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Abstract
Probabilistic forecasting of time series is an important matter in many applications and research fields. In order to draw
conclusions from a probabilistic forecast, we must ensure that the model class used to approximate the true forecasting
distribution is expressive enough. Yet, characteristics of the model itself, such as its uncertainty or its feature-outcome
relationship are not of lesser importance. This paper proposes Autoregressive Transformation Models (ATMs), a model
class inspired by various research directions to unite expressive distributional forecasts using a semi-parametric distribution
assumption with an interpretable model specification. We demonstrate the properties of ATMs both theoretically and through
empirical evaluation on several simulated and real-world forecasting datasets.

Keywords Semi-parametric models · Conditional density estimation · Distributional regression · Normalizing flows

1 Introduction

Conditional models describe the conditional distribution
FY |x (y | x) of an outcome Y conditional on observed fea-
tures x (see, e.g., Jordan et al. 20). Instead of modeling
the complete distribution of Y | x, many approaches focus
on modeling a single characteristic of this conditional dis-
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tribution. Predictive models, for example, often focus on
predicting the average outcome value, i.e., the expectation of
the conditional distribution. Quantile regression [25], which
is used to model specific quantiles of Y | x, is more flex-
ible in explaining the conditional distribution by allowing
(at least theoretically) for arbitrary distribution quantiles.
Various other approaches allow for an even richer expla-
nation by, e.g., directly modeling the distribution’s density
fY |x and thus the whole distribution FY |x (y | x). Examples
include mixture density networks [5] in machine learning,
or, in general, probabilistic modeling approaches such as
Gaussian processes or graphicalmodels [33]. In statistics and
econometrics, similar approaches exist, which can be broadly
characterized as distributional regression (DR) approaches
[6,11,39,48]. Many of these approaches can also be regarded
as conditional density estimation (CDE) models.

Modeling FY |x (y | x) is a challenging task that requires
balancing the representational capacity of the model (the
expressiveness of the modeled distribution) and its risk for
overfitting. While the inductive bias introduced by para-
metric methods can help to reduce the risk of overfitting
and is a basic foundation of many autoregressive models,
their expressiveness is potentially limited by this distribu-
tion assumption (cf. Fig. 1).
Our contributions
In this work, we propose a new and general class of semi-
parametric autoregressive models for time series analysis
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Fig. 1 Exemplary comparison of probabilistic forecasting approaches
with the proposed method (ATM; with its uncertainty depicted by the
darker shaded area) for a given time series (red line). While other meth-
ods are not expressive enough and tailored toward a simple unimodal
distribution, our approach allows for complex probabilistic forecasts
(here the data-generating process is a bimodal distribution where the
inducing mixture variable is unknown to all methods). (Color figure
online)

called autoregressive transformationmodels (ATMs; Sect. 3)
that learn expressive distributions based on interpretable
parametric transformations. ATMs can be seen as a general-
ization of autoregressivemodels.We study the autoregressive
transformation of order p (AT(p)) in Sect. 4 as the closest
neighbor to a parametric autoregressive model, and derive
asymptotic results for estimated parameters in Sect. 4.2.
Finally, we provide evidence for the efficacy of our proposal
both with numerical experiments based on simulated data
and by comparing ATMs against other existing time series
methods.

2 Background and related work

Approaches that model the conditional density can be
distinguished by their underlying distribution assumption.
Approaches can be parametric, such as mixture density
networks [5] for conditional density estimation and then
learn the parameters of a pre-specified parametric distribu-
tion or non-parametric such as Bayesian non-parametrics
[9]. A third line of research that we describe as semi-
parametric, are approaches that start with a simple parametric
distribution assumption FZ and end up with a far more
flexible distribution FY |x by transforming FZ (multiple
times). Such approaches have sparked great interest in recent
years, triggered by research ideas such as density estimation
using non-linear independent components estimation or real-
valuednon-volumepreserving transformations [8].Ageneral
notion of such transformations is known as normalizing flow
(NF; Papamakarios et al. 36), where realizations z ∼ FZ of
an error distribution Fz are transformed to observations y via

y = hk ◦ hk−1 ◦ · · · ◦ h1(z) (1)

using k transformation functions. Many different approaches
exist to define expressive flows. These are often defined as

a chain of several transformations or an expressive neural
network and allow for universal representation of FY |x [36].
Autoregressivemodels (e.g., Bengio andBengio 3, Uria et al.
45) for distribution estimation of continuous variables are
a special case of NFs, more precisely autoregressive flows
(AFs; Kingma et al. 23, Papamakarios et al. 35), with a single
transformation.
Transformation models
Transformation models (TMs; Hothorn et al. 17), a similar
concept to NFs, only consist of a single transformation and
thereby better allow theoretically studying model properties.
The transformation in TMs is chosen to be expressive enough
on its own and comes with desirable approximation guaran-
tees. Instead of a transformation from z to y, TMs define an
inverse flow h( y) = z. The key idea of TMs is that many
well-known statistical regression models can be represented
by a base distribution FZ and some transformation function
h. Prominent examples include linear regression or the Cox
proportional hazards model [7], which can both be seen as
a special case of TMs [17]. Various authors have noted the
connection between autoregressive models and NFs (e.g.,
Papamakarios et al. 36) and between TMs andNFs (e.g., Sick
et al. 43). Advantages of TMs and conditional TMs (CTMs)
are their parsimony in terms of parameters, interpretability of
the input-output relationship, and existing theoretical results
[18].While mostly discussed in the statistical literature, vari-
ous recent TM advancements have been also proposed in the
field of machine learning (see, e.g., Van Belle et al. 46) and
deep learning (see, e.g., Baumann et al. 2, Kook et al. 26, 27).
Time series forecasting
In time series forecasting, many approaches rely on autore-
gressive models, with one of the most commonly known
linear models being autoregressive (integrated) moving aver-
age (AR(I)MA) models (see, e.g., Shumway et al. 42).
Extensions include the bilinear model of [14], [38], or the
Markov switching autoregressive model by [15]. Related to
these autoregressive models are stochastic volatility mod-
els [21] building upon the theory of stochastic processes.
In probabilistic forecasting, Bayesian model averaging [37]
and distributional regression forecasting [41] are two further
popular approaches while many other Bayesian and non-
Bayesian techniques exist (see, e.g., Gneiting and Katzfuss
12, for an overview).

2.1 Transformationmodels

Parametrized transformation models as proposed by [17],
[18] are likelihood-based approaches to estimate the CDF
FY of Y . The main ingredient of TMs is a monotonic trans-
formation function h to convert a simple base distribution
FZ to a more complex and appropriate CDF FY . Conditional
TMs (CTMs) work analogously for the conditional distribu-
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tion of Y given features x ∈ χ from feature space χ :

FY |x(y) = P(Y ≤ y | x) = FZ (h(y | x)). (2)

CTMs learn h(y | x) from the data, i.e., estimate a model for
the (conditional) aleatoric uncertainty. A convenient param-
eterization of h for continuous Y are Bernstein polynomials
(BSPs; Farouki 10) with order M (usually M � 50). BSPs
aremotived by the Bernstein approximation [4] with uniform
convergence guarantees for M → ∞, while also being com-
putationally attractive with only M + 1 parameters. BSPs
further have easy and analytically accessible derivatives,
which makes them a particularly interesting choice for the
change of random variables. We denote the BSP basis by
aM : � 	→ R

M+1 with sample space �. The transforma-
tion h is then defined as h(y | x) = aM (y)
ϑ(x) with
feature-dependent basis coefficientsϑ . This can be seen as an
evaluation of y based on a mixture of Beta densities fBe(κ,μ)

with different distribution parameters κ, μ andweightsϑ(x):

aM (y)
ϑ(x) =
∑M

m=0 ϑm(x) fBe(m+1,M−m+1)(ỹ)

M + 1
, (3)

where ỹ is a rescaled version of y to ensure ỹ ∈ [0, 1].
Restricting ϑm > ϑm−1 for m = 1, . . . , M + 1 guarantees
monotonicity of h and thus of the estimated CDF. Roughly
speaking, using BSPs of order M , allows to model the poly-
nomials of degree M of y.

2.2 Model definition

The transformation function h can include different data
dependencies.One common choice [2,16] is to split the trans-
formation function into two parts

h(y | x) = h1(y, x) + h2(x) = a(y)
ϑ(x) + β(x), (4)

where a(y) is a pre-defined basis function such as the BSP
basis (omittingM for readability in the following),ϑ : χϑ 	→
R

M+1 a conditional parameter function defined on χϑ ⊆ χ

andβ(x)models a feature-induced shift in the transformation
function. The flexibility and interpretability of TMs stems
from the parameterization

ϑ(x) =
J∑

j=1

� j .b j (x), (5)

where the matrix � j ∈ R
(M+1)×Oj , Oj ≥ 1, subsumes all

trainable parameters and represents the effect of the interac-
tion between the basis functions in a and the chosen predictor
terms b j : χb j 	→ R

Oj , χb j ⊆ χ . The predictor terms b j

have a role similar to base learners in boosting and represent

simple learnable functions. For example, a predictor term
can be the j th feature, b j (x) = x j , and � j ∈ R

(M+1)×1

describes the linear effect of this feature on the M + 1
basis coefficients, i.e., how the feature x j relates to the
density transformation from Z to Y | x. Other structured
non-linear terms such as splines allow for interpretable lower-
dimensional non-linear relationships. Various authors also
proposed neural network (unstructured) predictors to allow
potentially multidimensional feature effects or to incorpo-
rate unstructured data sources [2,26,43]. In a similar fashion,
β(x) can be defined using various structured and unstruc-
tured predictors.
Interpretability
Relating features and their effect in an additive fashion allows
to directly assess the impact of each feature on the transfor-
mation and also whether changes in the feature just shift the
distribution in its location or if the relationship also trans-
forms other distribution characteristics such as variability or
skewness (see, e.g., Baumann et al. 2, for more details).
Relationship with autoregressive flows
In the notation of AFs, h−1(·) is known as transformer, a
parameterized and bijective function. By the definition of (4),
the transformer in the case of TMs is represented by the basis
function a(·) and parameters ϑ . In AFs, these transformer
parameters are learned by a conditioner, which in the case
of TMs are the functions b j . In line with the assumptions
made for AFs, these conditioners in TMs do not need to be
bijective functions themselves.

3 Autoregressive transformations

Inspired by TMs and AFs, we propose autoregressive trans-
formationmodels (ATMs). Our work is the first to adapt TMs
for time series data and thereby lays the foundation for future
extensions of TMs for time series forecasting. The basic idea
is to use a parameter-free base distribution FZ and transform
this distribution in an interpretable fashion to obtain FY |x .
One of the assumptions of TMs is the stochastic indepen-
dence of observations, i.e., Yi | xi⊥Y j | x j , i �= j . When
Y is a time series, this assumption does clearly not hold. In
contrast, this assumption is not required for AFs.

Let t ∈ T ⊆ N0 be a time index for the time series
(Yt )t∈T . Assume

Yt | Ft−1 ∼ G(Yt−1, . . . ,Yt−p; θ) (6)

for some p ∈ {1, . . . , t}, distribution G, parameter θ ∈ �

with compact parameter space � ⊂ R
v and filtration Fs ,

s ∈ T , s < t , on the underlying probability space. Assume
that the joint distribution of Yt ,Yt−1, . . . ,Y1 possesses the
Markov property with order p, i.e., the joint distribution,
expressed through its absolutely continuous density f , can
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be rewritten as product of its conditionals with p lags:

f (yt , . . . , y1 | x) =
t∏

s=p+1

f (ys | ys−1, . . . , ys−p, x). (7)

We use x to denote (potentially time-varying) features that
are additional (exogenous) features. Their time-dependency
is omitted for better readability here and in the following.
Given this autoregressive structure, we propose a time-
dependent transformation ht that extends (C)TMs to account
for filtration and time-varying feature information. By mod-
eling the conditional distribution of all time points in a
flexible manner, ATMs provide an expressive way to account
for aleatoric uncertainty in the data.

Definition 1 Autoregressive transformation models Let
ht , t ∈ T , be a time-dependent monotonic transforma-
tion function and FZ the parameter-free base distribution as
in Definition 1 in the Supplementary Material. We define
autoregressive transformation models as follows:

P(Yt ≤ yt | Ft−1, x) = FYt |Ft−1,x(yt )

= FZ (ht (yt | Ft−1, x)).
(8)

This can be seen as the natural extension of (2) for time
series data with autoregressive property and time-varying
transformation function ht . In other words, (8) says that after
transforming yt with ht , its conditional distribution follows
the base distribution FZ , or vice versa, a random variable
Z ∼ FZ can be transformed to follow the distribution Yt | x
using h−1

t .
Relationship with autoregressive models and autoregres-
sive flows
Autoregressivemodels (AMs;Bengio andBengio 3) andAFs
both rely on the factorization of the joint distribution into
conditionals as in (7). Using the CDF of each conditional in
(7) as transformer in an AF, we obtain the class of AMs [36].
AMs and ATMs are thus both (inverse) flows using a single
transformation, but with different transformers and, as we
will outline in Sect. 3.2, also with different conditioners.
Stationarity
For TMs as defined in (2), strict stationarity is given in the
transformed probability space, that is for Zt := h(Yt |
Ft−1, x) it holds Zt

iid∼ FZ ∀t ∈ T . In the general
setup of ATMs, strict stationarity is, however, not required
for (Yt )t∈T . Instead, the time-varying transformation ht is
assumed to be expressive enough to map the possibly non-
stationary process (Yt )t∈T to a time-independent distribution
(and hence stationary) process (Zt )t∈T .

3.1 Likelihood-based estimation

Based on (7), (8) and the change of variable theorem, the
likelihood contribution of the t th observation yt in ATMs is
given by

fYt |x(yt | Ft−1, x)

= fZ (ht (yt | Ft−1, x)) · ∣
∣∂ht (yt | Ft−1, x)

∂ yt

∣
∣

and the full likelihood for T observations from random vari-
able Y thus by

fY |x(YT , . . . , Y1 | Y0, x)

=
T∏

t=1

{

fZ (ht (yt | Ft−1, x)) · ∣
∣∂ht (yt | Ft−1, x)

∂ yt

∣
∣
}

,
(9)

whereY0 = (y0, . . . , y−p+1) are knownfinite starting values
and F0 only contains these values. Based on (9), we define
the loss of all model parameters θ as negative log-likelihood
−	(θ) := − log fY |x (YT , . . . ,Y1 | Y0, x) given by

−
T∑

t=1

{
log fZ (ht (yt | Ft−1, x))

+ log
∣
∣∂ht (yt | Ft−1, x)

∂ yt

∣
∣
}
,

(10)

and use (10) to train the model.
As for AFs, many special cases can be defined from the

above definition and more concrete structural assumptions
for ht make ATMs an interesting alternative to other meth-
ods in practice. We will elaborate on meaningful structural
assumptions in the following.

3.2 Structural assumptions

In CTMs, the transformation function h is usually decom-
posed as h(y | x) = h1(y | x) + h2(x), where h1 is a
function depending on y and h2 is a transformation-shift
function depending only on x. For time-varying transforma-
tions ht our fundamental idea is that the outcome yt shares
the same transformation with its filtration Ft−1, i.e., the lags
Yt = (yt−1, . . . , yt−p). In other words, a transformation
applied to the outcome must be equally applied to its prede-
cessor in time to make sense of the autoregressive structural
assumption.An appropriate transformation structure can thus
be described by

ht (yt | Ft−1, x)

= h1t (yt | x) + h2t ((h1t � Yt | Ft−1, x) | x)

=: λ1t + λ2t ,

(11)
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Fig. 2 Illustration of a transformation process induced by the structural
assumption of Sect. 3.2. The original data history Ft−1 (red) is trans-
formed into a base distribution (orange) using the transformation h1t
(solid blue arrow) and then further transformed using h2t (dashed green
arrow) to match the transformed distribution of the current time point t .
(Color figure online)

for t ∈ T , where� indicates the element-wise application of
h1t to all lags inYt . In otherwords, ATMsfirst apply the same
transformation h1t to yt and individually to yt−1, yt−2, . . .,
and then further consider a transformation function h2t to
shift the distribution (and thereby potentially other distri-
bution characteristics) based on the transformed filtration.
While the additivity assumption of λ1t and λ2t seems restric-
tive at first glance, the imposed relationship between yt and
Yt only needs to hold in the transformed probability space.
For example, h1t can compensate for a multiplicative autore-
gressive effect between the filtration and yt by implicitly
learning a log-transformation (cf. Sect. 5.1). At the same
time, the additivity assumption offers a nice interpretation of
the model, also depicted in Fig. 2: After transforming yt and
Yt , (11) implies that training an ATM is equal to a regression
model of the form λ1t = λ2t + ε, with additive error term
ε ∼ FZ (cf. Proposition 1 in Supplementary Material A.2).
This also helps explaining why only λ2t depends on Ft−1: if
λ1t also involves Ft−1, ATMs would effectively model the
joint distribution of the current time point and the whole fil-
tration, which in turn contradicts theMarkov assumption (7).

Specifying h1t very flexible clearly results in overfitting.
As for CTMs, we use a feature-driven basis function repre-
sentation h1t (yt | x) = a(yt )
ϑ(x)with BSPs a and specify
their weights as in (5). The additional transformation h2t
ensures enough flexibility for the relationship between the
transformed response and the transformed filtration, e.g., by
using a non-linear model or neural network. An interesting
special case arises for linear transformations in h2t , which
we elaborate in Sect. 4 in more detail.
Interpretability
The three main properties that make ATMs interpretable are
1) their additive predictor structure as outlined in (5); 2) the

clear relationship between features and the outcome through
the BSP basis, and 3) ATM’s structural assumption as given
in (11). As for (generalized) linear models, the additivity
assumption in the predictor allows interpreting feature influ-
ences through their partial effect ceteris paribus. On the other
hand, choices of M and FZ will influence the relationship
between features and outcome by inducing different types of
models. A normal distribution assumption for FZ andM = 1
will turn ATMs into an additive regression model with Gaus-
sian error distribution (see also Sect. 4). For M > 1, features
in h1 will also influence higher moments of Y | x and allow
more flexibility in modeling FY |x . For example, a (smooth)
monotonously increasing feature effect will induce rising
moments of Y | x with increasing feature values. Other
choices for FZ such as the logistic distribution also allow
for easy interpretation of feature effects (e.g., on the log-
odds ratio scale; see Kook et al. 26). Finally, the structural
assumption of ATMs enforces that the two previous inter-
pretability aspects are consistent over time. We will provide
an additional illustrative example in Sect. 5.2, further expla-
nations in Supplementary Material B, and refer to [17] for
more details on interpretability of CTMs.
Implementation
In order to allow for a flexible choice of transformation func-
tions and predictors b j , we propose to implement ATMs
in a neural network and use stochastic gradient descent for
optimization. While this allows for complex model defini-
tions, there are also several computational advantages. In a
network, weight sharing for h1t across time points is straight-
forward to implement and common optimization routines
such as Adam [22] prove to work well for ATMs despite the
monotonicity constraints required for the BSP basis. Further-
more, as basis evaluations for a large number of outcome lags
in Ft−1 can be computationally expensive for large p (with
space complexityO(t ·M · p)) and addM additional columns
per lag to the feature matrix, an additional advantage is the
dynamic nature of mini-batch training. In this specific case,
it allows for evaluating the bases only during training and
separately in each mini-batch. It is therefore never required
to set up and store the respective matrices.
Relationship to implicit copulas
An anonymous reviewer pointed out the potential relation-
ship of ATMs and implicit copulas [44]. We start with
a general formulation of multivariate transformation mod-
els similar to [24], first without the time series context,
by defining a componentwise bijective, strictly monoton-
ically increasing multivariate transformation function h :
R
T → R

T mapping Y = (Y1, . . . ,YT )
 to a vec-
tor Z ∈ R

T with absolutely continuous random variable
entries Z1 ∼ FZt , . . . , ZT ∼ FZT , marginal distributions
FZt , t = 1, . . . , T , joint distribution FZ, and define the
distribution of Y by FY ( y) = FZ(z) := FZ(h( y)). We
assume that ∂h( y)/∂ y is lower-diagonal. This is a com-
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mon assumption used in multivariate TMs, AFs, and also
ATMs. Then, following the change of variable theorem,
fY ( y) = fZ(z) · ∏T

t=1 |∂ht ( y)/∂ yt |. Now let the entries
of h be defined by ht ( y) = F−1

Zt
FYt (yt ), where FYt is an

(arbitrary) marginal distribution of Yt and F−1
Zt

the quantile
function of FZt . It follows that FY is now exactly defined
as in the case of implicit copulas, where the copula func-
tion C(u) = FZ(F−1

Z1
(u1), . . . , F

−1
ZT

(uT )) is defined via the
transformation model’s error distribution FZ together with
the outer quantile function transformation F−1

Zt
in ht , and

u = (u1, . . . , uT )
 in this case corresponds to the inner
transformation FYt (yt ) in ht . Further, as ∂ht (yt )/∂ yt =
fYt (yt )/ fZt (zt ) in the transformationmodel, the equivalence
of the copula density c of this implicitly defined copula
C can also be directly confirmed. ATMs, however, assume

Zt
iid∼ FZ as the transformation h already accounts for all

dependencies in the time series. This is in contrast to implicit
copulas, where h is defined rather simple and FZ is more
complex (does not factorize into the product of marginals).

The previously discussed connections will allow to better
understand ATMs, and also to elaborate on the question of
stationarity of ATMs in the future, which is extensively dis-
cussed in copula literature (see, e.g., Nagler et al. 34, Smith
44).

4 AT(p) Model

A particular interesting special case of ATMs is the AT(p)
model. This model class is a direct extension of the well-
known autoregressive model of order p (short AR(p) model;
Shumway et al. 42) to transformation models.

Definition 2 AT(p) model We define the AT(p) model, a
special class of ATMs, by setting h1t (yt | x) = h1(yt |
x) = a(yt )
ϑ(x), and h2t (Ft−1, x) = h2(Ft−1, x) =
∑p

j=1 φ j h1(yt− j ) + r(x), i.e., an autoregressive shift term
with optional exogenous remainder term r(x).

As for classical time series approaches, φ j are the regression
coefficients relating the different lags to the outcome and
r is a structured model component (e.g., linear effects) of
exogenous features that do not vary over time.

4.1 Model details

The AT(p) model is a very powerful and interesting model
class for itself, as it allows to recover the classical time
series AR(p) model when setting M = 1, ϑ(x) ≡ ϑ and
r(x) ≡ 0 (see Proposition 2 in SupplementaryMaterial A for
a proof of equivalence). But it can also be extended to more
flexible autoregressive models in various directions. We can

increaseM to get amore flexible density, allowing us to devi-
ate from the base distribution assumption FZ , e.g., to relax
the normal distribution assumption of AR models. Alter-
natively, incorporating exogenous effects into h1t allows to
estimate the density data-driven or to introduce exogenous
shifts in time series using features x in r(x). ATMs can also
recover well-known transformed autoregressive models such
as the multiplicative autoregressive model [47] as demon-
strated in Sect. 5.1. When specifying M large enough, an
AT(p) model will, e.g., learn the log-transformation function
required to transform a multiplicative autoregressive time
series to an additive autoregressive time series on the log-
scale. In general, this allows the user to learn autoregressive
models without the need to find an appropriate transforma-
tion before applying the time series model. This means that
the uncertainty about preprocessing steps (e.g., a Box-Cox
transformation; Sakia 40) is incorporated into the model esti-
mation, making parts of the pre-processing obsolete for the
modeler and its uncertainty automatically available.

Non-linear extensions ofAT(p)models can be constructed
by modeling Yt in h2t non-linearly, allowing ATMs to
resemble model classes such as non-linear AR models with
exogenous terms (e.g., Lin et al. 29). In practice, values for p
can, e.g., be found using a (forward) hyperparameter search
by comparing the different model likelihoods.

4.2 Asymptotic theory

An important yet often neglected aspect of probabilistic fore-
casts is the epistemic uncertainty, i.e., the uncertainty in
model parameters. Based on general asymptotic theory for
time series models [30], we derive theoretical properties for
AT(p)s in this section.

Let θ∗ be the true value of θ and interior point of �. We
define the following quantities involved in standard asymp-
totic MLE theory: Let θ̂T = argmin� −	(θ) be the param-
eter estimator based on Maximum-Likelihood estimation
(MLE),∇T (θ) = ∂	T (θ)/∂θ ,JT (θ) = −∂2	T (θ)/(∂θ∂θ ′),
I = EG(JT (θ∗)) and J = EG(∇T (θ∗)∇


T (θ∗)). We further
state necessary assumptions to apply the theory of [30] for a
time series (Yt )t∈T with known initial values Y0 as defined
in Sect. 3.

Assumption 1 Assume

(i) (Yt )t∈T is strictly stationary and ergodic;
(ii) EG{supθ∈�[	T (θ)]} < ∞ and θ∗ is unique;
(iii) ∇T (θ∗) is a martingale difference w.r.t. FT−1 with 0 <

J < ∞;
(iv) I is positive-definite and for some ξ > 0 EG

{supθ :||θ−θ∗||<ξ ||JT (θ ||} < ∞.
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Fig. 3 Aleatoric vs. epistemic uncertainty: Different plots correspond
to different orders of the BSP basis M , inducing different amounts of
expressiveness and aleatoric uncertainty (and here also multimodality).
In each plot, the fitted density is shown in red, and model uncertainties
of this density based on the epistemic uncertainty in black. Epistemic
uncertainty is generated according to results in Theorem 2 and 3

Assumptions 1 are common assumptions required for
many time series models. We require only these and no
other assumptions since AT(p)s and non-linear extensions
are fully-parameterized time series models. This allows us to
derive general statistical inference theory for AT(p) models.

Theorem 1 (Consistency) If elements in Y0 are finite and

Assumption 1(i) holds, then θ̂T
a.s.−→ θ∗ for T → ∞.

As stated in [18], Assumption 1 (ii) holds if a is not
arbitrarily ill-posed. In practice, both a finiteY0 andAssump-
tion1 (i) are realistic assumptions.Making twoadditional and
also ratherweak assumptions (1(iii)–(iv)) allows to derive the
asymptotic normal distribution for θ̂ .

Theorem 2 (Asymptotic Normality) If y0 is finite and
Assumptions 1 hold, then for T → ∞,

θ̂T = θ∗ + O(
√

(log log T )/T )

and

√
T (θ̂T − θ∗) D−→ N (0, I−1JI−1).

Based on the same assumptions, a consistent estimator for
the covariance can be derived.

Theorem 3 (Consistent Covariance Estimator) For finite y0
and under Assumptions 1,

ÎT = 1

T

T∑

t=1

JT (θ̂T ) and ĴT = 1

T

T∑

t=1

∇T (θ̂T )∇

T (θ̂T )

are consistent estimators for I and J, respectively.

The previous theorems can be proven by observing that
the AT(p) model structure and all made assumptions follow
the general asymptotic theory for time series models as given
in [30]. See Supplementary Material A for details.

Using the above results, we can derive statistically valid
UQ. An example is depicted in Fig. 3. Since h is parame-
terized through θ , it is also possible to derive the so-called
structural uncertainty of ATMs, i.e., the uncertainty induced
by the discrepancy between the model’s CDF FY |x (y | x; θ)

and the true CDF F∗
Y |x (y | x) [31]. More specifically, h can

be represented using a linear transformation of θ , h = ϒθ ,
implying the (co-)variance ϒI−1J(θ∗)I−1ϒ
 for ĥ.
Practical application
ATM define the distribution FYt |Ft−1,x via FY |Ft−1,x = FZ ◦
ht , where ht is parameterized by θ . In order to assess param-
eter uncertainty in the estimated density as, e.g. visualized
in Fig. 1 and 3, we propose to use a parametric Bootstrap
described in detail in Supplementary Material C.
Seasonality
Many forecasting problems exhibit seasonality with a signif-
icant impact on the nature of the time series. ATMs allow the
modeler to account for this in two different ways. If season-
ality manifests itself through a (non-)linear shift in the values
of the time series, the function h2t can be used to incorpo-
rate seasonal effects by either adding (exogenous) covariates
such as dummy variables or seasonal lags for the particu-
lar season, or by including a non-linear, seasonal effect of
time, e.g., using cyclic penalized splines. If the seasonality
also changes the distribution of yt itself, our approach can
be used to its full potential by incorporating the derived time
variables in ϑ(x) and thereby allowing a seasonally-varying
distribution.
Stationarity
As for the general class of ATMs, the AT (p)model assumes
Zt to be independently and identically distributed according
to FZ . In contrast to ATMs – if we want to make inference
statements about θ as given in 1–3 – we additionally require
strict stationarity of the untransformed (Yt )t∈T . An interest-
ing direction for future research is to relax this assumption.
Model diagnostics
To assess the goodness-of-fit of an ATM/AT(p) model given
by ẑt := ĥt (yt | Ft−1, x), the empirical quantiles of ẑt can
be compared with the theoretical quantiles of the error dis-
tribution FZ , e.g., by means of a quantile–quantile plot or
a Kolmogorov–Smirnov statistic [17]. If the distribution of
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Fig. 4 Empirical evidence for the correctness of our theoretical results
on PU: Expected vs. observed quantiles of the transformation function
ht (left; one line per dataset) and model parameters θ for the different
(lagged) transformed outcomes (right; one cross per dataset) based on
1000 simulation replications. The ideal angle bisector is plotted in red

Table 1 Average and standard deviation (brackets) of the MSE (mul-
tiplied by 100 for better readability) between estimated and true
coefficients in an AR(p) model using our approach on the tampered
data (bottom row) and the corresponding oracle based on the true data
(Oracle)

T p = 1 p = 2 p = 4

Oracle 400 0.33 (0.31) 0.22 (0.19) 0.25 (0.13)

AT(p) 0.52 (0.46) 0.33 (0.3) 0.34 (0.23)

Oracle 800 0.27 (0.34) 0.13 (0.12) 0.13 (0.085)

AT(p) 0.26 (0.36) 0.17 (0.17) 0.18 (0.12)

ẑt does not match the distribution FZ , the model is likely to
be misspecified. Further, the independence assumption (and
therefore stationarity) of ẑt can be assessed by means of an
auto-correlation function plot.

5 Experiments

We will first investigate theoretical properties of ATMs and
the validity of statistical inference statements using simula-
tion studies. We then compare our approach against other
state-of-the-art methods described in the previous section on
probabilistic forecasting tasks in a benchmark study. Addi-
tional results can be found in the Supplementary Material D.

5.1 Simulation study

Equivalence and consistency
We first demonstrate Theorem 1 and Proposition 2 in the
Supplementary Material, i.e., for growing number of obser-
vations AT(p) models can recover AR(p) models when
equally specified. We therefore simulate various AR models
using lags p ∈ {1, 2, 4}, T ∈ {200, 400, 800} and estimate
both a classical AR(p) model and an AT(p) model for 20
replications. For the latter, we use the mapping derived in

Proposition 2 to obtain the estimated AR coefficients from
the AT(p) model. In Table D1 in the Supplementary Mate-
rial D we compare both models based on their estimated
coefficients against the ground truth using the mean squared
error (MSE). Results show that the AT(p) model can empir-
ically recover the AR(p) model very well.
Flexibility
Next, we demonstrate how the AT(p) model with M =
30 can recover a multiplicative autoregressive process. We
therefore generate data using an AR model with different
lags p and observations n as before. This time, however, we
provide the AT(p) model only with the exponentiated data
y̌t = exp(yt ). Thismeans themodel needs to learn the inverse
transformation back to yt itself. Despite having to estimate
the log-transformation in addition, the AT(p) model recovers
the true model well and, for larger n, is even competitive to
the ground truth model (Oracle) that has access to the orig-
inal non-exponentiated data (cf. Table D2 for an excerpt of
the results).
Epistemic uncertainty
In this experiment we validate our theoretical results pro-
posed in Sect. 4.2. As in the previous experiment, we try to
learn the log-transformed AR model using an AT(p = 3)
model with coefficients (0.3, 0.2, 0.1). After estimation, we
check the empirical distribution of θ̂ and ĥ against their
respective theoretical one in 1000 simulation replications.
Fig. 4 depicts a quantile-quantile plot of the empirical and
theoretical distribution for both h and all 4 parameters (inter-
cept and three lag coefficients). The empirical distributions
are well aligned with their theoretical distribution as derived
in Sect. 4.2, confirming our theoretical results.

5.2 Benchmarks

Finally, we compare our approach to its closest neighbor in
the class of additive models, the ARIMAmodel [19], against
a simple Box-Cox transformation (BoxCox), a neural net-
work for mean-variance estimation (MVN) and a mixture
density network (MDN;Bishop 5).While there aremany fur-
ther forecasting techniques, especially in deep learning, we
purposely exclude more complex machine and deep learning
approaches to compare AT(p)s with approaches of simi-
lar complexity. More specifically, the different competitors
were chosen to derive the following insights: The compari-
son of the AT(p) model with the ARIMAmodel will indicate
whether relaxing the parametric assumption using TMs can
improve performance while both methods take time series
lags into account. The comparison of our method with Box-
Cox, on the other hand,will showsimilar performance if there
is no relevant information in the lags of the time series. The
MVN can potentially learn time series-specific variances but
is not given the lagged information as input. A good perfor-
mance of theMVNwill thus indicate heteroscedasticity in the
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Table 2 Mean log-scores
(higher is better) across 10
different initializations with
standard deviations in brackets
for each method (columns) and
benchmark dataset (rows).
Results for ARIMA are based
on only one trial as there is
typically no stochasticity in its
results. The best performing
method per data set is
highlighted in bold

ARIMA AT(p) Box Cox MDN MVN

elec −5.44 −5.35 (0.01) −8.37 (0.00) −5.20 (0.01) −9.51 (0.00)

exchange 0.37 3.50 (0.05) −0.69 (0.00) 4.02 (0.12) −0.70 (0.00)

m4 −573.11 −6.72 (0.07) −10.7 (0.00) −6.75 (1.17) −12.0 (0.00)

tourism −9.78 −9.38 (0.01) −11.5 (0.00) −77.8 (99.5) −12.7 (0.00)

traffic 0.23 1.09 (0.33) 0.03 (0.00) 1.06 (0.02) −0.25 (0.00)

data generating process which can, however, be accounted
for using a parametric distributional regression approach.
Finally, the MDN is an alternative approach to the AT(p)
model that tries to overcome the parametric assumption by
modeling a mixture of normal distributions. In this bench-
mark, all comparisons investigate one-step-ahead forecasts.
In Section 6, we will discuss and outline the use of ATMs for
multi-step-ahead forecasts.
Hyperparameter setup
We define the AT(p) model by using an unconditional ϑ

parameter and use the lag structure as well as a time series
identifier as a categorical effect in the additive predictor of
β. We further investigate different number of BSPs M ∈
{5, 10, 30} and different number of lags p ∈ {1, 2, 3}. Model
training for all models but the ARIMAmodel was done using
1000 epochs with early stopping and a batch size of 128. For
the MDN, we define 3 mixtures and use the AT(p)’s β as
an additive predictor for the mean of every mixture com-
ponent. The MVN uses the time series identifier to learn
individual means and variances. For ARIMA we used the
auto.arima implementation [19] and performed a step-
wise search via the AICcwith different starting values for the
order of the AR and the MA term. For the AR term, we con-
sider the length of the corresponding forecasting horizon and
halve this value. The search space for the MA term started
either with 0 or 3.We chose the ARIMAmodel with the low-
est AICc on the validation set. For the auto.arimamodel
on the m4 data, we restrict the observations to be used for
model selection to 242 in order to reduce the computational
complexity. A larger number did not give higher logscores.
Datasets
We compare approaches on commonly used benchmark
datasets electricity (elec; Yu et al. 49), traffic forecast-
ing (traffic; Yu et al. 49), monthly tourism [1], the
hourly m4 dataset [32] and currency exchange [28]. A
short summary of these datasets can be found in Table D3 in
the Supplementary Material.
Evaluation
For each proposed method and dataset, we report the log-
scores [13] and average results across time series and time
points. The datasets are split into a training, validation, and
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Fig. 5 Exemplary forecasted densities for one time series in the data set
traffic for different values of M (rows) showcasing the increased
expressiveness

test set by adhering to their time ordering. Evaluation win-
dows are defined as done in the reference given for every
dataset.
Results
Table 2 shows the results of the comparison. Our approach
always yields competitive and consistently good resultswhile
outperforming other models on most data sets.

Figure 5 further exemplarily depicts how the distribution
is influenced when using an AT(p) model when varying the
BSP order M . In the Appendix, we also provide an example
when including the hour of the day into the exogenous shift
term (not done for the give benchmark).

6 Conclusion and outlook

We have proposed ATMs, a flexible and comprehensible
model class combining and extending various existing mod-
eling approaches. ATMs allow for expressive probabilistic
forecasts using a base distribution and a single transformation
modeled by Bernstein polynomials. Additionally, a paramet-
ric inference paradigm based on MLE allows for statistical
inference statements. ATMs empirically and theoretically
recover well-known models, and demonstrate competitive
performance on real-world datasets.
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ATMs are the first adaption of transformation models to
time series applications. Although our approach can be easily
extended to incorporate deep neural network architectures,
this invalidates statistical inference statements (e.g., because
the uniqueness of θ∗ cannot be guaranteed). Future research
will investigate this trade-off between larger model complex-
ity and less statistical guarantees for the model.

An intriguing andpractically relevant aspect of forecasting
is to predict multiple steps into the future. Whereas classi-
cal (parametric) methods plug in an estimate (such as the
mean) for the missing time series values when extrapolat-
ing more than one step into the future, ATMs are motivated
by the observation that unimodal probabilistic forecasts do
potentially not provide enough flexibility to model complex
autoregressive processes. This raises the question of which
value to plug in for missing lags in a multi-step-ahead fore-
cast. Figure 1 makes clear that the (distribution’s) mean is
not necessarily a good choice. In addition, a sensible method
would have to account for the additional uncertainty in every
step, both to preserve the underlying motivation to model
the aleatoric uncertainty in the data-generating process and
to account for epistemic uncertainty in the parameter estima-
tion. This constitutes a challenging task for a semi-parametric
approach like ours and opens up various interesting questions
for future research.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10212-
8.
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