
Empirical Software Engineering (2023) 28:66
https://doi.org/10.1007/s10664-023-10301-2

Are automated static analysis tools worth it? An
investigation into relative warning density and
external software quality on the example of Apache
open source projects

Alexander Trautsch1 · Steffen Herbold1 · Jens Grabowski2

© The Author(s) 2023

Abstract
Automated Static Analysis Tools (ASATs) are part of software development best practices.
ASATs are able to warn developers about potential problems in the code. On the one hand,
ASATs are based on best practices so there should be a noticeable effect on software quality.
On the other hand, ASATs suffer from false positive warnings, which developers have to
inspect and then ignore or mark as invalid. In this article, we ask whether ASATs have a
measurable impact on external software quality, using the example of PMD for Java. We
investigate the relationship between ASAT warnings emitted by PMD on defects per change
and per file. Our case study includes data for the history of each file as well as the differences
between changed files and the project in which they are contained. We investigate whether
files that induce a defect have more static analysis warnings than the rest of the project.
Moreover, we investigate the impact of two different sets of ASAT rules. We find that, bug
inducing files contain less static analysis warnings than other files of the project at that point
in time. However, this can be explained by the overall decreasing warning density. When
compared with all other changes, we find a statistically significant difference in one metric
for all rules and two metrics for a subset of rules. However, the effect size is negligible in all
cases, showing that the actual difference in warning density between bug inducing changes
and other changes is small at best.

Keywords Static code analysis · Quality evolution · Software metrics · Software quality

Communicated by: Gabriele Bavota

� Alexander Trautsch
alexander.trautsch@uni-passau.de

Steffen Herbold
steffen.herbold@uni-passau.de

Jens Grabowski
grabowski@cs.uni-goettingen.de

1 University of Passau, Passau, Germany
2 Institute of Computer Science, University of Göttingen, Göttingen, Germany

/ Published online: 17 April 2023 Accepted: 3 February 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10301-2&domain=pdf
http://orcid.org/0000-0001-5236-7953
http://orcid.org/0000-0001-9765-2803
mailto: alexander.trautsch@uni-passau.de
mailto: steffen.herbold@uni-passau.de
mailto: grabowski@cs.uni-goettingen.de

Empir Software Eng (2023) 28:66

1 Introduction

Automated Static Analysis Tools (ASATs) or linters are programs that perform rule match-
ing of source code via different representations, e.g., Abstract Syntax Trees (ASTs), call
graphs or bytecode to find potential problems. Rules are predefined by the ASAT and based
on common coding mistakes and best practices. If a rule is matched, a warning is gener-
ated for the developer who can then inspect the given file, line number and rule. Common
coding best practices involve ASATs use in different contexts (Vassallo et al. 2020), e.g.,
as part of Continuous Integration (CI), within IDEs, or to support code reviews. Develop-
ers also think of these tools as quality improving when used correctly (Christakis and Bird
2016; Vassallo et al. 2020; Devanbu et al. 2016; Querel and Rigby 2021). However, due to
their rule matching nature, ASATs are prone to false positives, i.e., warnings about code
that is not problematic (Johnson et al. 2013). This hinders the adoption of these tools and
their usefulness, as developers have to inspect every warning that is generated, whether it is
a false positive or not. As a result, research into classifying ASAT warnings into true and
false positives or actionable warnings is conducted, e.g., Heckman and Williams (2009),
Kim and Ernst (2007), and Koc et al. (2017). Due to these two aspects, ASATs are perceived
as quality improving while at the same time require manual oversight and corrections.

Due to this manual effort, we want to have a closer look on the impact of ASATs
on measurable quality. Previous research regarding the impact on quality measures either
builds predictive models, e.g., Nagappan and Ball (2005), Plosch et al. (2008), Rahman
et al. (2014), Querel and Rigby (2018), Lenarduzzi et al. (2020), Trautsch et al. (2020), and
Querel and Rigby (2021) or investigates bug fixing commits, e.g., Vetro et al. (2011) and
Thung et al. (2012) or Habib and Pradel (2018).

In contrast to the previous work, we combine multiple factors in this study. First, we
include manually validated data from a large-scale validation study (Herbold et al. 2022a).
This allows us to use only manually validated bug fixing lines to evaluate the impact on
quality instead of keyword approaches. Second, we focus on a general purpose ASAT, which
allows us to investigate a broad range of static analysis warnings, e.g., readability and main-
tainability warnings. Third, we investigate a long term perspective by including the ASAT
warning density of a file over its history. This combination allows us not only to study
whether current static analysis warnings in a file has an impact, but also longer term effects
of a general purpose ASAT by including its history.

In our previous work, we found that static analysis warnings are evolving over time
and that we cannot just use the density or the sum of warnings (Trautsch et al. 2020a).
Therefore, we use an approach that is able to produce a current snapshot view of the files
we are interested in by measuring the file that induces a bug and, at the same time, all other
files of the project. This ensures that we are able to produce time and project independent
measurements. The drawback of this approach is that it requires a large computational effort,
as we have to run the ASAT under study on every file in every revision of all study subjects.
However, the resulting empirical data yields insights for researchers and practitioners.

The research question that we answer in our case study is:

– Do bug inducing files contain more static analysis warnings than other files?

Answering this question can help us to determine whether an ASAT has an impact on soft-
ware quality. If bug inducing changes contain more static analysis warnings we can use an
ASAT to flag high risk changes which could decrease bug inducing changes in the project.

66 Page 2 of 21

Empir Software Eng (2023) 28:66

We apply a modified fine-grained just-in-time defect prediction data collection method
to extract software evolution data, including bug inducing file changes and static analysis
warnings from a general purpose ASAT. We chose PMD1 as the general purpose ASAT as
it has been available for a long time and provides a good mix of available rules. Using this
data and a warning density based metric calculation, we investigate the differences between
bug inducing files and the rest of the studied system at the point in time when the bug is
introduced. In summary, this article contains the following contributions.

– A unique and simple approach to measure impact of ASATs that is independent of
differences between projects, size and time.

– Complete static analysis data for PMD for 23 open source projects for every file in
every commit.

– An investigation into relative warning density differences within bug inducing changes.

The main findings of our case study are:

– Bug inducing files do not contain higher warning density than the rest of the project at
the time when the bug is introduced.

– When comparing bug inducing warning density with all other changes we can measure
higher warning density on a subset of PMD warnings that is a popular default for two
metrics and for all available rules for one metric.

The rest of this article is structured as follows. Section 2 lists previous research related to
this article and discusses the differences. Section 3 describes the case study setup, method-
ology, analysis procedure and the results. Section 4 discusses the results of our case study
and relates them to the literature. Section 5 lists and discusses threats to validity we identi-
fied for our study. Section 6 concludes the article with a short summary. Section 7 provides
a short outlook.

2 RelatedWork

In this article, we explore a more general view of ASATs and the warning density differences
of bug inducing changes. This can be seen as a mix of a direct and indirect impact study.
Therefore, we describe related work for both direct and indirect impact studies within this
section.

The direct impact is often evaluated by exploring if bugs that are detected in a project are
fixed by fixing ASAT warnings, i.e., did the warning really indicate a bug that needed to be
fixed later.

Thung et al. (2012) investigate bug fixes of three open source projects and three ASATs:
PMD, JLint, and FindBugs. The authors look at how many defects are found fully and
partially by changed lines and how many are missed by the ASATs. Lines that are changed
as part of a bug fix are compared with lines reported by the ASAT. Moreover, the authors
describe the challenges of this approach: not every line that is changed is really a fix for
the bug, therefore the authors perform manual investigation on a per-line level to identify
the lines. They were able to find all lines responsible for 200 of 439 bugs. In addition, the
authors find that PMD and FindBugs perform best, however their warnings are often very
generic.

1https://pmd.github.io/

Page 3 of 21 66

https://pmd.github.io/

Empir Software Eng (2023) 28:66

Habib and Pradel (2018) perform an investigation of the capabilities to find real world
bugs via ASATs. The authors used the Defects4J dataset by Just et al. (2014) with an exten-
sion2 to investigate the number of bugs found by three static analysis tools, SpotBugs, Infer
and error-prone. The authors show that 27 of 594 bugs are found by at least one of the
ASATs.

In contrast to Thung et al. (2012) and Habib and Pradel (2018), we only perform an
investigation of PMD. However, due to our usage of SmartSHARK (Trautsch et al. 2017),
we are able to investigate 1,723 bugs for which at least three researchers achieved consen-
sus on the lines responsible for the bug. Moreover, as PMD includes many rules related to
readability and maintainability, we build on the assumption that while they are not directly
indicating a bug, resolving these warnings improves the quality of the code and may pre-
vent future bugs. This extends previous work by taking possible long term effects of ASAT
warnings into account.

Indirect impact is explored by using ASAT warnings as features for predictive models
and providing a correlation measure of ASAT warnings to bugs.

Nagappan and Ball (2005) explore the ability of ASAT warnings to predict defect density
in modules. The authors found in a case study with Microsoft, that static analysis warnings
can be used to predict defect density, therefore they can be used to focus quality assur-
ance efforts on modules that show a high number of static analysis warnings. In contrast to
Nagappan and Ball (2005), we are exploring open source projects. Moreover, we explore
warning density differences between files and the project they are contained in.

Rahman et al. (2014) compare static analysis and statistical defect prediction. They find
that FindBugs is able to outperform statistical defect prediction, while PMD does not.
Within our study, we focus on PMD as a general purpose ASAT. Instead of a comparison
with statistical defect prediction we explore, whether we can measure a difference of ASAT
warnings between bug inducing changes and other changes.

Plosch et al. (2008) explores a correlation between ASAT warnings as features for a pre-
dictive model and the dependent variable, i.e., bugs. They found that static analysis warnings
may improve the performance of predictive models and that they are correlated with bugs.
In contrast to Plosch et al. (2008), we are not building a predictive model. We are explor-
ing whether we can find an effect of static analysis tools without a predictive model with
multiple features, instead we strive to keep the approach as simple as possible.

Querel and Rigby (2018) improve the just-in-time defect prediction based commit
guru (Rosen et al. 2015) by adding ASAT warnings to the predictive model. The authors
show, that just-in-time defect prediction can be improved by adding static analysis warn-
ings. This means that there should be a connection between external quality in the form of
bugs and static analysis warnings. In a follow-up study (Querel and Rigby 2021) the authors
found that while there is an effect of ASAT warnings the effect is likely small. In our study,
we explore a different view on the data. We explore warning density differences between
bug inducing files and the rest of the project.

Lenarduzzi et al. (2020) investigate SonarQube as an ASAT and whether the reported
warnings can be used as features to detect reported bugs. The authors are combining direct
with indirect impact, but are more focused on predictive model performance measures. In
contrast to Lenarduzzi et al. (2020), we are mainly interested in the differences in warning
density between bug inducing files and the rest of the project. We are also investigating an
influence, but in contrast to Lenarduzzi et al., we are comparing our results for bug fixing

2https://github.com/rjust/defects4j/pull/112

66 Page 4 of 21

https://github.com/rjust/defects4j/pull/112

Empir Software Eng (2023) 28:66

changes to all other changes to determine whether what we see is really part of the bug
fixing change and not a general trend of all changes.

3 Case Study

The goal of the case study is to find evidence if usage of ASATs have a positive impact
on the external software quality of our case study subjects. In this section, we explain the
approach and ASAT choice. Moreover, we explain our study subject selection and describe
the methodology and analysis procedure. At the end of this section, we present the results.

3.1 Static Analysis

Static analysis is a programming best practice. ASATs scan source code or byte code and
match against a predefined set of rules. When a rule matches, the tool creates a warning for
the part of the code that matches the rule.

There are different tools for performing static analysis of source code. For Java these
would be, e.g., Checkstyle, FindBugs/SpotBugs, PMD, or SonarQube. In this article, we
focus on Java as a programming language because it is widely used in different domains and
has been in use for a long time. The static analysis tool we use is PMD. There are multiple
reasons for this. PMD does not require the code to be compiled first as, e.g., FindBugs
does. This is an advantage, especially with older code that might not compile anymore due
to missing dependencies (Tufano et al. 2017). PMD supports a wide range of warnings of
different categories, e.g., naming and brace rules as well as common coding mistakes. This
is an advantage over, e.g., Checkstyle which mostly deals with coding style related rules.
This enables PMD to give a better overview of the quality of a given file instead of giving
only probable bugs within it. The relation to software quality that we expect of PMD stems
directly from its rules. The rules are designed to make the code more readable, less error
prone and overall more maintainable.

3.2 Just-in-Time Defect Prediction

The idea behind just-in-time defect prediction is to assess the risk of a change to an exist-
ing software project (Kamei et al. 2013). Previous changes are extracted from the version
control system of the project and, as they are in the past, it is known whether the change
induced a bug. This can be observed by subsequent removal or alteration of the change as
part of a bug fixing commit. If the change was indeed removed or altered as part of a bug
fixing operation it is traced back to its previous file and change and labeled as bug induc-
ing, i.e., it introduced a bug that needed to be fixed later. In addition to these labels, certain
characteristics of the change are extracted as features, e.g., lines added or the experience of
the author to later train a model to predict the labels correctly for the commits. The result of
the model is then a label or probability whether the change introduces a bug, i.e., the risk of
the change.

However, ASATs are working on a file basis and we also want to investigate longer-
term effects of ASATs. This means we need to track a file over its evolution in a software
project. To achieve this, we are building on previous work by Pascarella et al. (2019) which
introduced fine-grained just-in-time defect prediction. In a previous study, we improved the
concept by including better labels and static analysis warnings as well as static code metrics
as features (Trautsch et al. 2020). Similar to Pascarella et al. (2019), we are building upon

Page 5 of 21 66

Empir Software Eng (2023) 28:66

Table 1 Study subjects in our case study

Project #commits #file changes #issues Time frame

ant-ivy 1,647 7,860 296 2005-2017

commons-bcel 850 9,604 27 2001-2017

commons-beanutils 561 2,648 28 2001-2017

commons-codec 810 2,062 21 2003-2017

commons-collections 1,687 11,296 32 2001-2017

commons-compress 1,401 3,566 87 2003-2017

commons-configuration 1,659 4,177 97 2003-2017

commons-dbcp 729 2,211 39 2001-2017

commons-digester 1,131 3,750 11 2001-2017

commons-io 985 2,781 51 2002-2017

commons-jcs 774 7,775 37 2002-2017

commons-lang 3,028 6,312 109 2002-2017

commons-math 4,135 21,440 190 2003-2017

commons-net 1,076 4,666 96 2002-2017

commons-scxml 469 1,774 39 2005-2017

commons-validator 557 1,324 37 2002-2017

commons-vfs 1,098 7,209 67 2002-2017

giraph 819 7,715 109 2010-2017

gora 464 2,256 38 2010-2017

opennlp 1,166 9,679 82 2010-2017

parquet-mr 1,053 5,957 69 2012-2017

santuario-java 1,177 8,503 41 2001-2017

wss4j 1,711 12,218 120 2004-2017

Sum 28,987 146,783 1,723

PyDriller (Spadini et al. 2018). In this article, we build upon our previous work and include
not only counts of static analysis warnings but relations between the files, e.g., how different
is the number of static analysis warnings in one file from the rest of the project. We also
include aggregations of warnings with and without a decay over time.

3.3 Study Subjects

Our study subjects consist of 23 Java projects under the umbrella of the Apache Software
Foundation3 previously collected by Herbold et al. (2022b). Table 1 contains the list of our
study subjects. We only use projects which contain fully validated bug fixing on a line-
by-line level collected in a crowd sourcing study (Herbold et al. 2022a). Every line in our
data was labeled by four researchers. We only consider bug fixing lines for which at least
three researchers agree that it fixes the considered bug. This naturally restricts the number
of available projects, but improves the noise to signal ratio of the data.

We now give a short overview what the potential problems are and how we mitigate them.
When we look at external quality, we want to extract data about defects. However, there are

3https://www.apache.org

66 Page 6 of 21

https://www.apache.org

Empir Software Eng (2023) 28:66

several additional restrictions we want to apply. First, we want to extract defects from the
Issue Tracking System (ITS) of the project and link them to commits in the Version Control
System (VCS) to determine bug fixing changes. Several data validity considerations need
to be taken into account here. The ITS usually has a kind of label or type to distinguish
bugs from other issues, e.g., feature requests. However, research shows that this label is
often incorrect, e.g., Antoniol et al. (2008), Herzig et al. (2013), and Herbold et al. (2022b).
Moreover, with this kind of software evolution research, we are interested in bugs existing in
the software and not bugs which occur because of external factors, e.g., new environments or
dependency upgrades. Therefore, we are only considering intrinsic bugs (Rodriguez-Pérez
et al. 2020).

The next step is the linking between the issue from the ITS and the commit from the
VCS. This is achieved via a mention of the issue in the commit message, e.g., fixes JIRA-
123. While this seems straightforward, there are certain cases where this can be problematic.
The simplest one being that there is a typo in the project key, e.g., JRIA-123.

Moreover, not all changes within bug fixing commits contribute to bug fixes. Unrelated
changes can be tangled with the bug fix. The restriction of all data to only changes that
directly contribute to the bug fix further reduces noise in the data. We are only interested
in the lines of the changes that contribute to the bug fix. This is probably the hardest to
manually validate.

This was achieved in a prior publication (Herbold et al. 2022b) which served as the base
for the publication which data we use in this article (Herbold et al. 2022a). In Herbold
et al. (2022a) a detailed untangling is performed by four different persons for each change
that fixes a bug that meets our criteria. The untangling allows for focusing on the changes
that are relevant to the bug fix only without including other changes, e.g., refactoring or
documentation changes. Each bug fixing change is displayed in a code diff view with syntax
highlighting where each participant of the study assigns a label for each line of the change.
If at least three participants agree that the line contributed to the bug fix it is considered as
part of the bug fix.

3.4 Replication Kit

We provide all data and scripts as part of a replication kit.4

3.5 Methodology

To answer our research question, we extract information about the history of our study
subjects including bugs and the evolution of static analysis warnings. While the bulk of the
data is based on Herbold et al. (2022a) we include several additions necessary for answering
our research question.

To maximize the relevant information within our data, we include as much informa-
tion from the project source code repository as possible. After extracting the bug inducing
changes, we build a commit graph of all commits of the project and then find the current
main branch, usually master. After that, we find all orphan commits, i.e., all commits with-
out parents. Then we discard all orphans that do not have a path to the last commit on the
main branch, this discards separate paths in the graph, e.g., gh-pages5 for documentation.

4https://github.com/atrautsch/emse2021a replication
5https://docs.github.com/en/pages

Page 7 of 21 66

https://github.com/atrautsch/emse2021a_replication
https://docs.github.com/en/pages

Empir Software Eng (2023) 28:66

As we also want to capture data on release branches which are never merged back into the
main branch, we add all other branches that have a path to one of our left over orphan com-
mits. The end result is a connected graph which we traverse via a modified breadth first
search. We take the date of the commit into account while we traverse the graph.

The traversal is an improved version of previous work (Trautsch et al. 2020). In addition
to the previously described noise reduction via manual labeling, we additionally restrict all
files to production code. One of the results of Herbold et al. (2022a) is that non-production
code is often tangled with bug fixing changes. Therefore, we only add files that are produc-
tion files to our final data analogous to Trautsch et al. (2020a). This also helps us to provide
a clearer picture of warning density based features as production code may have a different
evolution of warning density than, e.g., test or example code.

In our previous study (Trautsch et al. 2020a) we found that static analysis warnings are
correlated to Logical Lines of Code (LLOC). This is not surprising as we are observing large
portions of our study subjects code history. Large files that are added and removed have
an impact on the number of static analysis warnings. While we do not want to discard this
information, we also want to avoid the problem of large changes overshadowing information
in our data. Therefore, like in our previous study, we are using warning density as a base
metric in this study analogous to prior studies, e.g., Aloraini et al. (2019) and Penta et al.
(2009).

Warning density (wd) is the ratio of the number of warnings and the size of the analyzed
part of the code.

wd = Number of static analysis warnings

Product size
(1)

Product size is measured in LLOC. If we measure the warning density of a system wd(s),
we sum warnings and LLOC for each file. If we measure the warning density of a file
wd(f), we restrict the number of warnings and the LLOC to that file.

While this measure provides a size independent metric, we also need to take differences
between projects into account. Warning density can be different between projects and for
different points in time for each project. The median warning density range in our study
subjects is between 0.4 and 0.8. In absolute number of warnings the difference is between
2,604 and 26,854 warnings. The median difference in warning density in the first commit is
0.7 and the last commit is 0.5. In absolute number of warnings, the difference is between 923
and 8,963 warnings. To be able to use all available data we account for these differences by
using differences in warning density between the files of interest and the rest of the project
under study (the system) at the specific point in time.

We calculate the warning density difference between the file and the system f d(ft).

f d(ft) = wd(ft) − wd(st) (2)

If the file f at time t contains less static analysis warnings per LLOC than the system s

at time t the value is negative and if it contains more it is positive. We can use this metric
to investigate bug inducing commits and determine whether the files responsible for bugs
contain less or more static analysis warnings per LLOC than the system they belong to.

While this yields information corrected for size, project differences, and time of the
change, we also want to incorporate the history of each file. Therefore, we also sum this
difference in warning density for all changes to the file. We assume that recent changes are
more important than old changes, especially considering that the file history can reach back
multiple years. Therefore, we introduce a decay in our warning density derived features.

66 Page 8 of 21

Empir Software Eng (2023) 28:66

df d(ft) =
j=t∑

j=1

wd(fj) − wd(sj)

t − j + 1
(3)

For the decayed file system warning density delta df d(ft) we compute the decayed, cumu-
lative sum of the difference between the warning density of the file (wd(ft)) and the
warning density of the system (wd(st)). The rationale is that if a file is constantly better,
regarding static analysis warnings, than the mean of the rest of the system, this should have
a positive effect. While other decay mechanisms, e.g., quadratic or logarithmic would be
possible we decided on a simple linear mechanism due to the absence of data regarding what
would be an ideal decay mechanism in this case. As the static analysis rules are diverse, this
can be improved readability, maintainability or robustness due to additional null checks.
Within our study, we explore if this effect has a measurable effect on buggyness, i.e., the
lower this value is the less often the file should be part of bug inducing commits.

Instead of using all warnings for warning density, we can also restrict these warnings to
a smaller set to see if this has an effect. While we do not want to choose multiple subsets to
avoid false positive findings, we have to investigate whether our approach to use all available
warnings just waters down the ability to indicate files which may contain bugs. To this end,
we also investigate the warning density, consisting only of PMD warnings that are enabled
by default by the maven-pmd plugin6 which we denote as default rules. This restricts the
number of warnings that are the basis of the warning density calculation to a subset of 49
warnings that are generally considered relevant in comparison to the total number of 3.14
warnings. Their use as default warnings serves to restrict this subset to generally accepted
important warnings.

To answer our research question, we compare the warning density for each bug inducing
file against the project at the time before and after the bug inducing change. If the difference
is positive, this means that the file had a higher warning density than the rest of the project
and negative vice versa. We plot the difference in warning density in a box plot for all bug
inducing files to provide an overview over all our data.

As this is influenced by a continuously improving warning density, we also measure the
differences between bug inducing file changes and all other file changes. We first perform
a normality test and find that the data is not normal in all cases. Thus, we apply a Mann-
Whitney U test (Mann and Whitney 1947) with H0 that there is no difference between both
populations and H1 that bug inducing files have a different warning density. We set a sig-
nificance level of 0.05. Additionally, we perform a Bonferroni (Abdi 2007) correction for 8
normality tests as prerequisite for all populations for the 4 Mann-Whitney U tests. There-
fore, we reject H0 at p < 0.0042. If the difference is statistically significant, we calculate
the effect size with Cliff’s δ (Cliff 1993).

3.6 Results

We now present the results of our study and the answer to our research question whether
bug inducing files contain more static analysis warnings than other files. For this, we divide
the results into three parts. First, we look at the warning density via f d(f) at the time
before and after a bug is induced and df d(f) after a bug is induced.7 Second, we look at the
differences between our study subjects and the prior number of changes for bug inducing file

6https://maven.apache.org/plugins/maven-pmd-plugin/
7before is already part of the formula

Page 9 of 21 66

https://maven.apache.org/plugins/maven-pmd-plugin/

Empir Software Eng (2023) 28:66

changes. Third, we compare bug inducing file changes with all other changes and determine
if they are different.

3.6.1 Differences of Warning Density before and after the Bug Inducing Change

Figure 1 shows the difference in warning density between each bug inducing file and the
rest of the system at the point in time before inducing the bug and after.

Surprisingly, we see a negative warning density median difference for f d(f). This
means that the warning density of the files in which bugs are induced is lower than the rest
of the project. The drop in warning density shows that the code before the change had less
warning density than after the bug inducing change. This means that code that on average
contains more static analysis warnings was introduced as part of the bug inducing change.

Now, we are also interested in whether the history of preceding differences in warning
density makes a difference. Instead of using the warning density difference at the point in
time of the bug inducing change we use a decayed sum of the warning density differences
leading up to the considered bug inducing change.

Figure 1 shows a negative median for df d(f) as well. The accumulated warning density
differences between the file and the rest of the project are therefore also negative. Figure 2
shows f d(f) and df d(f) for bug inducing changes restricted to default rules. We can see,
that the warning density for default only is much lower due to the lower number of warnings
that are considered. We can also see, that the same negative median is visible when we
restrict the set of ASAT rules to default. Overall, bug inducing changes have lower warning
density than the other files of the project at the time the bug was induced. However, as we
will see later, this is an effect of overall decreasing warning density of our study subjects.

3.6.2 Differences Between Projects and Number of Changes

Instead of looking at all files combined, we can also look at each project on its own. We
provide this data in Fig. 3. However, we note that the number of bug inducing files is low
in some projects. Such projects may be influenced by few changes with extreme values.
Hence, the results of single projects should be interpreted with caution. Instead, we consider
trends visible in the data. While we can combine all our data due to our chosen method of
metric calculation we still want to provide an overview of the per-project values. This is
shown in Fig. 3 for df d(f). Figure 3 also demonstrates the difference between projects.
For example, the median df d(f) for comons-codec is positive, i.e., files which induce bugs

Fig. 1 Box plot of f d(f) for all bug inducing files before and after the bug inducing change and df d(f)

for all bug inducing files after the bug inducing change, median value in parentheses. Fliers are omitted

66 Page 10 of 21

Empir Software Eng (2023) 28:66

Fig. 2 Box plot of f d(f) for only default warnings of all bug inducing files before and after the bug inducing
change, median value in parentheses. Fliers are omitted

Fig. 3 Box plots of df d(f) separately for all study subjects. The number of bug inducing file changes are
in parentheses, median value in parentheses. Fliers are omitted

Page 11 of 21 66

Empir Software Eng (2023) 28:66

Fig. 4 Number of changes for bug inducing files and other files. Fliers are omitted

contain more warnings. The opposite is the case for, e.g., commons-digester, where the
median is negative.

Overall, Fig. 3 shows that the median df d(f) is negative for 16 of 23 projects. This
means that bug inducing changes have less warning density than the rest of the project for
most study subjects. A possible explanation for this could be that files which have a lower
warning density are changed more often, and those are the same that could be inducing
bugs. If we look at the number of changes a file has in Fig. 4, we can see that bug inducing
files have a bit more changes. However, the sample sizes for both are vastly different.

3.6.3 Warnings in Bug Inducing Changes

In this section, we present the top 10 absolute numbers of warning types. This offers a per-
spective on the distribution of warning types in changes in addition to the warning density.
This is calculated by summing the delta for each warning type in a bug inducing change
over all bug inducing changes. If the value is positive, it means this warning type was added
more than removed in bug inducing changes, vice versa if the values is negative the warning

Fig. 5 Top 10 warning types for the number of warning changes in bug inducing changes for all warnings

66 Page 12 of 21

Empir Software Eng (2023) 28:66

Fig. 6 Top 10 warning types for the number of warning changes in bug inducing changes for default warnings

type was more often removed in bug inducing changes. We present the top 10 absolute num-
bers of warning types due to the large number of warnings, the whole set is contained in the
data of the replication kit. Figure 5 shows the top 10 warning types regarding the change of
warnings in bug inducing changes for all possible warnings. We can see that some warning
types were removed in bug inducing changes, e.g., RedundantFieldInitializer which warns
when a field is initialized with the default value, which is used to initialize it by default.
UnusedAssignment is removed most often in bug inducing changes. It warns about variables
which are assigned a value which is overwritten later in all cases.

The warning type which is added the most is the LawOfDemeter which aims to reduce
the coupling between classes. Second most added warning type is the LocalVariableCould-
BeFinal warning which warns when a local variable could be declared final.

Figure 6 shows the top 10 warning types regarding the change of warnings in bug induc-
ing changes for only the default set of warnings. For default warnings, we only see three
warning types which are removed. CollapsibleIfStatements which warns about nested if
statements that could be combined, UselessParentheses warns about parentheses which are
not syntactically required, and finally UnnecessaryFullyQualifiedName which warns about
fully qualified names which are used even though an import makes it unnecessary.

The most added warning type from the default warnings is UnusedLocalVariable which
warns about a variable which is declared but not used. The second most added warning type
is EmptyStatementNotInLoop. It warns about empty statements or single semicolons which
are not the sole body of a loop.

A full description for all warning types and examples can be found in the PMD
documentation for Java.8

3.6.4 Comparison with all other Changes

We now take a look at how warning density metrics differ in bug inducing changes from
all other changes. We notice that the median is below zero in all cases. This is due to the

8https://pmd.github.io/latest/pmd rules java.html

Page 13 of 21 66

https://pmd.github.io/latest/pmd_rules_java.html

Empir Software Eng (2023) 28:66

Fig. 7 Box plots of f d(f) for the bug inducing change for all and default only rules for bug inducing and
other file changes, median value in parentheses. Fliers are omitted

effect that warning density usually decreases over time (Trautsch et al. 2020a). Therefore,
we provide a comparison of bug inducing changes with all other changes.

Figure 7 shows f d(f) for bug inducing and other changes for both all rules and only the
default rules. We can see that bug inducing changes have a slightly higher warning density
than other changes. If we apply only default rules we see that bug inducing changes are also
slightly higher.

Figure 8 shows the same comparison for df d(f). The difference for all rules is very
small. However, the median for bug inducing changes is slightly higher. In contrast, we can
see that for default rules the bug inducing changes have a slightly higher warning density
than other changes. Table 2 shows the results of the statistical tests for differences between
the values for Figs. 7 and 8.

We can see that for all rules f d(f) there is a statistically significant difference. This
shows that bug inducing file changes have a higher warning density than other changes.

Overall, we see that there is a significant difference with a negligible effect size for
f d(f) and df d(f) for default rules between bug inducing and other changes. The data
shows that in these cases the bug inducing file changes have a higher warning density than
other changes. Together with Figs. 7, 8 and Table 2 we can conclude, that bug inducing
file changes contain more static analysis warnings than other file changes. Restricting the
rules to the default set increases the effect size slightly. However, the effect sizes are still
negligible in all cases.

Fig. 8 Box plots of df d(f) for all and default only rules bug inducing and other file changes, median value
in parentheses. Fliers are omitted

66 Page 14 of 21

Empir Software Eng (2023) 28:66

Table 2 Median values, Mann-Whitney U test p-values (statistically significant values are bolded) and effect
sizes for all warning density metrics

WD Metric Median other Median bug inducing P-value Effect size

f d(f) −0.0440 −0.0300 < 0.0001 0.05 (n)

f d(f) (default) −0.0098 −0.0072 < 0.0001 0.10 (n)

df d(f) −0.0948 −0.0661 0.0247 −
df d(f) (default) −0.0228 −0.0170 < 0.0001 0.07 (n)

3.6.5 Summary

In summary, we have the following results for our research question.

4 Discussion

We found that the bug inducing change itself increased the warning density of the code in
comparison to the rest of the project as shown in Fig. 1. This means that the actual change
in warning density is as we expected, i.e., the change that induces the bug is increasing the
warning density in comparison to the rest of the project. This is an indication that warn-
ing density related metrics can be of use in just-in-time defect prediction scenarios, i.e.,
change based scenarios, as also shown by Querel and Rigby (2021) and in our previous
work (Trautsch et al. 2020). However, the effect is negligible in our data. This was also the
case for predictive models by Querel and Rigby (2021). Thus, any gain in prediction models
due to general static analysis warnings is likely very small.

However, when we look at the median difference between bug inducing files and the rest
of the project at that point in time we see that bug inducing files contain fewer static anal-
ysis warnings. This counterintuitive result can be fully explained by the overall decreasing
warning density over time, we found in our previous study (Trautsch et al. 2020a). This
finding is highly relevant for researchers, because this shows the importance of accounting
for time as confounding factor for the evaluation of the effectiveness of methods. Without
the careful consideration of the change over time, we would now try to explain why bug

Page 15 of 21 66

Empir Software Eng (2023) 28:66

inducing files have fewer warnings and other researchers may build on this faulty conclu-
sion. Therefore, this part of our results should also be a cautionary tale for other researchers
that investigate the effectiveness of tools and methods: if the complete project is used as a
baseline, it should always be considered when source code was actually worked on. If parts
of the source code have been stable for a long time, they are not suitable for a compari-
son with recently changed code, without accounting for general changes, e.g., in coding or
testing practices, over time.

However, we did find that code with more PMD warnings leads to more bugs when
changed. When looking into the differences between bug inducing file changes and all other
file changes we find significant differences in 3 of 4 cases. While the effect size is negli-
gible in all cases, using only the default rules yields a higher effect size. These rules were
hand-picked by the Maven developers, arguably because of their importance for the internal
quality. For practitioners, this finding is of particular importance: not only does it reduce the
number of alerts to carefully select ASAT warnings from a large set of candidates, it can also
help to reduce general issues that are associated with bugs. While the effect size remains
negligible in our findings, we note that we cannot account for possible offline use of static
analysis tools. If developers use static analysis tools offline the effect might be larger.

This also has implications for researchers when including warning density based metrics
into predictive models. Our data shows that the model might be improved by choosing
an appropriate subset of the possible warnings of an ASAT. Using all warnings without
considering their potential relation to defects is not a good strategy. Our data also shows
that a good starting point might be a commonly used default, e.g., for PMD the maven-pmd-
plugin default rules.

5 Threats to Validity

In this section, we discuss the threats to validity we identified for our work. To structure
this section we discuss four basic types of validity separately, as suggested by Wohlin et al.
(2000).

5.1 Construct Validity

A threat to the relation between theory and observation may occur in our study from the
measurement of warning density. We restrict the data to production code to mitigate effects
test code has on warning density as it is often much simpler than production code.

As shown in Fig. 3, the projects are not only different regarding the average value of
warning density but also regarding the variance of warning density within the project. While
the evolution of warning density over time may be the main contributor to the variance as
we include the data from all years, there can also be a larger variety between the files of
each project regarding the warning density. After the initial analysis we conducted another
analysis which instead of comparing a file against the whole project, compared the file only
against the files of the project in the same package. This shows a statistically significant
effect for both f d(f) and df d(f) for the set of default warnings, same as our initial anal-
ysis. There is a difference regarding all warnings only for f d(f). Although this result does
not fully mitigate this threat it could be seen as a hint that the project variability is not that
large of a factor.

False positives of warnings, i.e., warnings about code that contains no problems could
also be a threat to validity. Vassallo et al. (2020) found that false positives are a prime

66 Page 16 of 21

Empir Software Eng (2023) 28:66

concern for developers. Within our study, we mitigate this threat by not investigating single
types of warnings for our main research question. Rather, we use the sum of warnings
for two sets (all possible warnings and the Maven plugin default warnings). In addition,
we use deltas of warnings rather than the absolute values for warning density. This can
mitigate the threat of false positives if we assume that they are equally distributed within
bug inducing and non bug inducing files. Nevertheless, a high number of false positives
could have adverse effects on our results given that the effect size is negligible.

Missing data due to offline use of static analysis tools can influence the results. While
we cannot account for this, we note that offline use of ASATs would only influence the
results most likely towards an positive effect of static analysis tools as true positives might
be directly solved by the developer while false positives might be ignored.

5.2 Internal Validity

A general threat to internal validity would be a selection of static analysis warnings. We
mitigate this by measuring the warning density for all warnings and for only default warn-
ings as a common subset for Java projects. Due to the nature of our approach, we mitigate
differences between projects regarding the handling of warnings as well as the impact of
size.

In order to give more weight to recent instances of files, we add a linear decay in the
warning density history for df d(f). A different decay mechanism, e.g., logarithmic or
quadratic could yield different results.

5.3 External Validity

Due to the usage of manually validated data in our study, our study subjects are restricted
to those for which we have this kind of data. This is a threat to the generalizability of
our findings, e.g., to all Java projects or to all open source projects. Still, as we argue
in Herbold et al. (2022a), our data should be representative for mature Java open source
projects.

Moreover, we observe only one static analysis tool (PMD). While this may also restrict
the generalizability of our study, we believe that due to the large range of rules of this ASAT
our results should generalize to ASATs that are broad in scope. ASATs of a different focus,
e.g., on coding style (Checkstyle) of directly finding bugs (FindBugs, SpotBugs) may result
in different results.

5.4 Conclusion Validity

We report lower warning density for bug inducing files in comparison to the rest of the
project at that point in time. While this reflects the difference in warning density between
the file and the project, it can be influenced by constantly decreasing warning density. We
mitigate this by also including a comparison between bug inducing changes and all other
changes.

6 Conclusion

In this article, we provide evidence for a common assumption in software engineering, i.e.,
that static analysis tools provide a net-benefit to software quality even though they suffer

Page 17 of 21 66

Empir Software Eng (2023) 28:66

from problems with false positives. We use an improved state-of-the art approach used for
fine-grained just-in-time defect prediction to establish a link between files within commits
that induce bugs and measure warning density related features which we aggregate over
the evolution of our study subjects. This approach runs on data which allows us to remove
several noise factors from our data, wrong issue types, wrong issue links to commits and
tangled bug fixes. The analysis approach allows us to merge the available data as it miti-
gates differences between projects, sizes and to some extent the evolution of warnings over
time.

We find that bugs are induced in files which have a comparably low warning density,
i.e., less static analysis warnings than the files of the rest of the project at the time the bug
was induced. However, this difference can be explained by the fact that the warning density
decreases over time. When we compare the bug inducing changes with all other changes,
we do find a significant higher warning density when using all PMD rules in one of two
metrics. However, the effect size is negligible. When we use a small rule set that restricts
the 3.14 PMD warnings to the 49 warnings hand-picked by the Maven developers as default
warnings, we find that bug inducing changes have a significant but also negligible larger
warning density. However, the effect size increases for the default rule set. Assuming that
the smaller rule set was crafted with the intent to single out the most important rules for the
quality, this indicates that there is indeed a (weak) relationship between general ASAT tools
and bugs. However, we note that this relationship might be stronger due to possible offline
use of static analysis tools by the developers, e.g., included in the IDE and used before
committing the code.

This is also direct evidence for a common best practice in the use of static analysis tools:
Appropriate rules for ASATs should be chosen for the project. This not only reduces the
number of alarms, which is important for the acceptance by developers, but also has a better
relationship with the external quality of the software measured through bugs.

7 FutureWork

Within our study, we investigated the differences in warning density between bug inducing
and other changes and found only a negligible difference. A future study could investigate
the reasons for this result, e.g., whether all bugs are indicated by static analysis warnings
and whether there are bug types which are not indicated by static analysis warnings. This
would require a careful analysis of the bug itself and the warning of the static analysis tool
if one is generated. The bug itself has to be first untangled because not all lines changed in a
bug fix may be part of the bug fix itself. A good starting point would probably be manually
validated data like in our previous study (Herbold et al. 2022a) or Defects4J (Just et al.
2014).

Appendix A: Results with Same PackageWarning Density

This result was obtained after the initial analysis. Instead of the whole system we compare
each file against only the files in the same package. If the file is the only one in the package
it is not added to the result.

66 Page 18 of 21

Empir Software Eng (2023) 28:66

Table 3 Median values, Mann-Whitney U test p-values (statistically significant values are bolded) and effect
sizes for all warning density metrics

WD Metric Median other Median bug inducing P-value Effect size

f d(f) −0.0161 −0.0130 0.4302 −
f d(f)(def ault) −0.0036 −0.0030 < 0.0001 0.05 (n)

df d(f) −0.0311 −0.0299 0.0182 −
df d(f)(def ault) −0.0095 −0.0065 < 0.0001 0.05 (n)

All metrics are calculated with the warning density of the same package of each file instead of the whole
system

Funding Open Access funding enabled and organized by Projekt DEAL. This work was partly funded by
the German Research Foundation (DFG) through the project DEFECTS, grant 402774445.

Data Availability The datasets generated during and/or analysed during the current study are available in
the Zenodo repository, https://doi.org/10.5281/zenodo.7254873.

Declarations

Competing interests The authors have no competing interests to declare that are relevant to the content of
this article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdi H (2007) Bonferroni and Sidak corrections for multiple comparisons. In: Encyclopedia of measurement
and statistics. Sage, Thousand Oaks, pp 103–107

Aloraini B, Nagappan M, German DM, Hayashi S, Higo Y (2019) An empirical study of
security warnings from static application security testing tools. J Syst Softw 158:110427.
https://doi.org/10.1016/j.jss.2019.110427. http://www.sciencedirect.com/science/article/pii/
S0164121219302018

Antoniol G, Ayari K, Di PentaM, Khomh F, Guéhéneuc YG (2008) Is it a bug or an enhancement? a
text-based approach to classify change requests. In: Proceedings of the 2008 conference of the cen-
ter for advanced studies on collaborative research: Meeting of minds, CASCON ’08. Association for
Computing Machinery, New York. https://doi.org/10.1145/1463788.1463819

Christakis M, Bird C (2016) What developers want and need from program analysis: An empirical study. In:
Proceedings of the 31st IEEE/ACM international conference on automated software engineering, ASE
2016. ACM, New York, pp 332-343. https://doi.org/10.1145/2970276.2970347

Cliff N (1993) Dominance statistics: Ordinal analyses to answer ordinal questions. Psychol Bull 114:494–509
Devanbu P, Zimmermann T, Bird C (2016) Belief evidence in empirical software engineering. In:

2016 IEEE/ACM 38th international conference on software engineering (ICSE), pp 108–119.
https://doi.org/10.1145/2884781.2884812

Habib A, Pradel M (2018) How many of all bugs do we find? a study of static bug detectors. In: Proceedings
of the 33rd ACM/IEEE international conference on automated software engineering, ASE 2018. ACM,
New York, pp 317–328. https://doi.org/10.1145/3238147.3238213

Page 19 of 21 66

https://doi.org/10.5281/zenodo.7254873
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jss.2019.110427
http://www.sciencedirect.com/science/article/pii/S0164121219302018
http://www.sciencedirect.com/science/article/pii/S0164121219302018
https://doi.org/10.1145/1463788.1463819
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2884781.2884812
https://doi.org/10.1145/3238147.3238213

Empir Software Eng (2023) 28:66

Heckman S, Williams L (2009) A model building process for identifying actionable static analysis
alerts. In: 2009 international conference on software testing verification and validation, pp 161–170.
https://doi.org/10.1109/ICST.2009.45

Herbold S, Trautsch A, Ledel B, Aghamohammadi A, Ghaleb TA, Chahal KK, Bossenmaier T, Nagaria
B, Makedonski P, Ahmadabadi MN, Szabados K, Spieker H, Madeja M, Hoy N, Lenarduzzi V,
Wang S, Rodrı́guez-Pérez G, Colomo-Palacios R, Verdecchia R, Singh P, Qin Y, Chakroborti D,
Davis W, Walunj V, Wu H, Marcilio D, Alam O, Aldaeej A, Amit I, Turhan B, Eismann S, Wick-
ert AK, Malavolta I, Sulir M, Fard F, Henley AZ, Kourtzanidis S, Tuzun E, Treude C, Shamasbi SM,
Pashchenko I, Wyrich M, Davis J, Serebrenik A, Albrecht E, Aktas EU, Strüber D, Erbel J (2022a)
A fine-grained data set and analysis of tangling in bug fixing commits. Empir Softw Eng 27(6):125.
https://doi.org/10.1007/s10664-021-10083-5

Herbold S, Trautsch A, Trautsch F, Ledel B (2022b) Problems with SZZ and features: An empiri-
cal study of the state of practice of defect prediction data collection. Empir Softw Eng 27(2):42.
https://doi.org/10.1007/s10664-021-10092-4

Herzig K, Just S, Zeller A (2013) It’s not a bug, it’s a feature: How misclassification impacts bug prediction.
In: Proceedings of the 2013 international conference on software engineering, ICSE ’13. IEEE Press,
pp 392–401

Johnson B, Song Y, Murphy-Hill E, Bowdidge R (2013) Why don't software developers use static
analysis tools to find bugs? In: Proceedings of the 2013 international conference on software engineering,
ICSE ’13. IEEE Press, Piscataway, pp 672–681. http://dl.acm.org/citation.cfm?id=2486788.2486877

Just R, Jalali D, Ernst MD (2014) Defects4J: A database of existing faults to enable controlled test-
ing studies for java programs. In: Proceedings of the 2014 international symposium on software
testing and analysis, ISSTA 2014. Association for Computing Machinery, New York, pp 437–440.
https://doi.org/10.1145/2610384.2628055

Kamei Y, Shihab E, Adams B, Hassan AE, Mockus A, Sinha A, Ubayashi N (2013) A large-
scale empirical study of just-in-time quality assurance. IEEE Trans Softw Eng 39(6):757–773.
https://doi.org/10.1109/TSE.2012.70

Kim S, Ernst MD (2007) Which warnings should I fix first? In: Proceedings of the the 6th
joint meeting of the European software engineering conference and the ACM SIGSOFT sympo-
sium on the foundations of software engineering, ESEC-FSE ’07. ACM, New York, pp 45–54.
https://doi.org/10.1145/1287624.1287633

Koc U, Saadatpanah P, Foster JS, Porter AA (2017) Learning a classifier for false positive error reports
emitted by static code analysis tools. In: Proceedings of the 1st ACM SIGPLAN international workshop
on machine learning and programming languages, pp 35–42. https://doi.org/10.1145/3088525.3088675

Lenarduzzi V, Lomio F, Huttunen H, Taibi D (2020) Are sonarqube rules inducing bugs? 2020 IEEE 27th
international conference on software analysis, evolution and reengineering (SANER), pp 501–511

Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than
the other. Ann Math Stat 18(1):50–60

Nagappan N, Ball T (2005) Static analysis tools as early indicators of pre-release defect density. In: Pro-
ceedings of the 27th international conference on software engineering, ICSE ’05. ACM, New York,
pp 580–586. https://doi.org/10.1145/1062455.1062558

Pascarella L, Palomba F, Bacchelli A (2019) Fine-grained just-in-time defect prediction. J Syst Softw
150:22–36. https://doi.org/10.1016/j.jss.2018.12.001, http://www.sciencedirect.com/science/article/pii/
S0164121218302656

Penta MD, Cerulo L, Aversano L (2009) The life and death of statically detected vulnerabilities: An empirical
study. Inf Softw Technol 51(10):1469–1484. https://doi.org/10.1016/j.infsof.2009.04.013. http://www.
sciencedirect.com/science/article/pii/S0950584909000500, source Code Analysis and Manipulation,
SCAM 2008

Plosch R, Gruber H, Hentschel A, Pomberger G, Schiffer S (2008) On the relation between external software
quality and static code analysis. In: 2008 32nd annual IEEE software engineering workshop, pp 169–174.
https://doi.org/10.1109/SEW.2008.17

Querel L, Rigby PC (2021) Warning-introducing commits vs bug-introducing commits: A tool, sta-
tistical models, and a preliminary user study. In: 29th IEEE/ACM International Conference on
Program Comprehension, ICPC 2021, Madrid, Spain, May 20-21, 2021. IEEE, pp 433–443.
https://doi.org/10.1109/ICPC52881.2021.00051

Querel LP, Rigby PC (2018) Warningsguru: Integrating statistical bug models with static analysis to
provide timely and specific bug warnings. In: Proceedings of the 2018 26th ACM joint meet-
ing on European software engineering conference and symposium on the foundations of software
engineering, ESEC/FSE 2018. Association for Computing Machinery, New York, pp 892–895.
https://doi.org/10.1145/3236024.3264599

66 Page 20 of 21

https://doi.org/10.1109/ICST.2009.45
https://doi.org/10.1007/s10664-021-10083-5
https://doi.org/10.1007/s10664-021-10092-4
http://dl.acm.org/citation.cfm?id=2486788.2486877
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1109/TSE.2012.70
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/3088525.3088675
https://doi.org/10.1145/1062455.1062558
https://doi.org/10.1016/j.jss.2018.12.001
http://www.sciencedirect.com/science/article/pii/S0164121218302656
http://www.sciencedirect.com/science/article/pii/S0164121218302656
https://doi.org/10.1016/j.infsof.2009.04.013
http://www.sciencedirect.com/science/article/pii/S0950584909000500
http://www.sciencedirect.com/science/article/pii/S0950584909000500
https://doi.org/10.1109/SEW.2008.17
https://doi.org/10.1109/ICPC52881.2021.00051
https://doi.org/10.1145/3236024.3264599

Empir Software Eng (2023) 28:66

Rahman F, Khatri S, Barr ET, Devanbu P (2014) Comparing static bug finders and statistical prediction. In:
Proceedings of the 36th international conference on software engineering, ICSE 2014. ACM, New York,
pp 424–434. https://doi.org/10.1145/2568225.2568269

Rodriguez-Pérez G, Nagappan M, Robles G (2020) Watch out for extrinsic bugs! a case study of their
impact in just-in-time bug prediction models on the openstack project. IEEE Trans Softw Eng 1–1.
https://doi.org/10.1109/TSE.2020.3021380

Rosen C, Grawi B, Shihab E (2015) Commit guru: Analytics and risk prediction of software commits. In: Pro-
ceedings of the 2015 10th joint meeting on foundations of software engineering, ESEC/FSE 2015. Asso-
ciation for Computing Machinery, New York, pp 966–969. https://doi.org/10.1145/2786805.2803183

Spadini D, Aniche M, Bacchelli A (2018) PyDriller: Python framework for mining software repositories.
In: Proceedings of the 2018 26th ACM joint meeting on European software engineering conference
and symposium on the foundations of software engineering - ESEC/FSE 2018. ACM Press, New York,
pp 908–911. https://doi.org/10.1145/3236024.3264598, http://dl.acm.org/citation.cfm?doid=3236024.
3264598

Thung F, Lucia Lo D, Jiang L, Rahman F, Devanbu PT (2012) To what extent could we detect
field defects? an empirical study of false negatives in static bug finding tools. In: 2012 Proceed-
ings of the 27th IEEE/ACM international conference on automated software engineering, pp 50–59.
https://doi.org/10.1145/2351676.2351685

Trautsch A, Herbold S, Grabowski J (2020a) A longitudinal study of static analysis warning evolution and
the effects of PMD on software quality in apache open source projects. Empirical Software Engineering.
https://doi.org/10.1007/s10664-020-09880-1

Trautsch A, Herbold S, Grabowski J (2020) Static source code metrics and static analysis warnings for fine-
grained just-in-time defect prediction. In: 36th international conference on software maintenance and
evolution (ICSME)

Trautsch F, Herbold S, Makedonski P, Grabowski J (2017) Addressing problems with replicability and
validity of repository mining studies through a smart data platform. Empirical Software Engineering.
https://doi.org/10.1007/s10664-017-9537-x

Tufano M, Palomba F, Bavota G, Penta MD, Oliveto R, Lucia AD, Poshyvanyk D (2017) There and back
again: Can you compile that snapshot? J Softw Evol Process 29(4). http://dblp.uni-trier.de/db/journals/
smr/smr29.html#TufanoPBPOLP17

Vassallo C, Panichella S, Palomba F, Proksch S, Gall HC, Zaidman A (2020) How devel-
opers engage with static analysis tools in different contexts. Empir Softw Eng 25.
https://doi.org/10.1007/s10664-019-09750-5

Vetro A, Morisio M, Torchiano M (2011) An empirical validation of findbugs issues related to defects. In:
15th annual conference on evaluation assessment in software engineering (EASE 2011), pp 144–153.
https://doi.org/10.1049/ic.2011.0018

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in software
engineering: an introduction. Kluwer Academic Publishers, Norwell

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Page 21 of 21 66

https://doi.org/10.1145/2568225.2568269
https://doi.org/10.1109/TSE.2020.3021380
https://doi.org/10.1145/2786805.2803183
https://doi.org/10.1145/3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
http://dl.acm.org/citation.cfm?doid=3236024.3264598
https://doi.org/10.1145/2351676.2351685
https://doi.org/10.1007/s10664-020-09880-1
https://doi.org/10.1007/s10664-017-9537-x
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPB POLP17
http://dblp.uni-trier.de/db/journals/smr/smr29.html#TufanoPB POLP17
https://doi.org/10.1007/s10664-019-09750-5
https://doi.org/10.1049/ic.2011.0018

	Are automated static analysis tools worth it?
	Abstract
	Introduction
	Related Work
	Case Study
	Static Analysis
	Just-in-Time Defect Prediction
	Study Subjects
	Replication Kit
	Methodology
	Results
	Differences of Warning Density before and after the Bug Inducing Change
	Differences Between Projects and Number of Changes
	Warnings in Bug Inducing Changes
	Comparison with all other Changes
	Summary

	Discussion
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion
	Future Work
	Appendix: A: Results with Same Package Warning Density
	Declarations
	References

