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Abstract
In the precision medicine era, (prespecified) subgroup analyses are an integral
part of clinical trials. Incorporating multiple populations and hypotheses in the
design and analysis plan, adaptive designs promise flexibility and efficiency in
such trials. Adaptations include (unblinded) interim analyses (IAs) or blinded
sample size reviews. An IA offers the possibility to select promising subgroups
and reallocate sample size in further stages. Trials with these features are known
as adaptive enrichment designs. Such complex designs comprise many nuisance
parameters, such as prevalences of the subgroups and variances of the outcomes
in the subgroups. Additionally, a number of design options including the time-
point of the sample size review and timepoint of the IA have to be selected. Here,
for normally distributed endpoints, we propose a strategy combining blinded
sample size recalculation and adaptive enrichment at an IA, that is, at an early
timepoint nuisance parameters are reestimated and the sample size is adjusted
while subgroup selection and enrichment is performed later.We discuss implica-
tions of different scenarios concerning the variances as well as the timepoints of
blinded review and IA and investigate the design characteristics in simulations.
The proposedmethodmaintains the desired power if planning assumptionswere
inaccurate and reduces the sample size and variability of the final sample size
when an enrichment is performed. Having two separate timepoints for blinded
sample size review and IA improves the timing of the latter and increases the
probability to correctly enrich a subgroup.
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1 INTRODUCTION

In the era of personalized medicine and targeted therapies, the statistical aspects of designing a clinical trial are also
increasing in complexity. Subgroup analyses, treatment selection, and innovative designs rely on an increasing number of
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parameters, which are often unknown and have to be guessed, estimated, or determined by a rule of thumb in the planning
stage of a trial. Ondra et al. (2016) give a systematic review about methods and statistical approaches investigating sub-
groups in clinical trials. In adaptive enrichment designs, interim analyses (IAs) offer the possibility to select populations
that seemingly benefit the most from the treatment and alter recruitment in favor of the most promising subgroups. Since
sample sizes are calculated prior to a study, often based on insufficient knowledge about nuisance parameters, it is plausi-
ble to additionally implement a reevaluation of those parameters during the ongoing study and adjusting the sample size
if needed. The idea of a blinded sample size review is to reestimate the parameters at a prespecified timepoint in a blinded
fashion, that is, without revealing treatment groups, and recalculating the sample size. Those sample size adjustments
do not inflate the type I error probability. In this paper, we will combine both methods for blinded sample size recalcula-
tion (BSSR) and adaptive enrichment strategies in a design with multiple subgroups, normally distributed endpoints, and
Wald-type test statistics. Hence, there are several nuisance parameters, which are crucial for the planning and execution
of a trial, such as the variances in the (sub)populations, the prevalences of the subgroups, timepoint of the sample size
review, and timepoint of the IA. We will handle these step by step: Approximations and exact procedures for sample size
determination prior to and sample size recalculation within the trial as well as methods for analyzing a multiple nested
subgroups design have been presented by Placzek and Friede (2018). For several scenarios concerning known or unknown
variances in the populations, we gave exact or approximative multivariate t-distributions with a single degrees-of-freedom
parameter to performhypothesis testing and sample size (re)calculations, whereas Graf et al. (2019) use amultivariate nor-
mal distribution, which is then adjusted by quantile substitution based on univariate t-distributions. Since the nuisance
parameters directly impact the sample size and therefore a missspecification of these parameters leads to incorrectly pow-
ered studies, it is vital to have proper estimates of those parameters. Pilot studies of sufficient size conducted in the same
population can provide these estimates (Kieser &Wassmer, 1996). However, such pilot studies require resources and take
time to conduct. Often it is more efficient to perform a pilot as part of the trial. In contrast to an external pilot study, the
idea is to treat the first part of the trial as a source of information about those nuisance parameters. This first part is there-
fore referred to as internal pilot study (IPS) (Wittes & Brittain, 1990). Nuisance parameters are then reestimated based
on the data of the internal pilot and the sample size adjusted accordingly. Such a recalculation is preferably done using
blinded estimators as requested by regulatory guidelines, cf. European Medicines Agency (EMEA) (2007); International
Conference on Harmonisation E9 Expert Working Group (1999). Adaptive designs have been widely discussed covering
subgroup selection (Chiu et al., 2018; Jenkins et al., 2011; Stallard et al., 2014) or population enrichment (Mehta et al., 2014;
Wassmer &Dragalin, 2015) and the combination of group-sequential designs and subpopulation enrichment (Rosenblum,
Luber, et al., 2016; Rosenblum, Qian, et al., 2016). An important part of those designs is combining evidence from the dif-
ferent stages in the final analysis controlling the type I error rate. In the setting of adaptive seamless designs, Bretz et al.
(2006) describe flexible test procedures with hypothesis selection at interim giving several applications in Schmidli et al.
(2006). The combination test (CT) approach (Bauer & Koehne, 1994) was used in a one-subgroup design by Brannath
et al. (2009) and Jenkins et al. (2011), while the conditional error function (CEF) approach (Mueller & Schaefer, 2001)
was analyzed in a one-subgroup design by Friede et al. (2012) and Mehta et al. (2014). Sugitani et al. (2018) investigated
weighted significance levels associated with the hypotheses of the overall and subgroup population in adaptive enrich-
ment designs and improved the efficiency of several methods including the CT and CEF approach. In Placzek and Friede
(2019), we extended the CEF approach providing the case of multiple subgroups with no restrictions to the variance in the
populations. Considerations on the timepoint of the IA are given in Benner and Kieser (2017).
The paper is organized as follows. Section 2 gives amotivating example. In Section 3, the statisticalmodel and hypothesis

tests are introduced as well as BSSR and adaptive enrichment designs. In Section 4, we propose a strategy combining BSSR
in an IPS and adaptive enrichment designs. This is followed by simulations in Section 5. We close with a brief discussion
of the findings and limitations of our study (Section 6).

2 AMOTIVATING EXAMPLE

Tomotivate an IPS and corresponding sample size review in an adaptive trial design, we take a look at a clinical trial from
the field of precision medicine that was reported by Sorkness et al. (2019). The phenotype-stratified clinical trial SIENA
(Steroids in Eosinophil Negative Asthma) aimed to check the paradigm that inhaled corticosteroids (ICS) are the appro-
priate first-line treatment for patients with mild persistent asthma. Two phenotypic strata were assigned based on an a
priori defined extent of sputum eosinophilia (Eos Low vs. Eos High). Retrospective data from the National Heart, Lung,
and Blood Institutes (NHLBI) Asthma Clinical Research Network (ACRN) suggested that approximately 50% of patients
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withmild-moderate asthma, not already treated with ICS, have< 2% eosinophils in induced sputum (Eos Low). Therefore
it appeared reasonable to expect a 1:1 ratio of the two strata in the study and hence sample size and power calculations
assumed such a distribution. Participantswere treatedwith an ICS, LAMA (long-actingmuscarinic antagonist) or placebo.
The main objective focused on the different response to ICS and LAMA between the Eos Low and Eos High strata. How-
ever, after 8 months of recruitment, the observed ratio of Eos Low to Eos High was around 3:1 (79 patients, 60:19). This
unexpected imbalance was monitored by the Steering Committee and different options and alternatives were considered.
Since the initial sample size calculation assumed balanced strata, possible solutions included selectively enriching the Eos
High stratum, closing the Eos Low stratum early or generally revising the analysis plan. Finally it was decided to change
the statistical plan and focus on the originally secondary endpoints still testing treatment effects within both strata rather
than between. Power and sample size calculation were revised as well and SIENAwas successfully completed in amanner
thatmaintainedmeaningful outcomes (221 Eos Low and 74 EosHigh). Retrospectively, Sorkness et al. (2019) conclude that
it is recommended at the planning stage, especially when examining phenotype- or biomarker-stratified populations, to
incorporate plans for IAs or sample size reassessment leading to adaptive trial designs that, as they assume, will become
even more relevant in the precision medicine era.

3 METHODS FOR ADAPTIVE ENRICHMENT DESIGNS

3.1 Statistical model and hypothesis tests

In this paper, we consider a patient population, which is denoted by 𝐹 = 𝑆0, indicating that it represents the full pop-
ulation, and 𝑘 nested subgroups 𝑆𝑘 ⊂ 𝑆𝑘−1 ⊂ ⋯ ⊂ 𝑆1 ⊂ 𝑆0 = 𝐹 within. Let 𝜏1, … , 𝜏𝑘 denote the corresponding subgroup
prevalences, that is, 𝜏𝑖 denotes the proportion of subjects in 𝑆𝑖 among all subjects in𝐹. We assume that an individual obser-
vation is normally distributed and want to compare an experimental treatment to a control. For simplicity and without
loss of generality the control group mean is set to 0 in all populations. Treatment effect sizes and hence treatment mean
differences are denoted by 𝜃0, … , 𝜃𝑘 . We further assume that in each population 𝑆𝑖 the variances 𝜎2𝑇,𝑆𝑖 = 𝜎2

𝐶,𝑆𝑖
are equal

for the treatment and the control group. Therefore, only one variance 𝜎2
𝑆𝑖
per population 𝑆𝑖 is needed for the statistical

model, 𝑖 = 0, … , 𝑘. Let 𝑛𝑆𝑖𝑇 and 𝑛𝑆𝑖
𝐶
be the number of subjects in the treatment and control group for each subpopulation,

𝑖 = 1, … , 𝑘 and let 𝑛𝑆0
𝐶
= 𝑛𝐶 and 𝑛

𝑆0
𝑇 = 𝑛𝑇 denote the number of subjects in the experimental treatment and control group

in the whole patient population. For unbalanced sample sizes, we introduce an allocation parameter 𝑎 = 𝑛𝑇∕𝑛𝐶 . This
means there are 𝑛𝑆𝑖𝑇 = 𝑎 ⋅ 𝑛

𝑆𝑖
𝐶
subjects in the treatment group of population 𝑆𝑖, 𝑖 = 0, … , 𝑘.

Hypotheseswill be tested using standardized test statistics𝑍{𝐹}, 𝑍{𝑆1}, … , 𝑍{𝑆𝑘}. In previous papers,we already considered
the multiple nested subpopulations design, which implies a certain correlation structure on the test statistics (Placzek &
Friede, 2018, 2019). We broke down how the treatment effects and variances from 𝑆𝑗 are a combination of treatment
effects and variances of 𝑆𝑗∖𝑆𝑗+1 and 𝑆𝑖, 𝑖 > 𝑗. These dependencies play a major role in determining the covariance matrix
of the joint vector of the standardized test statistics. Hence, scenarios with less dependencies, for example, nonoverlapping
subgroups, can easily be derived from this case by adjusting the covariance matrix (Placzek & Friede, 2019).
Here, we will stick to the multiple nested subgroups design. The null hypothesis of no treatment effect in the full

population

𝐻
{𝐹}
0
∶ 𝜃0 = 0

will be tested using 𝑍{𝐹} while hypotheses

𝐻
{𝑆𝑖}
0

∶ 𝜃𝑖 = 0, 𝑖 = 1, … , 𝑘

of no effect in an individual subpopulation are tested with test statistics 𝑍{𝑆𝑖}, respectively. To control the familywise error
rate (FWER) in the strong sense while testing these multiple hypotheses, we apply a closed testing procedure (Marcus
et al., 1976). The intersection hypothesis

𝐻𝝊 = 𝐻

⋂
{𝑖∈𝝊} 𝑆𝑖

0
∶ 𝜃𝑖 = 0 ∀𝑖 ∈ 𝝊 ⊆ {0, … , 𝑘}
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is tested using the joint distribution of the standardized test statistics. To this end let

𝒁 = (𝑍{𝐹}, 𝑍{𝑆1}, … , 𝑍{𝑆𝑘})′

and let 𝑻1 denote the set of hypotheses that are planned to be tested at the final analysis.
There are two important observations here. On the one hand, there are various nuisance parameters (prevalences,

variances) whose missspecification at the planning stage of a trial can lead to an overpowered or underpowered study. On
the other hand, there are multiple (sub)populations, hence multiple hypotheses, and we would like to focus on the most
promising ones. We will address both issues beginning with a recap of methods for BSSR in an IPS design followed by
subgroup selection and subgroup enrichment in adaptive designs with an IA. These two approaches are then combined
to a joint novel strategy in Section 4.

3.2 BSSR in an IPS

To implement a sample size review, we suggest using an IPS design, that is, at a prespecified timepoint a data look is
performed in a blinded fashion, as preferred by, for example, regulatory authorities (EuropeanMedicinesAgency (EMEA),
2007; Food and Drug Administration (FDA), 2019, 2006; International Conference on Harmonisation E9 Expert Working
Group, 1999), in order to check assumptions that were made prior to the study by reestimating nuisance parameters, for
example, the variances or prevalences of the (sub)populations. Let 𝑛𝐼𝑃𝑆 denote the number of subjects available for the
blinded sample size review. To reestimate the variances without breaking the blind we use so-called lumped variance
estimators, cf. Zucker et al. (1999), that is, one sample variance estimators treating control group and treatment group
observations as one group and combining disjunct variance estimates from each population. Let 𝑛𝑆𝑖

𝐼𝑃𝑆
denote the sample

size for 𝑆𝑖∖𝑆𝑖+1 at the sample size review, then the variance estimators and prevalence estimators are given by

𝜎2𝐹 =
1

𝑛𝐼𝑃𝑆 − 1

𝑘∑
𝑖=0

𝑛
𝑆𝑖
𝐼𝑃𝑆∑
𝑗=1

(𝑋𝑖𝑗 − �̄�𝑖⋅)
2,

𝜎2
𝑆𝑖
=

1

𝑛
𝑆𝑖
𝐼𝑃𝑆

− 1

𝑘∑
𝑠=𝑖

𝑛
𝑆𝑖
𝐼𝑃𝑆∑
𝑗=1

(𝑋𝑠𝑗 − �̄�𝑠⋅)
2, 𝑖 = 1, … , 𝑘,

�̂�𝑖 =
𝑛
𝑆𝑖
𝐼𝑃𝑆

𝑛𝐼𝑃𝑆
, 𝑖 = 1, … , 𝑘,

with

�̄�𝑖⋅ =
1

𝑛
𝑆𝑖
𝐼𝑃𝑆

𝑛
𝑆𝑖
𝐼𝑃𝑆∑
𝑗=1

𝑋𝑖𝑗, 𝑖 = 0, … , 𝑘,

where 𝑋𝑖𝑗 denotes an individual observation in 𝑆𝑖∖𝑆𝑖+1, 𝑖 = 0, … , 𝑘; 𝑗 = 1,… , 𝑛
𝑆𝑖
𝐼𝑃𝑆

. Here 𝑆𝑘+1 = ∅. These new estimates
are then used to recalculate the sample size, usually by plugging in the new values into the sample size formula that was
used at the planning stage of the trial. This will be showcased in Section 4 where the new procedure combining BSSR and
adaptive enrichment designs is proposed. Methods for the analysis, sample size determination, as well as recalculation
of the sample size in designs with nested subgroups have been discussed in Placzek and Friede (2018). There we consid-
ered several scenarios, namely, known variances, the case of unknown but equal variances across all populations, and
the case of completely unknown variances. Hence, to calculate the test statistic we (1) do not have to estimate a variance
component, (2) have to estimate one overall variance, or (3) have to estimate a variance for each population separately.
Accordingly, the vector of test statistics is either multivariate normal distributed, multivariate t-distributed, or approxi-
mately multivariate t-distributed, that is, under the global null hyothesis 𝐻∩𝑖∈𝝊𝑆𝑖

0
for 𝒁 = (𝑍{𝐹}, 𝑍{𝑆1}, … , 𝑍{𝑆𝑘})′ it holds
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that

(𝑎) 𝒁𝑎 =

(√
𝑛𝐶
𝑎∗

Δ̂𝐹
𝜎𝐹

,

√
𝜏1𝑛𝐶
𝑎∗

Δ̂𝑆1
𝜎𝑆1

, … ,

√
𝜏𝑘𝑛𝐶
𝑎∗

Δ̂𝑆𝑘
𝜎𝑆𝑘

)′

∼ 𝑀𝑁(𝟎, 𝚺𝑎),

(𝑏) 𝒁𝑏 =

(√
𝑛𝐶
𝑎∗

Δ̂𝐹
�̂�
,

√
𝜏1𝑛𝐶
𝑎∗

Δ̂𝑆1
�̂�

, … ,

√
𝜏𝑘𝑛𝐶
𝑎∗

Δ̂𝑆𝑘
�̂�

)′

∼ 𝑀𝑇(𝑎+1)𝑛𝐶−2(𝑘+1)(𝟎, 𝚺𝑏),

(𝑐) 𝒁𝑐 =

(√
𝑛𝐶
𝑎∗

Δ̂𝐹
𝜎𝐹

,

√
𝜏1𝑛𝐶
𝑎∗

Δ̂𝑆1
̂𝜎𝑆1
, … ,

√
𝜏𝑘𝑛𝐶
𝑎∗

Δ̂𝑆𝑘
̂𝜎𝑆𝑘

)′

𝑀𝑇𝑑𝑓(𝟎, 𝚺𝑐).

Here𝑎∗ is defined as𝑎∗ = 1 + 1∕𝑎. In (b) the degrees of freedomdepend on the number of subjects in thewhole population
(𝑎 + 1)𝑛𝐶 and the number of subgroups 𝑘. In (c) the degrees of freedom can be chosen depending on the number of
subjects in the smallest or the largest population in order to get a conservative (𝑑𝑓 = (𝑎 + 1)𝑛

𝑆𝑘
𝐶
− 2) or a liberal (𝑑𝑓 = (𝑎 +

1)𝑛𝐶 − 2(𝑘 + 1)) approximation. The covariance matrices depend on the variances, the estimators of the variances, and
the prevalences of the subpopulations, respectively. Alternatively, in scenario (c) Graf et al. (2019) suggest approximating
the joint distribution using amultivariate normal distribution, calculating an equicoordinate quantile 𝑐𝛼 and transforming
this to critical values 𝑐𝑖 for each population by applying univariate t-distributions

𝑐𝑖 = Ψ−1

(𝑎+1)𝑛
𝑆𝑖
𝐶
−2
(Φ0,1(𝑐𝛼)), 𝑖 = 0, … , 𝑘. (1)

Here Ψ𝑑𝑓 denotes the distribution function of a univariate t-distribution and Φ0,1 of a standard normal distribution. In
any case, these distributional properties of 𝒁 can be used to perform hypothesis testing and also to determine a sample
size prior to the study or recalculate the sample size in an ongoing study. In Placzek and Friede (2018), we investigated the
proposed approximations with and without BSSR and reported findings on type I error probability and power in several
scenarios. The results are satisfactory for sufficiently large sample sizes; for small sample sizes, we compared and gave
advice on different choices for the single degree-of-freedom parameter of the multivariate t-distribution as well as the
optimal timepoint of the BSSR.

3.3 Adaptive enrichment designs

Extensions to the standard fixed-sample designs, especially when dealing with subgroups and an uncertainty about the
possibly heterogeneous treatment effects in different (sub)populations, are adaptive enrichment designs. These are designs
with two or more stages and preplanned IAs. At the interim looks decisions are made on whether to continue the trial
unchanged or to drop populations, which seem not promising based on the data obtained up to that point. In the lat-
ter case, recruiting and hypotheses testing are restricted to subjects from populations that are carried to the next stage
resulting in an enrichment of the most promising subgroup. A crucial part is the combination of the different stages of
the trial for the final analysis while still controlling the type I error probability. In Placzek and Friede (2019), we used
the so-called CEF approach in an adaptive enrichment design with multiple nested subgroups and normally distributed
endpoints, accounting for uncertainty in variance estimation. The distributional properties used for testing were the same
as described in Section 3.2.
Combining two stages the CEF approach can be applied testing each hypothesis𝐻𝝊 as follows. After all data of the first

stage are collected, the conditional error can be calculated as the probability to reject𝐻𝝊 after the second stage given the
data collected so far, that is,

𝐶𝐸𝝊 = 𝑃𝐻𝝊(max𝑖∈𝝊
𝑍𝑖 ≥ 𝑑𝑠|𝑧(1)𝑖

, 𝑖 ∈ 𝝊). (2)

Here 𝑍𝑖 denotes the standardized test statistic corresponding to (sub)population 𝑖 based on the accumulated data from
both stages. Note that this is aDunnett-type test sincewe are using amaximally selected test statistic. The critical boundary
𝑑𝑠 depends on 𝑠, the number of populations involved in testing𝐻𝝊. 𝑧

(1)
𝑖
is the first-stage standardized test statistic, which
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is not a random variable since stage 1 data are already available when calculating 𝐶𝐸𝝊. Let 𝑻2 denote the set of hypotheses
corresponding to populations carried to the second stage and 𝑰2 the set of indices corresponding to those populations.
After the second stage a stage 2 p-value 𝑞𝝊 is calculated under the conditional distribution given the observed stage 1 test
statistics,

𝑞𝝊 = 𝑃𝐻𝝊( max𝑖∈𝝊∩𝑰2
𝑍𝑖 ≥ 𝑧max𝝊∩𝑰2

|𝑧(1)
𝑖
, 𝑖 ∈ 𝝊 ∩ 𝑰2), (3)

where 𝑧max𝝊∩𝑰2
denotes the actually observed value of max𝑖∈𝝊∩𝑰2 𝑍𝑖 . The hypothesis 𝐻𝝊 is then rejected if 𝑞𝝊 < 𝐶𝐸𝝊. For

normally distributed observations and known variances across the populations, these are trivial calculations using multi-
variate normal distributions, but in Placzek and Friede (2019), we also gave suggestions for themore complex and practical
scenarios in which the variances are unknown and either equal or unequal across the subgroups (Placzek & Friede, 2019).
Since it can be difficult to determine the conditional distributions analytically, in some cases it might be easier to simulate
the conditional distributions in order to calculate conditional rejection probabilities when determining the conditional
error. Note that this would also be helpful when recalculating the sample size based on unblinded estimates of the nui-
sance parameters conditioned on the observed treatment effects at interim. Since the trial is unblinded at the IA anyway,
such an unblinded sample size recalculation can be integrated at this stage. It does not inflate the type I error rate since
we are using the CEF approach here. However, in this paper, we focus on BSSR in an IPS and will not include unblinded
SSR here. We will discuss it in Section 5 in more detail.
We compared this procedure to the traditional combination function approach. The principle of this approach is simple:

For each hypothesis, stage 1 data are used to calculate stage 1 p-values and stage 2 data to calculate stage 2 p-values.
First- and second-stage p-values are then combined using a combination function such as the weighted inverse normal
combination function, which is given by

𝐶(𝑝1, 𝑝2) = 1 − Φ(𝑤1Φ
−1(1 − 𝑝1) + 𝑤2Φ

−1(1 − 𝑝2)), (4)

where 𝑤𝑖, 𝑖 = 1, 2 are prespecified weights with 0 ≤ 𝑤𝑖 ≤ 1 and 𝑤2
1
+ 𝑤2

2
= 1. Weights are commonly determined

proportional to the sample sizes per stage.
At the IA between the two stages it is decided which (sub)populations are carried to the next stage. There are several

ways to do so, which do not impact the FWER control. For the simulations in Section 5, we chose the so-called 𝜖 rule.
Here, the population with the maximum test statistic and every population with a test statistic within 𝜖 range of the
maximum test statistic is carried forward to the second stage. For 𝜖 = 0 and 𝜖 → ∞ this includes both extreme cases,
namely, continuing only with the best or with all populations. Dropping not promising populations and shifting the now
freed sample size toward the remaining populations when continuing recruitment leads to an enrichment. Note that
the difficult part of the adaptive enrichment design is not the enrichment itself but the combination of data from the
different stages of the trial, that is, pre- and postadaptation, in the final confirmatory analysis. The CEF approach and the
combination function approach are two solutions to this problem.
In Placzek and Friede (2019), we conducted a simulation study and found that the best performing combination of

methods is the CEF approach with the univariate t-approximation by Graf et al. (2018) outperforming the other approxi-
mations and the CT approach. It is therefore recommended to use the CEF approach, especially in the case of unknown
and unequal variances or when there is little knowledge about the variances. Therefore, we will use the CEF approach
rather than theCT approach in the following sections as ourmain focus is on the combination of the BSSR and the adaptive
enrichment design.

4 PROPOSED PROCEDURE FOR BSSR IN ADAPTIVE ENRICHMENT DESIGNS

After this recap of the adaptive tools, we will now present the proposed procedure incorporating both BSSR in an IPS and
adaptive enrichment in a design with an IA. Combining the advantageous properties of both approaches creates a robust,
efficient, and flexible testing strategy as we will see in the simulations. Figure 1 illustrates such a procedure for a simple
one-subgroup design and one IA. We will describe it in detail for a design with multiple nested subgroups.
Prior to the trial, assumptions are made on the treatment effects and the nuisance parameters and a sample size 𝑁0

is calculated: Assume we have no prior knowledge about the variances and decide to use the methods for a design with
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F IGURE 1 Combining blinded sample size recalculation in an internal pilot study design and an adaptive enrichment procedure with
an interim analysis. In this example, there is one subpopulation inside a full population and a two-stage design shall reveal whether there is
an increased treatment benefit in the subpopulation while still simultaneously examining the full population.

unknownandpotentially unequal variances across the populations. For simplicity, we consider a balanced design, that is, a
1:1 allocation, hence 𝑎 = 1, 𝑎∗ = 2, and𝑛𝑇 = 𝑛𝐶 = 𝑛. This can easily bemodified to an arbitrary allocation ratio, cf. Placzek
and Friede (2019). Best guesses for the treatment effects and the variances are denoted by 𝜃∗

0
, … , 𝜃∗

𝑘
and 𝜎∗

𝑆0
, … , 𝜎∗

𝑆𝑘
. Sample

size calculation is based on the power to reject the global intersection hypothesis, which is tested using the joint distribu-
tion of the vector of standardized test statistics 𝒁. As described in Section 3.2, this joint distribution can be approximated
by a multivariate t-distribution. For the planning purpose we choose the conservative approximation with 𝑑𝑓 = 2𝑛𝑆𝑘 − 2

degrees of freedom. Accordingly, let 𝑡𝟎,𝚺,𝑑𝑓,1−𝛼 denote the (1 − 𝛼)-equicoordinate quantile of the distribution𝑀𝑇𝑑𝑓(𝟎, 𝚺)

under the null hypothesis 𝐻
{∩𝑘

𝑖=0
𝑆𝑖}

0
. We define 𝑮𝜹,�̃�,𝑑𝑓 as the distribution function of 𝑀𝑇𝑑𝑓(𝜹, �̃�) under the alternative.

Here, 𝜹 is the noncentrality parameter

𝜹 = (𝛿0, … , 𝛿𝑘)
′ =

(√
𝑛

2

𝜃∗
0

𝜎∗𝐹
,

√
𝑛𝑆1
2

𝜃∗
1

𝜎∗
𝑆1

, … ,

√
𝑛𝑆𝑘
2

𝜃∗
𝑘

𝜎∗
𝑆𝑘

)′

, (5)

and �̃� a slightly shifted version of 𝚺 under the alternative (Placzek & Friede, 2018). Through an iterative search algorithm,
we can find the initial sample size 𝑁0 required to achieve a power of (1 − 𝛽) via

𝑁0∕2 = min 𝑛 s.t. 1 − 𝑮𝜹,�̃�,df (𝒕𝟎,�̃�,df,1−𝛼) ≥ 1 − 𝛽. (6)

We start recruitment and after a prespecified number of subjects, for example, 𝑡𝐼𝑃𝑆 = 30%, a sample size review with
𝑛𝐼𝑃𝑆 = 𝑡𝐼𝑃𝑆 ⋅ 𝑁0 is performed.Here, variances and prevalences are recalculated in a blinded fashion and a new final sample
size 𝑁 is determined: To reestimate the variances without breaking the blind, we use the lumped variance estimators as
described in Section 3.2. We obtain estimators 𝜎𝐹, 𝜎𝑆𝑖 and �̂�𝑖 , 𝑖 = 1, … , 𝑘. These reestimated nuisance parameters are then
plugged in the previously described sample size determination algorithm, cf. (5) and (6), replacing the original guesses
𝜎∗
𝑆0
, … , 𝜎∗

𝑆𝑘
not only in the noncentrality parameter vector 𝜹 but also in the covariance matrix �̃�. The final sample size

𝑁 is recalculated. Note that this calculation of the final sample size is still based on rejection of the global intersection
hypothesis assuming all populations are kept in the trial until the end. This means it does not anticipate an enrichment at
an IA. Consequently, if in a one-subgroup design the subpopulation is selected at the IA, recruiting only from the subgroup
until𝑁 is reached will substantially increase the power above 80%. Therefore, in the IPS analysis, we can calculate a final
sample size 𝑁𝑆 replacing 𝑁 specifically for the case of dropping the full population 𝐹∖𝑆 and only continuing with the
subgroup at the IA. Calculation can be done using the same estimates from the IPS and formulas as before but additionally
adjusting the numbers of patients 𝑛, 𝑛𝑆1 , … , 𝑛𝑆𝑘 , and the guesses of 𝜃

∗
0
, … , 𝜃∗

𝑘
accordingly, for the noncentrality parameter

𝜹 in (5). At the IA, if the subpopulation is selected, we can choose to recruit from the subgroup until𝑁𝑆 is reached keeping
the power at 80%. This completes the IPS stage of the trial. The idea of updating the information on the prevalence has
previously been discussed by Gurka et al. (2010) in the context of epidemiological studies.
Recruiting is continued until the IA takes place. The timing of this IA depends on the adjusted sample size 𝑁 and a

prespecified portion 𝑡1. For example, it might be scheduled midway of the trial, that is, 𝑡1 = 0.5. At the IA the𝑁1 = 𝑡1 ⋅ 𝑁

observations available are used to decide in which populations testing should be continued. To do so, a selection rule, for
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F IGURE 2 Comparison between methods combining BSSR and adaptive testing strategies (black, red, green) and a strategy without
BSSR (blue). Adaptive testing strategy is the conditional error function approach deciding at an interim analysis whether to continue testing
in both populations (black, blue) or only in the population with the maximum test statistic at interim (red) or only in the subpopulation
(green). Prevalence 𝜏 = 0.4, 𝑡𝐼𝑃𝑆 = 0.3, 𝑡1 = 0.5, Δ𝑆 = 0.75. Assumed variance in the subpopulation is 𝜎∗

𝑆
= 1 while the true variance varies on

the x-axis.

example, the 𝜖 rule, is applied to the test statistics calculated at interim in an unblinded fashion. One can also decide on
the further testing strategy. Assume we stick to the CEF approach and decide to perform testing using the approximation
by Graf et al (2019). For each hypothesis𝐻𝝊 we calculate the conditional error as the probability to reject the hypothesis at
the final analysis using all 𝑁 observations given this particular stage 1 data (𝑁1 observations). We demonstrate this with
the global intersection hypothesis 𝐻𝐼𝑆: First, we have to calculate the critical values 𝑐𝑖 for testing at the final analysis.
To do so, we approximate the joint distribution of 𝒁 by a multivariate normal distribution, compute an equicoordinate
(1 − 𝛼)-quantile, and apply Equation (1). Now we determine

𝐶𝐸IS = 𝑃𝐻IS

(
∃𝑖 s.t. 𝑍{𝑆𝑖} > 𝑐𝑖|𝑧{𝑆𝑖}1

, 𝑖 = 0, … , 𝑘
)
,

which requires the multivariate conditional distribution of 𝒁|𝒁1. We suggest simulating this distribution to obtain the
conditional error. Recruiting is then continued in the second stage according to the decisions made at interim, that is, if
it is decided to further test only in certain subpopulations, only subjects from these populations are recruited and hence
there is an enrichment of the design. When the final sample size𝑁 is reached the final analysis is carried out. This means
calculating stage 2 p-values 𝑞𝝊, for example, for the intersection hypothesis:

𝑞𝐼𝑆 = 𝑃𝐻𝐼𝑆
(max
𝑖∈𝑰2

𝑍{𝑆𝑖} ≥ 𝑧max𝑰2
|𝑧{𝑆𝑖}
1

, 𝑖 ∈ 𝑰2).

Here, 𝑰2 is the set of indices corresponding to populations carried to the second stage and 𝑧max𝑰2
the actual observed value of

max𝑖∈𝑰2 𝑍
{𝑆𝑖}. A hypothesis is then rejected if its stage 2 p-value is smaller than its conditional error at the IA, for example,

𝐻𝐼𝑆 is rejected if 𝑞𝐼𝑆 < 𝐶𝐸𝐼𝑆 .

5 SIMULATIONS

To investigate the properties of the procedure proposed in Section 4, we conduct a simulation study, which will focus on
three main aspects: First, we examine power, sample sizes and variability of final sample sizes of the proposed method
combining BSSR and adaptive testing strategies for different selection rules. We include the comparison to a design with-
out BSSR (Figure 2). Additionally, we show some type I error rates for the corresponding scenarios under the global null
hypothesis. Next, we investigate the impact of different timepoints for the BSSR and the IA. We provide simulations sug-
gesting an optimal timepoint of the IA (Figure 5) and finally analyze the impact of performing the BSSR prior to the
unblinded IA in comparison to performing both stops at the same timepoint (Figure 6).
We start by comparing a one subgroup adaptive enrichment design with BSSR and such a design without recalculation

in terms of power and sample size. Therefore, we simulate a subgroup with prevalence 𝜏 = 0.4 and an effect of Δ𝑆 = 0.75

while there is no effect in the rest of the full population 𝐹∖𝑆. The true variance in the complement of the subgroup is
𝜎𝐹∖𝑆 = 1 and the true variance 𝜎𝑆 varies on the x-axis from 0.8 to 1.6. When calculating the initial sample size, it is always
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assumed that 𝜎∗
𝐹∖𝑆

= 𝜎∗
𝑆
= 1, that is, the variance is equal and 1. Sample size calculation is done assuming unequal and

unknown variances. Therefore, we use the conservative t-approximation for the distribution of 𝒁. We aim for a trial with
80% power to reject the intersection hypothesis. The size of the IPS is 30% of the initial sample size (𝑡𝐼𝑃𝑆 = 0.3) while the
IA is performed after 50% of the final sample size is observed (𝑡1 = 0.5). As an adaptive method to combine the two stages
of the trial, we choose the CEF approach applying the univariate t-approximation by Graf et al. (2019). Note that in all
simulations in this section we assume a known, fixed prevalence 𝜏. This means it is not estimated during the BSSR or
the final analysis. In a previous paper, we found that additionally estimating this parameter does not notably change the
simulation results, cf. Placzek and Friede (2018). Therefore, we focused on a known, fixed prevalence here for the ease of
presentation. The number of simulation runs is 10,000.
Figure 2 (left panel) shows the simulated power of four different strategies: The black line shows rejection rates for a

selection rule at interim that always selects all populations to continue in the second stage (𝜖 = inf in the context of the
epsilon selection rule) and the red line corresponding rates for a rule that always selects only the populationwith themaxi-
mum test statistic at interim (𝜖 = 0). The green line depicts a theoreticalmethod that always correctly picks the population
that actually benefits most. Here, this is the subpopulation since the true effect is generated only in the subpopulation in
this simulation. Hence, the green line shows rejection rates for a strategy that always selects the subpopulation at interim.
In these two strategies (red, green) there is an enrichment in terms of recruiting only patients from the subgroup if it is
selected at interim. In that case keeping the recalculated sample size and only reallocating 𝑁 would increase the power
considerably above 80%. Therefore, we adjust the sample size once again with an estimate from the IPS at the sample size
review, which we calculated anticipating the selection of the subgroup at interim as described in Section 4.
The last method (blue line) depicts the CEF approach without a BSSR in an IPS. The central panel shows the

corresponding final sample sizes while the right panel presents the standard deviation of the final recalculated
sample sizes.
The benefit of having an IPS to adjust the sample in case of bad initial assumptions is obvious. As expected, in the

scenario without the option for a sample size adjustment (blue line) there are either toomany subjects included in the trial
or too few subjects depending on whether the true variance in the subpopulation was lower or higher than assumed and
thus leading to an underpowered or overpowered study. Only if the assumption was correct (𝜎𝑆 = 1), the nominal power
of 80% is obtained. In the scenarios with an IPS, the BSSR can make up for misspecifications of the nuisance parameters
at the planning stage and the new final sample sizes lead to trials containing the desired power over the range of of 𝜎𝑆 .
Not surprisingly the method that carries all populations to the next stage (black) achieves the power best since the sample
size calculation and recalculation is powered for the rejection of the intersection hypothesis. However, a slight decrease
in power can be observed for a larger variability in the subpopulation. The strategy that only selects the most promising
population to be continued (red) has a lower power across all values of 𝜎𝑆 . This is due to the fact that we stick to the
adjusted sample size in case of selecting the full population and only adjust a second time if the subpopulation is selected.
Naturally, testing only in the full population at the final analysis would require a much higher sample size since the
effect is actually generated in the subpopulation. Consequently the overall power is a bit decreased due to the decreased
mean recalculated final sample sizes. Here (central panel) the advantage of the enrichment is visible. Only recruiting
from the seemingly more favorable population lets us decrease the final sample size while still while still maintaining the
preplanned power. For the theoretical approach that always chooses the subgroup (green), the power is slightly better and
the recalculated sample sizes even a bit lower. It also does not completely achieve the nominal power of 80% since the
readjustment is based on rejecting the intersection hypothesis and not on the rejection of the subgroup hypothesis. Final
sample sizes and the standard deviations of the final sample sizes (right panel) increase with increasing variance in the
subpopulation for the designs, which perform a BSSR. The design without sample size adjustment (blue) always sticks
to its initial sample size, hence there is no variability. Strategies with enrichment need the lowest sample sizes and have
lower SDs of the final sample sizes compared to the strategy that always continues with all populations.
Figure 3 complements these simulations of power and sample size with scenarios where there is an effect in both

populations, that is, Δ𝐹 = 0.5, Δ𝑆 = 0.5. Methods and settings remain the same. The number of simulation runs is 10,000.
The results show that the desired power of 80% is attained in all settings. The final sample size and the variability of the
final sample size behave similar to Figure 2. Compared to the scenarios with an effect only in the subpopulation, there is
almost no difference between the two selection rules.
Since type I error rate control of the combined procedure follows directly from FWER control of both components,

that is, BSSR and adaptive enrichment design, cf. Placzek and Friede (2018, 2019), we only briefly show type I error rates
here. BSSR and adaptive enrichments methods are applied independently, hence FWER control follows. This statement
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F IGURE 3 Power, final sample size, and variability of final sample size of the method combining BSSR and adaptive enrichment with
effects in both populations. Adaptive testing strategy is the conditional error function approach deciding at an interim analysis whether to
continue testing in both populations (black) or only in the population with the maximum test statistic at interim (red). Prevalence 𝜏 = 0.4,
𝑡𝐼𝑃𝑆 = 0.3, 𝑡1 = 0.5, Δ𝐹 = 0.5, Δ𝑆 = 0.5. Assumed variance in the subpopulation is 𝜎∗

𝑆
= 1 while the true variance varies on the x-axis.

F IGURE 4 Type I error rates for combining BSSR with an adaptive enrichment design. Adaptive testing strategy is the conditional error
function approach deciding at an interim analysis whether to continue testing in both populations (black) or only in the population with the
maximum test statistic at interim (red). Prevalence 𝜏 = 0.4, 𝑡𝐼𝑃𝑆 = 0.3, 𝑡1 = 0.5. Assumed effect in the subpopulation is Δ∗

𝑆
= 0.75. Assumed

variance in the subpopulation is 𝜎∗
𝑆
= 1 while the true variance varies on the x-axis.

is supported by the simulation results presented in Figure 4. For a nominal level of 𝛼 = 0.025 we simulated the type I
error rate under the global null hypothesis of no effect in any population for the same scenarios as just presented for the
power and sample size, that is, a BSSR at 𝑡𝐼𝑃𝑆 = 0.3 and a possible enrichment at an IA at 𝑡1 = 0.5. Methods for BSSR and
final analysis remain the same. The number of these simulation runs is 100,000. The results show that the type I error
rate is controlled throughout the different scenarios for both selection rules. In all cases it is a bit below the nominal level
of 0.025. This minimal conservatism is inherited from the applied conservative approach for BSSR, that is, choosing the
degrees of freedom for the multivariate t-distribution in a conservative way.
Next, we focus on the timepoints of the sample size review and the IA. Previously we chose, as rule of thumb, to perform

theBSSR after 30% of the initially planned patients have entered the study.Obviously the earlier a sample size recalculation
is performed to correct misspecified assumptions the better. However, in Placzek and Friede (2018) we showed that there
should be at least 20–25 subjects in the smallest subgroupwhen recalculating the sample size. Otherwise either the desired
power will not be achieved or an adjustment based on the small number of subjects in the IPS has to be used at the cost of
a notably increased expected final sample size. So, one has to check the initial sample size and determine the timepoint
𝑡𝐼𝑃𝑆 for an early sample size review such that there are enough patients to recalculate the different nuisance parameters
even in the smallest population.
Concerning the timepoint 𝑡1 of the IA we simulated the power of the CEF approach for different timepoints of the IA.

This means for a fixed sample size we performed hypothesis testing in a one subgroup design using the above-mentioned
selection rule to continue always in the population with the maximum test statistic. We varied the subgroup size (𝜏 =
0.2, 0.3, 0.4) and the portion of the sample size used to perform the IA (𝑁1∕𝑁 = 0.1, 0.2, … , 0.9).
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F IGURE 5 Comparing the power of the conditional error function approach for different timepoints of the interim analysis (x-axis)
varying the subgroup prevalence 𝜏 = 0.3, 0.4, 0.5 (red, blue, black). At interim always the best test statistic is selected (𝜖 = 0). Fixed sample
size of 𝑛 = 200 per group and an effect of Δ𝑆 = 0.4 in the subgroup.

Figure 5 shows the results. For all three values of 𝜏 there is a peak in the power curves with maxima at portions
of 0.4–0.5 of the final sample size. Hence a timepoint for the IA efficiently taking advantage of the enrichment part
of the trial is indeed after about half of the patients are observed. This is in line with findings of Benner and Kieser
(2017), who analyzed the optimal timepoint of an IA in extensive simulations. It gives another reason for executing the
blinded sample size review as early as possible, because determining the correct final sample size early makes sure that
the optimal timepoint for the IA can be set properly. Imagine a late sample size review reducing the final sample size
in such a way that at that point there are already 60–70% of the patients recruited having passed the best timepoint
for the IA.
There is another variation related to the timing of the BSSR and the IA. One might be tempted to perform the sample

size review and the IA at the same timepoint, for example, after half of the trial is completed. Instead of two stops there
would only be one stop for the IA and a sample size reassessment. To take a look at this, we simulated and compared
these two competing testing strategies (Figure 6). We remain in the one subgroup setting with prevalence of the subgroup
𝜏 = 0.4. There is only an effect of Δ𝑆 = 0.75 in the subgroup. For initial sample size calculation, it is assumed that 𝜎∗

𝐹∖𝑆
=

𝜎∗
𝑆
= 1while the true variance in the subgroup varies on the x-axis. Sample size calculation and recalculation is performed

assuming unequal and unknown variances, hence using the CEF approach with a suitable approximation as before. The
nominal power is 80% and the number of simulation runs is 10,000.
On the one hand, a BSSR is performed after 30% of the initial sample size is recruited and then an IA after 50% of the

final recalculated sample size is observed (black lines). We will refer to that as the two-stop strategy. On the other hand,
both sample size adjustment and IA take place after 50% of the initial sample size (red lines). We call this the one-stop
strategy. In the top left panel of Figure 6, the results for the power to reject the intersection hypothesis are shown. We
still present both selection rules selecting both (dashed lines) or only one (solid lines) population at the IA. The method
performing the sample size review and the IA at the same timepoint has a slightly higher power than the corresponding
method with two separate stops, especially for scenarios where the mean recalculated sample size is small (𝜎𝑆 = 0.8).
This occurs because with only one stop midway the BSSR cannot correct the timing of the IA for the initially too large
calculated sample size (perform it earlier). Hence, it might happen, that at the interim stop, there are already more sub-
jects recruited than finally needed. Though it might not be very likely that a sample size adjustment in a real trial would
reduce the planned sample size by large amounts, these cases emphasize the difference between the two approaches,
that is, being able or not being able to change the timepoint of the IA based on early data. This reflects in the mean
recalculated sample sizes (top right panel), which are larger than in the case of only one stop. On the other side, if the
initial assumption of 𝜎𝑆 was too low (𝜎∗

𝑆
= 1 vs. 𝜎𝑆 = 1.2, 1.4, 1.6), an early BSSR would increase the final sample size

resulting in a later IA. The strategy with only one fixed stop cannot postpone the IA to a later timepoint and therefore per-
forms subgroup selection earlier than the two-stop strategy. Since the true effect is actually in the subgroup, this results
in the same power with slightly lower mean recalculated sample sizes when always continuing with only one popula-
tion (earlier opportunity to enrich). The bottom panels show the variability of the recalculated final sample sizes and the
probabilities to (correctly) select the subpopulation and enrich the trial. The lower SDs of the one-stop strategy when
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F IGURE 6 Comparison between two testing strategies: Perform the interim analysis (IA) and BSSR at the same time point (𝑡1 = 0.5)
(red) or perform the IA after 𝑡1 = 0.5 of the recalculated sample size obtained from a BSSR at 𝑡𝐼𝑃𝑆 = 0.3 ⋅ 𝑁0 (black). Prevalence 𝜏 = 0.4,
Δ𝑆 = 0.75. Assumed variance in the subpopulation is 𝜎∗

𝑆
= 1 while the true variance varies on the x-axis.

always continuing with both populations are due to the fact that the sample size recalculation in the two-stop design
is performed earlier resulting in worse variance estimators. The biggest difference can be seen between the two strate-
gies when always choosing the population with the maximum test statistic at interim. Performing sample size review
and IA at the same fixed timepoint results in a notably larger variability in the final recalculated sample size as well as
lower chances to select the correct population at interim, especially in case of a larger than expected variability in the
subgroup. From that point of view the strategy performing an early BSSR and adjusting the timepoint of the IA is favor-
able. Therefore, someone who is quite confident about the nuisance parameters prior to the trial might do well using
the strategy, which performs sample size reassessment and the IA at a fixed timepoint midway of the initially calculated
sample size. If there is a lot of uncertainty about these parameters, one might prefer timing the IA depending on an IPS.
We have seen that efficiency gains using the approach with two different timepoints for BSSR and IA are subtle but can
be observed in realistic settings, for example, scenarios in which the BSSR suggests a larger sample size as preplanned
and hence the IA is postponed until 50% of the recalculated sample size is available. This is reasonable since we have
seen in Figure 5 that the optimal timepoint for the IA in terms of power is at 40–50% of the final sample size. Therefore,
adjusting the timepoint of the IA based on the recalculated sample size is beneficial. We also presented other metrics
to measure efficiency like mean recalculated sample size, variability of the recalculated sample size, and probability to
choose the correct population at the IA. Especially when having to increase the sample size the latter is favorable for the
two-stop approach.

6 DISCUSSION

In this paper, we presented an adaptive testing strategy that incorporates BSSR into adaptive enrichment designs. This does
not only lead to a robust design against missspecifications of nuisance parameters at the planning stage of the trial but also
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improves the optimal timing of the IA during the study. In the framework of normally distributed endpoints and nested
subgroups, potentially inhomogeneouswith regard to variability and treatment effect, we gave estimators, approximations,
and an algorithm for BSSR aswell as a procedure applying the CEF approach in a two-stage designwith an IA.We assessed
the performance by simulations in terms of power, type I error rates, sample size, and variability of the final sample size for
different selection rules and included a comparisonwith a designwithout BSSR. Familywise type I error rate control in the
strong sense is given since both components of the suggested procedure, BSSR and adaptive enrichment, are independent
and each independently controls the FWER in the strong sense as we have shown in previous papers (Placzek & Friede,
2018, 2019). The proposed method maintains the desired power if planning assumptions were inaccurate and reduces
the sample size and variability of the final sample size when an enrichment is performed. Obviously, the greatest benefit
can be seen if the true treatment effect is indeed in a subpopulation, which is then enriched over the course of the trial.
Furthermore, we investigated the optimal timepoint of the IA and found it is around 40–50% of the final sample size. We
then pointed out the benefits of having two separate timepoints for blinded sample review and IA improving the timing
of the latter and increasing the probability to correctly select and enrich a subgroup. That way the BSSR may prevent an
early or late IA in terms of maximizing power.
Here, to simplify notation,we considerednested subgroups in a balanced design.A generalization to unbalanced designs

and nonnested subgroups should be fairly straigthforward, since the used CEF approach by Placzek and Friede (2019) has
been described more generally and the BSSR procedure transfers easily to these settings.
Performance of the designs was comparatively assessed in different simulation scenarios considering type I error rate,

power, expected total sample size, and variability of the sample size. We chose these performance indicators, since they
are common metrics for adaptive designs. However, trial duration might be an additional metric of interest, especially in
this setting, since both adaptations, BSSR and enrichment, can increase or decrease the trial duration. Naturally, there
is a linear relationship between total sample size and trial duration. Hence, BSSR increasing the final sample size will
result in an increased trial duration while the same is true when decreasing the sample size. The enrichment aspect of the
trial can introduce another variability in trial duration. If it is decided to continue the second stage of the trial only with
patients from a particular population, for example, a promising subgroup, subsequent recruitment is most likely slowed
down increasing the trial duration. This may be counterbalanced by fewer patients needed, attaining the same statistical
power due to the enrichment, and therefore decreasing the trial duration. Trial duration as a metric is more common
in event-driven trials, for example, time to first analysis was considered and discussed by Asikanius et al. (2016) in an
event-driven trial comparing different strategies to decide on the set of final hypotheses.
Friede et al. (2019) assess the operating characteristics, including trial duration, of a BSSR procedure in an event-driven

trial and compare themwith those of a fixed sample size design. There are additional benefits from repeated interim looks,
although one might argue performing multiple looks would increase costs in terms of time and additional work for the
statistician. However, experience shows that cleaning the data two or more times in preparation of the BSSR or the IA
actually benefits the trial, since the trial statistician gets familiar with the data and a more continuous monitoring of data
quality is stimulated. This improves data quality throughout the trial and saves time at the actual IA or final analysis.
Hence, potential cost or time concerns are at least partially compensated. The idea of multiple BSSRs, since type I error
rate is not affected, was taken to an extreme by Friede and Miller (2012), who considered blinded continuous monitoring
and found that the sample size variability is reduced compared to a sample size recalculation in a single or repeated interim
look while the expected sample size stays the same. Of course this advantage has to be balanced with the more complex
implementation of such an approach.
Since data are unblinded at the IA, it is tempting to perform additional sample size adjustments at that timepoint in an

unblinded fashion. There are two kinds of those recalculations. On the one hand, they can be based only on unblinded
estimates of nuisance parameters not taking into account the observed treatment effects at the IA. In this context, Friede
and Kieser (2013) compared sample size reestimation based on blinded versus unblinded variance estimators and showed
that the unblindedmethod does not guarantee that the desired power is achieved. Especially in the case of a small IPS, that
is, an early sample size review, a high variability in the unblinded estimators can lead to a power lower than the nominal
level. Intuitively, the bias of blinded estimators in case of treatment group differences should be disadvantageous. Here,
however, the one-sample variance estimator that we were using overestimates the within-group variance. This leads to
larger recalculated sample sizes, which is actually beneficial compensating the small power loss that may be introduced
by recalculating the sample size during an ongoing trial as mentioned above, in particular with high variability early in
the trial. The amount of excess in sample size compared to the required sample size in a fixed design does not depend
on the fixed sample size as we have shown in Placzek and Friede (2018), which confirmed the findings of Friede and
Kieser (2001). It rather depends on the prevalence of the subgroup or the timing of the IPS, for example, ranging from
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30 more subjects per treatment group to only eight more subjects varying the prevalence of the subgroup from 0.2 to 0.8
in a one-subgroup design. Furthermore, in contrast to the unblinded method the blinded method does not inflate the
type I error rate. Therefore, we went with the authors recommendation to use BSSR throughout this paper. On the other
hand, unblinded sample size recalculation can be based on both unblinded estimates of the nuisance parameters as well
as observed treatment effects. For example, if there is only weak evidence of a positive treatment effect at interim in a
trial where the sample size was set to detect a treatment effect, which is larger than the clinically relevant effect, it might
be reasonable to increase the sample size to detect at least a clinically relevant treatment effect. Note that increasing the
sample size to detect an effect smaller than that would undermine the credibility of the trial. In any way, if the sample
size recalculation is based on the observed treatment effects, the type I error rate can be inflated to more than two times
the size than initially planned as demonstrated by Proschan and Hunsberger (1995). Appropriate statistical adjustment
is needed. Wassmer (2000) summarizes and reviews publications in which the design is changed in response to interim
results according to either prespecified rules or in an unplanned way. Those include variance spending (Jennison & Turn-
bull, 2003) as well as alpha spending approaches. Naturally, the CEF approach discussed here enables effect-based sample
size adjustments while controlling the type I error rate. Such sample size adjustments based on conditional power argu-
ments go back to Proschan and Hunsberger (1995) and are explored in a great variety nowadays (Denne, 2001; Kieser,
2020).
Promising zone designs are trials with a prespecified zone for the interim test statistic in combination with a decision

rule for increasing the sample size in case the interim test statistic lies within this promising zone. Example of such designs
were given by Mehta and Pocock (2011) along with strategies for preserving the type I error rate. Choosing the promising
zone and the corresponding sample size adjustment rule in an optimal way was discussed by Hsiao et al. (2019).
There are still major problems related to effect-driven sample size recalculations. Those problems include not achieving

the desired power, large recalculated sample sizes, and a high variability in the recalculated sample size due to large
variability of the observed interim effect (Bauer & Koehne, 1994; Levin et al., 2013).
Adaptive designs, and BSSR procedures in particular, are still a hot topic and consequently subject to recently published

and active research with focus on a variety of different design aspects. For example, a recent work by Friede et al. (2020)
presents a framework on adaptive seamless designs, designs that, for example, combine phase II and phase III characteris-
tics such as treatment or subgroup selection and confirmatory testing (Friede et al., 2020). They provide methods with IAs
informed by either the primary outcome or an early outcome and highlight an extension of the R package asd to include
adaptive enrichment designs (Parsons et al., 2012).
Methods for BSSR in more complex designs that were recently considered include multitreatment crossover tri-

als (Grayling et al., 2018a), stepped-wedge cluster randomized trials (CRTs) (Grayling et al., 2018b), and multicenter
randomized controlled clinical trials based on noncomparative data (Harden & Friede, 2020).
In this paper, we considered normally distributed endpoints. However, the ideas presented for those endpoints can

be transferred to other endpoints, for example, binary, survival, or other event-based outcomes. Depending on the type of
outcome the nuisance parameters involved in themodel change (overall proportion, event rates, censoring rate). For exam-
ple, Asendorf et al. (2019) consider BSSR in clinical trials with longitudinal negative binomial counts. Here the nuisance
parameters are the overall rate and the shape parameter of the negative binomial distribution. Concerning the adaptive
enrichment part of the procedure, the analysis methods have to be adjusted according to the outcome. The CEF principle
does not depend on a particular distribution and can still be applied.
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