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Abstract We present a Markov-chain analysis of blockwise-stochastic algorithms for solving partially
block-separable optimization problems. Our main contributions to the extensive literature on these meth-
ods are statements about the Markov operators and distributions behind the iterates of stochastic algo-
rithms, and in particular the regularity of Markov operators and rates of convergence of the distributions
of the corresponding Markov chains. This provides a detailed characterization of the moments of the se-
quences beyond just the expected behavior. This also serves as a case study of how randomization restores
favorable properties to algorithms that iterations of only partial information destroys. We demonstrate
this on stochastic blockwise implementations of the forward-backward and Douglas-Rachford algorithms
for nonconvex (and, as a special case, convex), nonsmooth optimization.
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1 Introduction

We present a Markov-chain analysis of blockwise-stochastic algorithms for solving

minimize
x∈E

f(x) +

m∑
j=1

gj(x). (1)

Here E is a Euclidean space that is decomposed into a direct sum of the subspaces Ej , denoted E =⊕m
j=1 Ej , and for each j = 1, 2, . . . ,m, the function f is continuously differentiable with blockwise-

Lipschitz gradients, gi is everywhere subdifferentially regular (the regular and limiting subgradients
coincide) and

gj(x) = hj(xj) (2)

for hj : Ej → (−∞,+∞] subdifferentially regular. This represents a partially separable structured
optimization problem.

Problems with this structure are ubiquitous, and particular attention has focused on iterative al-
gorithms for large-scale instances where the iterates are generated from only partial evaluation of the
objective. Which partial information to access in each iteration is randomly selected and computations
can be done in parallel across distributed systems [34,36,37,43]. There is a rich literature on the analysis
of these methods, focusing mainly on deterministic properties of the objective function and expectations,
iteration complexity, convergence of objective values, and acceleration strategies [8,10,13,23,31–33,35,36].
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Our own contributions to the literature on such stochastic methods has focused on a stochastic block-
coordinate primal-dual method for the instance of (1) where f(x) is the indicator function of an affine
subspace [24]. We will touch on primal-dual approaches via a stochastic blockwise Douglas-Rachford
Algorithm 3, but more practical primal-dual approaches to nonsmooth problems are not on the agenda
of the present study.

Our main contributions to the extensive literature on these methods are statements about the Markov
operators and distributions behind the iterates of stochastic algorithms in the most complete sense
possible. By that we mean not only statements about the limits of the ergodic sequences, which only tell
one about the expectation, but rather the limiting distributions of the sequence of measures behind the
iterates, when viewed as a Markov chain (see Theorem 7 and Proposition 17). This allows one to access
the moments of the limiting sequence, not just its mean.

Getting a handle on the distributions behind iterates of randomized algorithms is significant not only
for its generality, but also for the range of practical applications this encompasses. To explain this we
note that, in its most general form, consistency of the update functions generating the Markov operators
is not assumed. In plain terms, the update functions in the Markov chain need not have common fixed
points. To see why this matters, it is first important to recognize that the literature on randomized
algorithms is exclusively concerned with almost sure convergence. In [19, Proposition 2.5] it is shown
that almost sure convergence of the iterates of such Markov chains can only happen when the update
functions have common fixed points. Situations where the update functions do not have common fixed
points are only a small perturbation away: consider any fixed point iteration with numerical error. To
be sure, the consistent case allows for tremendous simplifications, and we show this in sections 3.2 and
4.2.1; the point is, however, that our approach goes far beyond this idealized case.

Previous work has established a foundation for this based on a fixed point theoretic approach [5–7,18–
20]. A different perspective, modeled after a more direct analysis of the descent properties of algorithms in
an optimization context has been established recently by Salzo and Villa [39]. This was further developed
in the masters thesis of Kartamyschew [21]. In the present work we extend the results of [21] to a fully
nonconvex setting for more general mappings.

A noteworthy feature of blockwise methods, and what distinguishes the present study from [18–20]
is that, even when the objective in (1) is convex, blockwise algorithms do not satisfy the usual regularity
properties enjoyed by convex optimization algorithms that lead generically to global convergence. This
is demonstrated in Example 2. The stochastic implementations for convex problems, however, do enjoy
nice properties in expectation (see Theorem 1), and this is enough to guarantee generic global conver-
gence (Theorem 7, Proposition 17). While this fact lies implicitly behind the convergence analysis of,
for instance, [24] and many others, it was recognized in [39] as the important property of descent in
expectation. We place these observations in the context of Markov operators with update functions that
satisfy desirable properties in expectation (see Theorem 3). These notions, at the level of the Markov
operator, have already been defined in [18–20]; the convergence results presented in those works, however,
are based on the assumption that each of the update functions that generate the Markov operator have
the same class of regularity that they have in expectation. Blockwise algorithms for partially separable
optimization do not enjoy this structure, and therefore many of the results of [18–20] do not immediately
apply; indeed, we conjecture that some of the stronger convergence results of [18,19] are not true without
additional compactness assumptions, hence our analogous global convergence statement for the convex
case Proposition 6, is weaker than its counterparts [18, Theorem 3.6] or [19, Theorem 2.9].

The basic machinery of stochastic blockwise function iterations (Algorithm 1) and Markov chains is
reviewed in section 2. In section 3 we review and establish the chain of regularity lifted from the regularity
of the individual mappings on the sample space, Theorem 1, to the regularity of the corresponding Markov
operators on the space of probability measures, Theorem 3. In section 3.2 the special case of consistent
stochastic feasibility is detailed, showing in particular how the abstract objects for the general case
simplify (see Theorem 5). In section 4 we present abstract convergence results, with and without rates
(Proposition 6 and Theorem 7). The key to quantitative results in the space of probability measures is
metric subregularity of the invariant Markov transport discrepancy (41). This is shown in the case of
consistent stochastic feasibility to be necessary for quantitative convergence of paracontractive Markov
operators in Theorem 9.

We return to the specialization of stochastic partial blockwise splitting algorithms in section 5, where
we develop a case study of stochastic blockwise forward-backward splitting (Algorithm 2) and stochas-
tic blockwise Douglas-Rachford (Algorithm 3), establishing the regularity of the corresponding fixed
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point operators (Propositions 11-14) and convergence in distribution of the corresponding Markov chains
(Proposition 17).

2 Notation and Random Function Iterations

As usual, N denotes the natural numbers including 0. We denote by P(G) the set of all probability
measures on G ⊂ E ; the measurable sets are given by the Borel sigma algebra on a subset G ⊂ E ,
denoted by B(G). The notation X ∼ µ ∈ P(G) means that the law of X, denoted L(X), satisfies
L(X) := PX := P(X ∈ ·) = µ, where P is the probability measure on some underlying probability
space. The open ball centered at x ∈ E with radius r > 0 is denoted B(x, r); the closure of the ball is
denoted B(x, r). The distance of a point x ∈ E to a set A ⊂ E in the metric d is denoted by d(x,A) :=
infw∈A d(x,w). The projector onto a set A is denoted by PA and PA(x) is the set of all points where
d(x,A) is attained. This is empty if A is open, and a singleton if A is closed and convex; generically, PA

is a (possibly empty) set-valued mapping, for which we use the notation PA : E ⇒ E . For the ball of
radius r around a subset of points A ⊂ E , we write B(A, r) :=

⋃
x∈A B(x, r).

Let I denote an index set, each element i ∈ I of which is a unique assignment to nonempty subsets
of {1, 2, . . . ,m}: Mi ∈ 2{1,2,...,m} \ ∅ for i ∈ I, where ∪i∈IMi = 2{1,2,...,m} \ ∅ and Mi ̸=Mj for i ̸= j. For
convenience we will let the first such subset be the set itself: M1 := {1, 2, . . . ,m}. For i ∈ I we denote
the subspace EMi :=

⊕
j∈Mi

Ej where {E1, . . . , Em} is a collection of mutually orthogonal subspaces of E .
The complement to this space in E is denoted E◦

Mi
:= E \ EMi

; likewise, denote the complement to the
subset Mi in {1, 2, . . . ,m} by M◦

i = {1, 2, . . . ,m} \Mi. The affine embedding of the subspace EMi
in E

at a point z ∈ E is denoted EMi

⊕
{z}; the canonical embedding of EMi

in E is thus EMi

⊕
{0} where

it is understood that 0 ∈ E . We use the corresponding notation for subsets G ⊂ E : Gj ⊂ Ej and the
affine embedding of a subset GMi at a point z ∈ GM◦

i
is given by GMi

⊕
{z}M◦

i
. The blockwise mappings

Ti : E → E corresponding to this structure are defined by

[Ti(x)]j :=

{
T ′
j(x), j ∈Mi,

xj else,
for T ′

j : E → Ej , j = 1, 2, . . . ,m. (3)

Note that T ′
j is some action with respect to the j’th block in Ej , though with input from x ∈ E .

The measure space of indexes is denoted (I, I) and ξ is an I-valued random variable on a probability
space. The random variables ξk in the sequence (ξk)k∈N (abbreviated (ξk)) are independent and identically
distributed (i.i.d.) with ξk distributed as ξ (ξk ∼ ξ). At each iteration k of the algorithm one selects
at random a nonempty subset of blocks Mξk ⊂ {1, 2, . . . ,m} and performs an update to each block as
follows:

Algorithm 1: Stochastic Block Iteration (SBI)

Initialization: Select a random variable X0 with distribution µ, t = (t1, t2, . . . , tm) > 0, and (ξk)k∈N an i.i.d.
sequence with values on I and X0 and (ξk) independently distributed. Given T ′

j : E → Ej for
j = 1, 2, . . . ,m.

for k = 0, 1, 2, . . . do

Xk+1 = Tξk (X
k) where [Tξk (X

k)]j :=

{
T ′
j(X

k), j ∈ Mξk ,

Xk
j else

. (4)

This is a special instance of a random function iteration studied in [18–20]. Convergence of such an
iteration is understood in the sense of distributions and is a consequence of two key properties: that the
mapping Ti is almost α-firmly nonexpansive (abbreviated aα-fne) in expectation ((29) and (32a)), and
that the invariant Markov transport discrepancy defined in (41) is gauge metrically subregular (55) at
invariant measures. The latter of these two properties has been shown in many settings to be necessary for
quantitative convergence of the iterates [18,26]. The first property, with the qualifier “almost” removed,
is enough to guarantee that the sequence of measures is asymptotically regular with respect to the
Wasserstein metric. All this is formally defined below.

3



2.1 Markov chains, measure-valued mappings, and stochastic fixed point problems

The following assumptions hold throughout.

Assumption 1. (a) ξ0, ξ1, . . . , ξk are i.i.d random variables for all k ∈ N on a probability space with
values on I. The variable X0 is an random variable with values on E, independent from ξk.

(b) The function Φ : E × I → E , (x, i) 7→ Tix is measurable.

Let (Xk)k∈N be a sequence of random variables with values on G ⊂ E . Recall that a Markov chain
with transition kernel p satisfies

(i) P (Xk+1 ∈ A |X0, X1, . . . , Xk) = P (Xk+1 ∈ A |Xk);
(ii) P (Xk+1 ∈ A |Xk) = p(Xk, A)

for all k ∈ N and A ∈ B(G) almost surely in probability, P-a.s. In [19] it is shown that the sequence of
random variables (Xk) generated by Algorithm 1 is a Markov chain with transition kernel p given by

(x ∈ G)(A ∈ B(G)) p(x,A) := P(Tξx ∈ A) (5)

for the measurable update function Φ : G× I → G given by Φ(x, i) := Tix.
The Markov operator P associated with this Markov chain is defined pointwise for a measurable

function f : G→ R via

(x ∈ G) Pf(x) :=
∫
G

f(y)p(x, d y),

when the integral exists. Note that

Pf(x) =
∫
Ω

f(Tξ(ω)x)P(dω) =
∫
I
f(Tix)Pξ(d i).

Let µ ∈ P(G). The dual Markov operator acting on a measure µ is indicated by action on the right
by P:

(A ∈ B(G)) (P∗µ)(A) := (µP)(A) :=

∫
G

p(x,A)µ(dx).

The distribution of the k’th iterate of the Markov chain generated by Algorithm 1 is therefore easily
represented as follows: L(Xk) = µ0Pk, where L(X) denotes the law of the random variable X. Of course
in general random variables do not converge, but distributions associated with the sequence of random
variables (Xk) of Algorithm 1, if they converge to anything, do so to invariant measures of the associated
Markov operator. An invariant measure of the Markov operator P is any distribution π ∈ P that satisfies
πP = π. The set of all invariant probability measures is denoted by invP. The underlying problem we
seek to solve is to

Find π ∈ invP. (6)

This is the stochastic fixed point problem studied in [19, 20]. When the mappings Ti have common fixed
points, the problem reduces to the stochastic feasibility problem studied in [18].

Let (νk) be a sequence of probability measures on G ⊂ E , and let Cb(G) denote the set of bounded and
continuous functions from G to R. The sequence (νk) is said to converge in distribution to ν whenever
ν ∈ P(G) and for all f ∈ Cb(G) it holds that νkf → νf as k → ∞, where νf :=

∫
f(x)ν(dx). In other

words, a sequence of random variables (Xk) converges in distribution if their laws (L(Xk)) do. We use
the weighted Wasserstein metric for the space of measures. Let

P2(G) =

{
µ ∈ P(G)

∣∣∣∣∃x ∈ G :

∫
∥x− y∥2pµ(d y) <∞

}
(7)

where ∥ · ∥p is the Euclidean norm weighted by p. This will be made explicit below. The Wasserstein
2-metric on P2(G), with respect to the weighted Euclidean norm ∥ · ∥p denoted dW2,p , is defined by

dW2,p(µ, ν) :=

(
inf

γ∈C(µ,ν)

∫
G×G

∥x− y∥2pγ(dx, dy)
)1/2

(8)
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where C(µ, ν) is the set of couplings of µ and ν:

C(µ, ν) := {γ ∈ P(G×G) | γ(A×G) = µ(A), γ(G×A) = ν(A) ∀A ∈ B(G)} . (9)

The principle mode of convergence in distribution that we use is convergence in distribution of the
sequence (L(Xk)) to a probability measure π ∈ P(G), i.e. for any f ∈ Cb(G)

L(Xk)f = E[f(Xk)] → πf, as k → ∞.

This is a stronger form of convergence than convergence of Cesàro averages sometimes seen in the
literature. Since we are considering the The Wasserstein 2-metric, convergence in this metric implies
that also the second moments converge in this metric. For more background on the analysis of sequences
of measures we refer interested readers to [4, 16,40–42].

2.2 Stochastic blockwise splitting algorithms

The concrete targets of the analysis presented here are two fundamental templates for solving problems
of the form (1), forward-backward splitting as formulated in [39] and Douglas-Rachford splitting; the
latter has not been studied in this context.

Denote by ∂xj
f : E ⇒ Ej the partial limiting subdifferential of f with respect to the block xj ∈ Ej :

∂xj
f(x) :=

{
v ∈ Ej

∣∣∣ f(x) ≥ f(x) +
〈
v
⊕

{0}, x− x
〉
+ o{∥x− x∥}, x ∈ Ej

⊕
{x}

}
. (10)

When f is continuously differentiable, then this coincides with the partial gradient ∇xj
f : E → Ej . The

prox mapping of a function h : E ⇒ (−∞,+∞] is defined by

proxh,λ(x) := argmin y∈E

{
h(y) +

1

2λ
∥y − x∥2

}
. (11)

The prox mapping is nonempty and single-valued whenever h is proper, lsc and convex [30]. To allow for
generalization to nonconvex functions we use instead the resolvent J∂h,λ : E ⇒ E :

J∂h,λ(x) := {y ∈ E | (λ∂h+ Id) (y) ∋ x} . (12)

It is clear from this that, in general, proxh,λ(x) ⊂ J∂h,λ(x) for all x.
Note that gj defined in (2) is just the extension by zero of hj to a mapping on E . This yields

J∂gj ,λj (x) =



x1
x2
...

xj−1

J∂hj ,λj (xj)
xj+1

...
xm


and

(
J∂gj ,λj − Id

)
(x) =

(
J∂hj ,λj (xj)− xj

)⊕
{0}. (13)

Let ∂jf : E → E denote the canonical embedding of ∂xj
f by zero into E :

∂jf(x) := ∂xj
f(x)

⊕
{0}. (14)

The corresponding resolvent, J∂jf,λ(x) is given by

J∂jf,λ(x) :=



x1
x2
...

xj−1

J∂fj(·;x),λ(xj)
xj+1

...
xm


(15)
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where fj(·;x) : Ej → R , with x ∈ E a parameter, denotes

fj(y;x) := f
(
x+ (y − xj)

⊕
{0}
)

(16a)

so that

∂fj(y;x) = ∂xj
f
(
x+ (y − xj)

⊕
{0}
)

and (16b)

J∂fj(·;x),λ(xj) =
{
y ∈ Ej

∣∣∣ y + ∂xj
f(x+ (y − xj)

⊕
{0}) ∋ xj

}
. (16c)

We recognize that the resolvent of a function that is not fully separable is not considered prox friendly
from a computational standpoint, and this can only be evaluated numerically with some error. The
framework presented here is well suited for algorithms with numerical error, and this is discussed at
some length in [19, Section 4]. In the interest of keeping the presentation simple, we present results
for exact evaluation of all the relevant operators; the incorporation of appropriate noise models for
inexact computation builds on the structure introduced here and does not require any assumption of
summable errors or increasing accuracy, though the noise model does require some careful consideration
(see [19, Section 4.3]).

The abstract template is Algorithm 1 where the mappings T ′
j specialize to

T ′
j(x) :=

1

2

(
R∂fj(·;y),tjR∂hj ,tj (xj) + xj

)
, y = R∂gj ,tj (x) (blockwise Douglas-Rachford)

where
R∂hj ,tj (xj) = 2J∂hj ,tj (xj)− xj and R∂fj(·;x),tj (xj) := 2J∂fj(·;x)(xj)− xj .

or, when f is continuously differentiable,

T ′
j(x) := J∂hj ,tj

(
xj − tj∇xj

f(x)
)

(blockwise forward-backward).

Using the resolvent instead of the prox mapping, the blockwise forward-backward algorithm studied
in [39] consists of iterations of randomly selected mappings TFB

i : E → E :

TFB
i :=

Id+
∑
j∈Mi

(
J∂gj ,tj (Id−tj∇jf)− Id

) (i ∈ I). (17)

Algorithm 2: Stochastic Blockwise Forward-Backward Splitting (S-BFBS)

Initialization: Select a random variable X0 with distribution µ, t = (t1, t2, . . . , tm) > 0, and (ξk)k∈N an i.i.d.
sequence with values on I and X0 and (ξk) independently distributed.

for k = 0, 1, 2, . . . do

Xk+1 = TFB
ξk

(Xk) :=

Id+
∑

j∈Mξk

(
J∂gj ,tj (Id−tj∇jf)− Id

) (Xk), (18a)

or equivalently
for j = 0, 1, 2, . . . ,m do

Xk+1
j = [TFB

ξk
(Xk)]j :=

{
J∂hj ,tj

(
Xk

j − tj∇xj f(X
k)
)

if j ∈ Mξk

Xk
j else .

(18b)

The blockwise Douglas-Rachford algorithm consists of iterations of randomly selected mappings TDR
i :

E → E :

TDR
i :=

1

2

∑
j∈Mi

(
R∂jf,tjR∂gj ,tj − Id

)
+ 2 Id

 (i ∈ I). (19)

In addition to its own merits, in the convex setting the Douglas-Rachford algorithm has the interpretation
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Algorithm 3: Stochastic Blockwise Douglas-Rachford Splitting (S-BDRS)

Initialization: Select a random variable X0 with distribution µ, t = (t1, t2, . . . , tm) > 0, and (ξk)k∈N an i.i.d.
sequence with values on I and X0 and (ξk) independently distributed.

for k = 0, 1, 2, . . . do

Xk+1 = TDR
ξk

Xk :=
1

2

 ∑
j∈Mξk

(
R∂jf,tjR∂gj ,tj − Id

)
+ 2 Id

 (Xk) (20a)

or equivalently
for j = 0, 1, 2, . . . ,m do

Xk+1
j = [TDR

ξk
(Xk)]j :=

{
1
2

(
R∂jf,tjR∂hj ,tj (X

k
j ) +Xk

j

)
if j ∈ Mξk

Xk
j else .

(20b)

as the ADMM algorithm [15] applied to the “pre-primal” problem to (1) [11,14]:

minimize
x∈Rn

p(x) + q(Ax) where p∗(−ATx) = f(x) and g(x) = q∗(x). (21)

The stochastic blockwise Douglas-Rachford Algorithm 3 therefore can be understood as a stochastic
blockwise ADMM algorithm for solving (21). The discussion above about the separability of f is yet
another way of understanding the observed computational difficulty of implementing this algorithm; it
is quite unlikely that f given by (21) will be separable in the standard basis and therefore the resolvent
(16c) will have to be computed numerically. Alternative primal-dual methods that circumvent this are
the topic of future research.

Before we begin, however, it will be helpful to give an example delineating consistent from inconsistent
feasibility.

Example 1 (consistent/inconsistent stochastic feasibility problems). Examples for partially separable
optimization and blockwise algorithms abound, particularly in machine learning, but seldom is the dis-
tinction made between consistent and inconsistent problems. This is illustrated here for the problem of
set feasibility, or, when feasible points don’t exist, best approximation. Consider the problem

Find x ∈ ∩m
j=1Ω

where Ωj ⊂ Rn are closed sets. This can be recast as the following optimization problem on the product
space (Rn)m:

minimize f(x) +

m∑
j=1

ιΩj (xj) (22)

where xj ∈ Rn,

ιΩ(x) =

{
0 when x ∈ Ω

+∞ else,

and f is some reasonable coupling function that promotes similarity between the blocks xj. In the context
of problem (1) hj = ιΩj

. Common instances of the coupling function are f(x) = 1
2d(x,D)2 for D :=

{x = (x1, x2, . . . , xm) |xi = xj ∀i ̸= j } or the more strict indicator function f(x) = ιD(x). The prox
operators associated with the indicator functions are just projectors, while the gradient of the function f
in the smooth case can be constructed from the projection onto D (just the averaging operator).

When ∩m
j=1Ω ̸= ∅, the solutions to the feasibility problem and problem (22) coincide for both in-

stances of f . In this case the blockwise operators Ti in (2) and (3) have common fixed points, which
are (perhaps not exclusively) points where the sets intersect, and so, when all goes well, fixed points of
these algorithms coincide with points in ∩m

j=1Ω; at the very least fixed points of the algorithms coincide
with critical points. Viewed as random function iterations, the iterates of (2) and (3) in this consistent
case are random variables whose distributions converge to delta functions with support in ∩m

j=1Ω and the
algorithms converge to solutions of a stochastic feasibility problem studied in [18]:

Find x ∈ {x |P(x ∈ Fix Tξ) = 1} .
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If the intersection is empty, as will often be the case in practice regardless of noise considerations,
then it is easy to see that the blockwise operators in (2) and (3) do not have common fixed points
when f(x) = ιD(x). The random algorithms do not have fixed points in this case, but viewed as random
function iterations, the distributions of the iterates converge to invariant measures of the Markov operator
corresponding to either Algorithm (2) or (3). These algorithms therefore find solutions to the more general
stochastic fixed point problem 6 studied in [19]. How to interpret such invariant measures is an open issue
in general. For this example, in the case of just two convex sets with empty intersection, the invariant
probability measures will consist of equally weighted pairs of delta functions centered at best approximation
pairs between the sets.

The numerical behavior of deterministic versions of (2) and (3), and many others, has been thoroughly
studied for the broad class of cone and sphere problems, which includes sensor localization, phase retrieval,
and computed tomography [25]. For the example of set feasibility presented here, convergence depends on
the regularity properties of the projectors onto the respective sets, which as shown in [27] is derived from
the regularity of the sets. The main contribution of this article is to show that randomization can lead
to Markov operators with better regularity than that of the individual operators generating its transition
kernel.

3 Regularity

Our main results concern convergence of Markov chains under regularity assumptions that are lifted from
the generating mappings Ti. In [27] a framework was developed for a quantitative convergence analysis of
set-valued mappings Ti that are one-sided Lipschitz continuous in the sense of set-valued-mappings with
Lipschitz constant slightly greater than 1. We begin with the regularity of Ti and follow this through to
the regularity of the resulting Markov operator.

3.1 Almost α-firmly nonexpansive mappings

Let G ⊂ E and let F : G ⇒ E . The mapping F is said to be pointwise almost nonexpansive at x0 ∈ G
on G whenever

∃ϵ ∈ [0, 1) : ∥x+ − x+0 ∥ ≤
√
1 + ϵ ∥x− x0∥, ∀x ∈ G,∀x+ ∈ Fx, x+0 ∈ Fx0. (23)

The violation is a value of ϵ for which (23) holds. When the above inequality holds for all x0 ∈ G
then F is said to be almost nonexpansive on G. When ϵ = 0 the mapping F is said to be (pointwise)
nonexpansive. The mapping F is said to be pointwise almost α-firmly nonexpansive at x0 ∈ G on G,
abbreviated pointwise aα-fne whenever

∃ϵ ∈ [0, 1) and α ∈ (0, 1) :

∥x+ − x+0 ∥2 ≤ (1 + ϵ)∥x− x0∥2 − 1−α
α ψ(x, x0, x

+, x+0 ) (24)

∀x ∈ G,∀x+ ∈ Fx,∀x+0 ∈ Fx0,

where the transport discrepancy ψ of F at x, x0, x
+ ∈ Fx and x+0 ∈ Fx0 is defined by

ψ(x, x0, x
+, x+0 ) :=

∥x+ − x∥2 + ∥x+0 − x0∥2 + ∥x+ − x+0 ∥2 + ∥x− x0∥2 − ∥x+ − x0∥2 − ∥x− x+0 ∥2. (25)

When the above inequality holds for all x0 ∈ G then F is said to be aα-fne on G. The violation is
the constant ϵ for which (24) holds. When ϵ = 0 the mapping F is said to be (pointwise) α-firmly
nonexpansive, abbreviated (pointwise) α-fne.

The transport discrepancy ψ is a central object for characterizing the regularity of mappings in metric
spaces and ties the regularity of the mapping to the geometry of the space. A short calculation shows
that, in a Euclidean space, this has the representation

ψ(x, x0, x
+, x+0 ) = ∥(x− x+)− (x0 − x+0 )∥2. (26)
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The definition of pointwise aα-fne mappings in Euclidean spaces appeared first in [27]. This generalizes
the notion of averaged mappings dating back to Mann, Krasnoselskii, and others [2, 9, 12,22,29].

A partial blockwise mapping Ti that is α-fne on an affine subspace EMi

⊕
{z} may not be α-fne on

E , as the next example from [21, Remark 3.9] shows.

Example 2. Let E = R2 and define f(x1, x2) = (x1 + x2)
2, g1(x1, x2) = h1(x1) = 0 and g2(x1, x2) =

h2(x2) = x22. Here f is convex and differentiable with global gradient Lipschitz constant L = 4 and the

functions gj are clearly convex. The proximal gradient algorithm applied to the function F = f+
∑2

j=1 gj
is xk+1 = TFB(xk) = proxg(Id−t∇f)(xk). For all t ∈ (0, 1/2) it can be shown that the fixed point

mapping TFB is α-firmly nonexpansive with the unique fixed point (0, 0), the global minimum of the
objective function F . Hence from any initial point x0 this iteration converges to the global minimum
(0, 0). A blockwise implementation of this algorithm would involve computing the proximal gradient step
with respect to x1, leaving x2 fixed; that is at some iterations k one computes

xk+1 = TFB
1 (xk) := proxg1((Id−t∇xk

1
f)(xk1 , x

k
2) = ((1− 2t)xk1 − 2txk2 , x

k
2). (27)

A straightforward calculation shows that the blockwise mapping TFB
1 is not α-fne on R2 for any t > 0,

although it is α-fne on R×{z} for any z ∈ R whenever t ∈ (0, 1/2). Being α-fne on R×{z} for any z ∈ R
is not much help, however, since this means that repeated application of TFB

1 defined by (27) converges
to the minimum of F restricted to the affine subspace R× {z}, namely (−z, z).

In light of the above counterexample, Theorem 1 below shows how randomization in the blockwise
forward-backward algorithm restores the α-fne property in expectation [20, Definition 3.6]. This is the
fixed point analog to descents in expectation introduced in [39].

In the stochastic setting we consider only single-valued mappings Ti that are aα-fne in expectation.
We can therefore write x+ = Tix instead of always taking some selection x+ ∈ Tix (which then raises
issues of measurability and so forth). On a closed subset G ⊂ E for a general self-mapping Ti : G→ G for
i ∈ I, the mapping Φ : G× I → G be given by Φ(x, i) = Tix is said to be pointwise almost nonexpansive
in expectation at x0 ∈ G on G, abbreviated pointwise almost nonexpansive in expectation, whenever

∃ϵ ∈ [0, 1) : E [∥Φ(x, ξ)− Φ(x0, ξ)∥] ≤
√
1 + ϵ ∥x− x0∥, ∀x ∈ G. (28)

When the above inequality holds for all x0 ∈ G then Φ is said to be almost nonexpansive in expectation
on G. As before, the violation is a value of ϵ for which (28) holds. When the violation is 0, the qualifier
“almost” is dropped. The mapping Φ is said to be pointwise almost α-firmly nonexpansive in expectation
at x0 ∈ G on G, abbreviated pointwise aα-fne in expectation, whenever

∃ϵ ∈ [0, 1), α ∈ (0, 1) : ∀x ∈ G, (29)

E
[
∥Φ(x, ξ)− Φ(x0, ξ)∥2

]
≤ (1 + ϵ)∥x− x0∥2 − 1−α

α E [ψ(x, x0, Φ(x, ξ), Φ(x0, ξ))] .

When the above inequality holds for all x0 ∈ G then Φ is said to be almost α-firmly nonexpansive (aα-
fne) in expectation on G. The violation is a value of ϵ for which (29) holds. When the violation is 0, the
qualifier “almost” is dropped and the abbreviation α-fne in expectation is used. The defining inequalities
(28) and (29) will be amended below in (32a) to account for weighted norms.

The next result, derived from [21, Proposition 5.5] shows in particular that any collection of self-
mappings {Ti}i∈I on G ⊂ E that is aα-fne on GMi

⊕
{z} is aα-fne in expectation with respect to a

weighted norm on G. In particular, denote by ηi the probability of selecting the i’th collection of blocks,
Mi, and let pj denote the probability that the j’th block is among the randomly selected collection of
blocks:

0 < pj =
∑
i∈I

ηi · χMi
(j) ≤ 1 where χMi

(j) =

{
1 if j ∈Mi

0 else
(j = 1, 2, . . . ,m). (30)

Define the corresponding weighted norm

∥z∥p :=

 m∑
j=1

1
pj
∥zj∥2Ej

1/2

. (31)
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Theorem 1 (almost α-firmly nonexpansive in expectation (aα-fne in expectation)). Let the single-valued
self-mappings {Ti}i∈I on the subset G ⊂ E satisfy

(a) for each i, Ti is the identity mapping on EM◦
i
;

(b) T1 is aα-fne on G with constant α and violation no greater than ϵ where M1 := {1, 2, . . . ,m}.

Then

(i) for all i and each z ∈ G, Ti is aα-fne on GMi

⊕
{z}M◦

i
with constant at most α and violation no

greater than ϵ;
(ii) the mapping Φ : G× I → G given by Φ(x, i) = Tix satisfies

E
[
∥Φ(x, ξ)− Φ(y, ξ)∥2p

]
≤ (1 + pϵ)∥x− y∥2p − 1−α

α E [ψp(x, y, Φ(x, ξ), Φ(y, ξ))] ∀x, y ∈ G (32a)

where

ψp(x, y, Φ(x, i), Φ(y, i)) := ∥ (x− Φ(x, i))− (y − Φ(y, i)) ∥2p and p := max
j

{pj}. (32b)

A mapping Φ : G × I → G that satisfies (32a) is called aα-fne in expectation with respect to the
weighted norm ∥ · ∥p with constant α and violation no greater than pϵ.
Proof. The proof of part (i) follows immediately from the observation that Ti on GMi

⊕
{z}M◦

i
is equiv-

alent to T1 restricted to the same subset.
To see part (ii), fix any x, y ∈ G, and let T ′

j : Gj → Gj (j = 1, 2, . . . ,m) be the j’th block mapping

for j ∈ Mi. Hence, Ti(x) = PEMi
Ti(x) + PEM◦

i
(x) and T1(x) =

⊕m
j=1 T

′
j(x) where PEMi

: E → E is the

orthogonal projection onto the subspace EMi
and likewise for PEM◦

i
. We begin with the left hand side of

the defining inequality:

E
[
∥Φ(x, ξ)− Φ(y, ξ)∥2p

]
=
∑
i∈I

ηi ∥Ti(x)− Ti(y)∥2p

=
∑
i∈I

ηi

∥∥∥(PEMi
Ti(x) + PEM◦

i
(x)
)
−
(
PEMi

Ti(y) + PEM◦
i
(y)
)∥∥∥2

p

=
∑
i∈I

ηi

(∥∥PEMi
Ti(x)− PEMi

Ti(y)
∥∥2
p
+
∥∥∥PEM◦

i
(x− y)

∥∥∥2
p

)

=
∑
i∈I

ηi

∑
j∈Mi

1
pj

∥∥T ′
j(x)− T ′

j(y)
∥∥2
Ej

+
∑

k∈M◦
i

1
pk

∥xk − yk∥2Ek

 . (33)

Then (33) rearranges to

E
[
∥Φ(x, ξ)− Φ(y, ξ)∥2p

]
=
∑
i∈I

ηi

∑
j∈Mi

1
pj

∥∥T ′
j(x)− T ′

j(y)
∥∥2
Ej

+
∑

k∈M◦
i

1
pk

∥xk − yk∥2Ek


=

m∑
j=1

pj
1
pj

∥∥T ′
j(x)− T ′

j(y)
∥∥2
Ej

+ (1− pj)
1
pj

∥xj − yj∥2Ej

= ∥T1(x)− T1(y)∥2 − ∥x− y∥2 + ∥x− y∥2p . (34)

We simplify the expectation of the weighted transport discrepancy (32b) next.

E [ψp(x, y, Φ(x, ξ), Φ(y, ξ))] =
∑
i∈I

ηi

(
∥(x− Ti(x))− (y − Ti(x))∥2p

)
=

m∑
j=1

pj
1
pj

∥∥(xj − T ′
j(x)

)
−
(
yj − T ′

j(y)
)∥∥2

Ej

= ∥(x− T1(x))− (y − T1(y))∥2 . (35)
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Combining (34) with 1−α
α times (35) yields

E
[
∥Φ(x, ξ)− Φ(y, ξ)∥2p

]
+ 1−α

α E [ψp(x, y, Φ(x, ξ), Φ(y, ξ))]

= ∥T1(x)− T1(y)∥2 − ∥x− y∥2 + ∥x− y∥2p + 1−α
α ∥(x− T1(x))− (y − T1(y))∥2 . (36)

Now by assumption (b), T1 is aα-fne with constant α and violation no greater than ϵ on G. Therefore
(36) is bounded by

E
[
∥Φ(x, ξ)− Φ(y, ξ)∥2p

]
+ 1−α

α E [ψp(x, y, Φ(x, ξ), Φ(y, ξ))] ≤ ϵ ∥x− y∥2 + ∥x− y∥2p
≤ (1 + pϵ) ∥x− y∥2p (37)

for all x, y ∈ G as claimed.

Following [20], we lift these notions to the analogous regularity of Markov operators on the space of
probability measures. Let P be the Markov operator with transition kernel

(x ∈ G ⊂ E)(A ∈ B(G)) p(x,A) := P(Φ(x, ξ) ∈ A)

where ξ is an I-valued random variable and Φ : G× I → G is a measurable update function. The Markov
operator is said to be pointwise almost nonexpansive in measure at µ0 ∈ P(G) on P(G), abbreviated
pointwise almost nonexpansive in measure, whenever

∃ϵ ∈ [0, 1) : dW2,p(µP, µ0P) ≤
√
1 + ϵ dW2,p(µ, µ0), ∀µ ∈ P(G). (38)

When the above inequality holds for all µ0 ∈ P(G) then P is said to be almost nonexpansive in measure
on P(G). As before, the violation is a value of ϵ for which (38) holds. When the violation is 0, the
qualifier “almost” is dropped. Let C∗(µ1, µ2) denote the set of couplings where the distance dW2,p(µ1, µ2)
is attained (i.e. the optimal couplings between µ1 and µ2) The Markov operator P is said to be pointwise
almost α-firmly nonexpansive in measure at µ0 ∈ P(G) on P(G), abbreviated pointwise aα-fne in
measure, whenever

∃ϵ ∈ [0, 1), α ∈ (0, 1) : ∀µ ∈ P(G),∀γ ∈ C∗(µ, µ0)

dW2,p(µP, µ0P)2 ≤ (1 + ϵ)dW2,p(µ, µ0)
2 −

1−α
α

∫
G×G

E [ψp(x, y, Φ(x, ξ), Φ(y, ξ))] γ(dx, dy). (39)

When the above inequality holds for all µ0 ∈ P(G) then P is said to be aα-fne in measure on P(G). The
violation is a value of ϵ for which (39) holds. When the violation is 0, the qualifier “almost” is dropped
and the abbreviation α-fne in measure is employed. The notions above were defined in [20, Definition
2.8] on more general metric spaces.

Proposition 2 (Proposition 2.10, [20]). Let G ⊂ E, let Φ : G× I → G be given by Φ(x, i) = Tix and let
ψp be defined by (32b). Denote by P the Markov operator with update function Φ and transition kernel p
defined by (5). If Φ is aα-fne in expectation on G with constant α ∈ (0, 1) and violation ϵ ∈ [0, 1), then
the Markov operator P is aα-fne in measure on P2(G) with constant α and violation at most ϵ, that is,
P satisfies

d2W2,p
(µ1P, µ2P) ≤ (1 + ϵ)d2W2,p

(µ1, µ2)− 1−α
α

∫
G×G

E [ψp(x, y, Φ(x, ξ), Φ(y, ξ))] γ(dx, dy)

∀µ2, µ1 ∈ P2(G), ∀γ ∈ C∗(µ1, µ2). (40)

Theorem 3 (stochastic block iterations). Let the single-valued self-mappings {Ti}i∈I on the convex
subset G ⊂ E satisfy

(a) Ti is the identity mapping on EM◦
i
;

(b) T1 is aα-fne on G with constant α and violation no greater than ϵ.

Then the Markov operator P with update function Φ is aα-fne in measure with constant α and violation
at most pϵ.
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Proof. This is an immediate consequence of Theorem 1 and Proposition 2.

Note also that, since ψp is nonnegative, Ti is also almost nonexpansive in expectation whenever T1 is
aα-fne; the corresponding Markov operator is almost nonexpansive in measure with the corresponding
violation whenever conditions (a)-(b) of Theorem 3 are satisfied.

In preparation for the next refinements, following [20] we lift the weighted transport discrepancy ψp

to the corresponding invariant Markov transport discrepancy Ψ : P(G) → R+ ∪ {+∞} on the subset
G ⊂ E defined by

Ψ(µ) := inf
π∈invP

inf
γ∈C∗(µ,π)

(∫
G×G

E [ψp(x, y, Tξx, Tξy)] γ(dx, dy)

)1/2

. (41)

It is not guaranteed that both invP and C∗(µ, π) are nonempty; when at least one of these is empty
Ψ(µ) := +∞. It is clear that Ψ(π) = 0 for any π ∈ invP.

3.2 Special Case: consistent stochastic feasibility

The stochastic fixed point problem (6) is called consistent in [18–20] when, for some closed subset G ⊂ E ,

C := {x ∈ G |P(x = Tξx) = 1} ≠ ∅. (42)

In this case, the notions developed above can be sharpened.
Recall that a paracontraction is a continuous mapping T : G → G possessing fixed points that

satisfies
∥T (x)− y∥ < ∥x− y∥ ∀y ∈ Fix T, ∀x ∈ G \ Fix T.

Any α-fne mapping on a Euclidean space, for example, is a paracontraction.
The notion of paracontractions extends to random function iterations for consistent stochastic feasi-

bility. Continuous self-mappings Ti : G → G (i ∈ I) are paracontractions in expectation with respect to
the weighted norm ∥z∥p whenever

C ̸= ∅ and E [∥Tξx− y∥p] < ∥x− y∥p ∀y ∈ C,∀x ∈ G \ Fix T. (43)

The next result shows that, for consistent stochastic feasibility, collections of mappings Ti defined in
Theorem 1 with ϵ = 0 are paracontractions in expectation.

Corollary 4 (paracontractions in expectation). Let the single-valued self-mappings {Ti}i∈I on G satisfy

(a) Ti is the identity mapping on EM◦
i
;

(b) for every z ∈M◦
i , Ti is α-fne on GMi

⊕
{z}M◦

i
with constant α for all i;

(c) C := {x ∈ G |P(x = Tξx) = 1} ≠ ∅.

Then the mapping Φ : G× I → G given by Φ(x, i) = Tix is a paracontraction in expectation:

E
[
∥Φ(x, ξ)− Φ(y, ξ)∥2p

]
< ∥x− y∥2p ∀x ∈ G \ C,∀y ∈ C. (44)

Proof. Note that ψp takes the value 0 only when x and y are both in Fix Ti; hence, for all y ∈ C

E
[
∥Tξ(x)− Tξ(y)∥2p

]
< ∥x− y∥2p ∀x ∈ G \ C. (45)

To show the analogous result for the Markov operator P requires more work. A Markov operator is
a paracontraction with respect to the weighted Wasserstein metric dW2,M

whenever

invP ≠ ∅ and dW2,M
(µP, π) < dW2,M

(µ, π) ∀π ∈ invP,∀µ ∈ P(G) \ invP. (46)

In the case of consistent stochastic feasibility, the invariant Markov transport discrepancy reduces to a
very simple form. Indeed, note first of all that a δ-distribution centered on any point x ∈ C is invariant
with respect to P so the set of invariant measures supported on C,

C := {µ ∈ invP | suppµ ⊂ C } , (47)
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is nonempty whenever C is. Now suppose π ∈ C . Then y = Tξy almost surely whenever y ∈ suppπ and
(35) yields

inf
γ∈C∗(µ,π)

(∫
G×G

E [ψp(x, y, Tξx, Tξy)] γ(dx, dy)

)1/2

= inf
γ∈C∗(µ,π)

(∫
G×G

E
[
∥x− Tξx∥2p

]
γ(dx, dy)

)1/2

=

(∫
G

E
[
∥x− Tξx∥2p

]
µ(dx)

)1/2

=

(∫
G

∥x− T1x∥2 µ(dx)
)1/2

∀π ∈ C . (48)

Thus the invariant Markov transport discrepancy defined in (41) has the following simple upper bound:

Ψ(µ) := inf
π∈invP

inf
γ∈C∗(µ,π)

(∫
G×G

E [ψp(x, y, Tξx, Tξy)] γ(dx, dy)

)1/2

≤ inf
π∈C

inf
γ∈C∗(µ,π)

(∫
G×G

E [ψp(x, y, Tξx, Tξy)] γ(dx, dy)

)1/2

=

(∫
G

∥x− T1x∥2 µ(dx)
)1/2

, (49)

where the last equality follows from (48). Inequality (49) is tight for all µ supported on C, so clearly µ ∈ C
implies that Ψ(µ) = 0. On the other hand, if Ψ(µ) = 0 implies that suppµ ⊂ C, then C = invP and
(49) holds with equality for all µ. This holds, in particular, when Ti is a paracontraction in expectation
(see [18, Lemma 3.3] and Theorem 5 below).

Let’s assume, then, that Ψ(µ) = 0 if and only if suppµ ⊂ C. Then

dW2,p(µ, invP) =

(∫
G

inf
z∈C

∥x− z∥2pµ(dx)
)1/2

,

and (49) holds with equality, so

dW2,p(µ, invP) = dW2,p(µ, Ψ
−1(0)) =

(∫
G

inf
z∈C

∥x− z∥2pµ(dx)
)1/2

. (50)

Theorem 5 (Markov operators of paracontractions in expectation). Let G ⊂ E be closed. If the con-
tinuous self-mappings Ti : G → G (i ∈ I) defined by (3) are paracontractions in expectation on G with
respect to the weighted norm ∥ · ∥p defined by (31), then

(i) the associated Markov operator P is a paracontraction with respect to dW2,p ;
(ii) if G is bounded, the set of invariant measures for P is {π ∈ P(G) | suppπ ⊂ C };
(iii) if G is bounded,

(∀x ∈ G) Ψ(δx) = ∥x− T1(x)∥ and (51a)

1√
p
inf
z∈C

∥x− z∥ ≤ inf
z∈C

∥x− z∥p = dW2,p(δx, invP) = dW2,p

(
δx, Ψ

−1(0)
)
. (51b)

Proof. (i). For a random variable X ∼ µ, we have TξX = Φ(X, ξ) ∼ µP, and for a random variable
Y ∼ π ∈ invP we have TξY = Φ(Y, ξ) ∼ πP = π, so

dW2,p(µP, π) =
(

inf
γ∈C(µP,π)

∫
G×G

∥x+ − y∥2pγ(dx+, dy)
)1/2

≤
(

inf
γ∈C(µ,π)

∫
G×G

E
[
∥Tξx− y∥2p

]
γ(dx, dy)

)1/2

<

(
inf

γ∈C(µ,π)

∫
G×G

∥x− y∥2pγ(dx, dy)
)1/2

= dW2,p(µ, π) ∀π ∈ invP,∀µ ∈ P2(G) \ invP, (52)
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where the last inequality follows from the assumption that Ti defined by (3) are a paracontractions in
expectation with respect to the weighted norm ∥ · ∥p. This establishes that P is a paracontraction in the
dW2,p metric as claimed.

(ii). Our proof follows the proof of [18, Lemma 3.3]. It is clear that π ∈ P(G) with suppπ ⊂ C ⊂ G
is invariant, since p(x, {x}) = P(Tξx ∈ {x}) = P(x ∈ Fix Tξ) = 1 for all x ∈ C and hence πP(A) =∫
C
p(x,A)π(dx) = π(A) for all A ∈ B(G).
Suppose, on the other hand, that suppπ \ C ̸= ∅ for some π ∈ invP with suppπ ⊂ G. Then due

to compactness of suppπ (it is closed in the compact set G) we can find s ∈ suppπ maximizing the
continuous function d(·, C) := infz∈C ∥ · −z∥ on G. So dmax = d(s, C) > 0. We show that this leads only
to contradictions, so the assumption of the existence of such a π must be false.

Define the set of points being more than dmax − ϵ away from C:

K(ϵ) := {x ∈ G | d(x,C) > dmax − ϵ} , ϵ ∈ (0, dmax).

This set is measurable, i.e. K(ϵ) ∈ B(G), because it is open. Let M(ϵ) be the event in the sigma algebra
F , that Tξs is at least ϵ closer to C than s, i.e.

M(ϵ) :=
{
ω ∈ Ω

∣∣ d(Tξ(ω)s, C) ≤ dmax − ϵ
}
.

There are two possibilities, either there is an ϵ ∈ (0, dmax) with P(M(ϵ)) > 0 or no such ϵ exists. In
the latter case we have E [d(Tξs, C)] = dmax = d(s, C) since Ti is a paracontraction in expectation. By
compactness of C there exists c ∈ C such that 0 < dmax = ∥s − c∥. Hence the probability of the set
of ω ∈ Ω such that s ̸∈ Fix Tξ(ω) is positive and so E

[
d(Tξ(ω)s, C)

]
≤ E

[
∥Tξ(ω)s− c∥

]
< ∥s − c∥ - a

contradiction.
Suppose next that there is an ϵ ∈ (0, dmax) with P(M(ϵ)) > 0. In view of continuity of the mappings

Ti around s, i ∈ I, define

An :=
{
ω ∈M(ϵ)

∣∣ ∥(Tξ(ω)x− Tξ(ω)s∥ ≤ ϵ
2 ∀x ∈ B(s, 1

n )
}

(n ∈ N).

It holds that An ⊂ An+1 and P(
⋃

nAn) = P(M(ϵ)). So in particular there is an m ∈ N, m ≥ 2/ϵ with
P(Am) > 0. For all x ∈ B(s, 1

m ) and all ω ∈ Am we have

d(Tξ(ω)x,C) ≤ ∥Tξ(ω)x− Tξ(ω)s∥+ d(Tξ(ω)s, C) ≤ dmax −
ϵ

2
,

which means Tξ(ω)x ∈ G \K( ϵ2 ). Hence, in particular we conclude that

p(x,K( ϵ2 )) < 1 ∀x ∈ B(s, 1
m ).

Since p(x,K(ϵ)) = 0 for x ∈ G with d(x,C) ≤ dmax − ϵ by the assumption that Ti is a paracontraction
in expectation, it holds by invariance of π that

π(K(ϵ)) =

∫
G

p(x,K(ϵ))π(dx) =

∫
K(ϵ)

p(x,K(ϵ))π(dx).

It follows, then, that

π(K( ϵ2 )) =

∫
K(

ϵ
2 )

p(x,K( ϵ2 ))π(dx)

=

∫
B(s, 1m )

p(x,K( ϵ2 ))π(dx) +

∫
K(

ϵ
2 )\B(s,

1
m )

p(x,K( ϵ2 ))π(dx)

< π(B(s, 1
m )) + π(K( ϵ2 ) \ B(s,

1
m )) = π(K( ϵ2 ))

which leads again to a contradiction. So the assumption that suppπ \ C ̸= ∅ is false, i.e. suppπ ⊂ C as
claimed.

(iii). By part (ii), invP = {π ∈ P(G) | suppπ ⊂ C }, so (49) holds with equality, and Ψ(µ) = 0 if
and only if suppµ ⊂ C, hence writing (50) pointwise (i.e., for µ = δx) reduces the expression to

inf
z∈C

∥x− z∥p = dW2,p(δx, invP) = dW2,p(δx, Ψ
−1(0)).

The representation (51) then follows from p := maxj{pj}.
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4 Convergence

Contractive Markov operators have been extensively, almost exclusively, studied. When the update func-
tion Φ is a contraction in expectation, then [20, Theorem 2.12] shows that the corresponding Markov
operator P is α-fne, and the sequence of measures (µk) converges Q-linearly (geometrically) to an in-
variant measure from any starting measure µ0 ∈ P(E). When the mappings Ti are only α-firmly nonex-
pansive on E , then µk converges in the Prokhorov-Levi metric to an invariant measure from any initial
measure [19, Theorem 2.9]. To obtain generic (weak) convergence of the iterates µk one must show that
the sequence is tight. This has been established for Markov operators with nonexpansive update func-
tions [19, Lemma 3.19]. We skirt a study of whether tightness can be established under the assumption
that the update functions Φ(x, i) are only nonexpansive in expectation; we suspect, however, that this
is not the case.

4.1 Generic proto-convergence

We establish a few properties that are cornerstones of a generic global convergence analysis. In particular,
we show that when the Markov operator is α-fne (which, as shown above, does not require that all the
mappings Ti be α-fne) this property together with an additional assumption about the decay of the
invariant Markov transport discrepancy yields boundedness and asymptotic regularity of the sequence of
measures.

Proposition 6 (asymptotic regularity). Let the Markov operator P : P2(E) → P2(E) with update
functions Φ(x, i) possess at least one invariant measure and be pointwise α-fne in measure at all π ∈ invP.
If the invariant Markov transport discrepancy satisfies

∃c > 0 : Ψ(µ) ≥ cdW2,p(µ, µP) ∀µ ∈ P2(E), (53)

then the sequence (µk)k∈N defined by µk+1 = µkP for any µ0 ∈ P2(E) is bounded and asymptotically
regular, i.e. satisfies dW2,p(µk, µk+1) → 0.

Proof. Note that (53) implies that there is a c > 0 such that

c2dW2,p(µ, µP)2 ≤
∫
E×E

E [ψp(x, y, Φ(x, ξ), Φ(y, ξ))] γ(dx, dy) ∀π ∈ invP, ∀γ ∈ C∗(π, µ).

This together with the assumption that P is α-fne yields

0 ≤ dW2,p(µP, π)2 ≤ dW2,p(µ, π)
2 − 1− α

α

∫
E×E

E [ψp(x, y, Φ(x, ξ), Φ(x, ξ))] γ(dx, dy)

≤ dW2,p(µ, π)
2 − 1− α

α
c2dW2,p(µ, µP)2 ∀π ∈ invP, ∀γ ∈ C∗(π, µ). (54)

Applying (54) to the sequence of measures generated by µk+1 = µkP with µ0 ∈ P2(E) yields

1− α

α
c2

N∑
k=1

dW2,p(µk, µk+1)
2 ≤ dW2,p(µ0, π)

2 ∀π ∈ invP,∀N ∈ N.

Letting N → ∞ establishes that the left hand side is summable, hence lim inf dW2,p(µk, µk+1) = 0. But
P is also pointwise nonexpansive at all π ∈ invP since it is pointwise α-fne there, so dW2,p(µk, π) ≤
dW2,p(µ0, π) for all k and dW2,p(µk, µk+1) → 0; i.e. the sequence is bounded and asymptotically regular
as claimed.

In the next section we pursue a quantitative local convergence analysis under the assumption of
metric subregularity of the invariant Markov transport discrepancy.
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4.2 Metric subregularity of the invariant Markov transport discrepancy, convergence and rates

Recall the inverse mapping Ψ−1(y) := {µ |Ψ(µ) = y }, which clearly can be set-valued. It is important to
keep in mind that an invariant measure need not correspond to a fixed point of any individual mapping
Ti, unless these have common fixed points. See [19, 20] instances of this. We require that the invariant
Markov transport discrepancy Ψ takes the value 0 at µ if and only if µ ∈ invP, and is gauge metrically
subregular for 0 relative to P2(G) on P2(G):

dW2,p(µ, invP) = dW2,p(µ, Ψ
−1(0)) ≤ ρ(Ψ(µ)) ∀µ ∈ P2(G). (55)

Here dW2,p(µ, invP) = infπ∈invP dW2,p(µ, π), and ρ : [0,∞) → [0,∞) is a gauge function: it is contin-
uous, strictly increasing with ρ(0) = 0, and limt→∞ ρ(t) = ∞. The gauge of metric subregularity ρ is
constructed implicitly from another nonnegative function θτ,ϵ : [0,∞) → [0,∞) with parameters τ > 0
and ϵ ≥ 0 satisfying

(i) θτ,ϵ(0) = 0; (ii) 0 < θτ,ϵ(t) < t ∀t ∈ (0, t] for some t > 0 (56)

and

ρ

( (1 + ϵ)t2 − (θτ,ϵ(t))
2

τ

)1/2
 = t ⇐⇒ θτ,ϵ(t) =

(
(1 + ϵ)t2 − τ

(
ρ−1(t)

)2)1/2
(57)

for τ > 0 fixed. In the next theorem the parameter ϵ is exactly the violation in aα-fne mappings; the
parameter τ is directly computed from the constant α.

In preparation for the results that follow, we will require at least one of the additional assumptions
on θ.

Assumption 2. The gauge θτ,ϵ satisfies (56) and at least one of the following holds.

(a) θτ,ϵ satisfies

θ(k)τ,ϵ (t) → 0 as k → ∞ ∀t ∈ (0, t), (58)

and the sequence (µk) is Fejér monotone with respect to invP ∩ P2(G), i.e.

dW2,p (µk+1, π) ≤ dW2,p(µk, π) ∀k ∈ N,∀π ∈ invP ∩ P2(G); (59)

(b) θτ,ϵ satisfies
∞∑
j=1

θ(j)τ,ϵ(t) <∞ ∀t ∈ (0, t) (60)

where θ
(j)
τ,ϵ denotes the j-times composition of θτ,ϵ.

In the case of linear metric subregularity this becomes

ρ(t) = κt ⇐⇒ θτ,ϵ(t) =
(
(1 + ϵ)− τ

κ2

)1/2
t (κ ≥

√
τ

(1+ϵ) ).

The condition κ ≥
√

τ
(1+ϵ) is not a real restriction since, if (55) is satisfied for some κ′ > 0, then it is

satisfied for all κ ≥ κ′. The conditions in (56) in this case simplify to θτ,ϵ(t) = γt where

0 < γ := 1 + ϵ− τ

κ2
< 1 ⇐⇒

√
τ

(1+ϵ) ≤ κ ≤
√

τ
ϵ . (61)

In other words, θτ,ϵ(t) satisfies Assumption 2(b). The weaker Assumption 2(a) is used to characterize
sublinear convergence.
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Theorem 7 (convergence rates). Let G ⊂ E be compact. Let Ti : G → G satisfy the assumptions of
Theorem 1 for all i ∈ I. Assume furthermore that there is at least one π ∈ invP ∩P2(G) where P is the
Markov operator associated with Ti. If, in addition, Ψ satisfies (55) with gauge ρ given implicitly by (57)
in terms of θτ,ϵ where τ = (1−α)/α, ϵ = pϵ as in Theorem 1, then for any µ0 ∈ P2(G) the distributions
µk of the iterates of Algorithm 1 satisfy

dW2,p (µk+1, invP) ≤ θτ,ϵ
(
dW2,p (µk, invP)

)
∀k ∈ N. (62)

In addition, let τ and ϵ be such that θτ,ϵ satisfies (56) where t0 := dW2,p (µ0, invP) < t for all
µ0 ∈ P2(G), and let at least one of the conditions in Assumption 2 hold. Then µk → πµ0 ∈ invP∩P2(G)

in the dW2,p metric with rate O
(
θ
(k)
τ,ϵ (t0)

)
in case Assumption 2(a) and with rate O(sk(t0)) for sk(t) :=∑∞

j=k θ
(j)
τ,ϵ(t) in case Assumption 2(b).

Proof. First we note that, since G is assumed to be compact, P is a nonempty self-mapping on P2(G)
and P2(G) is locally compact ( [1, Remark 7.19]). By Theorem 1, the update function Φ is aα-fne in
expectation with respect to the weighted norm ∥ · ∥p with constant α and violation pϵ. The statement is
an extension of [20, Theorem 2.6], which establishes (62) and convergence under Assumption 2(b).

To establish convergence under Assumption 2(a), we show first that dW2,p (µk, S) → 0 where, to
reduce notational clutter we define S := invP ∩P2(G). Indeed, let π ∈ S and define dπk := dW2,p (µk, π).
Since dπk+1 ≤ dπk for all k, this establishes that the sequence (dπk )k∈N is bounded and monotone non-
increasing, therefore convergent. Noting that dW2,p (µk, S) ≤ dπk for all k and any fixed π ∈ S, this also
shows that dW2,p (µk, S) converges. The inequality (62) only requires assumption (56), and this together
with assumption (58) yields

dW2,p (µk, S) ≤ θ(k)(t0) → 0 as k → ∞.

Since P2(G) is locally compact and P is Feller since Ti is continuous for all i, invP is closed [16]; so for
every k ∈ N the infimum in dW2,p (µk, S) is attained at some πk. Now, for such a πk we have, again by
Fejér monotonicity, that

d(µl, µk) ≤ d(µl, x
k) + d(µk, x

k) ≤ d(µl−1, x
k) + d(µk, x

k) ≤ · · · ≤ 2d(µk, S).

Since the right hand side converges to 0 as k → ∞ this shows that the sequence is a Cauchy sequence on
(P2(G),W2) – a separable complete metric space [42, Theorem 6.9] – and therefore convergent to some
probability measure πµ0 ∈ P2(G). The Markov operator P is Feller and when a Feller Markov chain
converges in distribution, it does so to an invariant measure: πµ0 ∈ invP (see [16, Theorem 1.10]).

Note that

∀ϵ > ϵ,∀t ∈ [0, t0], θτ,ϵ(t) > θτ,ϵ(t).

It is common in optimization algorithms to encounter mappings whose violation ϵ can be controlled by
choosing a step length parameter small enough; the gradient descent operator is just such a mapping.
This means that, if condition (56) and at least one of (a) or (b) in Assumption 2 is satisfied for some
ϵ, and the violation of the fixed point mappings Ti can be made arbitrarily small, then Theorem 7

guarantees convergence with rate given by either O(θ
(k)
τ,ϵ ) in case (a) or O(sk(t0)) in case (b) for small

enough step sizes on small enough neighborhoods of a fixed point.

4.2.1 Special Case: consistent stochastic feasibility

Recall that, when invP = C defined by (47) (which, by Theorem 5 holds when P is a paracontraction
in measure) the relation (49) holds with equality, so condition (55) simplifies to

dW2,p(µ, invP) = dW2,p(µ, Ψ
−1(0)) ≤ ρ(Ψ(µ)) ∀µ ∈ P2(G)

⇐⇒(∫
G

inf
z∈C

∥x− z∥2pµ(dx)
)1/2

≤ ρ

((∫
G

∥x− T1x∥2 µ(dx)
)1/2

)
∀µ ∈ P2(G). (63)
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Writing this pointwise (i.e., for µ = δx) reduces the expression to

inf
z∈C

∥x− z∥p ≤ ρ (∥x− T1x∥) ∀x ∈ G, (64)

whereby, recalling that p = maxj{pj}, (55) yields

1√
p
d(x,C) ≤ inf

z∈C
∥x− z∥p ≤ ρ (∥x− T1(x)∥) ∀x ∈ G. (65)

This is recognizable as a slight generalization of the error bound studied by Luo and Tseng [28].
The next result shows that, for paracontractions, metric subregularity is automatically satisfied by

Markov chains that are gauge monotone with respect to invP. Let (Xk)k∈N be a sequence of random
variables on the closed subset G ⊂ E generated by Algorithm 1, and let (µk)k∈N be the corresponding
sequence of distributions. Let invP be nonempty and let the continuous mapping θ : R+ → R+ satisfy

(i) θ(0) = 0; (ii) 0 < θ(t) ≤ t ∀t ∈ (0, t) for some t > 0. (66)

This is obviously the same as (56) but without the parameters since in this case ϵ = 0 and τ is just some
scaling. For t0 := dW2,p (µ0, invP), the sequence (µk)k∈N is said to be gauge monotone relative to invP
with rate θ whenever

dW2,p(µk+1, invP) ≤ θ
(
dW2,p(µk, invP)

)
∀k ∈ N (67)

where θ satisfies (66) with t0 < t. The sequence (µk)k∈N is said to be linearly monotone relative to invP
with rate c if (67) is satisfied for θ(t) ≤ c · t for all t ∈ [0, t0] and some constant c ∈ [0, 1].

A Markov chain (Xk)k∈N that converges to some law πµ0 ∈ P2(G) is said to converge gauge mono-
tonically in distribution whenever the corresponding sequence of distributions (µk)k∈N is gauge monotone
with gauge θ satisfying (66) with dW2,p(µ0, invP) ≤ t.

Proposition 8 (gauge monotonic paracontractions in measure converge to invariant measures). Let
G ⊂ E be compact. Let the Markov operator corresponding to Algorithm (1), P : P2(G) → P2(G) ,
be a paracontraction with respect to the metric dW2,p . For a fixed µ0 ∈ P2(G), let the sequence of
measures (µk)k∈N corresponding to the iterates of Algorithm 1 be gauge monotone relative to invP with
rate θ satisfying (66) where t0 := dW2,p (µ0, invP) < t. Suppose furthermore that at least one of the
conditions (a) or (b) of Assumption 2 are satisfied (replacing θτ,ϵ with θ). Then (µk)k∈N converges gauge
monotonically with respect to dW2,p to some πµ0 ∈ invP ∩ P2(G) with rate O(θ(k)(t0) if Assumption

2(a) holds, and in the case of Assumption 2(b) with rate O(sk(t0)) for sk(t) :=
∑∞

j=k θ
(j)(t) and t0 :=

dW2,p(µ0, invP). Moreover, suppπµ0 ⊂ C for C defined by (42).

Proof. In both cases, the proof of convergence with the respective rates follows exactly the proof of
convergence in Theorem 7. For the last statement, Theorem 5(ii) establishes that suppπµ0 ⊂ C, which
completes the proof.

The following is a generalization of [18, Theorem 3.15].

Theorem 9 (necessity of metric subregularity for monotone sequences). Let G ⊂ E be compact. Let the
Markov operator corresponding to Algorithm (1), P : P2(G) → P2(G) , be a paracontraction with respect
to the weighted Wasserstein metric dW2,p . Suppose all sequences (µk)k∈N corresponding to Algorithm 1
and initialized in P2(G) are gauge monotone relative to invP with rate θ satisfying (66) and at least one
of the conditions in Assumption 2. Suppose, in addition, that (Id−θ)−1(·) is continuous on R+, strictly
increasing, and (Id−θ)−1(0) = 0. Then Ψ defined by (41) is gauge metrically subregular for 0 relative to
P2(G) on P2(G) with gauge ρ(·) = (Id−θ)−1(·), i.e. Ψ satisfies (55).

Proof. If the sequence (µk)k∈N is gauge monotone relative to invP with rate θ satisfying (66) and at
least one of the conditions in Assumption 2, then by the triangle inequality

dW2,p(µk+1, µk) ≥ dW2,p(µk, µk+1)− dW2,p(µk+1, µk+1)

≥ dW2,p(µk, invP)− dW2,p(µk+1, invP)

≥ dW2,p(µk, invP)− θ
(
dW2,p(µk, invP)

)
≥ 0 ∀k ∈ N, (68)
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where µk+1 is a metric projection of µk+1 onto invP (exists since invP is closed in P2(G)). On the
other hand, by Theorem 5(ii), inequality (49) is tight, so Ψ−1(0) = invP and

Ψ(µk) =

(∫
G

∥x− T1x∥2µk(dx)

)1/2

≥ inf
γ∈C(µkP,µk)

(∫
G×G

∥x− y∥2pγ(dx, dy)
)1/2

= dW2,p(µk+1, µk) ∀k ∈ N. (69)

Combining (68) and (69) yields

d(0, Ψ(µk)) = Ψ(µk) ≥ dW2,p(µk, Ψ
−1(0))− θ

(
dW2,p(µk, Ψ

−1(0))
)

∀k ∈ N. (70)

By assumption (Id−θ)−1(·) is continuous on R+, strictly increasing, and (Id−θ)−1(0) = 0, so

(Id−θ)−1 (d(0, Ψ(µk))) ≥ dW2,p(µk, Ψ
−1(0)) ∀k ∈ N. (71)

Since this holds for any sequence (µk)k∈N initialized in P2(G) and these converge by Proposition 8
to points in invP ∩ P2(G), we conclude that Ψ is metrically subregular for 0 on P2(G) with gauge
ρ = (Id−θ)−1.

5 Block-Stochastic Splitting for Composite Optimization

We return now to stochastic blockwise methods for solving (1). It is already understood that the critical
points of f+

∑m
j=1 gj , denoted crit (f+

∑m
j=1 gj), are fixed points of the deterministic, non-block versions

of Algorithms 2 and 3; and fixed points of the deterministic, non-block versions of these algorithms are
invariant distributions corresponding to iterates of these same stochastic blockwise algorithms. When
invP = C defined by (47), then in fact any x ∈ C := {x |P(x ∈ Fix Tξ) = 1} is almost surely at least a
stationary point. This leads to the following elementary observations.

Lemma 10. Let Ti defined by either (17) (if f is differentiable) or (19) be single-valued on E and let P
be the Markov operator with update function Ti. Then crit (f +

∑m
j=1 gj) ⊂ S :=

⋃
π∈invP suppπ, and if

f and gj (j = 1, . . . ,m) are convex, then x ∈ C if and only if x ∈ crit (f +
∑m

j=1 gj) almost surely.

5.1 Regularity

In this section we determine the regularity of the blockwise mappings Ti for the two cases (17) and (19).
In Theorem 1, the regularity constants ϵi and αi are bounded above by the constants of T1, which is the
mapping including all of the blocks. It suffices, then, to determine the regularity of T1 for the two cases
(17) and (19).

Proposition 11 (regularity of partial resolvents). For j = 1, 2, . . . ,m, for each vector of parameters
x ∈ G ⊂ E, let fj(·;x) : Gj ⊂ Ej → (−∞,+∞] defined by (16) be subdifferentially regular with
subdifferentials satisfying

∃τfj ≥ 0 : ∀x ∈ G,∀uj , vj ∈ Gj , ∀zj ∈ tj∂fj(uj ;x), wj ∈ tj∂fj(vj ;x),

− τfj
2 ∥(uj + zj)− (vj + wj)∥2

≤ ⟨zj − wj , uj − vj⟩ . (72)

For ft(u;x) :=
∑m

j=1 tjfj(uj ;x), the resolvent J∂ft,1 is aα-fne with constant αf = 1/2 and violation
τf = maxj{τfj} on G. If fj is convex on Ej for each j = 1, 2, . . . ,m, then J∂ft,1 is α-fne with constant
αf = 1/2 and no violation on E.

Condition (72) generalizes the notion of hypomonotonicity [38] and is satisfied by any prox-regular func-
tion.
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Proof. By [27, Proposition 2.3(iv)], condition (72) is equivalent to J∂fj ,tj being aα-fne on Gj with con-
stant αfj = 1/2 and violation τfj . Extending this, for ft(x) :=

∑m
j=1 tjfj(uj ;x) we have ∂ft(u;x) =[

[t1∂u1f1(u1;x)]
T
, . . . , [tm∂umfm(um;x)]

T
]T

and

∀v, u ∈⊂ G, for z := ∂ft(u;x), w := ∂ft(v;x),

⟨z − w, u− v⟩ =
m∑
j=1

⟨zj − wj , uj − vj⟩Gj

≥
m∑
j=1

−τfj
2 ∥(uj + zj)− (vj + wj)∥2Gj

≥ −maxj{τfj }
2

m∑
j=1

∥(uj + zj)− (vj + wj)∥2Gj

=
−τf
2 ∥(u+ z)− (v + w)∥2 .

Application of [27, Proposition 2.3(iv)] to ft establishes the claim. The convex statement follows from
monotonicity of the gradient.

The following corollary is just the specialization of Proposition 11 to the case that fj(·;x) is independent
of the parameter x.

Corollary 12 (regularity of resolvents of block separable functions). In the setting of Proposition 11 let
hj(·) : Gj ⊂ Ej → (−∞,+∞] satisfy

∃τhj
≥ 0 : ∀xj , yj ∈ Ej , ∀zj ∈ tj∂hj(xj), wj ∈ tj∂hj(yj),

− τhj

2 ∥(xj + zj)− (yj + wj)∥2 ≤ ⟨zj − wj , xj − yj⟩ . (73)

Then for ht(x) :=
∑m

j=1 tjhj(xj), the resolvent J∂ht,1 is aα-fne with constant αh = 1/2 and violation
τh = maxj{τhj

} on G. If hj is convex on Ej for each j = 1, 2, . . . ,m, then J∂ht,1 is α-fne with constant
αh = 1/2 and no violation on E.

Proposition 13 (regularity of gradient descent). Let f : E → R be continuously differentiable with
blockwise Lipschitz and hypomonotone gradient, that is f satisfies

∀j = 1, 2, . . . ,m, ∃Lj > 0 :

m∑
j=1

∥∇xj
f(x)−∇xj

f(y)∥2 ≤
m∑
j=1

L2
j∥xj − yj∥2

∀x, y ∈ E , (74a)

and

∀j = 1, 2, . . . ,m, ∃τfj ≥ 0 :

m∑
j=1

−τfj ∥xj − yj∥2 ≤
m∑
j=1

〈
∇xjf(x)−∇xjf(y), xj − yj

〉
∀x, y ∈ E . (74b)

Then the gradient descent mapping with blockwise heterogeneous step lengths defined by
TGD := Id−

⊕m
j=1 tj∇xj

f is aα-fne on E with violation at most

ϵGD = max
j

{
2tjτj +

t2jL
2
j

α

}
< 1, with constant α = max

j
{αj} (75a)

whenever the blockwise steps tj satisfy

tj ∈

0,
α
√
τ2j + L2

j − ατj

L2
j

 . (75b)

If f is convex then, with global step size tj = t < 2α
L

(j = 1, 2, . . . ,m) for α ∈ (0, 1) with L =

maxj{Lj}, the gradient descent mapping TGD is α-fne with constant α (no violation).
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Proof. By [27, Proposition 2.1], the claim holds if and only if Id− 1
α

⊕m
j=1 tj∇xj

f is almost nonexpansive
on E with violation at most

ϵ′ = ϵGD/α = 1
α max

j

{
2tjτj +

t2jL
2
j

α

}
. (76)

To see this latter property, since f satisfies (74) we have∥∥∥∥∥∥
x− 1

α

m⊕
j=1

tj∇xj
f(x)

−

y − 1
α

m⊕
j=1

tj∇xj
f (y)

∥∥∥∥∥∥
2

= ∥x− y∥2 − 2
α

m∑
j=1

tj
〈
xj − yj , ∇xjf(x)−∇xjf (y)

〉
+ 1

α2

m∑
j=1

t2j
∥∥∇xjf(x)−∇xjf (y)

∥∥2
≤ ∥x− y∥2 + 2

α

m∑
j=1

tjτj ∥xj − yj∥2 + 1
α2

m∑
j=1

t2jL
2
j ∥xj − yj∥2

≤
(
1 + 1

α max
j

{
2tjτj +

t2jL
2
j

α

})
∥x− y∥2 (77)

for all x, y ∈ E . A simple calculation shows that the violation does not exceed 1 whenever the step tj is
bounded by (75b). This proves the result for the nonconvex setting.

If f is convex, then [21, Proposition 3.4] shows that a different bound on the steps is possible. Note
that by [3, Corollaire 10]

1
L∥∇f(x)−∇f(y)∥2 ≤ ⟨∇f(x)−∇f(y), x− y⟩

Let α = maxj{αj} with αj ∈ (0, 1) and L = maxj{Lj}. For t = 2α
L

we have 2t = t2L
α and

t2L
α

1
L
∥∇f(x)−∇f(y)∥2 ≤ 2t ⟨∇f(x)−∇f(y), x− y⟩

⇐⇒
1
α∥t∇f(x)− t∇f(y)∥2 ≤ 2 ⟨t∇f(x)− t∇f(y), x− y⟩

⇐⇒
∥x− y∥2 +

(
1 + 1−α

α

)
∥t∇f(x)− t∇f(y)∥2

≤ 2 ⟨t∇f(x)− t∇f(y), x− y⟩+ ∥x− y∥2

⇐⇒
∥(x− t∇f(x))− (y − t∇f(y))∥2

≤ ∥x− y∥2 − 1−α
α ∥t∇f(x)− t∇f(y)∥2

⇐⇒∥∥∥(x−
⊕m

j=1 t∇xjf(x)
)
−
(
y −

⊕m
j=1 t∇xjf(y)

)∥∥∥2
≤ ∥x− y∥2 −

∑m
j=1

1−α
α ∥t∇jf(x)− t∇jf(y)∥2

⇐⇒
∥TGDx− TGDy∥2 ≤ ∥x− y∥2 − 1−α

α ψ(x, y, TGDx, TGDy)

where the last implication follows from (26) with blockwise step tj = t for all j in TGD .

Remark 1 The violation in the nonconvex case can be controlled by choosing a smaller blockwise step
tj . In the convex setting, larger step sizes are possible, but these are limited by the global Lipschitz
constant L and the constant α. Note that the upper bound on the step length suggested by Proposition
13 is consistent with the upper bound on the steps in Example 2.

Proposition 14 (blockwise composite mappings). Let G ⊂ E with Gj ⊂ Ej for j = 1, 2 . . . ,m.
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(i) Fully nonconvex. For all j ∈ {1, 2, . . . ,m} let f : G → R be subdifferentially regular with
subdifferential satisfying (72) and let hj : Gj → (−∞,+∞] be proper, l.s.c., and subdifferentially
regular satisfying (73).
(a) The partial blockwise Douglas-Rachford mapping TDR

i defined by (19) (j ∈ Mi) is aα-fne on
GMi

⊕
{z}M◦

i
for any fixed zM◦

i
∈ GM◦

i
with respective constant and violation

αDR =
2

3
, and ϵDR ≤ τf + τh + τfτh (78)

where τh := maxj{τhj
} and τf := maxj{τfj}.

(b) If f is continuously differentiable on E and satisfies (74), the partial blockwise forward-backward
mapping TFB

i defined by (17) with step lengths tj satisfying (75b) (j ∈Mi) is aα-fne on affine
subspaces GMi

⊕
{z}M◦

i
for any fixed zM◦

i
∈ GM◦

i
with respective constant and violation

αFB :=
2

1 + 1

max{ 1
2 , α}

, and ϵFB ≤ ϵGD + τh + ϵGDτh (79)

where α := maxj{αj}, τh := maxj{τhj
} and ϵGD is no larger than (75a).

(ii) Partially nonconvex. For all j ∈ {1, 2, . . . ,m} let f : E → R be continuously differentiable
with gradient satisfying (74) and let the functions hj be convex on Gj (j = 1, 2, . . . ,m). Then for
all i ∈ I, TFB

i is aα-fne on GMi

⊕
{z}M◦

i
for any zM◦

i
∈ GM◦

i
with constant αFB given by (79),

violation ϵFB at most ϵGD, and this can be made arbitrarily small by choosing the step lengths ti
small enough.

(iii) Convex. If f and hj are convex on E (j = 1, 2, . . . ,m), then
(a) TDR

i is α-fne on EMi

⊕
{z} with constant αDR = 2/3 and no violation;

(b) if f is continuously differentiable and ∇f satisfies (74a), TFB
i with global step size t < 2α

L
for

L = maxj{Lj} is α-fne on EMi

⊕
{z} with constant αFB given by (79) and no violation.

Proof. Part (i). By Theorem 1, the respective regularity constants ϵi and αi are bounded above by the
respective constants of TFB

1 and TDR
1 , which are the mappings including all of the blocks. It suffices,

then, to determine the regularity of TFB
1 and TDR

1 . Part (ia). By Proposition 11 and Corollary 12 J∂ft
and J∂ht

are aα-fne with constant αht
= 1/2 and violation τf = maxj{τfj} (respectively τh = maxj{τhj

})
on G. Then by [27, Proposition 2.4] TDR

1 is aα-fne with constant αDR = 2/3 and (maximal) violation
given by (78) on G.

Part (ib). By Proposition 13, TGD is aα-fne on G with violation ϵGD no larger than (75a) and constant
α = maxj{αj}. By Corollary 12 J∂ht

is aα-fne with constant αht
= 1/2 and violation τh = maxj{τhj

}
on E . Then by [27, Proposition 2.4/Proposition 3.7] TFB

1 is aα-fne with constant αFB and (maximal)
violation given by (79) on G.

Parts (ii)-(iii) follow immediately from part (i) and Propositions 11-13.

Corollary 15. For G ⊂ E, let Φ : G× I → G be the update function given by Φ(x, i) = Tix where Ti is
either TFB

i or TDR
i defined respectively by (17) and (19).

(i) Fully nonconvex. Under the assumptions of Proposition 14(i), that is both f and h in (17) are
nonconvex, the corresponding update function Φ(x, i) is aα-fne in expectation with respect to the
weighted norm ∥ · ∥p with regularity constants pϵDR and αDR (respectively pϵFB and αFB = 2/3)
corresponding to (78) (respectively (79)).

(ii) Partially nonconvex. Under the assumptions of Proposition 14(ii), that is f smooth nonconvex
with Lipschitz and hypomonotone gradient and hj convex in (17), Φ(x, i) = TFB

i (x) is aα-fne in
expectation with respect to the weighted norm ∥ · ∥p with constant αFB as above and violation at
most pϵGD with ϵGD given by (75a); this violation can be made arbitrarily small by choosing the
step lengths ti small enough.

(iii) Convex. If both f and hj are convex on E (j = 1, 2, . . . ,m), then TDR
i (x) is α-fne in expectation

with respect to the weighted norm ∥ · ∥p (no violation) and constant αDR = 2/3 on E. In the case
of TFB, if ∇f satisfies (74a) and the global step size is bounded by t < 2α

L
for L = maxj{Lj},

TFB
i (x) is α-fne in expectation with respect to the weighted norm ∥ · ∥p (no violation) and constant
αGD on E.
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Proof. This is an immediate consequence of Proposition 14 and Theorem 1

Before presenting the convergence results it is worthwhile pointing out that the partial blockwise
forward-backward mappings TFB

i and TDR
i have common fixed points, and these are critical points of

(1). In other words, the stochastic fixed point problem is consistent. As shown in Section 4.2.1, in this
case the metric subregularity condition (55) simplifies to (65) when Ψ(µ) = 0 if and only if µ ∈ invP
and suppµ ⊂ C. In the convex setting we have the following correspondence between invariant measures
of the stochastic block iterations and minima of (1).

Proposition 16. Let P be the Markov operator associated with either Algorithm 2 or 3. In the setting
of Lemma 10, if f and gj (for all j = 1, . . . ,m) are convex, then invP = {π | suppπ ⊂ C } and whenever
x ∈ C then almost surely x ∈ argmin {f +

∑m
j=1 gj}.

Proof. When f and gj (for all j = 1, . . . ,m) are convex, the corresponding mappings Ti defined by either
(17) or (19) are single-valued self-mappings on E and α-fne on EMi

⊕ {z}M◦
i
for every z ∈ M◦

i as long
as the step size ti is small enough ( [27, Propositions 3.7 and 3.10] specialized to the convex case). Then
by Corollary 4 the mappings Ti are paracontractions in expectation on E . The claim then follows from
Theorem 5(ii) and Lemma 10 since in this case crit (f +

∑m
j=1 gj) = argmin {f +

∑m
j=1 gj}.

The final result of this study collects all of these facts in the context of the Markov chain underlying
Algorithm 2 and 3.

Proposition 17. Let P be the Markov operator associated with the S-BFBS Algorithm 2 or the S-BDRS
Algorithm 3 and let (µk)k∈N be the corresponding sequence of measures initialized by any µ0 ∈ P2(G),

where G is a closed subset of E. Assume that G ⊃ crit
(
f +

∑m
j=1 gj

)
̸= ∅ and invP = C defined by

(47). Let Ψ given by (41) be such that Ψ(µ) = 0 if and only if µ ∈ invP. Additionally, let the mappings
Ti be self-mappings on G where Ψ satisfies (65) with gauge ρ given by (57) with τ = (1−α∗)/α∗, ϵ = pϵ∗
for constants α∗ and violation ϵ∗ given by either (79) or (78) (depending on the algorithm), and θτ,ϵ
satisfying (56).

(1) Fully nonconvex. Under the assumptions of Proposition 14(i), the sequence (µk) satisfies

dW2,p (µk+1, invP) ≤ θτ,ϵ
(
dW2,p (µk, invP)

)
∀k ∈ N.

If τ and ϵ are such that at least one of the conditions in Assumption 2 holds, then µk → πµ0 ∈
invP ∩ P2(G) in the dW2,p metric with rate O

(
θ
(k)
τ,ϵ (t0)

)
in the case of Assumption 2(a) where

t0 = dW2,p

(
µ0, invP

)
, and with rate O(sk(t0)) for sk(t) :=

∑∞
j=k θ

(j)
τ,ϵ(t) in the case of Assumption

2(b). Moreover, suppπµ0 ⊂ C := {x ∈ G |P (Tξx = x) = 1}.
(2) Partially nonconvex. Under the assumptions of Proposition 14(ii), that is f smooth nonconvex

with Lipschitz and hypomonotone gradient and hj convex in (17), if there exist τ and ϵ such that at
least one of the conditions in Assumption 2 holds, then for all step lengths ti small enough in (17)
and any initial distribution µ0 close enough to invP, the sequence µk → πµ0 ∈ invP ∩P2(G) in the

dW2,p metric with rate at least O
(
θ
(k)
τ,ϵ (t0)

)
in the case of Assumption 2(a), and with rate at least

O(sk(t0)) in the case of Assumption 2(b); moreover, suppπµ0 ⊂ C.
(3) Convex. If f and hj are convex on E, and there exists τ such that at least one of the conditions

in Assumption 2 holds when ϵ = 0, then the sequence (µk) corresponding to Algorithm 3 initialized
from any µ0 ∈ P2(E), converges in the metric dW2,p to an invariant distribution with rate at least

O
(
θ
(k)
τ,ϵ (t0)

)
in the case of Assumption 2(a), and with rate at least O(sk(t0)) in the case of Assump-

tion 2(b). Moreover suppπµ0 ⊂ C := argmin
(
f +

∑m
j=1 gj

)
. If f is continuously differentiable and

satisfies (74a), then the stated convergence in the case of Algorithm 2 holds for the global step length
t < 2α

L
.

6 Final Remarks

There a several open technicalities lurking between the lines above, and one rather obvious challenge
hiding in plain sight. To the hidden technicalities belong the question of whether metric subregularity
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is necessary for quantitative convergence in some appropriate metric of Markov operators that are not
paracontractions in measure. We conjecture that this is true. Another open technical issue concerns the
statement of asymptotic regularity in Proposition 6. This result is incomplete without some extension
to a weak type of convergence in distribution. For consistent stochastic fixed point problems, if each of
the update functions Ti were α-fne, then almost sure weak convergence of the iterates is guaranteed [18,
Theorem 3.9]; at issue here is whether this holds when Ti is pointwise α-fne in expectation at invariant
measures of the corresponding Markov operator. We expect that there should be a counterexample to this
claim. Characterization of the supports of invariant measures in the inconsistent case is quite challenging
and essential for meaningfully connecting the limiting distributions of the algorithms to solutions to the
underlying optimization problem. Finally, the restriction of the study to single-valued mappings does not
allow one to capture the full extent of behavior one sees with nonconvex problems. Projection methods
for sparse affine feasibility, for instance, have the property that the projection onto a sparsity constraint
can be multi-valued on all neighborhoods of a solution (see [17, Lemma III.2]). An extension of the
analysis presented here to multi-valued mappings, is required.

The most difficult challenge to all of this is the task of numerically monitoring convergence in distri-
bution of random variables. To do this completely one needs first of all efficient means for computing the
Wasserstein distance between measures; in other words, one needs to solve optimal transport problems
efficiently. Again, for consistent stochastic feasibility when convergence of the iterates can be guaranteed
almost surely, optimal transport is not needed; more generally, however, this machinery is essential. Sec-
ondly, one needs to numerically estimate the distributions whose distances are to be computed. These
are significant challenges worthy of attention.
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35. Z. Qu and P. Richtárik. Coordinate descent with arbitrary sampling. I: Algorithms and complexity. Optim. Methods

Softw., 31(5):829–857, 2016.
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