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A Additional Analysis of Simulation Study

A.1 Choice and distribution of my,

In the primary analysis of the simulation study, we tried to convey a clear picture of the
selection properties of the boosting algorithm, which can be easily related to the selection
of pathways based on LKMT tests. As such we chose a relatively small number of boosting
iterations to check if the influential pathways are selected early on and if they can be clearly
distinguished from non-influential pathways. Hence, in the analysis of simulation results
reported in the manuscript, the ideal number of iterations mgtop, wWas determined within
a search range of 0 to 200. Specifying a (relatively small) maximum number of possible
iterations might force an early stopping of the algorithm in some simulation runs.

To investigate this issue, we re-analysed all simulation scenarios with a larger number
of maximal iterations permitted, in order to allow the algorithm to reach the optimal
boosting iteration, i.e., to find an iteration msiop such that the out-of-bag risk is minimal.
The number of iterations needed usually depends on the strength of the signal (effect size),
the number of informative base-learners and the number of observations. In our simulation
study, the number of iterations was mainly influenced by the number of observations
(but also, though to a lesser extend) by the effect size. For simulation scenarios up to
1000 individuals, we considered a maximum of 500 iterations, while for samples of 2000
individuals, the algorithm was allowed to perform up to 1000 iterations.



In Figure 1 we display the observed number of iterations required for each simulation
scenario to reach the optimal prediction accuracy as measured by the cross-validated out-
of-bag Binomial log-likelihood.
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Figure 1: Kernel density estimates of the number of iterations (mstop) in the 100 simulation




A.2 Selection of Pathways

Increasing of the number of iterations, as discussed in the previous section, leads to an in-
crease in runtime and likely results in the selections of additional pathways. Even though
boosting tends to have a slow overfitting behavior [1, 2], at a certain point, non-influential
effects are selected as well. This is more pronounced for data sets with many observations
compared to the number of base-learners (i.e., "n > p”). Especially in later boosting
iterations, it might happen that non-informative pathways are selected. However, these
pathways are usually selected infrequently and with a small effect on the predicted out-
come. Pathways selected early and often will have much more influence on the prediction.

The additional selections of causal and also non-causal pathways results in a less clear
discrimination of influential biological processes. This disadvantage can be compensated
for, however, by evaluating the results of kernel boosting in more detail. As the boosting
algorithm can not only select a pathway once, but will usually select the same effect
variable multiple times, if it is highly influential on the outcome, we can interpret the
selection frequency of each pathway for a single simulated data set. This is one means to
take the clinical relevance into account. Alternatively, one could consider the effect size,
i.e., the size of the coefficient for linear base-learners or the norm of the coefficient vector
for pathway kernel base-learners.

In the following paragraph, we assess the selection properties of the boosting algorithm
when run until convergence. The upper panels of Figures 2 to 7 depict the relative selection
frequencies of each base-learner averaged over all 100 simulation runs per scenario. Here,
we firstly count how often each pathway has been selected in a single simulation run.
This number is then transformed into a proportion of selections by deviding it with the
chosen mgiop in the corresponding run. Secondly, these proportions per pathway are
averaged across all 100 simulation runs. In this way, we are taking into account the
relative importance of that effect. For comparisons the lower panel in each of the figures
shows the relative frequency of simulation runs in which a base-learner was selected at
least once. The latter plots are equal in structure to those in the paper, they merely show
results for larger values of msiop.

We can see, that for the simulation scenarios of 500 and 1000 individuals, no remarkable
change was detected when increasing the maximum number of iterations. Especially in
the simulation scenarios with 500 individuals, hardly any difference between top and lower
barplots is visible (Figures 2 and 3). In simulation scenarios of 1000 individuals, depicted
in Figures 4 and 5, we can see that the influential biological processes, represent by the
two simulated effect pathways, are more precisely distinguished from non-causal pathways
when also taking into account relative selection frequencies. For the scenario with 2000
individuals (Figure 7) we can see that considering relative selection frequencies has more
impact in larger samples. Here a clear difference between the upper and lower barplot
is visible. When only considering if a pathway was ever selected (lower row), influential
and non-influential pathways can less clearly be discriminated. Additional evaluation
of the relative selection frequency (top row) gives a much clearer picture and facilitates
identification of the causal pathways. Note, that the top barplot for the scenario with
2000 individuals and a relative risk of 1.5 per allele (Figure 7) looks similar to Figure 4
in the Paper, which evaluated selections only on the same data for a smaller number of
iterations. This means, that we can identify the influential pathways in a dataset with a
noticeably reduction in computation time using early stopping.

We conclude that he discrimination of biologically relevant processes from gene overlaps
is possible by letting the algorithm run until the optimal mg.p when taking not only into
account if a pathway was selected, but also considering the relative selection frequencies.
Using this approach, causal pathways were even more precisely distinguished from non-
causal pathways than in the case of evaluating only if a pathway was seletced at least once
or not.
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Figure 2: Barplots for the relative selection frequencies of each base-learner in a single

run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 250

cases and 250 controls and the effect strength was set to relative risks of 1.1 per allele.

Pathways including effect genes are labeled in bold; numbers in brackets denote the count

of included influential genes within the pathway.
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Figure 3: Barplots for the relative selection frequencies of each base-learner in a single

run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 250

cases and 250 controls and the effect strength was set to relative risks of 1.5 per allele.

Pathways including effect genes are labeled in bold; numbers in brackets denote the count

of included influential genes within the pathway.



11

n = 1000, RR

|

|

|

|

L

I

|

|

|

|

I

|

I

=_

|

|

|

|

0

I

|

|

|

|

|

|

I

|

|

0
[E—
I

0

|

|

|

|

|

|

|

|

I

|
O
|

,
[
./
I B B B

n Y 0N A9
S © o o © o

gzesoesy
0TESoesY
TETS0BSY
9TZS08esy
gTZS0esY
€1z508sY
Z12s0esy
0TZS0esy
(2) oozsoesy
19TS08sY
09TS0esy
zaTs0esy
SyTS0esy
v¥1S0esy
ovTS0esy
vETS0eSY
€E€TS0BSY
0€TS08esY
9T0S08sY
¥1050esY
0z6v0esy
1167088y
ST6708SY
¥T6v0esy
€16708sY
ZyvLyoesy
899v0esy
999v0esy
z99r0esy
09970®esYy
zz9roesy
TZ9v0esy
(T) 0T9VOBSY
(2) ovsroesy
Z1Sv0esy
0TGr0esy
06€v0RSY
05ev0esy
ovevoesy
(2) 0Lzv0esy
0TZr0esy
TrTroesy
0ETYORSY
STTPOeSY
¥TTr0esy
(2) ogoroesy
290v0esy
(T) vZoroesy
(5) zzovoesy
() 0zovoesy

Aouanbauy uonosjes

anneal abelany

j HH::DEIDDEIDI:IDDD:DDHDDDDDDDDD:DDDDDDD:D__D_DDDDDDDDD

€zesoesy
otTesoesy
TEZS0ESY
9T2508sY
gTZS0esy
€TZS08sY
2125088y
0TzS0esy
(2) oozsoesy
T9TS0®BSY
09TS0esYy
ZSTS08sy
SyTS0esy
y¥TS0esYy
ovTSoesy
yETS0ESY
€ETS0BSY
0€TS08SY
9T0S08esY
¥10508sY
0z6v0esy
LT6v0esy
ST6v08esYy
y16v0esy
€16v0esy
Zrlvoesy
899t0BSY
999v0esy
z99v0esy
099t0esy
zz9v0esy
TZ9v0esy
(1) 0T9YOESY
(2) ovsroesy
Z1Shoesy
0TSPoesy
06€70BSY
0sevoesy
ovevoesy
(2) 0Lzv0esy
oTzroesy
TrTvoesy
0ETY0BSY
STTP0esy
¥TTv0esy
(2) ogovoesy
Z90v0esy
(1) vzovoesy
(g) zzovoesy
(¥) 0zZov0oesy

salouanbaly uonodales

n=1000,RR=15

Aouanbauy uonosjes
aAIje|al abelany

run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 500

cases and 500 controls and the effect strength was set to relative risks of 1.1 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count

Figure 4: Barplots for the relative selection frequencies of each base-learner in a single
of included influential genes within the pathway.
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run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 500

cases and 500 controls and the effect strength was set to relative risks of 1.5 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count

Figure 5: Barplots for the relative selection frequencies of each base-learner in a single
of included influential genes within the pathway.
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in which a base-learner was selected at least once (bottom). The sample comprised 1000

cases and 1000 controls and the effect strength was set to relative risks of 1.1 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count

run averaged over 100 simulation runs (top) and relative frequencies of simulation runs
of included influential genes within the pathway.

Figure 6: Barplots for the relative selection frequencies of each base-learner in a single
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run averaged over all 100 simulation runs (top) and relative frequencies of simulation runs
in which a base-learner was selected at least once (bottom). The sample comprised 1000

cases and 1000 controls and the effect strength was set to relative risks of 1.5 per allele.
Pathways including effect genes are labeled in bold; numbers in brackets denote the count

Figure 7: Barplots for the relative selection frequencies of each base-learner in a single
of included influential genes within the pathway.



A.3 Computational Requirements

In the following, we provide run times and memory requirements for exemplary simulation
runs. The measurements include the model fitting with 50 simulated pathways and 20-fold
cross-validation to determine the optimal mgtep. Cross-validation was run in parallel on
20 cores. We report the runtime (time actually needed for the process), the CPU time
(sum of run time over all CPUs used; approximates the runtime if the process was run
sequentially) and maximum memory allocation:

e Kernel boosting for the simulation scenario with 500 individuals required a runtime
of 12.8 minutes (corresponding CPU time 3.5 hours) as well as a maximum memory
use of 11.6 GB to determine the optimal msiop between 0 and 500.

e Analysis of the simulation scenario including 1000 individuals resulted in a runtime
of 1.9 hours, equalling a CPU time of 24.9 hours, for the same search range of mgiop.-
The maximum memory use was approximately 40 GB.

e The simulation scenario with 2000 individuals needed a runtime of 23.3 hours (CPU
time 340.6 hours), and utilized a maximum memory of 132 GB. Here, the ideal
number of iterations was to be determined between 0 and 1000.

Note, that the actual runtime can vary (e.g. depending on the system, the CPU and
the memory available). In practice, the runtime is significantly smaller than the CPU
time, as can be seen above, as it is very easy to run the cross-validation in parallel.
Of course, parallelization also requires a higher amount of memory. Hence, running the
cross-validation sequentially will require less memory, but will take longer.

A.4 Details on Effect Pathways

A graphical display of the two networks that were simulated to contain effect genes is
given in Figures 9 and 8.
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Network structure and placement of effect genes (red nodes) in the pathway

hsa04020 used in simulations.
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Network structure and placement of effect genes (red nodes) in the pathway

hsa04022 used in simulations.
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B Additional Results of Data Analyses

Figure 10 shows the out-of-bag risk for the 20-fold subsampling: The model is fitted 20
times on random subsets of the data and the (negative) Binomial likelihood is computed
for the derived model on the new data (for each value of mgop). Each of the gray lines is
the out-of-bag risk for one model. The black line is the averaged risk for all 20 models.
This estimates the goodness of fit, as measured by the likelihood, or better said the risk as
measured by the negative likelihood. Essentially, we see how well the model would perform
to predict the outcome for new data. The vertical dotted line indicates the optimal msiop
chosen on the dataset. The cross-validated risk for the lung cancer data shows that this
data set seems to contain very little information as the risk almost imediately starts to
increase. The optimal boosting iteration was chosen as msiop, = 4. The cross-validated
risk for the rheumatoid athritis data shows that many updates were required to find the
optimal model (mgop = 993). It seems that this GWAS data set contains much more
information on the disease status. The Receiver operating characteristic (ROC) curves of
the two model for lung cancer and rheumatoid arthritis are depcited in Figure 11. These
graphs display the overall prediction accuracy of the derived models.

20-fold subsampling 20-fold subsampling

0.75
|

0.70 0.75
1 1
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Figure 10: Cross-validated out-of-bag prediction accuracy for the lung cancer (left) and
rheumatoid arthritis dataset (right).

Table 1 gives an overview the pathways used for the lung cancer data set together with
the p-values derived via LKMT.
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Figure 11: Receiver operating characteristic (ROC) curve depcting the prediction accu-
raccy of the boosted model for lung cancer (left) and for rheumatoid arthritis (right).

KEGG id Name of Pathway P-value
hsa05134 Legionellosis 0.0389
hsa05016 Huntington’s disease 0.0446
hsa05323 Rheumatoid arthritis 0.0986
hsa05231 Choline metabolism in cancer 0.1232
hsa05210 Colorectal cancer 0.1421
hsa05169 Epstein-Barr virus infection 0.1464
hsa05220  Chronic myeloid leukemia 0.1698
hsa04940 Type I diabetes mellitus 0.1754
hsa05143 African trypanosomiasis 0.1758
hsa05014  Amyotrophic lateral sclerosis (ALS) 0.1800
hsa05205 Proteoglycans in cancer 0.1933
hsa05223 Non-small cell lung cancer 0.1991
hsa05144 Malaria 0.2080
hsa05211 Renal cell carcinoma 0.2274
hsa05332 Graft-versus-host disease 0.2590
hsa05214 Glioma 0.2653
hsa05212 Pancreatic cancer 0.3032
hsa05010 Alzheimer’s disease 0.3177
hsa05031 Amphetamine addiction 0.3185
hsa05020 Prion diseases 0.3286
hsa05340 Primary immunodeficiency 0.3478
hsa05166 HTLV-I infection 0.3656
hsa05213 Endometrial cancer 0.4011
hsa04932  Non-alcoholic fatty liver disease (NAFLD) 0.4029
hsa05145 Toxoplasmosis 0.4054
hsa05218 Melanoma, 0.4109
hsa05230 Central carbon metabolism in cancer 0.4262
hsa05330 Allograft rejection 0.4288
hsa04933 AGE-RAGE signaling pathway in diabetic complications 0.4297
hsa05206 MicroRNAs in cancer 0.4305
hsa05221 Acute myeloid leukemia 0.4315
hsa05219 Bladder cancer 0.4322
hsa05032 Morphine addiction 0.4411
hsa05133 Pertussis 0.4637
hsa05012 Parkinson’s disease 0.4690
hsa05310 Asthma, 0.4709
hsa05033 Nicotine addiction 0.4756
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hsa05150 Staphylococcus aureus infection 0.4834

hsa05416 Viral myocarditis 0.5194
hsa05120 Epithelial cell signaling in Helicobacter pylori infection 0.5271
hsa05110  Vibrio cholerae infection 0.5287
hsa05161 Hepatitis B 0.5366
hsa05200 Pathways in cancer 0.5648
hsa04931 Insulin resistance 0.5697
hsa05217 Basal cell carcinoma 0.5736
hsa05030 Cocaine addiction 0.5852
hsa05215 Prostate cancer 0.5860
hsa05130 Pathogenic Escherichia coli infection 0.6437
hsa05204 Chemical carcinogenesis 0.6518
hsa05203 Viral carcinogenesis 0.6630
hsa05216 Thyroid cancer 0.6693
hsa05202  Transcriptional misregulation in cancer 0.6722
hsa05168 Herpes simplex infection 0.7000
hsa05131 Shigellosis 0.7154
hsa05100 Bacterial invasion of epithelial cells 0.7165
hsa05132 Salmonella infection 0.7292
hsa05320 Autoimmune thyroid disease 0.7341
hsa05152 Tuberculosis 0.7453
hsa05162 Measles 0.7702
hsa05222 Small-cell lung cancer 0.7793
hsa05140 Leishmaniasis 0.7971
hsa05142 Chagas disease (American trypanosomiasis) 0.8150
hsa05164  Influenza A 0.8419
hsa05322 Systemic lupus erythematosus 0.8594
hsa05146 Amoebiasis 0.8903
hsa05034 Alcoholism 0.8912
hsa04930 Type II diabetes mellitus 0.8960
hsa04950 Maturity onset diabetes of the young 0.9191
hsa05321  Inflammatory bowel disease (IBD) 0.9214
hsa05414 Dilated cardiomyopathy 0.9664
hsa05410  Hypertrophic cardiomyopathy (HCM) 0.9732
hsa05412  Arrhythmogenic right ventricular cardiomyopathy (ARVC)  0.9858
hsa05160 Hepatitis C 0.9863

Table 1: KEGG pathways in the Human Diseases class as downloaded in April 2016. Path-
ways are sorted according to p-value, derived from LKMT application on the lung cancer
dataset, in ascending order. No pathways reached a significant p-value after Bonferroni

correction are listed. The pathway selected by kernel boosting on this same dataset is
marked in bold.
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