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Abstract
We show that on every elliptic K3 surface there are rational curves (𝑅𝑖)𝑖∈ℕ such
that 𝑅2

𝑖
→ ∞, that is, of unbounded arithmetic genus. Moreover, we show that

the union of the lifts of these curves toℙ(Ω𝑋) is dense in the Zariski topology. As
an application, we give a simple proof of a theorem of Kobayashi in the elliptic
case, that is, there are no globally defined symmetric differential forms.
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1 INTRODUCTION

Let 𝑋 be a complex projective elliptic K3 surface. In [1, 5], Bogomolov–Tschinkel and Hassett constructed infinitely many
(irreducible) rational curves on 𝑋 via the underlying elliptic structure of the surface. With their method, the degree of
those curves against the elliptic fiber is known and unbounded, but more precise information on the classes or geometry
of those curves remained unknown.
In this paper, we show by a geometric argument that the arithmetic genus—and therefore also the self-intersection—of

those rational curves tends to infinity.

Theorem 1.1. Let 𝑋 → ℙ1 be an elliptic K3 surface. Then, there are (irreducible) rational curves 𝑅𝑖 ⊂ 𝑋 such that 𝑅2𝑖 → ∞.

This also answers positively the following question posed in [2] in the elliptic case.

Question 1. Does every projective K3 surface 𝑋 admit (irreducible) rational curves 𝑅𝑖 ⊂ 𝑋 such that 𝑅2𝑖 → ∞?

If the automorphism group of 𝑋 is finite, the question has a positive answer as well: In [2], it was proven that there are
infinitely many rational curves on any K3 surface. On the other hand, the number of orbits of line bundles of the form
(𝐶) for irreducible curves 𝐶 with fixed self-intersection 𝐶.𝐶 = 𝑑 under the action of the automorphism group is finite.
As there are only finitely many rational curves in each linear system, this gives the claim.
Moreover the case that the Picard rank of 𝑋 is smaller or equal to 2 follows from loc. cit., too. Hence, the answer to

Question 1 remains unknown only for non-elliptic K3 surfaces with Picard ranks 3 or 4 that have an infinite automorphism
group. Unfortunately, there are infinitely many Picard lattices that can occur in these circumstances and a more careful
analysis would have to be made.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2023 The Authors. Mathematische Nachrichten published by Wiley-VCH GmbH.

Math. Nachr. 2023;296:2701–2714. www.mn-journal.org 2701

mailto:jonas.baltes@mathematik.uni-goettingen.de
http://creativecommons.org/licenses/by/4.0/
http://www.mn-journal.org


2702 BALTES

F IGURE 1 Examples of the multiplication map
for: torsion, quasi-torsion, and non–quasi-torsion
multisections (left to right).

1.1 Method of proof

The method of the proof of Theorem 1.1 builds on the techniques by Bogomolov–Tschinkel [1] and Hassett [5], who con-
structed infinitely many rational curves on a complex elliptic K3 surface by using the multiplication map of the elliptic
structure. Their results have since been extended to characteristic 𝑝 > 3 by Tayou in [9]. The main idea is to start with a
rational curve 𝑅 and look at its image under the rational multiplication map. As it turns out, the main problem faced in
these papers is that the initial rational curve 𝑅might be torsion, which prevents the images from giving new curves. Here,
torsion means that for any two points in 𝑅 ∩ 𝑋𝑡 of a smooth fiber, their difference in Jac

0(𝑋𝑡) is torsion.
In this paper, we look at the same construction and examine in which cases the image of the curve 𝑅 will have more

singularities. This is for example the case, if there are two smooth branches of the curve 𝑅 such that the rational map is
generically injective on the union of the branches, but maps a discrete set of points together, that is, the two branches
collide. By an analytic analysis, we classify precisely the curves for which this behavior does occur. This then leads us to
the new notion of quasi-torsion sections, see Section 3 and Figure 1.
The existence of rational non–quasi-torsion curveswill then be carried out in Section 4, whichwill be needed to produce

the rational curves with an unbounded number of singularities in Section 5.

1.2 Applications

In Section 6, we will apply the methods to examine lifts of rational curves in the first jet space ℙ(Ω𝑋) by which we
mean the space of one-dimensional quotients of Ω𝑋 . Recall the construction of such lifts: For every curve 𝐶 ⊂ 𝑋 and
its normalization 𝑓 ∶ �̃� → 𝐶 ↪ 𝑋, the usual short exact sequence of cotangent bundles gives a map

𝑓∗Ω𝑋 → Ω
1
�̃�
.

Denote its torsion-free image by 𝐿, which is automatically a line bundle. Then, the surjective map 𝑓∗Ω𝑋 ↠ 𝐿 gives rise to
a lift �̃� → ℙ(Ω𝑋). If 𝐶 is rational, then deg 𝐿 < 0 and the lift is negative with respect to ℙ(Ω𝑋)(1). It turns out that these
pathological curves form a dense subset.

Theorem 1.2. Let𝑋 → ℙ1 be an elliptic K3 surface. Then, the union of lifts of rational curves to the jet spaceℙ(Ω𝑋) is Zariski-
dense.

In Section 7, we give some easy consequences of these results. For example, the above-mentioned density yields a short
proof of Kobayashi’s theorem in the elliptic case, see Theorem 7.1.
In [3], Chen–Lewis were concerned with the conjecture that the union of rational curves on 𝑋 is dense in the usual

topology. For elliptic K3 surfaces, they proved this as long as there exists a rational multisection on 𝑋 that is not torsion.
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As a by-product of our theorems, we see that the elliptic structure can be changed in such a way that there exists such a
multisection and hence density of rational curves holds for every elliptic K3 surface, see Corollary 7.3.

1.3 Notations

Let 𝑝 ∶ 𝑋 → 𝐵 be an elliptic fibration and 𝑈 ⊂ 𝐵 be the subset on which the fibration is smooth. By ( )𝑈 we mean the
restriction to 𝑝−1(𝑈). If the fibration is moreover Jacobian, that is, it admits a section, then we denote the closure of the
𝑚-torsion of the fibers by 𝑋[𝑚]. The upper halfplane in ℂ is denoted by ℍ.

2 BACKGROUND ON ELLIPTIC K3 SURFACES AND JACOBIANS

We start by collecting facts on elliptic K3 surfaces, which we always assume to be projective. For a detailed discussion, see
[6, Chapter 11].
Let 𝑋 → ℙ1 be an elliptic K3 surface. Its index 𝑑0 ∈ ℕ is defined as

𝑑0 = min{0 < 𝑐1(𝐿).𝑋𝑡 |𝐿 ∈ Pic𝑋} = min{0 ≠ 𝐶.𝑋𝑡 |𝐶 ⊂ 𝑋 a curve},

where the last equation follows as 𝑐1(𝐿) + 𝑛𝑋𝑡 becomes effective for 𝑛 ≫ 0.

2.1 Compactified Jacobians

Denote by Jac𝑑(𝑋∕ℙ1) → ℙ1 the relative Jacobian of the elliptic fibration. Then, we can define the compactified Jacobian
𝐽𝑑(𝑋) → ℙ1 as the unique relatively minimal smooth model of Jac𝑑(𝑋∕ℙ1) → ℙ1. Therefore, over the smooth fibers, one
recovers 𝐽𝑑(𝑋)𝑡 ≅ Jac

𝑑(𝑋𝑡), where the latter is the usual Jacobian of a curve. By [6, Proposition 11.4.5], all compactified
Jacobians are K3 surfaces as well and moreover for every 𝑛 ∈ ℕwe can find another elliptic K3 surface 𝑌 → ℙ1 such that
there is an isomorphism 𝐽𝑛(𝑌) ≅ 𝑋 as elliptic surfaces. Moreover, the index of𝑌 is exactly 𝑛𝑑0, where 𝑑0 is the index of𝑋.
Furthermore Jacobians give rise to rational maps between elliptic K3 surfaces as follows: For a smooth fiber, we have a

canonical morphism

Jac𝑚(𝑋𝑡) × Jac
𝑛(𝑋𝑡) → Jac

𝑚+𝑛(𝑋𝑡),

which is given by the tensor product of line bundles. This globalizes to give a rational map

𝐽𝑚(𝑋) ×ℙ1 𝐽
𝑛(𝑋) ⤏ 𝐽𝑚+𝑛(𝑋),

which is defined over the smooth locus 𝑈 ⊂ ℙ1. Using the diagonal morphism, we can construct a multiplication map
𝐽1(𝑋) ⤏ 𝐽𝑛(𝑋) for every 𝑛 ∈ ℕ by mapping

𝐽1(𝑋) → 𝐽1(𝑋) ×ℙ1 … ×ℙ1 𝐽
1(𝑋) ⤏ 𝐽𝑛(𝑋),

where the first map is the diagonal map into the 𝑛-fold fiber product. To relate these rational maps to the K3 surface
𝑋, we mention that the canonical isomorphism 𝑋𝑡 ≅ Jac

1(𝑋𝑡) gives an isomorphism 𝑋 → 𝐽1(𝑋) respecting the fibration.
Moreover, choosing a line bundle𝑀 ∈ Pic𝑋 of degree 𝑑0, we get another isomorphism

𝐽𝑛(𝑋) → 𝐽𝑛+𝑑0(𝑋),

which fiberwise is given by the tensor product with𝑀, that is,

𝐿 ↦ 𝐿 ⊗𝑀|𝑋𝑡
for a line bundle 𝐿 ∈ Jac𝑛(𝑋𝑡).
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2.2 Framed elliptic curves

We recall some standard facts on elliptic curves, see, for example, [4].

Definition 2.1. A framed elliptic curve is a triple (𝐸, 𝑎, 𝑏) of a complex elliptic curve 𝐸 and two elements 𝑎, 𝑏 ∈ H1(𝐸,ℤ)
such that their intersection is 𝑎 ⋅ 𝑏 = 1. Isomorphisms of framed elliptic curves are isomorphisms of elliptic curves that
respect the frame.
A framed lattice is a triple (Λ, 𝜆1, 𝜆2) such thatΛ ⊂ ℂ is a rank 2 lattice and 𝜆1, 𝜆2 ∈ Λ is aℤ-basis ofΛwithℑ(𝜆1∕𝜆2) > 0.

Two framed lattices are isomorphic if the lattice and the frame coincide up to a complex multiple.

For example, every family of elliptic curves 𝐹 → 𝐵 over a simply connected base 𝐵 can be simultaneously framed, that
is, there is a tuple (𝑎, 𝑏) in H1(𝐹,ℤ) such that the pushforward of the frames of every fiber coincide with (𝑎, 𝑏).
There is a one-to-one bijection

ℍ ↔

{
isomorphism classes
of framed lattices

}
↔

{
isomorphism classes of
framed elliptic curves

}
,

which sends some 𝜏 ∈ ℍ to Λ𝜏 = ℤ𝜏 + ℤ and a lattice Λ to ℂ∕Λ. Moreover the upper half plane ℍ is a fine moduli space
for framed elliptic curves with a universal curve given by

 = ℂ × ℍ∕{(ℤ𝜏 + ℤ, 𝜏) | 𝜏 ∈ ℍ}.
For a chosen frame (Λ, 𝜆1, 𝜆2), there is a natural choice of coordinate function

ℝ2 → ℂ∕Λ

(𝑥, 𝑦) → 𝑥𝜆1 + 𝑦𝜆2,

which induces a homeomorphism ℝ2∕ℤ2 ≅ ℂ∕Λ. If we change the frame of Λ by an element 𝛾 ∈ SL(2, ℤ), the

corresponding coordinates for 𝑝 = 𝑥𝜆1 + 𝑦𝜆2 in the new frame are given by 𝛾𝑇 ⋅
(
𝑥

𝑦

)
, where 𝛾𝑇 is the transposed matrix.

2.3 Singular fibers

The singular fibers of elliptic fibrations can be completely understood by means of their local monodromy group, for
details, see [7, Lecture IV]. The latter is defined as follows. Pick a small disc Δ ⊂ ℙ1 such that over the punctured disc the
map 𝑋Δ∗ → Δ∗ is smooth and fix a fiber 𝑋𝑡 ≅ ℂ∕(ℤ + 𝜏ℤ). Then, the usual monodromy action of ℤ ≅ 𝜋1(Δ∗, 𝑡) on the
first integral cohomology of 𝑋𝑡 gives rise to a subgroup Γ ⊂ SL(2,ℤ), which is called the local monodromy group.
We just recall the facts that are important to our case, for a complete classification, see [6, Diagram 11.1.3]. It turns out

that the local monodromy is infinite precisely for the fibers of type 𝐼𝑛, 𝐼∗𝑛 (𝑛 > 0), which occur on a K3 surface if and only
if the fibration is non-isotrivial. In this case, the local monodromy can be generated by the following elements:

𝐼𝑛 ∶

(
1 𝑛

0 1

)
𝐼∗𝑛 ∶ −

(
1 𝑛

0 1

)
.

3 QUASI-TORSION SECTIONS

In the following, we will introduce the main definition of this paper, which is a generalization of torsion multisections.
Recall the definition of the latter from [1].
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Definition 3.1. Let 𝑋 → ℙ1 be an elliptic K3 surface. A multisection𝑀 ⊂ 𝑋 is called torsion if for any two points 𝑥, 𝑦 ∈
𝑀 ∩ 𝑋𝑡 in every smooth fiber 𝑋𝑡 their difference 𝑥 − 𝑦 ∈ Jac

0(𝑋𝑡) is torsion.

Throughout this section, we will work in the analytic category unless otherwise stated.
Let 𝑝 ∶ 𝑋 → Δ a smooth elliptic Jacobian fibration between complex manifolds over a simply connected base Δ. Then,

a choice of frame for the family yields a holomorphic 𝜏 ∶ Δ → ℍ = {𝑧 ∈ ℂ |ℑ𝑧 > 0} such that
𝑋 = ℂ × Δ∕(ℤ𝜏(𝑡) + ℤ, 𝑡)

and the section is given by {0} × Δ. We call such a choice a standard model.
The branches of the𝑚-torsion𝑋[𝑚] are of the form {(𝑎𝜏(𝑡) + 𝑏, 𝑡) | 𝑡 ∈ Δ} for some 𝑎, 𝑏 ∈ 1

𝑚
ℤ ⊂ ℚ. We generalize these

multisections in the following way.

Definition 3.2. Let 𝑋 → 𝐵 be an elliptic Jacobian fibration between two complex manifolds such that the base 𝐵 is one-
dimensional. A holomorphic curve 𝐶 ⊂ 𝑋 is called elementary quasi-torsion if 𝐶𝑈 → 𝑈 is étale and the branches over
every simply connected Δ ⊂ 𝑈 and some choice of standard model 𝑋Δ = ℂ × Δ∕(ℤ𝜏(𝑡) + ℤ, 𝑡) are given by

{(𝑎𝜏(𝑡) + 𝑏, 𝑡) | 𝑡 ∈ Δ} ⊂ 𝑋Δ
for some 𝑎, 𝑏 ∈ ℝ, which may depend on Δ and the chosen standard model.

Remark 3.3. The above definition is independent of the choice of standard model: If we have two standard models over Δ

given by 𝜏, 𝜏′ ∶ Δ → ℍ, then 𝜏′ = 𝛾 ⋅ 𝜏 with 𝛾 ∈ SL(2, ℤ). If we denote
(
𝑎′

𝑏′

)
= (𝛾𝑇)−1 ⋅

(
𝑎

𝑏

)
, then the two curves

{(𝑎𝜏(𝑡) + 𝑏, 𝑡) | 𝑡 ∈ Δ} ⊂ ℂ × Δ∕(ℤ𝜏(𝑡) + ℤ, 𝑡)
{(𝑎′𝜏′(𝑡) + 𝑏′, 𝑡) | 𝑡 ∈ Δ} ⊂ ℂ × Δ∕(ℤ𝜏′(𝑡) + ℤ, 𝑡)

coincide in 𝑋Δ. Moreover, by the same reasoning, it suffices to check the conditions only on an open cover of 𝑈.

Example 3.4. Let 𝑝 ∶ 𝑋 → ℙ1 be an isotrivial Jacobian elliptic projective surface with general fiber isomorphic to a fixed
elliptic curve 𝐸. Then, there exists a projective curve 𝐶 and a finite rational morphism

𝐶 × 𝐸 ⤏ 𝑋

that respects the section and the elliptic structure. The closure of the image of 𝐶 × {𝑝𝑡} under the rational map above
defines an elementary quasi-torsion curve. In fact, this is an example of an algebraic elementary quasi-torsion curve.

Lemma 3.5. Let 𝑋 → ℙ1 be a Jacobian elliptic fibration and 𝑥 ∈ 𝑋𝑈 a point. Then, there exists a unique holomorphic
connected elementary quasi-torsion curve inside 𝑋𝑈 that contains 𝑥.

Proof. Let Δ ⊂ 𝑈 be a simply connected subset such that 𝑥 ∈ 𝑋Δ and let 𝑋Δ ≅ ℂ × Δ∕(ℤ𝜏(𝑡) + ℤ, 𝑡) be a standard model.
Then, we can choose (𝑎, 𝑏) ∈ ℝ2 such that 𝑥 = (𝑎𝜏(𝑡0) + 𝑏, 𝑡0). Such a choice is unique up toℤ2 and hence any branch of
an elementary quasi-torsion curve that contains 𝑥 ∈ 𝑋𝑈 is equal to

{(𝑎𝜏(𝑡) + 𝑏) | 𝑡 ∈ Δ} ⊂ 𝑋Δ.
Thus, the uniqueness follows from the curve being étale and connected.
To construct the curve, we denote by𝑈′ → 𝑈 the universal cover and by𝑋′ the pullback of𝑋𝑈 → 𝑈 to𝑈′. If we choose

a standard model

ℂ × 𝑈′∕(ℤ𝜏(𝑡) + ℤ, 𝑡) ≅ 𝑋′,
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we may choose a point 𝑥′ ∈ 𝑋′ that lies over 𝑥 via the map 𝑝 ∶ 𝑋′ → 𝑋𝑈 . Then, we may choose (𝑎, 𝑏) ∈ ℝ2 such that 𝑥′
lies in

𝑇′[𝑥′] ∶= {(𝑎𝜏(𝑡) + 𝑏, 𝑡) | 𝑡 ∈ Δ}.
We then denote

𝑇[𝑥] ∶= 𝑝(𝑇′[𝑥′]) ⊂ 𝑋𝑈,

which is a connected elementary quasi-torsion curve containing 𝑥 ∈ 𝑋𝑈 . □

Definition 3.6. Let 𝑋 → ℙ1 be a Jacobian elliptic fibration. For any point 𝑥 ∈ 𝑋𝑈 , the unique holomorphic elementary
quasi-torsion curve that contains 𝑥 is denoted 𝑇[𝑥].

As we have seen in Example 3.4 in the isotrivial case, every 𝑇[𝑥] is algebraic and hence extends to a curve on 𝑋. But
as the construction above is very analytic in nature, this is not guaranteed in any case. We will see that for non-isotrivial
fibrations, quite the opposite is true: Only those 𝑇[𝑥] contained in 𝑋[𝑚] for some𝑚 ∈ ℕ extend to the whole of 𝑋.

Remark 3.7. Let 𝑥 = 𝑎𝜏 + 𝑏 ∈ 𝑋𝑡0 = ℂ∕(ℤ𝜏 + ℤ) be an element in a smooth fiber of𝑋 → ℙ
1. As 𝑇[𝑥] is étale over𝑈 there

is a well defined action of 𝜋1(𝑈, 𝑡0) on 𝑋𝑡0 . This action factors through the monodromy group Γ ⊂ SL(2,ℤ) by acting on
the tuple (𝑎, 𝑏) by the right action induced by the transposed matrix.

Proposition 3.8. Let𝑋 → ℙ1 be a non-isotrivial elliptic projective Jacobian surface. Then, for some 𝑥 ∈ 𝑋𝑈 , the holomorphic
curve 𝑇[𝑥] ⊂ 𝑋𝑈 extends to an algebraic curve on 𝑋 if and only if 𝑇[𝑥] ⊂ 𝑋[𝑚] is torsion for some𝑚 ∈ ℕ.

The main idea of the proof is to show that |𝑇[𝑥] ∩ 𝑋𝑡| = ∞ for non-torsion points 𝑥 ∈ 𝑋𝑈 . This can be seen as an
analog of the fact that the torsion 𝑋[𝑝] without the zero-section is irreducible for 𝑝 a large prime and 𝑋[𝑝].𝑋𝑡 = 𝑝2, see,
for example, [5, Theorem 8.3].
To deduce the above statement, we make use of the monodromy action, which can be characterized by the following

lemma.

Lemma 3.9 (Hassett [5, Lemma 8.4, Lemma 8.5]). Let 𝑋 → ℙ1 be a projective non-isotrivial Jacobian elliptic surface. Then,
the reduction Γ ⊂ SL(2,ℤ) → SL(2,ℤ∕𝑝ℤ) of the monodromy group is surjective for primes 𝑝 ≫ 0.

Proof of Proposition 3.8. Suppose 𝑇[𝑥] extends on 𝑋, that is, it is algebraic. In particular, |𝑇[𝑥] ∩ 𝑋𝑡| is finite. As 𝑋 is
non-isotrivial, there is a degenerate fiber of type 𝐼𝑁 or 𝐼∗𝑁 . By fixing an appropriate smooth fiber𝑋𝑡 = ℂ∕(ℤ𝜏 + ℤ), we can
assume that

𝛾𝑛 =

(
1 2𝑛𝑁

0 1

)
∈ Γ

is contained in the monodromy group Γ for every 𝑛 ∈ ℕ. Let 𝑥 = 𝑎𝜏 + 𝑏 ∈ 𝑋𝑡 ∩ 𝑇[𝑥]. Then, applying 𝛾𝑛 yields

𝛾𝑇𝑛 .

(
𝑎

𝑏

)
=

(
𝑎

2𝑎𝑛𝑁 + 𝑏

)
.

As the intersection of 𝑇[𝑥] with 𝑋𝑡 is finite, 2𝑎𝑛𝑁 + 𝑏 = 𝑏 ∈ ℝ∕ℤ for some 𝑛 ∈ ℕ>0. Therefore, we have that 𝑎 ∈ ℚ is
rational. On the other hand, choose 𝑝 ≫ 0 such that the previous lemma is fulfilled. Then, the matrix(

𝑝𝑤 1 + 𝑝𝑥

−1 + 𝑝𝑦 𝑝𝑧

)
∈ Γ
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is contained in the monodromy group for some 𝑤, 𝑥, 𝑦, 𝑧 ∈ ℤ. This yields(
𝑝𝑤𝑎 + (−1 + 𝑝𝑦)𝑏

(1 + 𝑝𝑥)𝑎 + 𝑝𝑧𝑏

)
∈ 𝑇[𝑥] ∩ 𝑋𝑡,

which then implies that 𝑝𝑤𝑎 + (−1 + 𝑝𝑦)𝑏 ∈ ℚ is rational as above and hence 𝑏 ∈ ℚ is rational as well. □

We will now give a local criterion for a holomorphic curve to be elementary quasi-torsion.

Proposition 3.10. Let 𝑋 → Δ be a standard model and let 𝐼 ⊂ ℕ be an infinite multiplicatively closed subset. Assume that
a section 𝐶 ⊂ 𝑋 of 𝑋 → Δ satisfies

𝐶 ∩
⋃
𝑛∈𝐼

𝑋[𝑛] = ∅.

Then, 𝐶 is elementary quasi-torsion.

Proof. Let

𝑋′ = ℂ × Δ → (ℂ × Δ)∕(ℤ𝜏(𝑡) + ℤ, 𝑡) = 𝑋

be the universal cover of the standard model. As Δ is simply connected, the section 𝐶 lifts to a section 𝐶′ of 𝑋′ → Δ. By
assumption,

𝐶′ ⊂ (ℂ × Δ) ⧵
⋃
𝑛∈𝐼

(
1

𝑛
ℤ𝜏(𝑡) +

1

𝑛
ℤ, 𝑡)

for the infinitemultiplicatively closed set 𝐼. Denote by 𝑓 ∶ Δ → ℂ a function that induces a chart for the curve𝐶′ ⊂ ℂ × Δ,
that is, 𝐶′ = {(𝑓(𝑡), 𝑡) | 𝑡 ∈ Δ}. Then, 𝑓(𝑡) = 𝑎(𝑡)𝜏(𝑡) + 𝑏(𝑡) for some continuous real-valued functions 𝑎, 𝑏 ∶ Δ → ℝ.
We will now use the fact that

⋃
𝑛∈𝐼
𝑋[𝑛] is dense in 𝑋 to show that 𝑎(𝑡) and 𝑏(𝑡) are constant.

By contradiction, assume that this is not the case, that is, without loss of generality 𝑏 is non-constant and therefore
there is some 𝑡0 such that 𝑏0 = 𝑏(𝑡0) ∈

1

𝑛
ℤ for some 𝑛 ∈ 𝐼. Then, the function

𝐹 ∶ ℂ × Δ → ℂ, 𝐹(𝑧, 𝑡) = 𝑓(𝑡) − 𝑧𝜏(𝑡) − 𝑏0

has a zero at (𝑎(𝑡0), 𝑡0) and a Jacobian of maximal rank. The implicit function theorem gives an open 𝑡0 ∈ 𝑈 ⊂ Δ and a
holomorphic function 𝑔 ∶ 𝑈 → ℂ such that𝑓(𝑡) − 𝑔(𝑡)𝜏(𝑡) − 𝑏0 = 0 for all 𝑡 ∈ 𝑈. If 𝑔 is constant,we are done, so otherwise
the image is open. As 𝑎(𝑡0) ∈ ℝ is contained in the image of 𝑔, there is an 𝑎0 = 𝑔(𝑡′) ∈

1

𝑚
ℤ also contained in the image

for𝑚 ∈ 𝐼 large enough. Therefore, the point

(𝑓(𝑡′), 𝑡′) = (𝑎0𝜏(𝑡
′) + 𝑏0, 𝑡

′) ∈ 𝑋[𝑛𝑚] ∩ 𝐶

is torsion, a contradiction. □

Corollary 3.11. Let 𝑝 ∶ 𝑋 → ℙ1 be a Jacobian elliptic fibration and 𝐶 ⊂ 𝑋 an irreducible holomorphic curve that is not
elementary quasi-torsion. Then, the set

𝐶 ∩
⋃
𝑛∈𝐼

𝑋[𝑛] ⊂ 𝐶

is dense.

Proof. Let 𝑉 ⊂ 𝐶 be an open set. By shrinking, we may assume it to be simply connected and open. If 𝑉 ∩
⋃
𝑛∈𝐼
𝑋[𝑛] = ∅,

then for Δ = 𝑝(𝑉), the set𝑉 is an elementary quasi-torsion curve in𝑋Δ → Δ by the previous proposition. Hence, 𝐶 agrees
with 𝑇[𝑥] on the open set 𝑉 for some 𝑥 ∈ 𝑋𝑈 and thus they are equal everywhere. □



2708 BALTES

Wenow come to themain definition,which is a generalization of torsionmultisections. Let𝑋 → ℙ1 be a (not necessarily
Jacobian) elliptic K3 surface. Then, there is the rational difference map to the compactified Jacobian 𝐽0(𝑋):

𝑑 ∶ 𝑋𝑈 ×𝑈 𝑋𝑈 ≅ 𝐽
1(𝑋)𝑈 ×𝑈 𝐽

1(𝑋)𝑈 → 𝐽
0(𝑋),

where the last arrow maps two line bundles 𝐿, 𝐿′ ∈ Pic𝑋𝑡 to 𝐿−1 ⊗ 𝐿′.

Definition 3.12. Let𝐶 ⊂ 𝑋 be an irreducible holomorphic curve not contained in a fiber.We define𝐷(𝐶) = 𝑑(𝐶𝑈 ×𝑈 𝐶𝑈)
and say that 𝐶 is a quasi-torsionmultisection if

𝐷(𝐶) =
⋃
𝑥∈𝑆

𝑇[𝑥],

for some finite subset 𝑆 ⊂ 𝑋𝑈 . Otherwise it is non–quasi-torsion.

Remark 3.13. Every torsion multisection is quasi-torsion as well as all elementary quasi-torsion curves.

4 EXISTENCE OF RATIONAL NON–QUASI-TORSION CURVES

In this section, we will prove that there are rational non–quasi-torsion curves on elliptic K3 surfaces, as long as we allow
a change of the fibration. The proof will be split into two parts as we have to take care of the isotrivial case separately.
We will introduce some notation, which is taken from [5, Corollary 9.5], applied to the isotrivial case. If 𝑋 → ℙ1 is an

isotrivial K3 surface with 𝑛0 (resp. 𝑛2, 𝑛3, and 𝑛4) fibers of type 𝐼∗0 (resp. type 𝐼𝐼, 𝐼𝐼
∗, type 𝐼𝐼𝐼, 𝐼𝐼𝐼∗, and type 𝐼𝑉, 𝐼𝑉∗), we

denote

𝑐(𝑋 → ℙ1) =
1

2
𝑛0 +

5

6
𝑛2 +

3

4
𝑛3 +

2

3
𝑛4 − 2.

Remark 4.1. The constant 𝑐(𝑋 → ℙ1) naturally occurs in [5] when computing the genus of torsion multisections via the
Hurwitz formula. With a similar technique as in loc. cit. applied to a quasi-torsion multisection 𝐶, we will see that the
ramification index of 𝐶 along a singular fiber is at least (𝐶.𝑋𝑡 − 1)

|Γ|−1|Γ| , where Γ is the local monodromy group. This then
yields a lower bound on the genus of such multisections in terms of (𝐶.𝑋𝑡 − 1)𝑐(𝑋 → ℙ1).

The goal of this section is to prove the following theorem.

Theorem 4.2. Let 𝑝 ∶ 𝑋 → ℙ1 be an elliptic K3 surface. If 𝑋
𝑝
_→ ℙ1 is non-isotrivial or isotrivial with 𝑐(𝑋

𝑝
_→ ℙ1) > 0, then

there is a non–quasi-torsion rational curve on 𝑋. If 𝑝 ∶ 𝑋 → ℙ1 is isotrivial with 𝑐(𝑋
𝑝
_→ ℙ1) ≤ 0, there is another elliptic

fibration 𝑝′ ∶ 𝑋 → ℙ1 such that the previous conditions hold.

We start with the latter reduction step by using a similar technique as in [8], where all Jacobian elliptic pencils on some
special elliptic Kummer surfaces are constructed.

Lemma 4.3. Let 𝑝 ∶ 𝑋 → ℙ1 be an isotrivial elliptic K3 surface with 𝑐(𝑋
𝑝
_→ ℙ1) ≤ 0. Then, there is another fibration 𝑝′ ∶

𝑋 → ℙ1 that is non-isotrivial or isotrivial with 𝑐(𝑋
𝑝′

__→ ℙ1) > 0.

Proof. By [5, Proposition 9.6], we have rk Pic𝑋 ≥ 16. Hence, we can replace 𝑝 ∶ 𝑋 → ℙ1 by a Jacobian fibration 𝑝′ ∶ 𝑋 →

ℙ1 with a section 𝑆. If it is isotrivial with 𝑐(𝑋
𝑝′

__→ ℙ1) ≤ 0, then by [5, Proposition 9.6] the only singular fibers that can
occur are as in Figure 2. We pick two degenerate fibers 𝐹1, 𝐹2 and denote the components as indicated in Figure 2, where
𝛼1 denotes the componentmeeting the section 𝑆. For both fibers𝐹𝑖 (𝑖 = 1, 2), let𝐴𝑖 = 2

∑𝑘−1
𝑗=1
𝛼𝑗 + 𝛼𝑘 ∈ Pic(𝑋), where the

components𝛼𝑗 are the components of the respective fiber as indicated in Figure 2 and 𝑘 is the highest occurring index. The
effective divisor 𝐸 = 2𝑆 + 𝐴1 + 𝐴2 defines a nef primitive class with 𝐸.𝐸 = 0. Then, |(𝐸)| induces an elliptic fibration by
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F IGURE 2 Fibers occurring in isotrivial
fibrations with 𝑐(𝑋) ≤ 0.

F IGURE 3 Fiber of type 𝐼∗𝑛 .

[6, Proposition 2.3.10] and by construction the fibration has a fiber of type 𝐼∗𝑛 with 𝑛 > 0, see Figure 3. We conclude that
this fibration is non-isotrivial. □

4.1 The non-isotrivial case

The non-isotrivial case is particularly simple as there is the following theorem:

Theorem 4.4 ([5, Theorem 8.3]). Let 𝑋 → ℙ1 be a non-isotrivial K3 surface. Then, there exist non-torsion rational
multisections on 𝑋.

Proof of Theorem 4.2 in the non-torsion case. Let 𝑅 ⊂ 𝑋 be a non-isotrivial rational multisection coming from [5]. The
difference𝐷(𝐶) ⊂ 𝐽0(𝑋) yields an algebraic subsetwith not all of its irreducible components contained in some𝑋[𝑚] (𝑚 ∈
ℕ). But if 𝐶 was quasi-torsion, all components would be contained in some 𝑋[𝑚] by Proposition 3.8, a contradiction. □

4.2 The isotrivial case with 𝒄(𝑿 → ℙ𝟏) > 𝟎

We proceed by imitating the genus calculation from [5] in the case of quasi-torsionmultisections by investigating the local
monodromy. From this, we will see that the genus of quasi-torsion curves 𝐶 grows with its fiber degree 𝐶.𝑋𝑡. We will need
the following preparatory lemma:

Lemma 4.5. Let id ≠ 𝛾 ∈ SL(2, ℤ) be an element of finite order and 𝑑 < ord(𝛾). Then, there is a natural number 𝜅 such that
there exists an 𝑥 ∈ ℝ2 ⧵

⋃𝜅
𝑖=1

1

𝑖
ℤ2 with

𝑑∑
𝑖=0

𝛾𝑖𝑥 = 0 mod ℤ2

if and only if 𝑑 = ord(𝛾) − 1. Moreover, in this case,
∑ord(𝛾)−1
𝑖=0

𝛾𝑖 = 0.

Proof. As
∑ord(𝛾)−1
𝑖=0

𝛾𝑖 = 0 holds, one direction is obvious.
Let 𝑛 < ord(𝛾). Then, id−𝛾𝑛 is invertible overℚ as 𝛾𝑛 has no eigenvalue 1. Let 𝐴 be its inverse. Then, 𝐵 = 𝐴 ⋅ (1 − 𝛾) is

an inverse for 𝐶 =
∑𝑛
𝑖=0
𝛾𝑛. Therefore, 𝐶𝑥 ∈ ℤ2 implies
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𝑥 = 𝐵𝐶𝑥 ∈
1| det id−𝛾𝑛|ℤ2.

Then, 𝜅 = max𝑛 | det id−𝛾𝑛| yields the result. □

The geometric meaning of the lemma is as follows. Recall that an element 𝛾 ∈ SL(2, ℤ) acts on the points 𝑥 = 𝑎𝜏 + 𝑏 ∈
ℂ∕(ℤ𝜏 + ℤ) of an elliptic curve 𝐸 = ℂ∕(ℤ𝜏 + ℤ) by acting on the tuple (𝑎, 𝑏) via the transposed matrix.

Corollary 4.6. Let id ≠ 𝛾 ∈ SL(2, ℤ) be an element of finite order, 𝑑 < ord(𝛾), and 𝐸 = ℂ∕(ℤ𝜏 + ℤ) an elliptic curve. There
is a natural number 𝜅 such that for any element 𝑥 ∈ 𝐸 that is not torsion of order less than or equal to 𝜅 the sum

𝑑∑
𝑖=0

𝛾𝑖𝑥 = 0 ∈ 𝐸

if and only if 𝑑 = ord(𝛾) − 1.

Definition 4.7. Let 𝑋 → ℙ1 be an elliptic Jacobian isotrivial K3 surface. Then, the minimal 𝜅 fulfilling the conditions of
the previous corollary for all 𝛾 ∈ SL(2, ℤ) that occur in the local monodromy of a singular fiber of 𝑋 → ℙ1 is denoted by
𝜅𝑋 .

Proposition 4.8. Let 𝑋 → ℙ1 be an isotrivial K3 surface. Let 𝐶 ⊂ 𝑋 be a quasi-torsion curve such that 𝐷(𝐶) contains no
component that is torsion of order up to 𝜅𝑋 . Then, the geometric genus 𝑔(𝐶) satisfies

𝑔(𝐶) ≥ (𝐶.𝑋𝑡 − 1)𝑐(𝑋 → ℙ
1) − 2.

Proof. We follow the idea of [5] by calculating the ramification occurring at the singular fibers and then applying the
Hurwitz formula.
Let Δ ⊂ ℙ1 be a small disc around a singular fiber such that 𝐶 is smooth over punctured disc Δ∗. Pick a local branch 𝐵

of 𝐶. Then, there are two cases:

Case 1: B is not a section: Fix a fiber 𝑋𝑡 and a point 𝑝 ∈ 𝐵 ∩ 𝑋𝑡. Moreover, let 𝛾 ∈ SL(2, ℤ) be a generator of the local
monodromy group. By construction, the point 𝑞 = 𝛾.𝑝 − 𝑝 ∈ 𝐽0(𝑋𝑡) is not zero. Applying 𝛾 again yields 𝛾𝑖.𝑞 = 𝛾𝑖.𝑝 −
𝛾𝑖−1.𝑝 and therefore

𝛾𝑖.𝑝 − 𝑝 =

𝑖−1∑
𝑗=0

𝛾𝑗.𝑞.

By Corollary 4.6, the smallest 𝑖 > 0 such that 𝛾𝑖.𝑝 = 𝑝 is equal to ord(𝛾) − 1. Thus, the ramification contribution 𝑒𝑖 of this
branch is ord(𝛾) − 1.

Case 2: B is a section: Suppose there is another branch that is also a local section. This in turn would yield a local sec-
tion of 𝐷(𝐶) as well and thus we have 𝛾.𝑝 = 𝑝 for some 𝑝 ∈ 𝐽0(𝑋𝑡). But this is a contradiction to the previous corollary
and the assumption that 𝐷(𝐶) contains no torsion of order up to 𝜅𝑋 . Hence, there is at most one branch that is a local
section.
To conclude, for one fixed degenerate fiber with local monodromy generated by 𝛾 ∈ SL(2, ℤ), we have that the

ramification contribution 𝑒𝑖 is greater or equal to (𝑋𝑡.𝐶 − 1) ⋅
ord(𝛾)−1

ord(𝛾)
. Hence, by the Hurwitz formula, we get

2𝑔(𝐶) − 2 ≥ (𝑋𝑡.𝐶) ⋅ (2𝑔(ℙ
1) − 2) +

∑
𝑖

𝑒𝑖

≥ −2(𝑋𝑡.𝐶) + (𝑋𝑡.𝐶 − 1) ⋅

(
1

2
𝑛0 +

5

6
𝑛2 +

3

4
𝑛3 +

2

3
𝑛4

)
= (𝑋𝑡.𝐶 − 1)𝑐(𝑋 → ℙ

1) − 2. □
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Now we are finally able to prove the last remaining part of Theorem 4.2.

Proof of Theorem 4.2 in the remaining case. Let 𝑑0 be the index of 𝑋 and let 𝑝 ≫ 0 be a prime. By [6, chapter 11.5], we can
choose a 𝑝-twist𝑌 → ℙ1 of𝑋 → ℙ1, that is, 𝐽𝑝(𝑌) ≅ 𝑋 as an isomorphism of elliptic surfaces. Then, the index of𝑌 is 𝑑0𝑝.
By [1, Lemma 3.5], we can choose a rational curve 𝑅 ⊂ 𝑌 with 𝑅.𝑌𝑡 = 𝑑0𝑝. Suppose that this curve is quasi-torsion and
denote 𝑘 = (𝜅𝑋!)𝑛 for some 𝑛 ∈ ℕ. Recall from Section 2.1 that there is a multiplication map, that is,

𝑔𝑘 ∶ 𝐽
1(𝑌) ⤏ 𝐽𝑘(𝑌).

Then, taking the image of 𝑅 under this map yields that 𝑅′ = 𝑔𝑘(𝑅) is a rational curve in 𝑌′ = 𝐽𝑘(𝑌). Moreover as
gcd(𝑝, 𝑘) = 1, we know that 𝑅′.𝑌′𝑡 ≥ 𝑝. For 𝑛 ∈ ℕ big enough, we can assume that 𝐷(𝑅′) does not contain non-trivial
torsion of order up to 𝜅𝑋 . Then, the previous proposition shows that 𝑅′ (and hence 𝑅) cannot be rational for 𝑝 ≫ 0, a
contradiction. Therefore, 𝑅 is not quasi-torsion and 𝑔𝑝(𝑅) ⊂ 𝐽𝑝(𝑌) ≅ 𝑋 gives the desired curve. □

5 PRODUCING CURVESWITHMANY SINGULARITIES

In this section, we will prove Theorem 1.1. The idea is to examine what happens to rational curves under self-rational
maps. The latter are constructed as follows. We define the map 𝑔𝑛 ∶ 𝑋 ⤏ 𝐽𝑛(𝑋) as the composition of the identification
𝑋 ≅ 𝐽1(𝑋) and the multiplication map 𝐽1(𝑋) ⤏ 𝐽𝑛(𝑋)

𝑔𝑛 ∶ 𝑋 → 𝐽
1(𝑋) ⤏ 𝐽𝑛(𝑋).

Wewill then show that given a non–quasi-torsion curve 𝐶 ⊂ 𝑋, the rational maps 𝑔𝑛 produce new curves 𝐶′ = 𝑔𝑛(𝐶) ⊂ 𝑋
such that 𝐶′ has many singularities.

Proposition 5.1. Let 𝑋 → ℙ1 be an elliptic K3 surface and 𝐶 be a curve with 𝐶.𝑋𝑡 > 1 that is non–quasi-torsion and such
that 𝑔𝑛|𝐶 is a birational map to its image for all 𝑛 ≡ 1 mod 𝑑0. Then, for every 𝑛 ∈ ℕ, there are curves 𝐶𝑖 ⊂ 𝐽𝑛(𝑋) with a
rational map 𝐶 ⤏ 𝐶𝑖 such that 𝐶2𝑖 → ∞.

Proof. Let some open 𝑉 ⊂ 𝑈 ⊂ ℙ1 be given. First, we will show that there is some𝑚 ≡ 1 mod 𝑑0 such that 𝐷(𝐶)𝑉 has a
component with an isolated torsion point of order𝑚.
Suppose the contrary, that is, 𝐷(𝐶)𝑉 does not contain a component with an isolated torsion point 𝑝0 of order 𝑚 ≡ 1

mod 𝑑0 for some𝑚. By shrinking 𝑉, we may assume that 𝐷(𝐶)𝑉 is étale over 𝑉, 𝑉 is simply connected, and 𝐽0(𝑋)𝑉 → 𝑉
is given by a standard model. Applying Proposition 3.10 to all branches of𝐷(𝐶)𝑉 , we get that the branches of𝐷(𝐶)𝑉—and
hence all components of 𝐷(𝐶)—are quasi-torsion, which is a contradiction.
Let 𝑘 ∈ ℕ be given and choose 𝑘 disjoint analytically open sets𝑉1,… , 𝑉𝑘 ⊂ 𝑈. Then, by the above there are𝑚1,… ,𝑚𝑘 ≡

1 mod 𝑑0 such that𝐷(𝐶) has an isolated torsion point of order𝑚𝑖 over some 𝑡𝑖 ∈ 𝑉𝑖 . Denote𝑚 =
∏
𝑚𝑖 . Then, by assump-

tion, the map 𝐶 ⤏ 𝑔𝑚(𝐶) is birational. Therefore, 𝑔𝑚(𝐶) has a singularity over 𝑡𝑖 for all 𝑖 as 𝑔𝑚|𝐶 maps two points of 𝐶
over 𝑡𝑖 to the same point in 𝑔𝑚(𝐶) by construction, giving a locally reducible singularity.
For the last statement, let𝑛 ∈ ℕ be given.Weobserve that𝑛𝑚 ≡ 𝑛 mod 𝑑0. Then, 𝑔𝑛𝑚(𝐶) also has at least𝑘 singularities

and the isomorphism 𝐽𝑛𝑚(𝑋) ≅ 𝐽𝑛(𝑋) gives the result. □

Proof of Theorem 1.1. Let 𝑅 ⊂ 𝑋 be a non–quasi-torsion rational curve as constructed in Theorem 4.2. As 𝑅 is non-torsion,
the set

{𝐽𝑘(𝑋)𝑡.𝑔𝑘(𝑅) | 𝑘 ≡ 1 mod 𝑑0}

attains a minimum greater than 1 for some 𝑘0 as otherwise 𝑅 would be torsion. Now replace 𝑅 with 𝑔𝑘0(𝑅) via the iso-
morphism 𝐽𝑘(𝑋) ≅ 𝐽1(𝑋). Then, the previous Proposition 5.1 applies: If 𝑅 ⤏ 𝑔𝑘(𝑅) is not birational for some 𝑘, then
𝐽𝑘(𝑋)𝑡.𝑔𝑘(𝑅) < 𝑋𝑡.𝑅, a contradiction. □
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6 DENSITY OF LIFTED RATIONAL CURVES IN ℙ(𝛀𝑿)

Let𝑋 → ℙ1 be an elliptic K3 surface. In this section, wewill examine the density in the jet spaceℙ(Ω𝑋) for lifts of curves𝐶
that are constructed similarly to those in the last section. Recall that the lift 𝑗 ∶ �̃� → ℙ(Ω𝑋) = 𝑃(𝑋) is analytically given
by the pushforward of the tangent vectors. Moreover by construction, we get

𝑐1(ℙ(Ω𝑋)(1)).𝑗∗(�̃�) ≤ 2𝑔(𝐶) − 2.

Now we will investigate the behavior of lifts of (rational) curves in the jet space of an elliptic K3 surface 𝑋 → ℙ1. Denote
its index by 𝑑0 and fix a line bundle ∈ Pic𝑋 of degree 𝑑0. Furthermore, let 𝐶 ⊂ 𝑋 be a non–quasi-torsion curve com-
ing from Section 4. For 𝑛 ∈ 𝐼 = {𝑛 ∈ ℕ |𝑛 ≡ 1 mod 𝑑0}, denote by 𝐺𝑛 ∶ 𝐽1(𝑋) ⤏ 𝐽𝑛(𝑋) → 𝐽1(𝑋) the multiplication map
𝐽1(𝑋) ⤏ 𝐽𝑛(𝑋) composed with the isomorphism 𝐽𝑛(𝑋) → 𝐽1(𝑋) induced by the line bundle , that is, fiberwise a line
bundle 𝐿 ∈ Jac1(𝑋𝑡) gets mapped to

𝐿 ↦ 𝐿⊗𝑛 ↦ 𝐿⊗𝑛 ⊗|⊗−(𝑛−1)∕𝑑0𝑋𝑡
.

Lemma 6.1. Let 𝑋 → ℙ1 be an elliptic K3 surface and Δ ⊂ ℙ1 simply connected such that

ℂ × Δ∕(ℤ𝜏(𝑡) + ℤ, 𝑡) ≅ 𝐽0(𝑋)Δ → Δ

is a standardmodel. Then,wemay choose an isomorphism 𝐽1(𝑋)Δ → 𝐽0(𝑋)Δ such that under this identification𝐺𝑛 is given by

(𝑧, 𝑡) ↦ (𝑛𝑧, 𝑡).

Proof. The line bundle induces a section 𝑆 ⊂ 𝐽𝑑0(𝑋) andwe denote by𝐻 the preimage of 𝑆Δ under the smoothmultipli-
cationmap 𝐽1(𝑋)Δ → 𝐽𝑑0(𝑋)Δ. Then,𝐻 decomposes into a disjoint union of 𝑑2

0
branches and picking one branchℎ induces

an isomorphism 𝐽1(𝑋)Δ → 𝐽0(𝑋)Δ: Every point ℎ𝑡 of ℎ over 𝑡 ∈ Δ corresponds to a line bundle 𝐿 on𝑋𝑡 of degree 1 such that
𝐿⊗𝑑0 =|𝑋𝑡 and subtracting this line bundle fiberwise yields the desired map. Viewing 𝐺𝑛 as a map 𝐽0(𝑋)Δ → 𝐽0(𝑋)Δ
via this isomorphism a line bundle 𝐿′ on 𝐽0(𝑋𝑡) gets mapped to

𝐿′ ↦ (𝐿′ ⊗ 𝐿)⊗𝑛 ⊗⊗(𝑛−1)∕𝑑0 ⊗ 𝐿−1 = 𝐿′⊗𝑛,

and we are done. □

Remark 6.2. Let 𝑋 = (ℂ × Δ)∕(ℤ𝜏(𝑡) + ℤ, 𝑡) → Δ be a standard model and 𝑝 = (𝑥𝜏(𝑡) + 𝑦, 𝑡) ∈ 𝑋 a point. Then, we can
naturally choose an isomorphism of the tangent spaces

𝑇𝑝𝑋 ≅ 𝑇(𝑥𝜏(𝑡)+𝑦,𝑡)ℂ × Δ ≅ ℂ × ℂ.

For a given deck transformation (𝑧, 𝑡) ↦ (𝑧 + 𝑎𝜏(𝑡) + 𝑏, 𝑡), the induced isomorphism on 𝑇𝑝𝑋 ≅ ℂ × ℂ is given by

(𝑧, 𝑡) ↦ (𝑧 + 𝑎𝜕𝑡𝜏(𝑡), 𝑡).

The multiplication map 𝐺𝑛 is very similar to the maps 𝑔𝑛 from the last section. The difference becomes necessary as we
really need to consider self-rational maps of K3 surfaces in the following.
We will show that the union of curves 𝐺𝑛(𝐶) lifted to the jet spaceℙ(Ω𝑋) are Zariski-dense. In particular, if we take any

rational non–quasi-torsion rational multisection from Section 4, the following proves Theorem 1.2.

Theorem 6.3. Let 𝑋 → ℙ1 be an elliptic K3 surface of index 𝑑0 and 𝐶 be a non–quasi-torsion curve. Then, the curves
𝐺𝑛(𝐶) (𝑛 ≡ 1 mod 𝑑0) lifted to ℙ(Ω𝑋) form a dense subset in the Zariski topology.

Proof. Denote the projection by pr ∶ ℙ(Ω𝑋) → 𝑋. It suffices to show that given any open subset 𝑉 ⊂ 𝑈 ⊂ ℙ1, there is a
point 𝑝 ∈ 𝐶𝑉 such that pr−1(𝑝) intersects the union of the lifts of the 𝐺𝑛(𝐶) at infinitely many points.
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By shrinking 𝑉, we may assume by the previous lemma that 𝑋 is given by a standard model

𝑋 ≅ (ℂ × Δ)∕(ℤ𝜏(𝑡) + ℤ, 𝑡),

the map 𝐺𝑛 is given by (𝑧, 𝑡) ↦ (𝑛𝑧, 𝑡), and 𝐶 is smooth and locally given by (𝑓(𝑡), 𝑡) for some holomorphic function
𝑓 ∶ Δ → ℂ. As𝐶 is non–quasi-torsion by assumption, the curve𝐺𝑑0(𝐶) is non–quasi-torsion as well and we can apply that
its torsion points are dense, see Corollary 3.11. This means that there exist 𝑡𝑗 ∈ 𝑉 and 𝑛𝑗 ∈ 𝐼 = {𝑛 ∈ ℕ |𝑛 ≡ 1 mod 𝑑0}

such that

(𝑛𝑗 − 1)𝑓(𝑡𝑗) = 𝑎𝑗𝜏(𝑡𝑗) + 𝑏𝑗 (6.1)

for some 𝑎𝑗, 𝑏𝑗 ∈ ℤ. Then, for every 𝑘 ∈ ℕ, the 𝑛𝑘𝑗 𝑓(𝑡𝑗) satisfy

𝑛𝑘
𝑗
𝑓(𝑡𝑗) = 𝑛

𝑘−1
𝑗
(𝑎𝑗𝜏(𝑡𝑗) + 𝑏𝑗) + 𝑛

𝑘−1
𝑗
𝑓(𝑡𝑗) = 𝑓(𝑡𝑗) + (𝑎𝑗𝜏(𝑡𝑗) + 𝑏𝑗)

1−𝑛𝑘
𝑗

1−𝑛𝑗
,

where the last equality follows by induction. Therefore, for 𝑝, 𝑞 > 0 the curve 𝐺𝑛𝑝
𝑗
(𝐶) intersects 𝐺𝑛𝑞

𝑗
(𝐶) over 𝑡𝑗 ∈ 𝑉.

Assume that for almost all indices 𝑗, there exist 𝑝 > 𝑞 > 0 such that the tangent directions of 𝐺𝑛𝑝
𝑗
(𝐶) and 𝐺𝑛𝑞

𝑗
(𝐶) are

the same over 𝑡𝑗 . Then by Remark 6.2, this is equivalent to

𝑛
𝑞

𝑗
𝜕𝑡𝑓(𝑡𝑗) − 𝑎𝑗

𝑛
𝑞
𝑗
−1

𝑛𝑗−1
𝜕𝑡𝜏(𝑡𝑗) = 𝑛

𝑝

𝑗
𝜕𝑡𝑓(𝑡𝑗) − 𝑎𝑗

𝑛
𝑝
𝑗
−1

𝑛𝑗−1
𝜕𝑡𝜏(𝑡𝑗).

In other words,

𝜕𝑡𝑓(𝑡𝑗) =
𝑎𝑗

𝑛𝑗−1
𝜕𝑡𝜏(𝑡𝑗)

independently of 𝑝, 𝑞.
In the isotrivial case, this means that 𝑓 is constant as 𝜕𝑡𝜏 = 0. If this was the case for all branches of 𝐶 over 𝑉, then the

curve would be quasi-torsion, a contradiction.
In the non-isotrivial case, the holomorphic function 𝜕𝑡𝑓

𝜕𝑡𝜏
maps to ℝ. Therefore, it is constant as well and 𝑎 = 𝑎𝑗

𝑛𝑗−1
does

not depend on 𝑗. Then, on the other hand, Equation (1) yields that the holomorphic function 𝑓 − 𝑎𝜏 also maps to ℝ and
therefore 𝑏 = 𝑏𝑗

𝑛𝑗−1
is independent of 𝑗 as well. But this in turn yields that 𝐶 is quasi-torsion if this was the case for every

branch over 𝑉, and hence we are done. □

7 APPLICATIONS

As we will see, the last section provides a simple tool to prove Kobayashi’s Theorem in the special case of elliptic K3
surfaces.

Corollary 7.1 (Kobayashi’s Theorem). Let 𝑋 be an elliptic K3 surface. Then,

H0(𝑋, Sym𝑛 Ω𝑋) = 0

for all 𝑛 > 0.

Proof. Let ℙ(Ω𝑋) be the first jet space of 𝑋. Then, we have the equality

H0(ℙ(Ω𝑋),(𝑛)) = H
0(𝑋, Sym𝑛 Ω𝑋).

But we know from the last section that there are rational curves 𝑅𝑖 ⊂ 𝑋 such that the union of their lifts is Zariski-dense
in the jet space. But by construction, 𝑐1((𝑛)).𝑅𝑖 < 0 and hence (𝑛) is not effective. □
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We would also like to mention the following corollary on the density of rational curves for all elliptic K3 surfaces in the
usual topology. For a Baire-general K3 surface, this was achieved in [3]. Moreover in loc. cit. the following theorem has
been proven:

Theorem 7.2 ([3, Theorem 1.6]). Let 𝑋 → ℙ1 be an elliptic K3 surface. If there is a non-torsion rational multisection, then
the union of rational curves is dense in the usual topology.

Using Theorem 4.2, we directly get the following stronger result:

Corollary 7.3. Let 𝑋 → ℙ1 be an arbitrary projective elliptic K3 surface. Then, the union of rational curves is dense in the
usual topology.
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