biological
replicates, ** Student’s t-test, p < 0.01, *** Student’s t-test, p < 0.001). (d) Gemcitabine response
(0.125 µM, 72 h) in AsPC-1 WT, AsPC-1 uPAR−/− (KO#1), BxPC-3 (KRAS WT), BxPC-3 (KRASmut),
PANC-1 (uPARlow), and PANC-1 (uPARhigh). (e) Immunoblot of protein lysates from the same cell
lines for EMT markers and (f) pFAK, pCDC42, p-p38, pMEK, p-ERK, and LC3B. Kaplan–Meier curves
using mRNA expression data of PDAC from the TCGA cohort. Uncropped Western blot images
available in Supplementary File S1. (g) Comparison of PDAC with high expression of HNF1A vs.
KRT81. (h) KRT81high tumors with high vs. low expression of uPAR and (i) HNF1Ahigh tumors with
high vs. low expression of uPAR (log-rank test, p < 0.05).
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3.8. uPAR Modulates the Clinical Risk in Different PDAC Subgroups

Noll et al. [8] published HNF1A as a surrogate marker for the exocrine-like PDAC
subtype and expression of keratin 81 (KRT81) as a marker for the quasi-mesenchymal
(QM) type. Tumors negative for both markers (DN) were enriched for the classical PDAC
subtype. We wanted to know if tumors with high uPAR expression segregate with one
of these subtypes. In our own cohort of 57 patients with clinical follow-up, n = 31 (54%)
showed expression of HNF1A, n = 19 (33%) were positive for KRT81, and n = 7 (12%)
were DN. Because the DN group was too small, we excluded it from further analysis. The
exocrine-like group consisted of 21 uPAR low and 10 uPAR high cases, and the QM group
contained 9 uPAR low and 10 uPAR high cases. Survival analysis was supplemented by
gene expression data from the two TCGA cohorts (n = 82 cases HNF1A high vs. n = 85
cases KRT81 high).

The overall survival of patients with HNF1A-positive exocrine-like PDAC was sig-
nificantly longer than patients with KRT81-positive QM tumors (p < 0.0001, Figure 4g).
In the HNF1A-positive cohort, tumors with low levels of uPAR had a significantly better
outcome than tumors with high expression and the mortality curve even reached a plateau
after 1000 days, indicating long-term survival of some patients. In the KRT81high QM and
DN group, there was a trend towards longer survival in patients with tumors with low levels
of uPAR that did not reach statistical significance (Figure 4h,i and Supplementary Figure S4),
indicating that the prognostic impact of uPAR may vary among different molecular subgroups.

4. Discussion

PDAC remains one of the human tumors with the highest mortality. uPAR is associated
with early invasion, metastasis, and poor prognosis in many solid and hematological
tumors [9–11]. We have previously shown that PDAC with high-level gene amplifications
of uPAR have a particularly poor prognosis [24]. We here show in our cohort of 67 samples
and in 168 PDAC samples from the TCGA database that overexpression of uPAR on the
mRNA and protein level is also associated with significantly shorter OS. Importantly,
although our data suggest that high expression of uPAR is an adverse prognostic factor in
all PDAC, its negative impact on survival is more pronounced in some molecular subgroups
(especially in exocrine-like tumors) than in others.

uPAR has been described to act through its vitronectin-mediated interaction with inte-
grins to transmit mechanical forces across the cell membrane [37–39]. The ECM–integrin
interaction mediates the intrinsic chemoresistance of cancer cells [40], a phenomenon that
has also been called cell-adhesion-mediated drug resistance (CMDR). CMDR has been
explained by the strong binding of integrins to the ECM, which activates FAK. Integrin and
EGFR signaling activates FAK and influences adhesion, motility, and cell growth [41,42].
FAK has seemingly paradoxical roles in cell migration and metastasis [43]. FAK is a ubiqui-
tously expressed tyrosine kinase that localizes at focal adhesion complexes and transmits
adhesion- and growth-factor-dependent signals into the cell [34,43,44]. In contrast to nor-
mal cells where FAK is a positive regulator of cell migration and proliferation [45], tumors
with constitutive growth factor signaling (such as EGFR) or RAS mutations and consecutive
high intrinsic levels of ERK utilize FAK as a negative regulator of cell migration through
ERK-dependent dephosphorylation of particular FAK tyrosine residues [43,46]. Constitu-
tive activation of FAK has also been proposed to contribute to the intrinsic chemoresistance
against gemcitabine in the pancreatic cancer cell line AsPC-1 [9,33]. We here show that
uPAR knockout in AsPC1 cells leads to induction of FAK, Src, CDC42, and p38, as well as
chemoresistance towards gemcitabine. Our data further show that this chemoresistance is
mediated through p38-induced autophagy. Numerous early clinical trials [47] have shown
significant antitumor activity with tolerable toxicity of the autophagy inhibitor chloroquine,
in combination with other cytotoxic chemotherapies in a variety of solid cancers, including
colorectal and renal cell carcinomas [48]. A randomized clinical phase II trial in 102 PDAC
patients treated with gemcitabine and nab-paclitaxel with or without CQ showed no differ-
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ence in progression-free survival. Still, the authors proposed that preoperative CQ might
increase curative resection rates [49].

A total of 90–95% of PDACs harbor activating mutations of KRAS that are thought to
occur early in carcinogenesis [16]. Mutated KRAS is a potent oncogenic driver that promotes
cell proliferation and migration by activating the downstream MAP kinases ERK1/2 [50].
KRAS has not only been reported to induce uPAR expression by AP-1-dependent transacti-
vation of the uPAR promoter [17], but also mediates FAK dephosphorylation [43]. We here
show that a) constitutively active KRAS induces uPAR and b) KRAS and uPAR cooperate
in promoting a mesenchymal cell phenotype by activating MEK/ERK signaling and by the
suppression of FAK/CDC42/p38 signaling. At the cellular level, this mesenchymal state
implies increased cell proliferation and migration as a possible explanation of the poor
prognosis of tumors with high levels of uPAR. At the same time, it also implies suppressed
cellular dormancy via FAK signaling and p38-mediated autophagy, thus rendering the
cells more vulnerable to gemcitabine. These observations highlight a potential therapeutic
dilemma that applies both to KRAS and uPAR as emerging targets. Although recent studies
propose uPAR as a good candidate for antibody-targeted therapy in cancer [51–55], our
results show that these treatments could, at the same time, induce cellular dormancy and
render the tumor more resistant to chemotherapy (such as gemcitabine). Tailored strate-
gies should consider this resistance by adding autophagy inhibitors, such as chloroquine,
to the regimens.

5. Conclusions

In summary, we have confirmed uPAR as a potent modulating prognostic factor, es-
pecially in the large molecular subgroup of exocrine-like tumors. uPAR cooperates with
mutated KRAS in the important switch between an active mesenchymal vs. a dormant
epithelial cellular phenotype. By keeping tumor cells in the active mesenchymal state,
uPAR promotes KRAS-driven proliferation and cell migration as a likely explanation for
the poor prognosis of PDAC with high expression of uPAR. At the same time, this active
mesenchymal state renders tumor cells more vulnerable to chemotherapy such as gemc-
itabine. Targeting either uPAR or KRAS could induce cellular dormancy and autophagy,
thus leading to relative chemoresistance and limited therapeutic efficacy. Emerging clinical
trials should take this possibility into account.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15051587/s1, Supplementary Figure S1: (a) Staining
intensities (300 score) of uPA, uPAR, and PAI1 of 69 PDAC patient samples. (b) OS analysis of PDAC
patients with low vs. high protein expression of uPA on immunohistochemistry, and (c) PAI1. (d) OS
analysis of PDAC patients with low vs. high mRNA expression of uPA (Cox-Mantel-test, p = 0.0475)
and (e) PAI1; Supplementary Figure S2: (a) uPAR and (b) uPA protein levels of the pancreatic
cell lines AsPC-1, BxPC-3, CAPAN-2, MIA PaCa-2, PATU8988T, and PANC-1 measured by ELISA.
(c) Schematic representation of the uPAR CRISPR/Cas9 strategy. Two gRNAs were directed against
exon three and exon 4 of the uPAR gene and were used to generate uPAR−/− clones. (d–f) Sanger
sequencing analysis of two uPAR−/− clones consisting of a large deletion and a site-specific mutation.
(g) ELISA measurement of uPAR levels in KO#1 and KO#2 compared to uPAR WT and (h) of rescue
KO#2 by re-expressing uPAR compared to KO#2. (i) Exemplary pictures of the migration assay
of AsPC-1 WT, KO#1 and KO#2 over 48 h; Supplementary Figure S3: Gemcitabine treatment after
siRNA knockdown and p38 inhibition in AsPC1 WT and uPAR−/− cells. Gemcitabine response
(0.1 µM, 72 h) after siRNA knockdown (80 nM, 24 h) of (a) FAK, (b) CDC42 and (c) of p38 in AsPC1
KO#2. (d) Gemcitabine treatment of AsPC-1 WT and uPAR−/− cells (KO#2) in combination with the
p38 inhibitor JX401. (e) Gemcitabine treatment (0.1 µM, 72 h) vs. combination with ERK inhibition
(SCH772948, 3µM) of uPAR−/− cells (KO#2). (f) Treatment of uPAR knock-out clones (KO#2) with
either gemcitabine (0.1 µM) or in combination with the autophagy inhibitors 3-MA (5 µM) or CQ
(5 µM) (n = 4); Supplementary Figure S4: Kaplan Meyer OS analysis of TCGA patient cohort. (a) uPAR
low (n = 15) vs. uPAR high (n = 49) in DN cases and (b) uPAR low (n = 22) vs. uPAR high (n = 69)
in DP cases; Table S1; Human PDAC cell lines with TP53 and KRAS mutation status; Table S2:
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siRNAs (Qiagen); Table S3: Antibodies and chemicals; Supplementary Material File S1: Uncropped
WB images.
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45. llić, D.; Furuta, Y.; Kanazawa, S.; Takeda, N.; Sobue, K.; Nakatsuji, N.; Nomura, S.; Fujimoto, J.; Okada, M.; Yamamoto, T.; et al.

Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995, 377, 539–544.
[CrossRef] [PubMed]

46. Zheng, Y.; Xia, Y.; Hawke, D.; Halle, M.; Tremblay, M.L.; Gao, X.; Zhou, X.Z.; Aldape, K.; Cobb, M.; Xie, K.; et al. FAK
Phosphorylation by ERK Primes Ras-Induced Tyrosine Dephosphorylation of FAK Mediated by PIN1 and PTP-PEST. Mol. Cell
2009, 35, 11–25. [CrossRef]

47. Chude, C.I.; Amaravadi, R.K. Targeting Autophagy in Cancer: Update on Clinical Trials and Novel Inhibitors. Int. J. Mol. Sci.
2017, 18, 1279. [CrossRef]

48. Rangwala, R.; Chang, Y.C.; Hu, J.; Algazy, K.M.; Evans, T.L.; Fecher, L.A.; Schuchter, L.M.; Torigian, D.A.; Panosian, J.T.; Troxel,
A.B.; et al. Combined MTOR and autophagy inhibition: Phase I trial of hydroxychloroquine and temsirolimus in patients with
advanced solid tumors and melanoma. Autophagy 2014, 10, 1391–1402. [CrossRef]

49. Karasic, T.B.; O’Hara, M.H.; Loaiza-Bonilla, A.; Reiss, K.A.; Teitelbaum, U.R.; Borazanci, E.; De Jesus-Acosta, A.; Redlinger, C.;
Burrell, J.A.; Laheru, D.A.; et al. Effect of Gemcitabine and nab-Paclitaxel With or Without Hydroxychloroquine on Patients With
Advanced Pancreatic Cancer: A Phase 2 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 993–998. [CrossRef]

50. Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 2007, 26, 3279–3290. [CrossRef]
51. Aliabadi, F.; Sohrabi, B.; Mostafavi, E.; Pazoki-Toroudi, H.; Webster, T.J. Ubiquitin–proteasome system and the role of its inhibitors

in cancer therapy. Open Biol. 2021, 11, 200390. [CrossRef] [PubMed]
52. Metrangolo, V.; Ploug, M.; Engelholm, L.H. The Urokinase Receptor (uPAR) as a “Trojan Horse” in Targeted Cancer Therapy:

Challenges and Opportunities. Cancers 2021, 13, 5376. [CrossRef] [PubMed]
53. Simon, M.; Jorgensen, J.T.; Juhl, K.; Kjaer, A. The use of a uPAR-targeted probe for photothermal cancer therapy prolongs survival

in a xenograft mouse model of glioblastoma. Oncotarget 2021, 12, 1366–1376. [CrossRef] [PubMed]
54. Carlsen, E.A.; Loft, M.; Loft, A.; Berthelsen, A.K.; Langer, S.W.; Knigge, U.; Kjaer, A. Prospective Phase II Trial of Prognostication

by 68Ga-NOTA-AE105 uPAR PET in Patients with Neuroendocrine Neoplasms: Implications for uPAR-Targeted Therapy. J. Nucl.
Med. 2022, 63, 1371–1377. [CrossRef]

55. Mahmood, N.; Arakelian, A.; Khan, H.A.; Tanvir, I.; Mazar, A.P.; Rabbani, S.A. uPAR antibody (huATN-658) and Zometa reduce
breast cancer growth and skeletal lesions. Bone Res. 2020, 8, 18. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.15252/embj.201387611
http://doi.org/10.1016/j.ccell.2019.03.002
http://doi.org/10.3892/ijo.28.6.1463
http://doi.org/10.3389/fmolb.2019.00160
http://doi.org/10.1016/j.ejcb.2020.151083
http://doi.org/10.1038/srep16408
http://www.ncbi.nlm.nih.gov/pubmed/26549523
http://doi.org/10.4161/cc.8.21.9846
http://doi.org/10.1038/nrm1549
http://www.ncbi.nlm.nih.gov/pubmed/15688067
http://doi.org/10.1038/377539a0
http://www.ncbi.nlm.nih.gov/pubmed/7566154
http://doi.org/10.1016/j.molcel.2009.06.013
http://doi.org/10.3390/ijms18061279
http://doi.org/10.4161/auto.29119
http://doi.org/10.1001/jamaoncol.2019.0684
http://doi.org/10.1038/sj.onc.1210421
http://doi.org/10.1098/rsob.200390
http://www.ncbi.nlm.nih.gov/pubmed/33906413
http://doi.org/10.3390/cancers13215376
http://www.ncbi.nlm.nih.gov/pubmed/34771541
http://doi.org/10.18632/oncotarget.28013
http://www.ncbi.nlm.nih.gov/pubmed/34262647
http://doi.org/10.2967/jnumed.121.263177
http://doi.org/10.1038/s41413-020-0094-3

	Introduction 
	Materials and Methods 
	Human Tissue Samples 
	Immunohistochemistry 
	Cell Culture and Transient Expression of uPAR and KRASG12C 
	Generation of ASPC-1 uPAR Knockouts by CRISPR/Cas9 
	Genomic PCR and Sanger Sequencing 
	Cell Viability Assay 
	Wound Healing Assay 
	siRNA Knockdown Experiments 
	Protein Extracts, Western Blot Analyses, and uPAR Quantification by ELISA 
	KRAS Activity Measurement 
	Statistical Analysis 

	Results 
	uPAR Protein and mRNA Expression Levels Have Prognostic Significance in PDAC 
	Generation of CRISPR/Cas9 uPAR Knockout Clones in AsPC-1 Cells 
	uPAR Influences Cell Growth, Cellular Plasticity, and the Response to Gemcitabine in AsPC-1 (KRASG12D) 
	Depletion of uPAR Activates FAK, CDC42, and p38 and Induces Autophagy 
	Re-expression of uPAR Restores the Migratory Capability and Gemcitabine Sensitivity of uPAR-/- Cells 
	Resistance against Gemcitabine in AsPC-1 uPAR-/- Cells through Autophagy 
	uPAR and Mutated KRAS Cooperate in Maintaining a Mesenchymal Phenotype 
	uPAR Modulates the Clinical Risk in Different PDAC Subgroups 

	Discussion 
	Conclusions 
	References

