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Abstract
Large optimal transport problems can be approached via domain decomposition, i.e. by
iteratively solving small partial problems independently and in parallel. Convergence
to the global minimizers under suitable assumptions has been shown in the unreg-
ularized and entropy regularized setting and its computational efficiency has been
demonstrated experimentally. An accurate theoretical understanding of its conver-
gence speed in geometric settings is still lacking. In this article we work towards such
an understanding by deriving, via Γ -convergence, an asymptotic description of the
algorithm in the limit of infinitely fine partition cells. The limit trajectory of couplings
is described by a continuity equation on the product space where the momentum is
purely horizontal and driven by the gradient of the cost function. Global optimality
of the limit trajectories remains an interesting open problem, even when global opti-
mality is established at finite scales. Our result provides insights about the efficiency
of the domain decomposition algorithm at finite resolutions and in combination with
coarse-to-fine schemes.
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1 Introduction

1.1 Overview

(Computational) optimal transport. Optimal transport (OT) is an ubiquitous opti-
mization problem with applications in various branches of mathematics, including
stochastics, PDE analysis and geometry. Let μ and ν be probability measures over
spaces X and Y and let Π(μ, ν) be the set of transport plans, i.e. probability mea-
sures on X × Y with μ and ν as first and second marginal. Intuitively, for some
π ∈ Π(μ, ν) and measurable A ⊂ X , B ⊂ Y , π(A × B) gives the amount of mass
transported from A to B. Further, let c : X × Y → R be a cost function, such that
c(x, y) gives the cost of moving one unit of mass from x to y. For a transport plan
π ∈ Π(μ, ν),

∫
X×Y c(x, y)dπ(x, y) then gives the total cost associated with this plan.

The Kantorovich optimal transport problem consists of finding the plan with minimal
cost,

inf

{∫

X×Y
c(x, y) dπ(x, y)

∣
∣
∣
∣π ∈ Π(μ, ν)

}

. (1.1)

We refer to the monographs [23, 26] for a thorough introduction and historical
context. Due to its geometric intuition and robustness it is becoming particularly
popular in data analysis and machine learning. Therefore, the development of efficient
numerical methods is of immense importance, and considerable progress was made
in recent years, such as solvers for the Monge–Ampère equation [5], semi-discrete
methods [17, 19], entropic regularization [12], and multi-scale methods [20, 25]. An
introduction to computational optimal transport, an overview on available efficient
algorithms, and applications can be found in [21].

Domain decomposition. Benamou introduced a domain decomposition algorithm for
Wasserstein-2 optimal transport on Rd [4], based on Brenier’s polar factorization [9].
The case of entropic transport was studied in [8]. The algorithm works as follows: X
is divided into two ‘staggered’ partitions {X J |J ∈ JA} and {X Ĵ | Ĵ ∈ JB}. In the first
iteration, an initial couplingπ0 is optimized separately on the cells X J ×Y for J ∈ JA,
yielding π1. Then π1 is optimized separately on the cells X Ĵ ×Y for Ĵ ∈ JB , yielding
π2. Subsequently, one continues alternating optimizing on the two partitions. This is
illustrated in the first row of Fig. 1, a pseudo code formulation is given in Algorithm 1.
In each iteration the problems on the individual cells can be solved in parallel, thus
making the algorithm amenable for large-scale parallelization.

In [4] it was shown that the algorithm converges to the global minimizer of (1.1)
for X , Y being bounded subsets of Rd , μ being Lebesgue-absolutely continuous and
c(x, y) = ‖x − y‖2, if each partition contains two cells that satisfy a ‘convex overlap
principle’ which roughly requires that a function f : X → Rwhich is convex on each
of the cells of JA and JB must be convex on X . If one is careful about consistency
around ‘cycles’ in the partition, the proof can be extended to more general partitions
with more cells.
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Algorithm1Domain decomposition for optimal transport [8,Algorithm1]. SeeFigure
1 for illustration and Section 2 for full notation.
Input: initial coupling πinit ∈ Π(μ, ν)

Output: a sequence (πk )k of feasible couplings in Π(μ, ν)

1: π0 ← πinit
2: k ← 0
3: loop
4: k ← k + 1
5: if (k is odd) then J k ← JA else J k ← JB // select the partition
6: for all J ∈ J k do // iterate over each composite cell
7: μJ ← PX (πk−1�(X J × Y )) // get X -marginal on cell
8: νk

J ← PY (πk−1�(X J × Y )) // get Y -marginal on cell

9: πk
J ← argmin

{
∫

X J ×Y c dπ + ε KL(π |μJ ⊗ ν)

∣
∣
∣
∣π ∈ Π

(
μJ , νk

J

)}

// get best local coupling for local marginals
10: end for
11: πk ←∑

J∈J k πk
J // combine local couplings

12: end loop

Fig. 1 Iterations of the domain decomposition algorithm for X = Y = [0, 1], μ = ν = L�[0, 1],
c(x, y) = (x − y)2 and a ‘flipped’ initialization (the diagonal plan is optimal, we start with the flipped
‘anti-diagonal’), for several resolution levels. At each level X is divided into n equal cells, which are then
grouped into two staggered partitions JA and JB . Partition cells of JA and JB are shown in red in the
first row. As the number of cells n is increased, the trajectories of the algorithm seem to converge to an
asymptotic limit where each iteration corresponds to a time-step of size 1/n

In [8] convergence to the minimizer for the entropic setting was shown under rather
mild conditions: c needs to be bounded and the two partitions need to be ‘connected’,
indicating roughly that it is possible to traverse X by jumping between overlapping
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cells ofJA andJB . Convergence was shown to be linear in the Kullback–Leibler (KL)
divergence. In addition, an efficient numerical implementation with various features
such as parallelization, coarse-to-fine optimization, adaptive sparse truncation and
gradual reduction of the regularization parameter was introduced and its favourable
performance was demonstrated on numerical examples. The convergence mechanism
used in the proof is based on the entropic smoothing and the obtained convergence rate
is exponentially slow as regularization goes to zero. It was shown to be approximately
accurate on carefully designed worst-case problems.

For the squared distance cost, as considered by Benamou, the algorithm was
observed to converge much faster in the experiments of [8]. In combination with
the coarse-to-fine scheme even a logarithmic number of iterations (in the image pixel
number) was sufficient. In these cases the dominating mechanism that drives conver-
gence seems to be the geometric structure of the squared distance cost. This is not
captured accurately by the convergence analysis of [8] and there are no rate estimates
given in [4]. The relation of the one-dimensional case to the odd-even-transposition
sort was discussed in [8], but the argument does not extend to higher dimensions. An
accurate description of this setting is therefore still missing.

Asymptotic dynamic of the Sinkhorn algorithm.The celebrated Sinkhorn algorithm has
advanced to anubiquitous numericalmethod for optimal transport bymeans of entropic
regularization [12, 21]. Linear convergence of the algorithm in Hilbert’s projective
metric is established in [13]. As in [8] the convergence analysis of [13] is solely
based on the entropic smoothing and the convergence rate tends to 1 exponentially
as regularization decreases (in fact, the former article was inspired by the latter). It
was observed numerically (e.g. [24]) that for the squared distance (and similar strictly
convex increasing functions of the distance) the Sinkhorn algorithm tends to converge
much faster, in particular with appropriate auxiliary techniques such as coarse-to-fine
optimization and gradual reduction of the regularization parameter.

In [6] the asymptotic dynamic of the Sinkhorn algorithm for the squared distance
cost on the torus is studied in the joint limit of decreasing regularization and refined
discretization. The dynamic is fully characterized by the evolution of the dual variables
(corresponding to the scaling factors in the Sinkhorn algorithm) which were shown to
converge towards the solution of a parabolic PDE of Monge–Ampère type. This PDE
had already been studied by [15, 16] and thus allowed estimates on the required num-
ber of iterations of the Sinkhorn algorithm for convergence within a given accuracy.
This bound is much more accurate for the squared distance, providing a theoretical
explanation for the efficiency of numerical methods.

1.2 Contribution and outline

Motivation. For transport problems with squared distance, domain decomposition was
empirically shown to be a robust and efficient numerical method for optimal transport,
amenable for large-scale parallelization. We expect this to generalize to other costs
that are strictly convex increasing functions of the distance. But an accurate theoretical
analysis of the convergence speed for this setting is still missing. This article provides
some steps in this direction. In this articlewework towards such a convergence analysis
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in the asymptotic limit as the number of partition cells tends to∞. The conjecture for
the existence of the asymptotic limit is motivated by Fig. 1 (and additional illustrations
throughout the article). The asymptotic regime is also motivated by experiments in
[8] where problems on images of pixel size 2048 × 2048 were solved on a very fine
partition into 256× 256 cells (of 8× 8 pixels each). Finally, an asymptotic analysis in
[6] provided a very elegant and novel interpretation of the behaviour of the Sinkhorn
algorithm andwe hope to establish a similar perspective for the domain decomposition
algorithm.

Preview of the main result. For simplicity we consider the case X = [0, 1]d , Y ⊂ R
d

compact and c ∈ C1(X × Y ) with partition cells of X being staggered regular d-
dimensional cubes (see Fig. 1 for an illustration in one dimension). At discretization
scale n, during iteration k, the domain decomposition algorithm applied to (1.1)
requires the solution of the cell problem

inf

{∫

Xn
J ×Y

c dπ + εn · KL(π |μ ⊗ ν)

∣
∣
∣
∣π ∈ Π(μn

J , ν
n,k
J )

}

. (1.2)

Here, Xn
J is a cell of the relevant partition J n

A or J n
B (depending on k), εn is

the entropic regularization parameter at scale n (we consider the cases εn = 0 and
εn > 0, and in the latter case a dependency on n will turn out to be essential), μn

J is

the restriction of μ to Xn
J and ν

n,k
J is the Y -marginal of the previous iterate πn,k−1,

restricted to Xn
J ×Y . For each n this generates a sequence of iterates (πn,k)k , which we

interpret as time-dependent piecewise constant trajectories R+ 	 t 
→ πn
t :=πn,�n·t�.

That is, at scale n, one iteration corresponds to a time-step 1/n.

Remark 1 (Convergence assumption) In this article, we will assume that there is a
limit trajectory R+ 	 t 
→ π t such that (up to a smoothing step) the disintegration
of the discrete trajectories πn

t,x against the X -marginal converges weak* to π t,x for
almost all (t, x). This is of course stronger than mere weak* convergence of the whole
trajectoriesπn to a limitπ (which follows relatively easily from standard compactness
arguments). This strong convergence is required for a meaningful pointwise limit of
the domain decomposition scheme.

The validity of the assumption is studied in more detail in a longer version of
this manuscript that is available at https://arxiv.org/abs/2106.08084v1. A notion of
bounded total variation for metric space-valued functions, as introduced by Ambrosio
in [1], can be shown to be sufficient for the assumption. It can fail when the initial
coupling π0 has unbounded variation in this particular sense. This is however a rather
pathological setting that is not relevant in practice. Otherwise, by a monotonicity
argument the assumption can be shown to hold in the unregularized one-dimensional
case. The argument does not extend to higher dimensions and entropic regularization
(although we expect that entropic regularization has a damping effect on the oscilla-
tions), so in general it is not yet clear whether oscillations can grow in an uncontrolled
way during iterations (and as n increases). A potential counter example is illustrated
in the extended manuscript, but it is unclear whether or not its oscillations are really
growing without bound as the numerical resolution increases.
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The necessity of the smoothing step can be seen from Figs. 1 and 3: within the
partition cells the iterates πn,�n·t� are very oscillatory, but after an averaging over the
cells a much more stable and smoother behaviour seems to emerge.

Disintegration notation and smoothing are detailed in Sect. 3.2, the desired conver-
gence is illustrated in Fig. 5. The assumption is formally stated in Sect. 4, Assumption
1.

Under this assumption we will show in this article that there is a momentum field
R+ 	 t 
→ ωt ∈ M(X × Y )d such that π t and ωt solve a ‘horizontal’ continuity
equation on X × Y ,

∂tπ t + divX ωt = 0 (1.3)

for t ≥ 0 with an initial-time boundary condition, in a distributional sense. Here divX

is the divergence of vector fields on X × Y that only have a ‘horizontal’ component
along X . We find that ωt � π t and the velocity vt := dωt

dπ t
has entries bounded by 1,

i.e. mass moves at most with unit speed along each spatial axis, corresponding to the
fact that particles can at most move by one cell per iteration.

The momentum field ωt is generated from a family of measures (λt,x )x∈X which
are minimizers of

inf

{∫

Z×Y
〈∇X c(x, y), z〉 dλ(z, y) + η · KL(λ|σ ⊗ π t,x )

∣
∣
∣
∣λ ∈ Π(σ,π t,x )

}

. (1.4)

which can be shown to be the Γ -limit of problem (1.2), which can be anticipated by
a careful comparison of the two problems: Z = [−1, 1]d represents the asymptotic
infinitesimal partition cell Xn

J (blown up by a factor n), we find that the transport cost is
linearly expanded in X -direction by the gradient, η:= limn→∞ εn ·n is the asymptotic
entropic contribution (which we assume to be finite for now, but the case η = ∞ is
also discussed), σ is the asymptotic infinitesimal restriction of μ to the partition cells
(which may be the Lebesgue measure on Z , but wemay also obtain different measures
ifμ is approximated by discretization) and π t,x is the disintegration of π t with respect
to the X marginal at x , which corresponds to the asymptotic infinitesimal Y -marginal
of π t , when restricted to the ‘point-like’ cell at x . It is this pointwise Γ -convergence
that requires the particular notion of convergence of the trajectories (πn

t )n .
In one dimension, the disintegration ωt,x of ωt is then obtained from λt,x via

ωt,x (A):=λt,x ({z > 0} × A) − λt,x ({z < 0} × A) (1.5)

for measurable A ⊂ Y . That is, particles sitting in the left half of the cell (z < 0) move
left with velocity −1, particles in the right half move right with velocity +1.

In a nutshell, the limit of the trajectories generated by the domain decomposition
algorithm is described by a flow field which is generated by a limit version of the
algorithm.

Compared to the Sinkhorn algorithm studied in [6], the state of the domain decom-
position algorithm cannot be described by a scalar potential X → R, but requires
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the full (generally non-deterministic) coupling πn,k . Consequently, the limit system
(1.3)–(1.5) is not ‘merely’ PDE for a scalar function but formally a non-local PDE for
a measure. This system has not been studied previously. Consequently, after having
established the convergence to this system, we cannot use existing results to conclude
our convergence analysis. Instead, the behaviour of the limit system remains an open
question.

Some implications.However, from the result one can alreadydeduce that asn increases,
the number of iterations required to approximate the asymptotic stationary state of the
algorithm (which need not be a global minimizer) increases linearly in n, which is
much faster than the exponential bound in [8].

This also sheds preliminary light on the efficiency of the coarse-to-fine approach of
[8]. Assume that from an iterate πn,k at scale n an approximation of the iterate π2n,2k

at scale 2n can be obtained by refinement and that the approximation error can be
remedied by running a finite, fixed number of additional iterations at scale 2n. Then,
by starting at low n, and then repeatedly running a fixed number of iterations, and
refining to 2n, one can obtain an approximation of the limit point π t in a number of
iterations that is logarithmic in t . This is in agreement with the numerical results of
[8].

Open questions. The results of this article do not yet give a complete picture of the
dynamics but raise several intriguing follow-up questions.

– We already discussedAssumption 1 andwhether one can give sufficient conditions
for it that can be checked a priori (see Remark 1).

– We conjecture that under suitable conditions the limit trajectory t 
→ π t converges
to a stationary coupling π∞ as t → ∞ and that this coupling is concentrated on
the graph of a map (for suitable cost functions c, for instance of ‘McCann-type’
[14], c(x, y) = h(x − y) for strictly convex h : Rd → R).

– Under what conditions is π∞ a minimizer of the transport problem? Several
counter-examples with different underlying mechanisms that prevent optimality
are presented or discussed in this article:

– In the discretized case, with a fixed number of points per basic cell and with
εn = 0, local optimality on the composite cells does not necessarily induce
global optimality of the problem (Sect. 5.1).

– In this case, for εn > 0, convergence to the global minimizer was shown in [8]
for each fixed n. But we conjecture that if εn → 0 too fast, the the asymptotic
trajectory may still get stuck in a sub-optimal position.

– Conversely, if εn does not tend to zero sufficiently fast (η = ∞), asymptotically
the algorithm freezes in the initial configuration (Fig. 6, Theorem 3).

– Finally, even in the non-discretized, unregularized setting, where convergence
of the algorithm for finite n follows (essentially) from Benamou’s work [4],
the asymptotic trajectory may become stuck in a sub-optimal configuration if
the sub-optimality is ‘concentrated on an interface’ and almost all cells are
locally optimal (Sect. 5.2).

– In cases where convergence to the minimizer can be established, how fast is this
convergence with respect to t? Via the convergence result this then provides an

123



458 M. Bonafini et al.

estimate on the number of required iterations. Intuitively, domain decomposition
(and its asymptotic limit dynamics) resembles a minimizing movement scheme
on the set Π(μ, ν) with respect to a ‘horizontal W∞ metric’, where particles are
only allowed to move in X direction by at most distance 1 along each spatial axis
per unit time. Can this interpretation be made rigorous?

Outline. Notation is established in Sect. 2. The detailed setting for the algorithm and
the discrete trajectories are introduced in Sect. 3. In Sect. 4 we proof convergence of
the cell problems, the continuity equation and state the complete main result, Theorem
3. Some examples that illustrate limit cases are presented in Sect. 5. Conclusion and
open questions are given in Sect. 6.

2 Background

2.1 Notation and setting

– Let R+:=[0,∞).
– Let X :=[0, 1]d , Y be a compact subset of Rd . We assume compactness to avoid
overly technical arguments while covering the numerically relevant setting. We
conjecture that the results of this paper can be generalized to compact X with
Lipschitz boundaries.

– For ametric space Z denote byM(Z) theσ -finitemeasures over Z . If Z is compact,
then measures in M(Z) are finite. Further, denote by M+(Z) the subset of non-
negative σ -finite measures and by M1(Z) the subset of probability measures.

– The Lebesgue measure of any dimension is denoted by L. The dimension will be
clear from context.

– For ρ ∈ M+(Z) and a measurable S ⊂ Z we denote by ρ�S the restriction of ρ

to S.
– The maps PX : M+(X × Y ) → M+(X) and PY : M+(X × Y ) → M+(Y )

denote the projections of measures on X × Y to their marginals, i.e.

(PXπ)(SX ):=π(SX × Y ) and (PY π)(SY ):=π(X × SY )

for π ∈ M+(X × Y ), SX ⊂ X , SY ⊂ Y measurable. We will use the projection
notation analogously for other product spaces.

– For a compact metric space Z and μ ∈ M(Z), ν ∈ M+(Z) the Kullback–Leibler
divergence (or relative entropy) of μ with respect to ν is given by

KL(μ|ν) :=
{∫

Z ϕ
(
dμ
dν

)
dν if μ � ν, μ ≥ 0,

+∞ else,
with

ϕ(s) :=

⎧
⎪⎨

⎪⎩

s log(s) − s + 1 if s > 0,

1 if s = 0,

+∞ else.
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2.2 Optimal transport

For μ ∈ M+(X), ν ∈ M+(Y ) with the same mass, denote by

Π(μ, ν) :=
{

π ∈ M+(X × Y )

∣
∣
∣
∣ PXπ = μ,PY π = ν

}

(2.1)

the set of transport plans between μ and ν. Note that Π(μ, ν) is non-empty if and
only if μ(X) = ν(Y ).

Let c ∈ C(X × Y ) and ε ∈ R+. Pick μ̂ ∈ M+(X) and ν̂ ∈ M+(Y ) such that
μ � μ̂ and ν � ν̂. The (entropic) optimal transport problem between μ and ν with
respect to the cost function c, with regularization strength ε and with respect to the
reference measure μ̂ ⊗ ν̂ is given by

inf

{∫

X×Y
c(x, y) dπ(x, y) + ε KL(π |μ̂ ⊗ ν̂)

∣
∣
∣
∣π ∈ Π(μ, ν)

}

. (2.2)

Often one simply considers μ̂ = μ and ν̂ = ν, but other choices are admissible,
and one can also replace μ̂ ⊗ ν̂ by a more general measure on the product space, as
long as μ and ν are absolutely continuous with respect to its marginals.

For ε = 0 this is the (unregularized) Kantorovich optimal transport problem. The
existence of minimizers follows from standard compactness and lower-semicontinuity
arguments. Of course, more general cost functions (e.g. lower-semicontinuous) can be
considered. We refer, for instance, to [23, 26] for in-depth introductions of unregular-
ized optimal transport. Common motivations for choosing ε > 0 are the availability
of efficient numerical methods and increased robustness in machine learning applica-
tions, see [21] for a broader discussion of entropic regularization. In this article, the
above setting is entirely sufficient.

For a compact metric space (Z , d) we denote by WZ the Wasserstein-1 metric
on M1(Z) (or more generally, subsets of M+(Z) with a prescribed mass). By the
Kantorovich–Rubinstein duality [26,Remark6.5] onehas forμ, ν ∈ M+(Z),μ(Z) =
ν(Z),

WZ (μ, ν) = sup
φ∈Lip1(Z)

∫

Z
φ d(μ − ν) (2.3)

where Lip1(Z) ⊂ C(Z) denotes the Lipschitz continuous functions over Z with
Lipschitz constant at most 1.

3 Domain decomposition algorithm for optimal transport and
discrete trajectories

3.1 Problem setup

In this article, we are concerned with applying the domain decomposition algorithm
to (discretizations) of the (possibly entropy regularized) optimal transport problem
(2.2),
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inf

{∫

X×Y
c(x, y) dπ(x, y) + ε KL(π |μ ⊗ ν)

∣
∣
∣
∣π ∈ Π(μ, ν)

}

, (3.1)

with increasingly finer cells and with studying its asymptotic behaviour as the cell
size tends to zero. Here for simplicity we regularize with respect to μ⊗ ν, but for the
cell problems within Algorithm 1, in line 9, the marginals of the problem differ from
those of the regularization measure. In the following we outline the adopted setting
and notation for the subsequent analysis.

1. μ ∈ M1(X), ν ∈ M1(Y ) with μ � L. We assume that dμ
dL > 0 almost

everywhere.

We will build the two composite partitions JA and JB from the following more basic
partition of X , see [8] for more details and Fig. 2 for an illustration.

2. For a discretization level n ∈ 2N, that we assume even for simplicity, the index
set I n for the basic partition is given by a uniform Cartesian grid with n points
along each axis, with the basic cells (Xn

i )i∈I n being the corresponding hypercubes
between lattice points:

I n :=
{
(i1, . . . , id)

∣
∣
∣ i1, . . . , id ∈ {0, . . . , n − 1}

}
and

Xn
i :=i/n + [0, 1/n]d for i ∈ I n .

Remark 2 The set (Xn
i )i∈I n of closed hypercubes is not a partition of X , since adjacent

cubes overlap on their common boundary. However, due to the assumption μ � L,
these overlaps do not carry any mass, and may thus be ignored.

3. The mass and the center of basic cell i ∈ I n are given by

mn
i :=μ(Xn

i ), xn
i := nd

∫

Xn
i

x dx = (i + ( 12 , . . . ,
1
2 ))/n.

Note that mn
i > 0 for all n ∈ 2N and i ∈ I n by positivity of dμ

dL .
4. At level n we approximate the original marginalμ byμn ∈ M1(X). For example,

μn could be a discretization of μ. We assume that μn(Xn
i ) = mn

i for each basic
cell i ∈ I n , which in particular implies that (μn)n converges weak* to μ. We also
assume that μn assigns no mass to any basic cell boundary, so Remark 2 remains
applicable. Setting μn

i :=μn�Xn
i , it holds

∑
i∈I n μn

i = μn . Further regularity
conditions on the sequence (μn)n will be required in Definition 4.

5. Analogously, let (νn)n be a sequence in M1(Y ), converging weak* to ν, and
(πn

init)n a sequence in M1(X × Y ) with πn
init ∈ Π(μn, νn), converging weak* to

some πinit ∈ Π(μ, ν). Again, νn can slightly differ from ν to allow for potential
discretization or approximation steps. There are variousways how a corresponding
sequence πn

init could be generated, for instance via an adaptation of the block
approximation [10] from some πinit ∈ Π(μ, ν).

6. The cells of the composite partition J n
A are generated by forming groups of 2d

adjacent basic cells; the cells of J n
B are generated analogously, but with an offset
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of 1 basic cell in every direction. (Of course, composite cells may contain less
basic cells at the boundaries of X ). Then we set

Xn
J :=

⋃

i∈J

Xn
i , μn

J :=
∑

i∈J

μn
i = μn�Xn

J ,

for J ∈ J n
A or J ∈ J n

B . Again, Remark 2 remains applicable. See again Fig. 2 for
an illustration.

7. The mass of a composite cell J is mn
J :=

∑
i∈J mn

i . For an A (resp. B) composite
cell J , we will define its center xn

J as the unique point on the regular grid

{
1

n
,
3

n
, . . . ,

n − 1

n

}d

,

(

respectively

{

0,
2

n
, . . . ,

n − 2

n
, 1

}d
)

, (3.2)

that is contained in Xn
J . For A composite cells and B composite cells that do not

lie at the boundary of X , it coincides with the average of the centers of their basic
cells.

8. Two distinct composite cells J ∈ J n
A and Ĵ ∈ J n

B are said to be neighboring if they
share a basic cell. The set of neighbouring composite cells for a given composite
cell J is denoted by N (J ). By construction, the shared basic cell is unique, and
we denote it by i(J , Ĵ ). For compactness, instead of writing, for instance, mn

i(J , Ĵ )
,

we often merely write mn
J , Ĵ

.

9. Two composite cells J , Ĵ ∈ J n
A or J , Ĵ ∈ J n

B are adjacent if the sets Xn
J and Xn

Ĵ
share a boundary.

10. The transport cost function c is some C1 function on X × Y .
11. The entropic regularization parameter at level n is εn ∈ [0,∞). While [4] was

restricted to ε = 0 and [8] to ε > 0, in this article we consider both cases. We
assume that the sequence (n · εn)n is convergent as n → ∞ and set

η := lim
n→∞ n · εn, (3.3)

where we explicitly allow for the case η = ∞.

Now, for given n ∈ 2N, we apply Algorithm 1 to the discrete problem

inf

{∫

X×Y
c(x, y) dπ(x, y) + εn KL(π |μn ⊗ νn)

∣
∣
∣
∣π ∈ Π(μn, νn)

}

, (3.4)

where we use the composite partitions J n
A and J n

B and the initial coupling πn
init.

12. At scale n, the k-th iterate will be denoted by πn,k for k ∈ N and one has πn,k ∈
Π(μn, νn). The composite partition used during that iteration will be denoted by
J n,k , which is either J n

A or J n
B , depending on whether k is odd or even.
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Fig. 2 Close-up of the decomposition of X = [0, 1]2 into basic and composite cells. Left, basic cells
and their centers. Center and right, respectively A and B composite cells and their centers. The top left A
composite cell shows that the basic cell center of cell j ∈ J is of the form xn

J +b/2n, for some b ∈ {−1, 1}d

13. Based on line 8 of Algorithm 1 we introduce, for any given k ≥ 0, the partial
Y -marginals of the iterates πn,k when restricted to basic or composite cells:

ν
n,k
i :=PY

(
πn,k�(Xn

i × Y )
)

for i ∈ I n,

ν
n,k
J :=

∑

i∈J

ν
n,k
i = PY

(
πn,k�(Xn

J × Y )
)

for J ∈ J n
A ∪ J n

B .

From Algorithm 1, lines 8 and 9, since we are optimizing among couplings with
fixed marginals, we get

PY
(
πn,k�(Xn

J × Y )
) = PY

(
πn,k−1�(Xn

J × Y )
)

for J ∈ J n,k

and we conclude that composite cell marginals are preserved during an iteration:

ν
n,k
J = ν

n,k−1
J for J ∈ J n,k . (3.5)

3.2 Discrete trajectories andmomenta

At discretization level n ∈ 2N, we now associate one iteration with a time-step of
Δt = 1/n, i.e. iterate k is associated with the time t = k/n. Loosely speaking, we now
want to consider the family of trajectories (R+ 	 t 
→ πn,�t ·n�)n∈2N and then study
their asymptotic behaviour as n → ∞. However, we find that the measures πn,k can
oscillate very strongly at the level of basic cells, allowing at best forweak* convergence
to some limit coupling, cf. Fig. 3, top. In contrast, our hypothesis for the dynamics of
the limit trajectory requires a stronger ‘fiber-wise’ convergence of the disintegration
against the X -marginal.We observe that the oscillations in the couplings becomemuch
weaker if we average the couplings πn,k at the level of composite cells first, cf. Fig. 3,
bottom. This averaging is merely intended as an instrument for theoretical analysis of
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Fig. 3 Top, discrete iterates πn,k for n = 32,μn = νn discretized Lebesgue, πn
init = μn ⊗νn , the quadratic

cost, εn = 0. Bottom, same iterates but averaged at the composite cell level. Note how the oscillations in
space become much weaker

the iterates, not as an actual step in the numerical algorithm. (However, in principle
one could add such an averaging step before each iteration to the actual algorithm
since the result of each composite cell problem only depends on the Y -marginal of
the entire composite cell, and not on the distribution within its constituent basic cells.)
Motivated by this we now introduce discrete trajectories of approximate couplings,
averaged over composite cells. We rely on the following conventions for notation.

Remark 3 (Disintegration notation and measure trajectories)

(i) We will represent trajectories of measures on X × Y as measures on R+ × X × Y
and use bold symbols to denote them. For a non-negative measure λ ∈ M+(R+×
X × Y ) with PR+λ � L we write (λt )t∈R+ for its disintegration with respect to L
on the time-axis such that

∫

R+×X×Y
φ(t, x, y) · dλ(t, x, y) =

∫

R+

[∫

X×Y
φ(t, x, y) · dλt (x, y)

]

dt,

for φ ∈ Cc(R+× X ×Y ). This disintegration is well defined for σ -finite measures.
(ii) When PXλt � μ for L-a.e. t ∈ R+, we write (λt,x )(t,x)∈R+×X for the

disintegration in time and X such that

∫

R+×X×Y
φ(t, x, y) · dλ(t, x, y) =

∫

R+

[∫

X

[∫

Y
φ(t, x, y) · dλt,x (y)

]

dμ(x)

]

dt,

for φ ∈ Cc(R+ × X × Y ).
(iii) Conversely, a (measurable) family of signed measures (λx )x∈X in M(Y ) with

uniformly bounded variation (i.e. supx∈X |λx |(Y ) < ∞) can be glued together
along X with respect to μ to obtain a measure λ ∈ M(X × Y ) via

∫

X×Y
φ(x, y) dλ(x, y) :=

∫

X

[∫

Y
φ(x, y) dλx (y)

]

dμ(x)
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for φ ∈ C(X × Y ). We will denote λ as μ ⊗ λx . Similarly, we can glue families
over (t, x) ∈ R+ × X to obtain a σ -finite measure on R+ × X × Y , which we
denote by L⊗ μ ⊗ λt,x .

(iv) The above points extend to vector measures by component-wise application.

Definition 1 (Discrete trajectories and momenta) The discrete trajectory and momen-
tum, πn ∈ M+(R+ × X × Y ) and ωn ∈ M(R+ × X × Y )d are defined via their
disintegration with respect to L⊗ μ at t ∈ R+, x ∈ X as:

πn
t,x := 1

mn
J
ν

n,k
J , ωn

t,x := 1

mn
J

∑

Ĵ∈N (J )

ν
n,k
J , Ĵ

· (xn
Ĵ
− xn

J ) · n

= 1

mn
J

∑

b∈{−1,+1}d

ν
n,k
i(J ,b) · b, (3.6)

where we set k = �nt�, J is the (μ-a.e. unique) composite cell in J n,k such that
x ∈ Xn

J and i(J , b) is the basic cell contained in J whose center sits at xn
J + b/2n.

The vectors b are illustrated in Fig. 2. For composite B cells at the boundary some of
the basic cells i(J , b) might lie outside of X and we ignore the corresponding terms
in the sum.

Note that we use the composite cell marginals ν
n,k
J in the definition of πn

t,x , hence
this implements the aforementioned averaging over composite cells. An intuitive inter-
pretation of the discrete momentum ωn is that mass in the basic cell i(J , Ĵ )will travel
from xn

J to xn
Ĵ
during iteration k within a time span of 1/n.

Remark 4 πn
t is generated from πn,�nt� by averaging the Y -marginals over the com-

posite cells. That is, by the averaging each mass particle is moved only horizontally,
and only within its current composite cell. Therefore, for all n ∈ 2N and t ∈ R+,
it holds WX×Y (πn

t , πn,�nt�) ≤ 2
√

d/n where the latter is the diameter of composite
cells. Consequently the sequences (πn

t )n and (πn,�nt�)n have the same weak* limits
or cluster points.

The discrete trajectory πn
t is illustrated in the bottom row of Fig. 3, and its corre-

sponding momentum ωn
t is visualized in Fig. 4. We will show in Sect. 4.4 that πn and

ωn approximately solve a continuity equation on the product space X ×Y in a distribu-
tional sense, where ωn encodes a ‘horizontal’ flow (i.e. only along the X -component).
Formally, this can be written as

∂tπ
n
t + divX ωn

t = o(1) for t > 0 and πn
t=0 → πinit as n → ∞ (3.7)

and it is to be interpreted via integration against test functions in C1c (R+ × X × Y )

where the R+ factor corresponds to time t (cf. Proposition 4).
In Sect. 4 we study the limit ω (up to subsequences) of the ωn and show that

it can be constructed from solutions to a problem that is the Γ -limit of the cell-wise
domain decomposition problemswhere the cells have collapsed to single points x ∈ X
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Fig. 4 Discrete momentum field for the trajectory shown in Fig. 3. Blue shade indicates positive velocity
(i.e., massmoving towards the right); red shade indicates a negative velocity. The intensitymarks the amount
of mass that is transported. Note that the momentum does not vanish completely even when the algorithm
has converged. This is related to the finite discretization scale. For n → ∞we anticipate that themomentum
(after convergence of the algorithm) converges weak* (but not in norm) to zero (color figure online)

Fig. 5 Comparison of discrete trajectories πn for increasing n for the same setting as in Fig. 3. It is tempting
to conjecture that the disintegrations πn

t,x converge weak* for almost all (t, x)

(Proposition 3). The limit pair (π ,ω) is an exact solution of the ‘horizontal’ continuity
equation (3.7) (Proposition 4). In summary, the limit of trajectories generated by the
domain decomposition algorithm can be associated with a limit notion of the domain
decomposition algorithm (Theorem 3).

Role of regularization parameter εn .Weexpect that the behaviour of the limit trajectory
and momentum (π ,ω) depends on the behaviour of the sequence of regularization
parameters εn . This is motivated by the numerical simulations illustrated in Fig. 6.
The upper rows show the evolution under the domain decomposition algorithm on
two kinds of initial data, for d = 1, n = 64, εn = 0. The setting dubbed ‘flipped’ has
again μn = νn = discretized Lebesgue, but the initial plan is the ‘flipped’ version of
the optimal (diagonal) plan. The setting named ‘bottleneck’ has as μn a measure with
piecewise constant density that features a low-density region (the bottleneck) around
x = 0.5, while νn is again discretized Lebesgue and πn

init = μn ⊗ νn . This bottleneck
slows down exchange of mass between the two sides of the X domain, and thus two
shocks appear (cf. t = 0.4), which slowly merge as mass traverses the bottleneck.

These evolution examples for εn = 0 serve as reference for comparison with the
regularized cases that are illustrated in the bottom plots of Fig. 6 for fixed t and various
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Fig. 6 Top, evolution of the discrete trajectories for πinit of type ‘flipped’ and ‘bottleneck’, ε = 0. Bottom,
snapshot of the discrete trajectories at a fixed time (left t = 0.9, right t = 1.8), for different values of n and
scaling behaviour of the regularization parameter εn

n. We examine three different ‘schedules’ for the regularization parameter: εn = 2/n2

(left), εn = 2/(64n) (middle) and εn = 1/(256
√

n) (right). Note that in all the
schedules the regularization converges to zero. The values were chosen so that the
regularization at scale n = 64 is the same for all schedules.

– For εn ∼ 1/n2, the trajectories become increasingly ‘crisp’ and are very close to
the unregularized ones.

– For εn ∼ 1/n, the trajectories are slightly blurred and lag a little behind the
unregularized ones, but still evolve consistently as n → ∞.

– For εn ∼ 1/
√

n blur and lag increase with n.

The three schedules yield η = limn→∞ n · εn = 0, η ∈ (0,∞) and η = +∞
respectively, see (3.3). Based on Fig. 6 we conjecture that for η = 0, the problem
describing the limit dynamics of (π ,ω) does not contain an entropic term. For η ∈
(0,∞), there will be an entropic term. For η = ∞ the entropic termwill dominate and
the trajectory t 
→ π t = πinit will be stationary. This conjecture will be confirmed in
Sect. 4.
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4 Asymptotic analysis

In this section we derive the asymptotic description of the domain decomposition
trajectories and momenta. It is structured as follows: In Sect. 4.1 we introduce the re-
scaled versions of the domain decomposition cell problems which have a meaningful
Γ -limit. In Sect. 4.2 we state the supposed limit functional and prepare the proof.
Liminf and limsup conditions are provided in Sect. 4.3. The continuity equation is
addressed in Sect. 4.4.

The results hinge on the following assumption on the pointwise convergence of the
discrete trajectories. For additional context, see Remark 1.

Assumption 1 Assume that there is a trajectory π = L⊗ π t ∈ M+(R+ × X × Y ),
π t ∈ Π(μ, ν) for a.e. t ∈ R+, such that, up to extraction of a subsequence Z ⊂ 2N,
the discrete trajectories (πn)n , defined in Definition 1, converge for a.e. t ∈ R+ and
μ-a.e. x ∈ X to π in WY . More precisely,

lim
n∈Z, n→∞

WY (πn
t,x ,π t,x ) = 0, for L-a.e. t and μ-a.e. x ∈ X . (4.1)

4.1 Re-scaled discrete cell problems

Recall that at resolution n ∈ 2N, during iteration k ∈ N, in a composite cell J ∈ J n,k

we need to solve the following regularized optimal transport problem (Algorithm 1,
line 9):

inf

{∫

Xn
J ×Y

c dπ + εn · KL(π |μn
J ⊗ νn)

∣
∣
∣
∣π ∈ Π(μn

J , ν
n,k
J )

}

(4.2)

For the limiting procedurewewill map Xn
J to a reference hyper-cube Z = [−1, 1]d ,

normalize the cell marginals μn
J and ν

n,k
J (the latter will then become πn

k/n,x for
x ∈ Xn

J ). We will subtract some constant contributions from the transport and reg-
ularization terms and re-scale the objective such that the dominating contribution is
finite in the limit (the proper scaling will depend on whether η is finite). In addition, as
n → ∞, the cells Xn

J become increasingly finer, we thus expect that we can replace the
cost function c by a linear expansion along x . These transformations are implemented
in the two following definitions, yielding the functional (4.3). Equivalence with (4.2)
is then established in Proposition 1.

Definition 2 We define the scaled composite reference cell as Z = [−1, 1]d . Let
n ∈ Z (recall that Z is the subsequence from Assumption 1).

– For a composite cell J ∈ J n,k , k > 0, the scaling map of cell J is given by

Sn
J : Xn

J → Z , x 
→ n(x − xn
J ).

– For J ∈ J n,k , k > 0, we define the scaled X -marginal as

σ n
J := (Sn

J )�μ
n
J /mn

J ∈ M1(Z).
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– For t > 0, x ∈ X , let k = �tn� and let J ∈ J n,k be the μ-a.e. unique composite
cell in J n,k such that x ∈ Xn

J . We will write

J n
t,x := J , xn

t,x := xn
J , Sn

t,x := Sn
J , σ n

t,x := σ n
J .

This will allow us to reference more easily between the continuum limit problem
in fiber x ∈ X and its corresponding family of discrete problems at finite scale n.

Definition 3 (Discrete fiber problem) For each n ∈ 2N, t ∈ R+ and x ∈ X , we define
the following functional over M1(Z × Y ):

Fn
t,x (λ) :=

{
Cn

t,x (λ) if λ ∈ Π(σ n
t,x ,π

n
t,x ),

+∞ otherwise,
(4.3)

where for η < ∞,

Cn
t,x (λ) :=

∫

Z×Y
n · [c(xn

t,x + z/n, y) − c(xn
t,x , y)

]
dλ(z, y) + n εn · KL(λ|σ n

t,x ⊗ πn
t,x ),

(4.4)

and if η = ∞,

Cn
t,x (λ) := KL(λ|σ n

t,x ⊗ πn
t,x ) + 1

n εn

∫

Z×Y
n · [c(xn

t,x + z/n, y) − c(xn
t,x , y)

]
dλ(z, y).

(4.5)

We now establish equivalence between (4.2) and minimizing (4.3).

Proposition 1 (Domain decomposition algorithm generates a minimizer of Fn
t,x ) Let

n ∈ 2N, t > 0, x ∈ X, k = �t n� and J = J n
t,x . Then problem (4.2) is equivalent to

minimizing Fn
t,x , (4.3), over M1(Z × Y ) in the sense that the latter is obtained from

the former by a coordinate transformation, a positive re-scaling and subtraction of
constant terms. The minimizers π

n,k
J of (4.2) are in one-to-one correspondence with

minimizers λn
t,x ∈ M1(Z × Y ) of (4.3) via the bijective transformation

λn
t,x := (Sn

J , id)�π
n,k
J /mn

J . (4.6)

Note that mn
J > 0 is a consequence of mn

i > 0 for all n ∈ N and i ∈ I n (Sect. 2.1,
item 3.).

Proof We subsequently apply equivalent transformations to (4.2) to turn it into (4.3),
while keeping track of the corresponding transformation of minimizers. We start with
the case η < ∞.
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First, we multiply the objective of (4.2) by n and re-scale the mass of π by 1/mn
J

such that it becomes a probability measure. We obtain that (4.2) is equivalent to

mn
J · inf

{∫

Xn
J ×Y

(n · c) dπ + n · εn · KL(π | μn
J

mn
J
⊗ νn)

∣
∣
∣
∣π ∈ Π(

μn
J

mn
J
,πn

t,x )

}

, (4.7)

where we used that νn,k
J /mn

J = πn
t,x by (3.6) (and the relation of t , x , n, k and J ) and

that KL(·|·) is positively 1-homogeneous under joint re-scaling of both arguments,

i.e. mn
J ·KL( π

mn
J
| μn

J
mn

J
⊗ νn) = KL(π |μn

J ⊗ νn). Minimizers of (4.7) are obtained from

minimizers π of (4.2) as π/mn
J . The factor mn

J in front can be ignored.
Second, we transform the cell Xn

J to the reference cell Z via the map Sn
J . For the

transport term in (4.7) we find

∫

Xn
J ×Y

(n · c) dπ =
∫

Z×Y
(n · c) ◦ (Sn

J , id)−1 d(Sn
J , id)�π.

Using that (Sn
J , id) is a homeomorphism one gets that

d(Sn
J , id)�π

d
(
(Sn

J )�
μn

J
mn

J
⊗ νn

) ◦ (Sn
J , id) = dπ

d
(

μn
J

mn
J
⊗ νn

)
(

μn
J

mn
J
⊗ νn

)
-almost everywhere.

With this we can transform the entropy term of (4.7) to

KL(π | μn
J

mn
J
⊗ νn) = KL((Sn

J , id)�π |(Sn
J )�

μn
J

mn
J
⊗ νn) = KL((Sn

J , id)�π |σ n
J ⊗ νn).

Finally, using once more that (Sn
J , id) is a homeomorphism one finds

[
π ∈ Π(

μn
J

mn
J
,πn

t,x )
]

⇔ [
(Sn

J , id)�π ∈ Π(σ n
J ,πn

t,x )
]
.

Consequently, (4.7) is equivalent to

inf

{∫

Z×Y
(n · c) ◦ (Sn

J , id)−1 dπ + n · εn · KL(π |σ n
J ⊗ νn)

∣
∣
∣
∣π ∈ Π(σ n

J ,πn
t,x )

}

,

(4.8)

with minimizers to the latter obtained from minimizers π of the former as (Sn
J , id)�π .

Third, observe that [(n · c) ◦ (Sn
J , id)−1](z, y) = n · c(xn

t,x + z/n, y) and that∫
Z×Y n · c(xn

t,x , y) dλ(z, y) depends just on the second marginal of λ, which is fixed,
hence it is a constant contribution. So the transport cost term in (4.8) is equivalent to
that in (4.4).

Fourth, we subtract constant parts of the entropy term. Recall that πn
t,x = ν

n,k
J /mn

J

with
∑

J ′∈J n,k ν
n,k
J ′ = νn and all partial marginals are non-negative. This implies
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that πn
t,x � νn with the density

dπn
t,x

dνn lying in [0, 1/mn
J ] νn-almost everywhere.

Consequently, if λ � σ n
J ⊗ πn

t,x then λ � σ n
J ⊗ νn and the densities satisfy

dλ

dσ n
J ⊗ νn

(z, y) = dλ

dσ n
J ⊗ πn

t,x
(z, y) · dπ

n
t,x

dνn
(y) for σ n

J ⊗ νn-a.e. (z, y).

Since PY λ = πn
t,x for all feasible λ ∈ Π(σ n

J ,πn
t,x ), one also has [λ � σ n

J ⊗ νn]
⇒ [λ � σ n

J ⊗πn
t,x ] and the same relation between the densities. Using this one finds

that when either of the two entropic terms in (4.4) or (4.8) is finite, so is the other one
where one has the relation

KL(λ|σ n
J ⊗ νn) = KL(λ|σ n

J ⊗ πn
t,x ) + KL(πn

t,x |νn).

Here, the second term on the right hand side is finite (due to the bound on the density
dπn

t,x
dνn ) and does not depend on λ. Hence, the entropic terms in (4.4) and (4.8) are
identical up to a constant and in conclusion, for η < ∞, both minimization problems
are equivalent with the prescribed relation between minimizers. The adaption to the
case η = ∞ is trivial since (4.5) is just a positive re-scaling of (4.4). ��
Remark 5 For λn

t,x a minimizer of Fn
t,x constructed as in (4.6), the discrete momentum

field disintegration ωn
t,x (3.6) can be written in terms of λn

t,x as:

(ωn
t,x )� = PY (λn

t,x�Z�+ × Y ) − PY (λn
t,x�Z�− × Y ) for � = 1, . . . , d, with

Z�± = {z ∈ Z | ±z� > 0}. (4.9)

To see this, fix J = J n
t,x . Then, for each b ∈ B := {−1,+1}d define Zb := {z ∈

Z | sign(z�) = b� for all � = 1, . . . , d}. Further define i(J , b) as the basic cell in
composite cell J whose center lies at xn

J + b/2n. Then

PY (λn
t,x�Z�+ × Y ) − PY (λn

t,x�Z�− × Y ) =
∑

b∈B

b� · PY (λn
t,x�Zb × Y ) =

∑

b∈B

b� ·
ν

n,k
i(J ,b)

mn
i(J ,b)

,

(4.10)

which is precisely the �-th component in (3.6).

4.2 Limit fiber problems and problem gluing

In this section we state the expected limit of the discrete fiber problems (4.3) as
n → ∞. For this we need a sufficiently regular sequence of first marginals (σ n

t,x )n ,
which will be dealt with in the first part of this section (Definition 4, Assumption 2,
Lemma 1). Sufficient regularity of the second marginal constraint will be provided by
the pointwise convergence of (πn)n (Assumption 1). The conjectured limit problem
is introduced in Definition 5. Instead of proving Γ -convergence on the level of single
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fibers, we first ‘glue’ the problems together (Definition 6) along t ∈ R+ and x ∈ X
and then establish Γ -convergence for the glued problems (Proposition 2). This avoids
issues with measurability and the selection of convergent subsequences. Finally, from
this we can deduce the convergence of the momenta to a suitable limit (Proposition
3).

Definition 4 We say that (μn)n is a regular discretization sequence for the X-marginal
if there is someσ ∈ M1(Z) such that forL⊗μ almost all (t, x) ∈ R+×X the sequence
(σ n

t,x )n converges weak* to σ and σ does not give mass to any coordinate axis, i.e.,

σ({z ∈ Z | z� = 0}) = 0 for � = 1, . . . , d. (4.11)

The motivation behind this definition is that mass on the coordinate axes cannot
be uniquely assiged to a basic cell (‘left or right’) and thus we desire to avoid this
case at each n and also in the limit. The definition clarifies how the discretizations μn

should be chosen: a malicious or clumsy choice could yield a limit problem where
the association of mass to basic cells may not longer be well-defined. The following
Lemma states that several canonical ways of choosing μn are all regular. The first
corresponds to no discretization at all, the second one to simply approximating μn

by a single Dirac measure on each basic cell, and the third to a discretization with a
grid that is refined faster than the partitions, i.e. within each basic cell the measure is
approximated by increasingly more Dirac masses.

Lemma 1 (Regularity of discretization schemes) Prototypical choices for μn are:

(i) Using the measure μ itself, without discretization, μn = μ. In this case σ n
t,x =

(Sn
J )�μ

n
J /mn

J is a re-scaled restriction of the original measure, still absolutely
continuous and one obtains σ = 2−d · L�Z.

(ii) Collapsing all the mass within each basic cell to a Dirac at its center, μn =∑
i∈I n mn

i δxn
i
. In this case, σ n

t,x = (Sn
J )�μ

n
J /mn

J contains one Dirac mass per

basic cell and one obtains σ = 2−d ∑
b∈{−1,+1}d δb/2.

(iii) At every n ∈ 2Nwe collapse the mass ofμonto Diracs on a regular Cartesian grid
such that every basic cell contains a sub-grid of sn points along each dimension,
for a sequence (sn)n in N with sn → +∞. Thus at finite n, σ n

t,x is becoming
an increasingly finer measure supported on a regular grid and one obtains σ =
2−d ·L�Z. A related refined discretization scheme was considered in [4, Section
5.3] where n was kept fixed but sn was sent to +∞ and it was shown that
the sequence of fixed-points of the algorithm converges to the globally optimal
solution.

For μ � L, the above schemes yield regular discretization sequences in the sense of
Definition 4. For a regular discretization sequence (not just the examples above) the
limit σ assigns mass 1/2d to each of the ‘quadrants’

Zb := {z ∈ Z | sign(z�) = b� for all � = 1, . . . , d} for b ∈ {−1, 1}d . (4.12)

The proof is presented in Appendix A. It hinges on μ � L and the Lebesgue
differentiation theorem for L1 functions [22, Theorem 7.10]. The last part will be
relevant for the case η = ∞.
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Assumption 2 From now on, we assume that (μn)n is a regular discretization
sequence.

Definition 5 (Limiting fiber problem) For each t ∈ R+, x ∈ X we define the following
functional over M1(Z × Y ):

Ft,x (λ) :=
{

Ct,x (λ) if λ ∈ Π(σ,π t,x ),

+∞ otherwise,
(4.13)

where

Ct,x (λ) :=
⎧
⎨

⎩

∫

Z×Y
〈∇X c(x, y), z〉 dλ(z, y) + η · KL(λ|σ ⊗ π t,x ) if η < ∞,

KL(λ|σ ⊗ π t,x ) if η = ∞.

(4.14)

Definition 6 (Glued problems (discrete and limiting)) Fix T > 0. We define

VT := {
λ ∈ M+([0, T ] × X × Z × Y ) | P(R+×X)λ = (L�[0, T ]) ⊗ μ

}
, (4.15)

where P(R+×X) takes non-negative measures on R+ × X × Z × Y to their marginal
on R+ × X (cf. Sect. 2.1). In particular, any λ ∈ VT can be disintegrated with respect
to L⊗ μ, i.e. there is a measurable family of probability measures (λt,x )t,x such that
λ = (L�[0, T ]) ⊗ μ ⊗ λt,x and

∫

[0,T ]×X×Z×Y
φ(t, x, z, y) dλ(t, x, z, y) =

∫

[0,T ]×X

∫

Z×Y
φ(t, x, z, y) dλt,x (z, y) dμ(x) dt

for all measurable φ from [0, T ] × X × Z × Y → R+ (see Remark 3).
For λ ∈ VT , n ∈ 2N we define the glued discrete and limiting functionals

Fn
T (λ) :=

∫ T

0

∫

X
Fn

t,x (λt,x ) dμ(x) dt, FT (λ) :=
∫ T

0

∫

X
Ft,x (λt,x ) dμ(x) dt .

(4.16)

The finite time horizon T ensures that the infima of the glued functionals (4.16) are
finite.

Remark 6 For any n ∈ 2N, T > 0 a minimizer λn ∈ V for Fn
T can be obtained via

Proposition 1 (and hence via the domain decomposition algorithm) by gluing together
discrete fiber-wiseminimizersλn

t,x of (4.3) given by (4.6) to obtainλn := (L�[0, T ])⊗
μ⊗λn

t,x (see Remark 3). The obtained λn clearly lies in VT andminimizes Fn
T because

each λn
t,x minimizes the fiberwise functional Fn

t,x . Due to the discreteness at scale n,
only a finite number of minimizers must be chosen (one per discrete time-step and
composite cell) and thus no measurability issues arise.
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Proposition 2 Under Assumptions 1 and 2, for any T > 0, Fn
T Γ -converges to FT

with respect to weak* convergence on VT on the subsequence n ∈ Z .

The proof is divided into liminf and limsup condition that are given in Sect. 4.3.
Based on this we can now extract cluster points from the minimizers to the discrete

fiber problems and also get convergence for the associated momenta. Besides, under
Assumption 1, the cluster points will be minimizers of the limit problem.

Proposition 3 (Convergence of fiber-problem minimizers and momenta) Let λn ∈
M+(R+ × X × Z × Y ) be constructed from the discrete iterates πn,k as shown in
Proposition 1. Under Assumption 2 there is a subsequence Ẑ ⊂ Z ⊂ 2N and a
measure λ ∈ M+(R+ × X × Z × Y ) such that for all T ∈ (0,∞),

λn�([0, T ] × X × Z × Y )
∗→ λ�([0, T ] × X × Z × Y ) ∈ VT

In addition, analogous to Remark 5, we introduce the limit momentum field ω :=L⊗
μ ⊗ ωt,x ∈ M(R+ × X × Y )d via

(ωt,x )� :=PY (λt,x�Z�+ × Y ) − PY (λt,x�Z�− × Y )

for � = 1, . . . , d, with Z�± = {z ∈ Z | ±z� > 0}.

Then ωn, n ⊂ Ẑ , converges weak* to ω on any finite time interval [0, T ].
Furthermore, if we allow Assumption 1, λ is a minimizer of FT for all T ∈ (0,∞).

Proof For any T > 0 the sequence (λn�([0, T ] × X × Z × Y ))n∈Z is tight (by
compactness of the domain) and therefore weak* precompact, so we can extract a
subsequence Z ′ ⊂ Z such that (λn�([0, T ] × X × Z × Y ))n∈Z ′ converges weak* to
some λT ∈ M+([0, T ]×X×Z×Y ). By a diagonal argument, we can choose a further
subsequence Ẑ ⊂ Z such that (λn)n∈Ẑ converges to some λ ∈ M+(R+×X ×Z ×Y )

when restricted to [0, T ] × X × Z × Y for any T > 0. By construction (Proposition
1, Remark 6), λn , n ∈ Ẑ , is a minimizer of Fn

T for any choice of T . Thus, by Γ -
convergence (Proposition 2, if Assumption 1 is verified) λ is also a minimizer of FT

for all choices of T .
It remains to be shown that the construction of ωn from λn (for the discrete and

the limit case) is a weak* continuous operation. The fiber-wise construction can be
written at the level of the whole measures as

(ωn)� = PR+×X×Y (λn�(R+ × X × Z�+ × Y )) − PR+×X×Y (λn�(R+ × X × Z�− × Y ))

for � = 1, . . . , d. Marginal projection is a weak* continuous operation, and so is
the addition (subtraction) of two measures. Let us therefore focus on the restriction
operation. In general, restriction is not weak* continuous, but it is under our regular-
ity assumptions on σ n

t,x and σ (Sect. 3.1, item 4. and Assumption 2). None of these
measures carry mass on the boundaries between the Z�± (and the sets Z�± are relatively

open in Z ). For simplicity, we will now show that under these conditions, [σ n
t,x

∗→ σ ]
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⇒ [σ n
t,x�Z�±

∗→ σ�Z�±] for any � ∈ {1, . . . , d}. The same argument (but with heav-
ier notation) will then apply to the convergence of the restrictions of λn . By weak*
compactness we can select a subsequence such that

σ n
t,x�Z�±

∗→ σ±

for two measures σ± ∈ M+(Z), and by the Portmanteau theorem for weak
convergence of measures [7, Theorem 2.1] we have

σ±(Z�∓) ≤ lim inf
n

(σ n
t,x�Z�±)(Z�∓) = 0. (4.17)

Now observe

σ�Z�+ + σ�Z�− = σ = lim
n→∞ σ n

t,x = lim
n→∞(σ n

t,x�Z�+ + σ n
t,x�Z�−) = σ+ + σ−

where in the first and third equality we used that σ and σ n
t,x do not carry mass on the set

{z� = 0}. With (4.17) we conclude that σ± = σ�Z�±. This holds for any convergent
subsequence and thus by weak* compactness the whole sequences of restrictions
converge to σ�Z�±. As indicated, the same argument will apply to the restriction of
λn to the sets [0, T ] × X × Z�± × Y for any finite horizon T ∈ (0,∞). ��

4.3 Liminf and limsup condition

We start by establishing that the transport cost contribution in Fn
T converges to that of

FT .

Lemma 2 (Convergence of the transport cost) Let T > 0 and (λn)n be a weak*
convergent sequence in VT with limit λ ∈ VT . Then the transport part of the glued
functional Fn

T converges to that of FT . More specifically,

lim
n→∞

∫

[0,T ]×X×Z×Y
n · [c(xn

t,x + z/n, y) − c(xn
t,x , y)

]
dλn(t, x, z, y)

=
∫

[0,T ]×X×Z×Y
〈∇X c(x, y), z〉 dλ(t, x, z, y). (4.18)

Proof By the mean value theorem, for each t, x, z, y, n, there exists a point ξ on the
segment [xn

t,x , xn
t,x + z/n] such that

n · [c(xn
t,x + z/n, y) − c(xn

t,x , y)
] = 〈∇X c(ξ, y), z〉.

Since z ∈ Z , all points ξ converge uniformly to xn
t,x as n → ∞ and

thus 〈∇X c(ξ, y), z〉 converges uniformly to 〈∇X c(xn
t,x , y), z〉. Paired with weak*

convergence of λn to λ this implies convergence of the integral. ��
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Lemma 3 (Liminf inequality)Let T > 0 and (λn)n∈Z be a weak* convergent sequence
in VT with limit λ ∈ VT . Then, under Assumptions 1 and 2,

lim inf
n∈Z, n→∞

Fn
T (λn) ≥ FT (λ). (4.19)

Proof By disintegration λn and λ can be written as

λn = (L�[0, T ]) ⊗ μ ⊗ λn
t,x , λ = (L�[0, T ]) ⊗ μ ⊗ λt,x

for suitable families (λn
t,x )t,x and (λt,x )t,x . If the liminf is +∞ there is nothing to

prove. So we may limit ourselves to study subsequences with finite limit (and assume
that we have extracted and relabeled such a sequence as Z ′ ⊂ Z). Unless otherwise
stated, all limits in the proof are taken on this subsequence Z ′, though we may not
always state it to avoid overloading the notation.
Step 1: marginal constraints. Fn

T (λn) can only be finite if λn
t,x ∈ Π(σ n

t,x ,π
n
t,x ) for

L⊗μ almost all (t, x) ∈ [0, T ]× X . We find that this implies PZλt,x = σ for almost
all (t, x) by observing that for any φ ∈ C([0, T ] × X × Z) one has

∫

[0,T ]×X

∫

Z×Y
φ(t, x, z) dλt,x (z, y) dμ(x) dt

= lim
n→∞

∫

[0,T ]×X

∫

Z×Y
φ(t, x, z) dλn

t,x (z, y) dμ(x) dt

= lim
n→∞

∫

[0,T ]×X

∫

Z
φ(t, x, z) dσ n

t,x (z) dμ(x) dt

=
∫

[0,T ]×X

∫

Z
φ(t, x, z) dσ(z) dμ(x) dt

where the first equality follows fromλn ∗→ λ and the third one fromdominated conver-
gence since the inner integral converges pointwise almost everywhere (seeAssumption
2) and is uniformly bounded. A symmetric argument provides PY λt,x = π t,x : for any
φ ∈ C([0, T ] × X × Y ) one has

∫

[0,T ]×X

∫

Z×Y
φ(t, x, y) dλt,x (z, y) dμ(x) dt

= lim
n→∞

∫

[0,T ]×X

∫

Z×Y
φ(t, x, y) dλn

t,x (z, y) dμ(x) dt

= lim
n→∞

∫

[0,T ]×X

∫

Y
φ(t, x, y) dπn

t,x (y) dμ(x) dt

=
∫

[0,T ]×Y

∫

Y
φ(t, x, y) dπ t,x (y) dμ(x) dt

where we argue again via dominated convergence combined with convergence point-
wise almost everywhere (see Assumption 1) and uniform boundedness. Hence,
λt,x ∈ Π(σ,π t,x ) for almost all (t, x).
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Step 2: transport contribution. The transport cost contributions converge by Lemma
2.
Step 3: entropy contribution. Assume first η < ∞. Introducing the measures

λn⊗ := (L�[0, T ])⊗μ⊗σ n
t,x ⊗πn

t,x and λ⊗ := (L�[0, T ])⊗μ⊗σ⊗π t,x , (4.20)

the entropic terms of Fn
T and FT can be written as n εn KL(λn | λn⊗) and ηKL(λ | λ⊗)

respectively, since

∫

[0,T ]×X
KL(λn

t,x | σ n
t,x ⊗ πn

t,x )dμ(x)dt

=
∫

[0,T ]×X×Z×Y
ϕ

(
dλn

t,x (z, y)

d(σ n
t,x ⊗ πn

t,x )

)

dσ n
t,x (z)dπ

n
t,x (y)dμ(x)dt

=
∫

[0,T ]×X×Z×Y
ϕ

(
dλn(t, x, z, y)

dλn⊗

)

dλn⊗(t, x, z, y) = KL(λn | λn⊗).

In the second equality we used that λn and λn⊗ have the same [0, T ] × X -marginal
and only differ in their disintegrations along Z × Y . Hence the relative density of
these disintegrations determines their full relative density. Analogously, the entropic
contribution in FT is ηKL(λ | λ⊗). Note that since we have restricted ourselves to
a subsequence with finite objective at the beginning of the proof, we have that the
integrals above are finite (and since ϕ is non-negative, even the divergence to +∞
would be unambiguously defined). Thus, by joint lower semicontinuity of KL (where

we use λn⊗
∗→ λ⊗, which follows from Assumptions 1 and 2), convergence of nεn to

η and the fact that we selected a subsequence with finite limit (such that KL(λn | λn⊗)

is uniformly bounded) we find

lim inf
n∈Z ′, n→∞

n εn KL(λn | λn⊗) ≥ ηKL(λ | λ⊗). (4.21)

This shows that, for any subsequenceZ ′ with finite limit, lim infn∈Z ′, n→∞ Fn
T (λn) ≥

FT (λ), so
lim inf

n∈Z, n→∞
Fn

T (λn) = inf
Z ′⊂Z

lim inf
n∈Z ′, n→∞

Fn
T (λn) ≥ FT (λ). (4.22)

This concludes the proof for η < ∞. The case η = ∞ is analogous. ��
Lemma 4 (Limsup inequality) Let T > 0, λ ∈ VT . Under Assumptions 1 and 2, there
exists a sequence (λn)n∈Z in VT , converging weak* to λ such that

lim sup
n∈Z, n→∞

Fn
T (λn) ≤ FT (λ). (4.23)

Proof Since λ ∈ VT it can be disintegrated into λ = L⊗μ⊗λt,x for a family (λt,x )t,x

in M1(Z × Y ). We may assume that FT (λ) < ∞, as otherwise there is nothing to
prove. Hence, λt,x ∈ Π(σ,π t,x ) for L ⊗ μ-almost all (t, x) ∈ [0, T ] × X . We will
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build our recovery sequence by gluing, setting λn :=L⊗μ⊗λn
t,x where we construct

the fibers λn
t,x ∈ Π(σ n

t,x ,π
n
t,x ) by tweaking the measures λt,x .

Step 1: construction of the recovery sequence. For every n ∈ Z , let (γ n
t,x )t,x be a

(measurable) family of measures in M1(Y × Y ) where γ n
t,x ∈ Π(πn

t,x ,π t,x ) is an
optimal transport plan for WY (πn

t,x ,π t,x ). This family can be obtained, for instance,
by disintegration of a minimizer of a ‘vertical’ transport problem written as

inf

{∫

([0,T ]×X×Y )2
‖(t, x, y) − (t ′, x ′, y′)‖ dγ ((t, x, y), (t ′, x ′, y′))

∣
∣
∣
∣

γ ∈ Π(πn�([0, T ] × X × Y ),π�([0, T ] × X × Y ))

with x = x ′ and t = t ′γ ((t, x, y), (t ′, x ′, y′))-a.e.
}

.

Likewise, let (γ n
t,x )t,x be a (measurable) family of measures inM1(Z × Z) where

γ n
t,x ∈ Π(σ n

t,x , σ ) is an optimal transport plan for WZ (σ n
t,x , σ ). We then define λn

t,x
for n ∈ Z by integration against φ ∈ C(Z × Y ) via

∫

Z×Y
φ(z, y) dλn

t,x (z, y) :=
∫

Z2×Y 2
φ(z, y) d(γ n

t,x )z′(z) d(γ
n
t,x )y′(y) dλt,x (z

′, y′),
(4.24)

where (γ n
t,x )z′ denotes the disintegration of γ n

t,x with respect to its second marginal
(namely σ ) at point z′ (and analogously for (γ n

t,x )y′ ).
Step 2: correct marginals along the recovery sequence. Let us check that λn

t,x ∈
Π(σ n

t,x ,π
n
t,x ). First, for any φ ∈ C(Y ),

∫

Z×Y
φ(y)dλn

t,x (z, y) =
∫

Z2×Y 2
φ(y)d(γ n

t,x )z′(z)d(γ
n
t,x )y′(y)dλt,x (z

′, y′)

=
∫

Y 2
φ(y)d(γ n

t,x )y′(y)dπ t,x (y′) =
∫

Y 2
φ(y)dγ n

t,x (y, y′)

=
∫

Y
φ(y)dπn

t,x (y)

where we used that (γ n
t,x )z′ is a probability measure. The same argument applies to

the Z -marginal.

Step 3: convergence of the recovery sequence. Now we show that λn ∗→ λ for n ∈ Z .
For this wewill use the Kantorovich–Rubinstein duality for theWasserstein-1 distance
(2.3)

W[0,T ]×X×Z×Y (λn,λ) = sup
φ∈Lip1

∫

[0,T ]×X×Z×Y
φ d(λn − λ). (4.25)

wherewe abbreviate Lip1 := Lip1([0, T ]×X×Z×Y ). In the following, letφ ∈ Lip1.
We find
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∣
∣
∣
∣

∫

[0,T ]×X×Z×Y
φ d(λn − λ)

∣
∣
∣
∣

≤
∫

[0,T ]×X×(Z×Y )2

∣
∣φ(t, x, z, y) − φ(t, x, z′, y′)

∣
∣ d(γ n

t,x )z′ (z)d(γ
n
t,x )y′ (y)dλt,x (z

′, y′)dμ(x)dt

(4.26)

Using the Lipschitz continuity of φ we can bound

∣
∣φ(t, x, z, y) − φ(t, x, z′, y′)

∣
∣

≤ ∣
∣φ(t, x, z, y) − φ(t, x, z′, y)

∣
∣+ ∣

∣φ(t, x, z′, y) − φ(t, x, z′, y′)
∣
∣

≤ ‖z − z′‖ + ‖y − y′‖.

Thus, we can continue

(4.26) ≤
∫

[0,T ]×X×Z2
‖z − z′‖d(γ n

t,x )z′(z) dσ(z′) dμ(x) dt

+
∫

[0,T ]×X×Y 2
‖y − y′‖d(γ n

t,x )y′(y) dπ t,x (y′) dμ(x) dt

≤
∫

[0,T ]×X
WZ (σ n

t,x , σ ) dμ(x) dt +
∫

[0,T ]×X
WY (πn

t,x ,π t,x ) dμ(x) dt

where we have used optimality of the plans γ n
t,x and γ n

t,x . Using Assumptions 1 and 2
and dominated convergence (where we exploit that Z and Y are compact, hence WZ

and WY are bounded), we find that this tends to zero as Z 	 n → ∞. Plugging this
into (4.25), we find that W[0,T ]×X×Z×Y (λn,λ) → 0 and since Wasserstein distances

metrize weak* convergence on compact spaces, we obtain λn ∗→ λ for n ∈ Z .
Step 4: lim sup inequality. Now we have to distinguish between different behaviors of
(n · εn)n .

– [η = 0, εn = 0 for all n ∈ Z , with only a finite number of exceptions] The
exceptions have no effect on the lim sup, hence we may skip them. By Lemma
2 the transport contribution to the functional converges, and so we obtain that
limn∈Z,n→∞ Fn

T (λn) = FT (λ).
– [η > 0] We have that εn > 0 for all n up to a finite number of exceptions, which
wemay again skip. In this case, the limit cost has an entropic contribution, and thus
for a.e. t ∈ [0, T ] and μ-a.e. x ∈ X , λt,x has a density with respect to σ ⊗ π t,x ,
that we denote by ut,x . Then, as we will show below, λn

t,x also has a density with
respect to σ n

t,x ⊗ πn
t,x , that is given by:

un
t,x (z, y) :=

∫

Z×Y
ut,x (z

′, y′)d(γ n
x,t )z(z

′)d(γ n
x,t )y(y′), (4.27)

wherewe use again the transport plans γ n
x,t ∈ Π(σ n

t,x , σ ) and γ n
t,x ∈ Π(πn

t,x ,π t,x )

and this time their disintegrations against the first marginals. Let us prove that un
t,x

is indeed the density of λn
t,x with respect to σ n

t,x ⊗ πn
t,x :
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∫

Z×Y
φ(z, y) un

t,x (z, y) dσ n
t,x (z) dπ

n
t,x (y)

=
∫

Z2×Y 2
φ(z, y) ut,x (z

′, y′) d(γ n
x,t )z(z

′) dσ n
t,x (z)︸ ︷︷ ︸

=d(γ n
x,t )z′ (z) dσ(z′)

d(γ n
x,t )y(y′) dπn

t,x (y)
︸ ︷︷ ︸
=d(γ n

x,t )y′ (y) dπ t,x (y′)

,

where we switched the disintegration from the first to the second marginals. Now
use that λt,x = ut,x · (σ ⊗ π t,x ), and finally we use (4.24),

=
∫

Z2×Y 2
φ(z, y) d(γ n

x,t )z′(z) d(γ
n
x,t )y′(y) dλt,x (z′, y′) =

∫

Z×Y
φ(z, y) dλn

t,x (z, y).

Regarding the entropic regularization, notice that ϕ(s) = s log(s) − s + 1 is a
convex function, so using Jensen’s inequality we obtain:

ϕ(un
t,x (z, y)) = ϕ

(∫

Z×Y
ut,x (z

′, y′)d(γ n
x,t )z(z

′)d(γ n
x,t )y(y′)

)

≤
∫

Z×Y
ϕ(ut,x (z

′, y′))d(γ n
x,t )z(z

′)d(γ n
x,t )y(y′),

so the entropic term can be bounded as

∫

[0,T ]×X
KL(λn

t,x |σ n
t,x ⊗ πn

t,x ) dμ(x) dt

=
∫

[0,T ]×X

∫

Z×Y
ϕ(un

t,x (z, y)) dσ n
t,x (z) dπ

n
t,x (y) dμ(x) dt

≤
∫

[0,T ]×X

∫

Z2×Y 2
ϕ(ut,x (z

′, y′)) dγ n
x,t (z, z′) dγ n

x,t (y, y′) dμ(x) dt

=
∫

[0,T ]×X

∫

Z×Y
ϕ(ut,x (z

′, y′)) dσ(z′) dπ t,x (y′) dμ(x) dt

=
∫

[0,T ]×X
KL(λt,x |σ ⊗ π t,x ) dμ(x) dt .

Adding to this the convergence of the transport contribution along weak* con-
verging sequences (Lemma 2) and that nεn converges to η it follows that, for both
η < ∞ and η = ∞, lim supn∈Z,n→∞ Fn

T (λn) ≤ FT (λ).
– [η = 0, εn > 0 for an infinite number of indices n] This case is slightly more
challenging since the reconstructed λn

t,x may not have a density with respect to
σ n

t,x ⊗ πn
t,x , and thus the KL term at finite n may explode for εn > 0. Hence, for

those n the recovery sequence needs to be adjusted. We apply the block approxi-
mation technique as in [10], which is summarized in Lemma 5. We set λ̂

n
t,x to be

the block approximation of λn
t,x at scale Ln := nεn (where we set Ω := Y ∪ Z ).

Lemma 5 provides that the marginals are preserved, i.e. λ̂
n
t,x ∈ Π(σ n

t,x ,π
n
t,x ). In
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addition we find that WZ×Y (λn
t,x , λ̂

n
t,x ) ≤ Ln · √2d and thus λ̂

n ∗→ λ (arguing as
above, e.g. via dominated convergence). So by Lemma 2 the transport contribution
still converges. Finally, for the entropic contribution we get from Lemma 5,

nεn KL(λ̂
n
t,x | σ n

t,x ⊗ πn
t,x ) ≤ Cnεn − 2dnεn log(nεn)

n→∞−−−→ 0. (4.28)

Wrapping up, this means that lim supn∈Z,n→∞ Fn
T (λ̂

n
) ≤ FT (λ), and (λ̂

n
)n

represents a valid recovery sequence. ��

4.4 Continuity equation

The discrete momenta ωn , (3.6) have been introduce to approximately describe the
‘horizontal’ mass movement in the discrete trajectories πn , (3.6) via a continuity
equation on X × Y . We now establish that in the limit the relation becomes exact for
any cluster point ω̂ of (ωn)n (i.e., we do not use the structure given by Proposition 1,
which is only valid under Assumptions 1 and 2).

Proposition 4 Letωn ∈ M(R+×X×Y )d defined as in (3.6), let ω̂ ∈ M(R+×X×Y )d

and Ẑ ⊂ Z ⊂ 2N be such that ωn�[0, T ] ∗→ ω̂�[0, T ] for any T ∈ (0,∞). Then π

and ω̂ solve the horizontal continuity equation

∂tπ t + divX ω̂t = 0 for t > 0 and π t=0 = πinit

in a distributional sense. More precisely, for any φ ∈ C1c (R+ × X × Y ) one has

∫

R+×X×Y
∂tφ dπ +

∫

R+×X×Y
∇Xφ · dω̂ = −

∫

X×Y
φ(0, x, y) dπinit(x, y). (4.29)

Proof Let φ ∈ C1c (R+ × X × Y ). We will show that

∫

R+×X×Y
∂tφ dπn +

∫

R+×X×Y
∇Xφ · dωn = −

∫

X×Y
φ(0, x, y) dπn

init(x, y) + o(1)

(4.30)

for Ẑ 	 n → ∞ and then (4.29) will follow by weak* convergence of (πn)n to π and
of (ωn)n to ω̂ on compact time intervals.

Since φ has compact support, there exists some T ∈ R+ such that φ(t, ·, ·) = 0
for all t ≥ T . Now fix some n, and note that ∂tφ and ∇Xφ are uniformly continuous,
πn

t is a probability measure for almost all t ∈ [0, T ], and similarly, the mass of each
spatial component of ωn

t is bounded by 1 (intuitively, since mass can only move by
one cell per iteration, see (3.6) for the definition). Thus, replacing ∂tφ(t, x, y) and
∇Xφ(t, x, y) on the left hand side of (4.30) by ∂tφ(t, xn

t,x , y) and ∇Xφ(t, xn
t,x , y)

only introduces an error of o(1) in the first two terms, since ‖x − xn
t,x‖ ≤ √

d/n. Thus
the first term of (4.30) becomes
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∫ ∞
0

∫

X×Y
∂tφ(t, x, y) dπn

t (x, y) dt =
∫ T

0

∫

X×Y
∂tφ(t, xn

t,x , y) dπn
t (x, y) dt + o(1).

Now take K = �nT  , and use that πn
t is constant on time intervals of length 1/n

and on composite cells, so we can continue

=
K−1∑

k=0

∑

J∈J n,k

∫ 1/n

0

∫

Y
∂tφ( k

n + s, xn
J , y)dνn,k

J (y) ds + o(1)

=
K−1∑

k=0

∑

J∈J n,k

∫

Y
[φ( k+1

n , xn
J , y) − φ( k

n , xn
J , y)]dνn,k

J (y) + o(1). (4.31)

Likewise, in the second term of (4.30) we replace again x by xn
t,x , and also t by

�nt 
n , which yields again an error of order o(1). The second term then becomes

∫

R+

∫

X×Y
∇X φ(t, x, y) · dωn

t (x, y) dt =
∫ T

0

∫

X×Y
∇X φ(

�nt 
n , xn

t,x , y) · dωn
t (x, y) dt+ vo(1)

= o(1) +
K−1∑

k=0

∑

J∈J n,k

∑

Ĵ∈N (J )

∫ 1/n

0

∫

Y
∇X φ( k+1

n , xn
J , y) · (xn

Ĵ
− xn

J ) · n dνn,k
J , Ĵ

(y) ds.

Now the integral over [0, 1/n] cancels with the factor n, and ∇Xφ( k+1
n , xn

J , y) ·
(xn

Ĵ
− xn

J ) = φ( k+1
n , xn

Ĵ
, y) − φ( k+1

n , xn
J , y) + o(1/n). We get

= o(1) +
K−1∑

k=0

∑

J∈J n,k

∑

Ĵ∈N (J )

∫

Y

[
φ( k+1

n , xn
Ĵ
, y) − φ( k+1

n , xn
J , y) + o(1/n)

]
dνn,k

J , Ĵ
(y).

The sum of all ν
n,k
J , Ĵ

over J and Ĵ has unit mass, so the total contribution of the

o(1/n) errors scales like K · o(1/n) = T · n · o(1/n), which is o(1). Thus, we can
absorb this error term into the global o(1) error:

= o(1) +
K−1∑

k=0

⎡

⎣
∑

J∈J n,k

∑

Ĵ∈N (J )

∫

Y
φ( k+1

n , xn
Ĵ
, y)dνn,k

J , Ĵ
(y)

−
∑

J∈J n,k

∑

Ĵ∈N (J )

∫

Y
φ( k+1

n , xn
J , y)dνn,k

J , Ĵ
(y)

⎤

⎦

Then, in the second term we can regroup all νn,k
J , Ĵ

with the same J into ν
n,k
J . In the

first term we can first reverse the order of the sums, and then use that adding up all
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ν
n,k
J , Ĵ

with the same Ĵ results in ν
n,k
Ĵ

= ν
n,k+1
Ĵ

(see (3.5) for the equality). This leaves

us with

= o(1)+
K−1∑

k=0

⎡

⎣
∑

Ĵ∈J n,k+1

∫

Y
φ( k+1

n , xn
Ĵ
, y)dνn,k+1

Ĵ
(y)−

∑

J∈J n,k

∫

Y
φ( k+1

n , xn
J , y)dνn,k

J (y)

⎤

⎦ .

(4.32)

Now we can combine the temporal and spatial parts, noticing that the first term in
(4.31) cancels with the second term in (4.32), so the left hand side of (4.30) equals
∫

R+

∫

X×Y
∂tφ(t, x, y) dπn

t (x, y) dt +
∫

R+

∫

X×Y
∇X φ(t, x, y) · dωn

t (x, y) dt

= o(1) +
K−1∑

k=0

[ ∑

Ĵ∈J n,k+1

∫

Y
φ( k+1

n , xn
Ĵ
, y)dνn,k+1

Ĵ
(y) −

∑

J∈J n,k

∫

Y
φ( k

n , xn
J , y)dνn,k

J (y)

]

which is a telescopic sum. The surviving terms are just

= o(1) +
∑

Ĵ∈J n,K

∫

Y
φ( K

n , xn
Ĵ
, y)dνn,K

Ĵ
(y) −

∑

J∈J n,0

∫

Y
φ(0, xn

J , y)dνn,0
J (y)

The first integral vanishes, since φ(K/n, ·, ·) = 0. In the second integral we first
integrate again in space:

= o(1) −
∑

J∈J n,0

∫

Xn
J ×Y

φ(0, xn
J , y)dμ(x)

1

mn
J
dνn,0

J (y)

= o(1) −
∑

J∈J n,0

∫

Xn
J ×Y

φ(0, xn
J , y)dπn

0(x, y)

We use for the last time that replacing xn
J by x in Xn

J introduces a global o(1) error
(since πn

0 has unit mass):

= o(1) −
∑

J∈J n,0

∫

Xn
J ×Y

φ(0, x, y)dπn
0(x, y) = o(1) −

∫

X×Y
φ(0, x, y)dπn

0(x, y)

and finally, since (πn
0)n converges weak* to πinit, which yields precisely (4.30):

= −
∫

X×Y
φ(0, x, y)dπinit(x, y) + o(1).

��
The following observation may help in the interpretation of the trajectories

generated by domain decomposition.
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Proposition 5 The sequence momentum fields (ωn)n and any cluster point ω̂ thereof
are absolutely continuous with respect to their respective trajectories (πn)n and π

and the component-wise density is bounded by one. More precisely,

∣
∣
∣
∣
d(ωn

t,x )�

dπn
t,x

∣
∣
∣
∣ ≤ 1 for all n ∈ 2N, and

∣
∣
∣
∣
d(ω̂t,x )�

dπ t,x

∣
∣
∣
∣ ≤ 1. (4.33)

for a.e. t , μ-a.e. x and all � ∈ {1, . . . , d}.
Proof For n ∈ 2N, this is a simple consequence of (4.9):

∣
∣
∣
∣
d(ωn

t,x )�

dπn
t,x

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

d[PY (λn
t,x�Z�+ × Y ) − PY (λn

t,x�Z�− × Y )]
dπn

t,x

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

dPY (λn
t,x�Z�+ × Y )

dπn
t,x

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

dPY (λn
t,x�Z�− × Y )

dπn
t,x

∣
∣
∣
∣
∣

= dPY (λn
t,x�Z�+ × Y )

dπn
t,x

+ dPY (λn
t,x�Z�− × Y )

dπn
t,x

= dPY (λn
t,x�Z × Y )

dπn
t,x

≤ dπn
t,x

dπn
t,x

= 1.

where we used that λn is a positive measure. The claim for ω̂ follows from Reshetnyak
lower semicontinuity [2, Theorem 2.38] ��
Remark 7 (Interpretation) Proposition 5 suggests the interpretation of the changes in
πn

t and π t over time as horizontal movement of mass, along the X -direction, where
particles move at most with velocity 1 along each spatial axis. This corresponds to
the fact that each mass particle can only travel by one basic cell along each axis per
iteration.

4.5 Main result

We can now summarize and assemble the results from the two previous sections to
arrive at the main result of the article.

Theorem 3 Assume Assumptions 1 and 2 hold. Then, up to selection of a subsequence
Ẑ ⊂ Z , the sequences of discrete trajectories (πn)n, (3.6), and momenta (ωn)n, (3.6),
that are generated by the domain decomposition algorithm at scales n, converge weak*
on compact sets to a limit trajectory π and momentum ω as n → ∞. The limits solve
the horizontal continuity equation

∂tπ t + divX ωt = 0 for t > 0 and π t=0 = πinit

on X × Y in a distributional sense, (4.29). The limit momentum ω is induced by
an asymptotic version of the domain decomposition algorithm. More precisely, for
L⊗ μ-almost all (t, x) its disintegration is given by

(ωt,x )� :=PY (λt,x�Z�+ × Y ) − PY (λt,x�Z�− × Y )

123



484 M. Bonafini et al.

for � = 1, . . . , d, with Z�± = {z ∈ Z | ±z� > 0}

where for η < ∞ the measure λt,x is given as a minimizer of the asymptotic cell
problem

inf

{∫

Z×Y
〈∇X c(x, y), z〉 dλ(z, y) + η · KL(λ|σ ⊗ π t,x )

∣
∣
∣
∣λ ∈ Π(σ,π t,x )

}

.

For η = ∞ one finds λt,x = σ ⊗ π t,x , which implies ωt,x = 0 and thus π t = πinit

for all t ∈ R+. Hence, the algorithm asymptotically freezes.

Proof Assumptions 1 includes the weak* convergence on compact sets of πn to a
limit π for a subsequence Z . Under Assumptions 1 and 2, Proposition 3 provides the
existence of a subsequence Ẑ ⊂ Z such that ωn converges weak* on compact sets
to a limit ω on Ẑ , and this limit is of the prescribed form for (almost-everywhere)
fiber-wise minimizers λt,x of a limit fiber problem given in Definition 5.

For η < ∞ the limit fiber problem is as stated. For η = ∞, the unique minimizer
of the limit fiber problem is given by λt,x = σ ⊗π t,x . With Assumption 2 this implies
ωt,x = 0 (see Lemma 1).

Solution to the continuity equation is provided by Proposition 4. For η = ∞, with
ω = 0 this implies that the limit trajectory π t is constant and equal to πinit. ��
Remark 8 (Discussion)Weobserve that solutions to the limit system given in Theorem
3 are not unique. For instance, if πinit = (id, S)�μ for some (non-optimal) transport
map S : X → Y , then a solution to the limit system is given by π t = πinit, ωt = 0,
λt,x = σ ⊗ δS(x) for all t ≥ 0 where we used that π t,x = (πinit)x = δS(x). In contrast,
limit solutions generated by the domain decomposition algorithm are usually able to
leave such a point by making the coupling non-deterministic (i.e. mass from a point
x will be split onto multiple targets y), since at each n the algorithm has a ‘non-zero
range of vision’ (see Fig. 6, for an example). This situation is somewhat analogous to a
gradient flow being stuck in a saddle point, whereas a minimizing movement scheme
or a proximal point algorithm is able to move on.

The algorithm by Angenent, Haker, and Tannenbaum [3] solves the W2-optimal
transport problem (for convex X andμ � L) by starting from some feasible transport
map and then subsequently removing its curl in a suitable way. It therefore generates
trajectories that lie solely in the subset of map couplings (i.e. concentrated on a map)
and the algorithm breaks down when cusps or overlaps form. ([3] also discusses
a regularized version). From the previous paragraph we deduce that in asymptotic
domain decomposition trajectories, mass can only move when the coupling is not
of map-type and the algorithm is well-defined on the whole space of Kantorovich
transport plans.

5 Examples for asymptotic sub-optimality

Numerical examples for the practical efficiency of the method have already been
illustrated in [8]. A basic intuition for the asymptotic behaviour as n → ∞ on
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‘well-behaved’ examples can be drawn from Figs. 1, 2, 3, 4, 5 6. The examples in
this section demonstrate potential obstructions for the convergence of the asymptotic
domain decomposition trajectory to the global minimizer.

5.1 Discretization

On discrete unregularized problems the domain decomposition algorithm may fail
to converge to the globally optimal solution. Examples are given in [4, Section 5.2]
and [8, Example 4.12]. We study such an example in the context of the asymptotic
behaviour of the algorithm.

In the following, for β ∈ S1 denote by eβ the unit vector in R2 with orientation β.
Further, let

H := R!
θ

(−(tan α)2 0
0 1

)

Rθ where Rθ :=
(

cos θ sin θ

− sin θ cos θ

)

for some θ ∈ S1 and some α ∈ (0, π/2). Set V : R2 → R, x 
→ 1
2 x!H x , S :=∇V .

H is indefinite with eigenvalues −(tan α)2 and 1 for eigenvectors eθ and eθ+π/2.
Consequently V is not convex and thus S is in general not an optimal transport map
between μ ∈ M+(R2) and S�μ for the squared distance cost on R

2 by virtue of
Brenier’s polar factorization [9].However, for a set A ⊂ R

2 such that (x1−x2)!H(x1−
x2) ≥ 0 for all x1, x2 ∈ A one quickly verifies that the graph of S over A is c-
cyclically monotone for the squared distance and therefore S is an optimal transport
map between μ and S�μ for μ ∈ M+(A). One has e!β Heβ < 0 if and only if

β ∈ (θ −α, θ +α)∪ (θ +π −α, θ +π +α) on S1 (see Fig. 7 for an illustration of this
and the subsequent construction). Therefore, if μn = ∑

i∈I n mn
i · δxn

i
(see Lemma 1)

such that each composite cell is essentially a small 2 by 2 Cartesian grid, and θ and α

are chosen carefully, then S will be optimal on each composite cell. But for sufficiently
large n, some grid points from another cell will eventually lie in the red cone and S is
then not globally optimal on X . Hence, if we set νn := S�μ

n and πn
init = (id, S)�μ

n ,

Fig. 7 Left, cone where xT H x < 0 in red. Center, for H with a sufficiently narrow, S
∣
∣
Xn

J
is a monotone

arrangement for all composite cells Xn
J . Right, the resulting coupling πn

init is optimal on each composite
cell, albeit not globally (color figure online)
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εn = 0, then the discrete trajectory at each n will be stationary and so will be the limit
trajectory. But it will not be globally optimal.

Fix now a scale n. If each basic cell contains more points, the space where the red
cone ‘remains unnoticed’ becomes smaller and thus α must decrease, but it can always
be chosen to be strictly positive, i.e. S will not be globally optimal on a sufficiently
large grid. If we send the number of points per basic cell to infinity (being arranged
on a regular Cartesian grid), for fixed n, it was shown in [4, Section 5.2] that in the
limit one recovers a globally optimal coupling. The behaviour in the case where the
number of points per basic cell and n tend to ∞ simultaneously remains open (see
also Lemma 1).

If we set εn > 0, then for each fixed n we know by [8] that the algorithm converges
to the global minimizer. If η = ∞, then asymptotically the algorithm will freeze in
the initial configuration (Theorem 3). Entropy regularized optimal transport converges
to the unregularized limit as ε → 0 [10, 11, 18]. Therefore it seems possible that if
εn → 0 sufficiently fast, one may obtain the same asymptotic behaviour as for εn = 0,
i.e. potentially we end up in a non-minimal configuration in the limit, even though
at each n, eventually the globally optimal solution is found (after times that increase
exponentially in n). An open question is therefore, if there is an intermediate regime of
scaling (εn)n such that the global minimizer is obtained in the asymptotic trajectory.
Preliminary numerical experiments (and data from [8]) suggest that such a regime
exists.

5.2 Semi-discrete transport

Another asymptotic obstruction to global optimality occurs when a sub-optimal initial
plan is chosen where sub-optimality is concentrated on an increasingly small subset
of composite cells (as n → ∞) and if this concentration is ‘stable’ under iterations.
Then most of the cells will not induce any change in the plan and asymptotically the
trajectory freezes. We illustrate this phenomenon with a semi-discrete example. Let
μ = μn = L�X , ν = νn is the sum of two Diracs at (±1, 0) with equal mass,
and the initialization πinit = πn

init takes all the mass to the left of an approximately
vertical interface line to (−1, 0) and everything to the right to (+1, 0). The optimal
coupling would be given by a vertical interface. The evolution of iterates for different
resolutions is shown in Fig. 8.

All composite cells that do not touch the interface are locally optimal and will
not change during an iteration, only cells that intersect the interface change. On a
macroscopic level the effect is roughly as follows: mass for the left and right points
in Y will essentially ‘travel along the interface’ in the appropriate direction, the rough
structure of the interface itself remains stable. At the boundaries of X the interface will
curve towards the right orientation and this will gradually propagate into the interior of
the domain. For each fixed n convergence to the global minimizer follows from a slight
extension of Benamou’s analysis [4] to more general partitions. However, the capacity
of mass that can flow along the interface decreases with n and thus convergence will
become gradually slower, freezing in the limit n → ∞.
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Fig. 8 Domain decomposition iterates πn,�nt� for the semi-discrete example. Colors in the images for
couplings indicate the target point of mass in Y for given cells. Along the interface mass is sent to both
points, resulting in a mixed color. Note that changes in the iterations occur only along the interface, which
remains approximately stable during iterations. As n → ∞ the dynamics freeze (color figure online)

6 Conclusion and outlook

Summary. In this article we derived a description of the asymptotic limit dynamics of
a family of domain decomposition algorithms for optimal transport (regularized and
unregularized, discretized and continuous) as the size of the individual cells tends to
zero. To be able to analyze a ‘pointwise’ limit of the cell problems, a sufficiently strong
convergence of trajectories at the level of the disintegrations along time and the first
marginal had to be assumed, see Remark 1. Using this, we proved Γ -convergence of
the cell problems to a limit problem where the cells have collapsed to single points.
From the limit cell problems a ‘horizontal’ momentum field could be extracted which
was shown to describe the evolution of the limit trajectory via a suitable continuity
equation. Some examples were given for illustration.
Implications of the main result and open questions. Benamou [4] and Bonafini and
Schmitzer [8] establish convergence of domain decomposition to the global minimizer
in their respective settings (unregularized, regularized) at finite scale n. In this article
we give examples for both where convergence fails asymptotically as n → ∞. The
former does not address the speed of convergence and the upper bound on the con-
vergence speed given by the latter does not accurately describe the behaviour on the
squared Euclidean distance. The limit dynamics derived in this article appear to be an
appropriate description of the behaviour in this setting and suggests that at finite scale
n the number of required iterations for approximate convergence to a stationary point
will be proportional to n. Of course, it should be pointed out that this hinges on the
strong Assumption 1, which can however be reduced to weaker assumptions that can
be examined numerically. It will be studied elsewhere in more detail, see Remark 1.

In addition to Assumption 1, there are several open questions related to the
behaviour of the trajectories π t as t → ∞, e.g. what the form of the limit (in time)
will be, under what conditions it will be a minimizer of the problem, and how fast it
will approach this limit (see Sect. 1.2 for some more details).

Conclusion. In summary we consider the results of this article as an important step
in the geometric convergence analysis of the domain decomposition algorithm. The
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obtained limit dynamics and their relation to global optimality should be studied
further, both for their implications for numerical algorithms and in their own right as
a new type of minimization-driven dynamics on measures.
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Appendix A: Proof of Lemma 1

The proof hinges on the Lebesgue differentiation theorem which we gather from [22].

Theorem 4 (Lebesgue points [22, Theorems 7.7, 7.10, Definition 7.9]) For x ∈ X we
say a sequence (En)n of Borel sets in X shrinks nicely to x if there exists α > 0 and
radii (rn)n such that

lim
n→∞ rn = 0, En ⊂ B(x, rn) and L(En) ≥ α · L(B(x, rn)).

Note that x may not belong to En.
Assume f ∈ L1(X). Then L-a.e. x ∈ X is a Lebesgue point of f and for every

such x it holds

f (x) = lim
n→∞

1

L(En)

∫

En

f (x ′) dL(x ′).

if the sets (En)n shrink nicely to x.

Proof of Lemma 1 By assumption μ � L, so μ has a density with respect to L and
dμ
dL ∈ L1(X). Therefore

lim
n→∞

1

L(En)

∫

En

dμ

dL (x ′)dL(x ′) = dμ

dL (x) > 0 (A.1)

forμ-a.e. x ∈ X and (En)n a corresponding sequence shrinking nicely to x . In particu-
lar, if (An)n and (Bn)n are two sequences shrinking nicely to x such thatL(An) = a/nd
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and L(Bn) = b/nd for some a, b > 0, then

lim
n→∞

μ(An)

μ(Bn)
= lim

n→∞

a/b
︷ ︸︸ ︷
L(An)

L(Bn)

Tends to 1
︷ ︸︸ ︷

1
L(An)

∫
An

dμ
dL (x ′)dL(x ′)

1
L(Bn)

∫
Bn

dμ
dL (x ′)dL(x ′)

= a

b
. (A.2)

Consider the first scheme, (i), with μn = μ for all n. Choose a point x ∈ X that
is a Lebesgue point of dμ

dL with dμ
dL (x) > 0 (μ-a.e. x ∈ X fulfills this) and choose a

time t ∈ R+. Then for any measurable set A ⊂ Z , the sequence (An)n defined by
An = (Sn

t,x )
−1(A) shrinks nicely to x , and so does the sequence (Bn)n defined by

Bn = (Sn
t,x )

−1(Z) = Xn
J n

t,x
. Thus, by (A.2)

lim
n→∞ σ n

t,x (A) = lim
n→∞

μ((Sn
t,x )

−1(A))

mn
J

= lim
n→∞

μ(An)

μ(Bn)
= 1

2d
L(A)

from which we conclude that σ = 1
2d L�Z .

Consider now the second scheme, (ii), were the mass of each basic cell i ∈ I n is
collapsed to its center xn

i , so that μn = ∑
i∈I n mn

i δxn
i
. Let x ∈ X\∂ X be a Lebesgue

point of dμ
dL with dμ

dL (x) > 0 (this again holds for μ-a.e. x ∈ X ). Fix t ∈ R+. For
any n ∈ 2N denote J n := J n

t,x (Definition 2). For n sufficiently large, J n will contain
2d basic cells: this holds whenever J n is part of J n

A and it will eventually hold for
J n ∈ J n

B since x ∈ X \ ∂ X . Then

σ n
t,x = σ n

J n =
∑

b∈{−1,1}d

mn
i(J n ,b)

mn
J n

δb/2 =
∑

b∈{−1,1}d

μ(Xn
i(J n ,b))

μ(Xn
J n )

δb/2 (A.3)

where i(J n, b) is the basic cell in composite cell J n whose center xn
i is at xn

J + b/2n.
Choose any b ∈ {−1, 1}d and define Ab

n = Xn
i(J n ,b) and Bn = Xn

J n . The sequences

(Ab
n)n and (Bn)n shrink nicely to x and satisfy L(Ab

n) = 1/nd and L(Bn) = 2d/nd ,
so by (A.2)

lim
n→∞

μ(Xn
i(J n ,b))

μ(Xn
J n )

= 1

2d
, (A.4)

and thus (σ n
t,x )n converges as n → ∞ to

σ =
∑

b∈{−1,+1}d

1

2d
δb/2. (A.5)

for μ-a.e. x ∈ X and all t ∈ R+.
For the last scheme (iii), at μ-a.e. x ∈ X and every t ∈ R+, the sequence σ n

t,x has
the same weak* cluster points as in the scheme (i), since sn → ∞. Thus the result
follows from the previous part.
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Let us conclude showing that for μn a regular discretization sequence, the limit σ
assigns mass 1/2d to each of the ‘quadrants’

Zb := {z ∈ Z | sign(z�) = b� for all � = 1, . . . , d} (A.6)

with b ∈ {−1, 1}d . This follows quickly analogous to (A.4): for μ-a.e. x ∈ X and all
t ∈ R+, denoting J n = J (t, x, n), we obtain

σ(Zb) = σ(Zb)

σ (Z)
= lim

n→∞
σ n

J n (Zb)

σ n
J n (Z)

= lim
n→∞

mn
J n σ

n
J n (Zb)

mn
J n σ

n
J n (Z)

= lim
n→∞

μ(Xn
i(J n ,b))

μ(Xn
J n )

= 1

2d
.

(A.7)
��

Appendix B: Block approximation

For the construction of recovery sequences in Sect. 4.3 we use the block approximation
[10] of a transport plan. The idea is to cover the product space with a grid of small
cubes and then replace themass of the original couplingwithin any cubewith a suitable
product measure (on that cube). This preserves the marginals and by controlling the
size of the cubes one may balance between the entropy and the transport term. For
simplicity, we compactly gather the required results and provide a sketch of proof.

Lemma 5 (Block approximation) Let Ω ⊂ R
d be compact, μ, ν ∈ M1(Ω), γ ∈

Π(μ, ν), L > 0. For each k ∈ Z
d let Qk := [k1, k1 + 1) × . . . × [kd , kd + 1) and

QL
k := L · Qk. We define the block approximation of γ at scale L as

γL :=
∑

j,k∈Zd :
μ(QL

j )>0, ν(QL
k )>0

γ (QL
j ⊗ QL

k )

μ(QL
j ) · ν(QL

k )
· (μ�QL

j ) ⊗ (ν�QL
k ). (B.1)

We find that

γL ∈ Π(μ, ν), WΩ×Ω(γ, γL) ≤ L · √2d, KL(γL |μ ⊗ ν) ≤ C − 2d log L.

for a constant C < ∞ (only depending on d and the diameter of Ω).

Proof In [10], Ω was not compact, but μ and ν were assumed to be Lebesgue-
absolutely continuous. Ω compact allows for a much shorter, self-contained proof.
γL ∈ Π(μ, ν) follows from a direct computation as in [10, Proposition 2.10]. For all
measurable A ⊂ Ω one has

γL (A × Ω) =
∑

j,k∈Zd :
μ(QL

j )>0, ν(QL
k )>0

γ (QL
j ⊗ QL

k )

μ(QL
j )

· (μ�QL
j )(A) =

∑

j∈Zd :
μ(QL

j )>0

(μ�QL
j )(A) = μ(A)
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where we used [γ (QL
j ⊗ QL

k ) > 0] ⇒ [ν(QL
k ) > 0] and that the first marginal of γ

is μ in the second equality. The same argument applies for the second marginal.
Transforming γ into γL only requires rearrangement of mass within each hyper-

cube QL
j ⊗ QL

k , which has diameter L · √2d in R
2d . This provides the bound

WΩ×Ω(γ, γL) ≤ L · √2d, cf. [10, Corollary 2.12].
For the entropy bound we adopt [10, Lemma 2.15], accounting for more general

μ, ν and considerably simplifying the last part due to compactness of Ω:

KL(γL | μ ⊗ ν) =
∫

Ω×Ω

log

(
dγL

d(μ ⊗ ν)

)

dγL − γL(Ω × Ω) + (μ ⊗ ν)(Ω × Ω)

=
∑

j,k∈Zd :
μ(QL

j )>0, ν(QL
k )>0

log

(
γ (QL

j ⊗ QL
k )

μ(QL
j )ν(QL

k )

)

γ (QL
j ⊗ QL

k )

where we deduce from (B.1) that dγL
d(μ⊗ν)

= γ (QL
j ⊗QL

k )

μ(QL
j )ν(QL

k )
on QL

j ⊗ QL
k and γL and γ

carry the same mass on QL
j ⊗ QL

k ). We continue:

=
∑

j,k∈Zd :
μ(QL

j )>0, ν(QL
k )>0

γ (QL
j ⊗ QL

k ) · log(γ (QL
j ⊗ QL

k ))

−
∑

j∈Zd

μ(QL
j ) log(μ(QL

j )) −
∑

k∈Zd

ν(QL
k ) log(ν(QL

k )) (B.2)

where we use the convention 0 log 0 = 0. The first term is less than or equal to
zero. For the other two we observe that by compactness of Ω at most a finite number
NL ∈ N of non-zero terms can appear in each sum with NL ≤ C̃ · L−d for some C̃
depending on d and the diameter of Ω . Using Jensen’s inequality and convexity of
R+ 	 s 
→ φ(s) := s log(s) we find

∑

j∈Zd

φ(μ(QL
j )) ≥ NL · φ

⎛

⎝ 1
NL

∑

j∈Zd

μ(QL
j )

⎞

⎠

= NLφ(1/NL) = − log(NL) ≥ − log(C̃) + d log(L).

Applying this bound on the second and third term in (B.2) we arrive at the desired
entropy bound for C := 2 log(C̃). ��
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