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Abstract: Even though the site index is a popular method for describing forest productivity, its use is
limited in uneven-aged multispecies forests. Accordingly, the site form (SF) is an alternative measure
of productivity to the site index based on the tree height–diameter relationship. Our study aims
to evaluate SF as a measure of productivity in the temperate uneven-aged multispecies forests of
Durango, Mexico, applying three methods to estimate SF: (i) as the mean height of dominant trees
at a reference diameter (SFH-D); (ii) as the expected mean height of dominant trees at a reference
mean diameter (SFMH-MD), and (iii) as the expected height at a reference diameter for a given site
(SFh-dbh). We assess the effectiveness of the SF based on two hypotheses: (i) the SF correlates to the
total volume production, and (ii) the SF is independent of stand density. The SFH-D and the SFh-dbh

showed a high correlation with productivity. However, they also did so with density. Contrary to
this, the SFMH-MD had a weak correlation with density and productivity. We conclude that the SF is a
suitable approach to describe site quality. Nonetheless, its effectiveness as a site quality indicator
may be affected according to the method used.

Keywords: site quality; uneven-aged multispecies stands; dominant trees; site productivity index;
forest density

1. Introduction

Many decisions aimed at sustainable forest management are based on the assessment
of site quality as an indicator of productivity [1,2]. Despite the terms productivity and
quality often being used interchangeably to describe the land’s ability to grow trees, they
are not synonymous. The former is a quantitative measure of a site’s potential to produce
plant biomass. Conversely, the latter is a descriptive measure of site productivity estimated
by indirect methods such as the relationship between the height of dominant trees (H; m)
and their age [3].

Among the site quality approaches, the site index (SI) is the most popular method used
to describe productivity through the H–age relationship. It is therefore frequently used in
even-aged stands [4]. The use of the SI is substantiated by the assumptions of a positive
relationship between the stand height and volume production [5] and the independence
of H from stand density [6]. However, the use of the H–age relationship in uneven-aged
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multispecies forests has been disputed owing to the age heterogeneity [7] and the lack of
distinct growth rings in some tree species, preventing the use of the SI in such instances.

An alternative measure of productivity, based on the relationship between the diameter
of dominant trees (D; m) and H, was proposed by Flury in 1929 [8,9] and named site form
(SF) by Vanclay and Henry in 1988 [10] to avoid confusion with the SI. In addition to this,
the SF has also been called the site productivity index [11]. It has been successfully used
as an indicator of productivity in uneven-aged stands [12] and has delivered meaningful
results in even-aged forests [13]. Nonetheless, the main feature of SF is its capacity to
describe site quality in uneven-aged multispecies forests [14].

The assessment of the usefulness of the SF as a measure of productivity has been
carried out through different methods. For instance, the SF as the average H at a specific
reference D (SFH-D) [10], as the expected mean H (MH) at a reference mean D (MD)
(SFMH-MD) [12,13], and as the tree height (h) at a reference diameter at breast height (dbh)
estimated using a specific h-dbh model for a given site plot (SFh-dbh) [14]. Nevertheless,
there is no documentation about their comparison, and the results therefore may vary
despite being based on the same assumption.

Even though dominant trees are widely used to describe site quality, a universal
definition has not emerged to define them. A common approach is to select the dominant
trees based on the h or the dbh. Hence, dominance is generally expressed by the 100 tallest
or the 100 thickest trees [15] per hectare and selecting a particular definition of dominant
trees often relies on how easy it is to measure the required information. However, the
number of trees and the method of choosing the dominant trees affect the estimates [16]
and thus their effectiveness as a measure of site quality.

Multispecies forests have received increasing scientific and policy attention driven by
the hypothesis that forests with a high number of species have an increased productivity
and a greater capacity to adapt to climate change impacts [17,18]. Likewise, concerns with
regards to the conservation of biodiversity and ensuring the forest’s long-term productivity
have incentivized the testing of alternative forest management approaches in uneven-aged
stands [19]. However, a high number of tree species complicates selecting one single species
as an indicator of productivity [20]. Hence, the SF has been evaluated using the dominant
trees, regardless of species, thereby enhancing its practical application [21].

The objective of this study was to evaluate the SF as a measure of productivity for
uneven-aged multispecies stands in the temperate forests of Durango, Mexico, using
the SFH-D, SFMH-MD and SFh-dbh methods. For those methods that required defining the
dominant trees, we evaluated them using the 100 tallest and the 100 thickest trees per
hectare, regardless of species. The assessment of SF as a measure of productivity was based
on two hypotheses: (i) the SF correlates to the total volume production regardless of the
stand species composition, and (ii) the SF is independent of stand density.

2. Results
2.1. H-D, MH-MD and h-dbh Model Fitting

Table 1 gives the estimated parameters and the corresponding goodness-of-fit statistics
of the models evaluated. The H-D and MH-MD models explain about 98 percent of the
total variance, and their parameters were significant at the five percent level. Therefore,
both approaches are suitable for estimating the H or the MH at a specific D or MD. On
the other hand, the h-dbh model presented a lower average coefficient of determination
(R2) and a higher average root mean square error (RMSE). We attributed this result to the
high variability of the h and dbh data pairs in each plot, contrary to the H-D and MH-MD
models, which only include dominant trees.
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Table 1. Parameter estimates and goodness-of-fit statistics.

Method Model Trees Selected Parameter Estimator SE R2 RMSE

SFH-D Sc. ADA The 100 tallest trees β1 23.02 0.23 0.98 0.86
SFH-D Sc. GADA The 100 tallest trees β0 534.60 38.45 0.98 0.83

β1 −144.44 9.83
SFH-D Sc. ADA The 100 thickest trees β1 39.67 0.36 0.98 0.89
SFH-D Sc. GADA The 100 thickest trees β0 845.25 112.33 0.99 0.77

β1 −209.41 26.29
SFMH-MD Sc. ADA The 100 tallest trees β1 43.34 0.99 0.99 0.49
SFMH-MD Sc. GADA The 100 tallest trees β0 347.70 66.13 0.99 0.43

β1 −91.35 15.29
SFMH-MD Sc. ADA The 100 thickest trees β1 63.17 1.30 0.99 0.52
SFMH-MD Sc. GADA The 100 thickest trees β0 394.75 75.84 0.99 0.44

β1 −100.81 16.54
SFh-dbh Schumacher All trees 0.62 2.86

R2 is the adjusted coefficient of determination, RMSE is the root mean square error and Sc. ADA and Sc. GADA
are the algebraic difference approach and its generalization based on the Schumacher model, respectively.

2.2. Reference Diameter Selection

The H-D and MH-MD models showed a slight reduction of relative error in predictions
(RE) at a reference diameter equal to or higher than 40 cm. Similarly, the h-dbh model
showed a lower RE value at a dbh of 40 cm (Figure 1) but also presented an increment
for trees with a dbh larger than 50 cm, which may be attributed to the lack of trees of this
size. We therefore selected a reference diameter of 40 cm for the assessment of the SF for all
methods evaluated.
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Figure 1. Relative error in height predictions at different reference diameters. The black point
indicates the selected reference diameter.

All the predicted curves overlapped well in the paired data sets of H-D, MH-MD
and h-dbh and can thus describe the different patterns of H, MH and h growth (Figure 2).
Nonetheless, the main drawback of H-D and MH-MD models is that they require measures
from permanent plots. Conversely, the h-dbh model may be adjusted using temporal forest
inventory plots.
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Figure 2. Site form curves based on the H-D, MH-MD and h-dbh models derived from the SF methods
evaluated. The dash line indicates the reference diameter.

2.3. Evaluation of SF as a Site Quality Indicator

The SFH-D and SFh-dbh were positively and significantly correlated with periodic
annual increment (PAI; m3 ha−1 year−1), showing Pearson correlation coefficients ranging
from 0.2 to 0.7, i.e., from a weak to a strong correlation (Figure 3). In addition, the SFH-D
showed a higher correlation using the tallest trees as dominants. Similarly, the use of the
Schumacher algebraic difference approach (ADA) model showed a better result than the
Schumacher generalized ADA (GADA) model. Hence, the PAI correlates better with the
SF using models that predict a steady growth of H or MH and different maximum H or
MH values, which seems logical owing to the variation in species mixture. On the other
hand, the SFMH-MD showed a low correlation with the PAI. Therefore, estimating forest
productivity using the MH or MD in temperate uneven-aged multispecies forests could
lead to undesirable results because of the heterogeneity of tree sizes.

Table 2 shows the Pearson correlation between SF and productivity through four
levels of species mixture defined by the proportion of conifers. The SFH-D and SFh-dbh
correlated with the PAI in stands dominated by broadleaf species, where many of these
lack distinguishable growth rings that prevent the use of the SI. Besides this, both methods
also showed a good performance in all stand mixture levels evaluated. Contrarily, the
SFMH-MD estimated using the 100 tallest trees had a higher correlation in stands dominated
by coniferous or broadleaf tree species but not in mixed stands.
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Figure 3. The relationship between the SF and the square root of the PAI (m3 ha−1 year−1). The black
line illustrates the linear regression, and rP is the Pearson correlation.

Table 2. Pearson correlation between each SF evaluated and the square root of the PAI by stand
mixture levels.

Pearson Correlation

Method Model Trees Selected
Coniferous Individuals’ Proportion

0–0.25 0.26–0.5 0.51–0.75 0.76–1

SFH-D Sc. ADA The 100 tallest trees 0.74 0.71 0.58 0.75
SFH-D Sc. GADA The 100 tallest trees 0.42 0.46 0.44 0.6
SFH-D Sc. ADA The 100 thickest trees 0.21 0.53 0.43 0.48
SFH-D Sc. GADA The 100 thickest trees 0.05 0.4 0.33 0.4

SFMH-MD Sc. ADA The 100 tallest trees 0.37 0.15 0.14 0.35
SFMH-MD Sc. GADA The 100 tallest trees 0.28 −0.01 0.08 0.21
SFMH-MD Sc. ADA The 100 thickest trees −0.08 −0.16 −0.08 −0.04
SFMH-MD Sc. GADA The 100 thickest trees −0.05 −0.15 −0.11 −0.08
SFh-dbh Schumacher All trees 0.41 0.79 0.7 0.66

Sc. ADA and Sc. GADA are the algebraic difference approach and its generalization based on the Schumacher
model, respectively.

Table 3 provides the estimated parameters, with the R2 and the RMSE of the linear
regression analysis (Figure 3). The SFMH-MD presented the lowest capacity to predict PAI,
showing R2 values not higher than 0.08. On the other hand, the SFH-D showed a better
performance using the 100 tallest trees and the ADA based on the Schumacher model.
Furthermore, it presented a homogeneous distribution of the residuals (Figure 4). Similarly,
the SFh-dbh showed a high capability to predict PAI, with an R2 of 0.49. However, the
residuals did not follow a normal distribution (Figure 4).
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Table 3. Linear regression analysis per each SF evaluated.

Method Model Trees Selected Intercept Slope R2 RMSE

SFH-D Sc. ADA The 100 tallest trees −0.597 0.139 0.46 0.552
SFH-D Sc. GADA The 100 tallest trees −1.146 0.160 0.27 0.642
SFH-D Sc. ADA The 100 thickest trees 0.242 ns 0.117 0.22 0.665
SFH-D Sc. GADA The 100 thickest trees 1.350 0.062 0.04 0.738

SFMH-MD Sc. ADA The 100 tallest trees 1.391 0.050 0.07 0.729
SFMH-MD Sc. GADA The 100 tallest trees 1.621 0.040 0.02 0.746
SFMH-MD Sc. ADA The 100 thickest trees 2.847 −0.012 ns 0.00 0.753
SFMH-MD Sc. GADA The 100 thickest trees 3.053 −0.022 ns 0.01 0.751
SFh-dbh Schumacher All trees 0.290 0.131 0.49 0.541

R2 is the adjusted coefficient of determination, RMSE is the root mean square error, Sc. ADA and Sc. GADA are
the algebraic difference approach and its generalization based on the Schumacher model, respectively. ns is a
non-significant parameter (α = 0.05).
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Figure 5 shows that the SFMH-MD method had the lowest correlation with Reineke’s
stand density index (SDI). Contrary to this, SFH-D and SFh-dbh were positively correlated in
most of the cases evaluated. Therefore, the estimates of the SF based on individual trees
could correlate to the SDI owing to the effect of density on the stem form. Nonetheless,
the SFH-D estimated using the 100 thickest trees showed a low correlation. This result
may be attributed to the definition of the thickest trees containing a higher number of
shade-tolerant species (e.g., trees of Quercus, Arbutus and Juniperus) that can live under
closed canopies during the juvenile and adult stages [22].
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3. Discussion

All evaluated methods showed a different response despite being based on the same
assumption of the h-dbh relationship as an indicator of productivity. Therefore, the ef-
fectiveness of the SF as a site quality indicator may be affected according to the method,
the model, and the specific data set used. Sharma, Amateis and Burkhart [16] reached a
similar conclusion by evaluating the performance of seven definitions of H for fitting SI
models and concluded that the estimation of the SI using the trees that have always been
dominant or codominant over the life of the stand is more precise than the other definitions
evaluated. Similarly, the present study shows that the definition of dominant trees may
affect the usefulness of SF as a measure of productivity, thus producing unexpected results.

The results show that the 100 tallest trees per hectare exhibit a higher correlation
with the PAI than the 100 thickest trees per hectare. Similarly, Vargas-Larreta et al. [23]
concluded that the maximum h is a viable estimator of above-ground biomass (Mg ha−1)
in temperate forests in Durango, Mexico. In addition, Pretzsch, Forrester and Bauhus [24]
documented the effect of taller species on the growth of the shorter ones by the competition
for soil resources and early acquisition of light. Therefore, the h of the thickest trees may
show a low correlation with the PAI and thus might be a non-significant variable [25] or
have a negative effect [26] on the prediction of forest productivity.

The high number of tree species in forests complicates the selection of one species
or a group of them as an indicator of productivity [20]. Therefore, the assessment of the
SF has been carried out by using all trees or the dominant ones to describe site quality
as it allows estimating SF for different site conditions [14,21]. In addition, some studies
have reported that the relationship between h and dbh varies by forest condition, as it is
an adaptive or a passive response to the environment [27,28]. Therefore, the estimation
of the SF considering all species may capture the variability of growth patterns of H, MH
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or h among tree species and thus site conditions. Nonetheless, this approach may only
describe whole stand productivity and cannot be used to estimate the growth potential of a
specific species.

The ADA based on the Schumacher model had a higher correlation than GADA with
the PAI. Likewise, Fu et al. [12] used ADA to test the SFMH-MD in two natural uneven-aged
forests of Larix Olgensis Henry and Quercus Mongolica Fisch in northeastern China, which
showed correlation coefficients of 0.55 and 0.79. On the other hand, Molina-Valero et al. [13]
reported a correlation of 0.71 in Pinus radiata D. Don even-aged stands in the north of Spain
using GADA to test the SFMH-MD. Therefore, the effectiveness of the SF may vary based on
the model used and the type of forest evaluated. Nonetheless, Shen et al. [29] concluded
that SFMH-MD was less effective than the SI for estimating site productivity on Larix olgensis
plantations. Hence, the SI may be a better measure of site productivity in planted forests
where the stand age is known [11].

The volume production in multispecies forests is a response that depends on site
conditions, structural attributes, species composition, forest density and the interaction
between these factors [30–32]. Hence, it could be expected that the regression analysis
does not show a R2 higher than 0.49. Similarly, an alternative index to the SI for irregular
stands, developed by Berrill and O’Hara [33], expressed 32 percent of the variance of stand
volume increment. Nonetheless, this index showed a better performance than the SI and
a significant effect on the increment of individual trees. Likewise, the SFh-dbh and the
SFH-D, estimated by the Schumacher GADA model and the 100 tallest trees, may be used in
combination with other variables to describe the forest productivity in stands where the SI
cannot be estimated or is not a significant variable to predict the stand volume increment.

Our study shows that most of the SF evaluated correlated positively with the SDI,
especially for the SFH-D and the SFh-dbh. However, some studies have found that the
estimation of the SI is affected by stand density, thus questioning the assumption of
independence [34–36]. Asthon and Kelty [15] also documented that very high or low
density may influence the h growth of species, conditions that were sampled in the current
study that may therefore increase the correlation between the SF and the SDI. In addition,
the h-dbh ratio (calculated by dividing the h by the dbh) has been described as a measure
related to the stand density that increases in closed spaces [37–39], affecting dominant
and codominant trees [40,41]. Therefore, stand density may influence the estimation of
the SF. In addition, other studies have found that SF correlates positively to stand basal
area [10,14,20], a measure commonly used to describe stand density.

On the other hand, alternative approaches describe forest yield based on stand density.
For instance, the hypotheses of Wiedermann [42], Assmann [43] and Mar:Moller [44]
assume a correlation between volume growth and stand basal area. These hypotheses
suggest that timber production is constant until the stand reaches its maximum density,
a pattern evaluated in several studies carried out in Mexican temperate forests [25,45,46].
Therefore, the correlation between the SDI and the SF seems logical, as both correlate with
timber production. In addition, stand density has also been used as a measure of forest
productivity in uneven-aged stands as an alternative to the SI [33].

Even though there are several SI models developed for Mexican forests [47–49], their
evaluations focus on the predictions of H and not on their capability to describe stand
productivity. Therefore, their application may lead to low accuracy on stand yield predic-
tions, likely due to the mixture of species and age classes that complicate the application
of the SI [4]. On the other hand, the SFh-dbh and the SFH-D, estimated by the Schumacher
GADA model and the 100 tallest trees, were positively correlated to the PAI on different
stand mixtures. In addition to this, the SF requires h and dbh measurements, which are
variables available from routine inventories and compatible with existing forest inven-
tory data [12]. Therefore, this highlights its applicability as an indicator of quality in
uneven-aged multispecies forests in Durango, Mexico.
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4. Materials and Methods

The dataset used in this study derives from a network of 423 permanent plots estab-
lished by the Universidad Juárez del Estado de Durango [50]. These plots cover a great
variety of stands, with different levels of density and productivity in Durango’s temperate
forests, where the predominant stand condition is uneven-aged pine-oak communities [51].
The location of the permanent plots is given in Figure 6.
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Figure 6. Location of the 423 permanent plots.

The 423 plots were established in 2007 and re-measured in 2012. Of these, a total of
107 were measured a third time in 2017. Each plot covers an area of 2500 m2 (50 m × 50 m).
Within these plots, all trees with a dbh equal to or larger than 7.5 cm were measured. The
dbh was measured by caliper and the h by digital hypsometer (Vertex IV). The scientific
name, the height to the living crown (m), and the azimuth (degrees) and distance (m) from
the center of the plot were also recorded.

A total of 73 tree species were sampled: 34 Quercus, 19 other broadleaf species, 15 Pinus
and five other coniferous species. Pinus was the most prominent genus according to the
importance value index (the sum of the relative values of the number of individuals, basal
area and frequency per species), making up approximately 50 percent of the total value.
Additionally, the plots showed a right-skewed distribution for the dbh and the h, most of
which were made up by small-size individuals. Table 4 shows a summary of the permanent
plots used in this study.
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Table 4. Summary statistics of the 423 plots used in this study.

Variable
1st Inventory (423 Plots)

2007
2nd Inventory (423 Plots)

2012
3rd Inventory (107 Plots)

2017
Mean (Min–Max) S.D. Mean (Min–Max) S.D. Mean (Min–Max) S.D.

S 8 (2–15) 2 8 (2–16) 3 8 (2–14) 2
N 622 (120–2148) 272 606 (108–2060) 269 692 (140–2092) 318

dbh 17.9 (7.5–104) 10.6 18.8 (7.5–105.5) 10.8 18.7 (7.5–106) 10.9
h 10.7 (1.5–48.2) 5.6 11.8 (1.5–49.4) 5.8 12.9 (2.1–49.7) 6
G 21.4 (3.1–53.9) 8.09 22.3 (3.7–55.9) 8.51 25.2 (4.4–58.7) 10.5
V 194.7 (12.1–697.3) 109.0 215.5 (15.7–786.2) 119.6 261.6 (19.7–851.3) 151.1

Dq 21.6 (12.4–51.0) 4.7 22.3 (12.9–52.2) 4.8 22.1 (13.4–41.8) 4.90
SDI 449.5 (71.7–1047.5) 155.4 462.8 (84.4–988.6) 162.2 523.2 (95.9–1044.3) 199.7
PAI 7.3 (0.7–23.5) 4.2 9.2 (0.6–22.7) 4.9

S is the number of tree species in the plot; N is the number of trees per hectare; dbh is the diameter at breast
height (cm); h is the total tree height (m); G is the stand basal area (m2 ha−1); V is the estimated above-
ground stand volume (m3, ha−1); Dq is the quadratic mean diameter (cm); PAI is the periodic annual increment
(m3 ha−1 year−1); SDI is the Reineke’s stand density index; and min, max and S.D. are the minimum, maximum
and standard deviation values of each variable.

4.1. H-D, MH-MD and h-dbh Models

To select a suitable base model for evaluating the SF, we fitted several models com-
monly used in studies of the SI (Bertalanffy-Richards, Hossfeld, Korf, Schumacher). Among
them, the Schumacher model [52] showed the best fit for our data. Therefore, we selected
the Schumacher function as a base model to develop the H-D, MH-MD and h-dbh models.
This model has been used in various studies carried out in Mexican temperate forests
that evaluated site productivity or individual tree growth [45,53,54]. The mathematical
formulation of the Schumacher model is given below:

h= 1.3+ e(β0+β1∗dbh−1) (1)

where β0 and β1 are the regression parameters.
We used Equation (1) to build the specific nonlinear h-dbh models for each plot as

a basis for estimating the SFh-dbh. These specific h-dbh models were fitted using the nls
function of R [55]. On the other hand, we adjusted the H-D and MH-MD models using
the ADA [56] and the GADA [57] based on the Schumacher model. These approaches
describe the development of H or MH by a set of H-D or MH-MD curves, allowing for the
classification of the stand according to the Eichhorn rule. The mathematical formulations
of ADA and GADA based on the Schumacher model are given below:

Schumacher ADA,

H2 or MH2 = 1.3+ ((H1 or MH1)− 1.3)
[

exp(−β1/(D 2 or MD2))

exp(−β1/(D1 or MD1))

]
(2)

and Schumacher GADA [58],

H2 or MH2 = 1.3+ exp(X 0 + (β0 +β1 ∗X0)(D 2 or MD2)
−1) (3)

where X0 =

(
ln((H1 or MH1) − 1.3 )−β0(D1 or MD1)

−1
)

1+β1(D1 or MD1)
−1 , Hn, MHn, Dn and MDn are the H, MH,

D, and MD at time n, and β0 and β1 are the regression parameters.
We fitted Equations (2) and (3) using the 100 thickest and the 100 tallest trees per hectare

as the definitions of dominant trees. Both definitions included only re-measured live trees
during the whole study period and did not distinguish among species. Mohamed et al. [21]
used a similar definition of dominant trees to develop H-D curves using the tallest trees, re-
gardless of species, allowing for the comparison of stands with different species compositions.

We used a nonlinear mixed effects modeling approach for the development of the H-D
and MH-MD models, simultaneously considering global parameters for the whole population
(fixed-effects) and specific parameters for each tree or plot (random effects). As well as this, the
autocorrelation was corrected using an autoregressive structure (AR1). We used the function
nlme of the NLME package [59] of R [55] to fit the H-D and MH-MD models.
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Two goodness-of-fit statistics of H-D and MH-MD models were estimated: the adjusted
coefficient of determination,

R2 = 1−
⌈

n− 1 ∑n
i=1(yi − ŷi)

2

n− p ∑n
i=1(yi − y)2

⌉
, (4)

and the root mean square error,

RMSE =

√
∑n

i=1(yi − ŷi)
2

n− p
, (5)

where yi, ŷi, and y are the observed, predicted, and mean values of the dependent variable,
respectively; n is the total number of observations, and p is the number of parameters used
to fit the models. R2 indicates the proportion of the variance of the dependent variable
explained by the model, while RMSE indicates the precision of the estimates. We estimated
the statistics of the h-dbh model as the average of the R2 and the RMSE of the specific
h-dbh models.

4.2. Reference Diameter Selection

Do et al. [14] suggested that the reference diameter should be a diameter commonly
found in the forest, not too small so as to increase the difference among stands and provide
higher accuracy to predict H, MH or h. Therefore, we defined the reference D, MD and
dbh through a graphical analysis of the evolution of the RE (Equation (6)) at different
diameters, an approach that allows for the identification of the reference diameters with
higher accuracy predictions.

RE =
RMSE

y
∗ 100, (6)

where all variables are as previously defined.
In addition to this, we carried out a graphical analysis of the expected H and MH at

a specific reference diameter overlaid on the H-D and MH-MD data pairs to evaluate the
performance of the models. The curves derived from the h-dbh model were developed
based on the methodology proposed by Do et al. [14], which requires grouping the plots
into SFh-dbh classes and building a h-dbh model for each SFh-dbh class.

4.3. Evaluation of SF as a Site Quality Indicator

A total of nine SF measures were estimated for each plot and inventory period: four
SFH-D, four SFMH-MD and one SFh-dbh. The SFH-D and the SFMH-MD were estimated four
times as we evaluated two definitions of dominant trees and two models.

Timber volume was calculated using specific volume equations for each species and
region [60]. These estimate the volume of stems and branches, thus adding up to the total
tree volume:

Tree′s volume = a0dbha1ha2+a3dbh2, (7)

where a0, a1, a2 and a3 are specific parameters by species and region [60]. Subsequently,
the individual tree volume increment was estimated by taking the differences in volume
between measurements and dividing this by the length of the period (five years). Lastly, it
was extrapolated to one hectare and summed at the plot level, resulting in the PAI.

We defined Reineke’s index [61],

SDI = N
(

Dq
25.4

)1.605
, (8)

as a measure of density to assess the relationship between the SF and stand density. This
index assumes a maximum number of trees that may coexist in a stand according to the
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number of trees per hectare (N) and the quadratic mean diameter (Dq, cm), thus describing
stand density as a function of the maximum density achievable and these two variables.

We evaluated the SF-productivity relationship using Pearson’s correlation test between
the SF and the PAI. This evaluation was also conducted for four stand mixture levels,
defined by the relative proportion of coniferous species’ individuals. Additionally, we
evaluated the performance of the SF as a measure of productivity through linear regression
analysis. Lastly, we tested the independence of the SF from stand density using Pearson’s
correlation test.

5. Conclusions

The SF may be used to estimate the productive potential of stands with different tree
species and size classes. It is therefore not possible to reject the hypothesis of the correlation
between SF and volume production. This study presents evidence that the SFh-dbh and the
SFH-D, estimated by the Schumacher GADA model and the 100 tallest trees per hectare, are
suitable approaches to describe the site productivity potential of temperate uneven-aged
multispecies forests in Durango, Mexico. Nonetheless, the SF correlated positively with the
SDI in most of the cases evaluated, likely due to the effect of density on the h-dbh ratio and
thus rejecting the hypothesis of the independence of SF from stand density.
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