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a b s t r a c t 

Oscillatory power and phase synchronization map neuronal dynamics and are commonly studied to differentiate 
the healthy and diseased brain. Yet, little is known about the course and spatial variability of these features 
from early adulthood into old age. Leveraging magnetoencephalography (MEG) resting-state data in a cross- 
sectional adult sample ( n = 350), we probed lifespan differences (18–88 years) in connectivity and power and 
interaction effects with sex. Building upon recent attempts to link brain structure and function, we tested the 
spatial correspondence between age effects on cortical thickness and those on functional networks. We further 
probed a direct structure-function relationship at the level of the study sample. We found MEG frequency-specific 
patterns with age and divergence between sexes in low frequencies. Connectivity and power exhibited distinct 
linear trajectories or turning points at midlife that might reflect different physiological processes. In the delta and 
beta bands, these age effects corresponded to those on cortical thickness, pointing to co-variation between the 
modalities across the lifespan. Structure-function coupling was frequency-dependent and observed in unimodal 
or multimodal regions. Altogether, we provide a comprehensive overview of the topographic functional profile 
of adulthood that can form a basis for neurocognitive and clinical investigations. This study further sheds new 

light on how the brain’s structural architecture relates to fast oscillatory activity. 
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. Introduction 

Brain development and aging are subject to highly complex
rocesses that are shaped by genetic and environmental influences
nd are critical factors in health and disease. The onset of various
isorders often coincides with specific age windows, indicating alter-
tions in developmental or aging pathways and genetic factors (e.g.,
llis et al. (2019) ; Skene et al. (2017) ). For example, genetic epilepsies
nd psychiatric disorders such as schizophrenia occur in childhood or
dolescence, while neurodegenerative diseases like Alzheimer’s disease
ypically emerge in the last decades of life. Efforts to quantify biological
ging and normative modeling using neuroimaging for the assessment
nd prediction of individual health risks has gained momentum in the
ast decade ( Cole et al., 2019 ), but have been primarily focused on
euroanatomical data ( Bethlehem et al., 2022 ; Kaufmann et al., 2019 ).
owever, many pathological states such as schizophrenia or epilepsy
re characterized by aberrant fast neuronal activity and synchroniza-
ion that can be measured using MEG or EEG ( Elshahabi et al., 2015 ;
egner et al., 2018 ; Hirvonen et al., 2017 ; Kurimoto et al., 2008 ;
tam et al., 2002 ; Stier et al., 2021 ). Thus, understanding normative
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rain maturation and aging based on neuronal activity is key to
stimating pathological trajectories. 

Research on age effects on MEG or EEG signal power was under-
aken early on ( Duffy et al., 1984 ), providing evidence for a shift from
ower to higher frequency bands ( Coquelet et al., 2020 ; Gómez et al.,
013 ; Hunt et al., 2019 ; Marek et al., 2018 ; Miskovic et al., 2015 ;
hitaker et al., 2016 ), that is, a decrease in low-frequency power
ith age and an increase in higher frequencies. These seminal studies,
owever, have focused only on specific age decades ( Coquelet et al.,
020 ; Hunt et al., 2019 ; Marek et al., 2018 ; Schäfer et al., 2014 )
r were done at the sensor level ( Gómez et al., 2013 ; Sahoo et al.,
020 ), limiting the spatial specificity and possibility of studying anatom-
cally distributed networks across the lifespan. Similarly, although mea-
ures of phase-synchronization have been popular in the search for
iomarkers and description of cognitive processes ( Sadaghiani et al.,
022 ), very few studies have investigated phase-based neuronal orga-
ization across a broad age range ( Hunt et al., 2016 ). Others used
ensor signal coherence as their connectivity measure ( Sahoo et al.,
020 ), which is likely to be influenced by electromagnetic field
pread. 
-Koch-Str. 40, Göttingen 37075, Germany. 
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Hence, the primary goal of this study was to investigate regional
ariability of oscillatory activity during the resting-state and across the
ntire adulthood using sophisticated source reconstruction methods to
tudy neural generators. We hereby focused on two characteristics of
eural signals such as signal power and phase-based connectivity us-
ng the imaginary part of coherency, a measure with less sensitivity to
olume conduction ( Nolte et al., 2004 ). Previous MEG studies have re-
orted linear and non-linear relationships between age and neural sig-
als at different frequencies ( Gómez et al., 2013 ; Hunt et al., 2019 ;
empe et al., 2023 ). Thus, it can be expected that neuronal activation
atterns change in diverse brain regions at different time points in life.
ortical regions undergo different maturation and degeneration peri-
ds and show particular age windows for vulnerability to disruptions
hroughout life ( Sydnor et al., 2021 ). For example, fMRI research shows
hat a gradual consolidation of brain networks is attributed to the early
evelopment stages, with association hubs becoming more strongly con-
ected until adulthood ( Oldham et al., 2022 ). With old age, functional
onnectivity within brain networks as studied using fMRI, appears to de-
rease, particularly in the default mode network (DMN), and relates to
ognitive decline ( Damoiseaux, 2017 ; Ferreira and Busatto, 2013 ). Im-
ortantly, cerebrovascular function changes with age and can substan-
ially confound fMRI connectivity measures if not corrected appropri-
tely ( Tsvetanov et al., 2015 ). MEG, on the other hand, is less sensitive
o vascular confounds ( Tsvetanov et al., 2015 ), measures neuronal ac-
ivity more directly than fMRI and can capture fast neuronal dynamics.

A second goal of this study was to examine potential differences be-
ween sexes in the lifespan trajectories for the MEG measures, which
an be expected based on the following evidence: Males and females
how divergent biological variations, for instance, in brain volume
 Ritchie et al., 2018 ; Ruigrok et al., 2014 ) and fMRI network connec-
ivity ( Satterthwaite et al., 2015 ). Some studies report sex differences
n MEG ( Azanova et al., 2021 ; Fung et al., 2021 ; Hoshi and Shigi-
ara, 2020 ; Taylor et al., 2020 ) or EEG features ( Brenner et al., 1995 ;
larke et al., 2001 ; Davidson et al., 1976 ; Kober and Neuper, 2011 ;
mit et al., 2008 ; Thordstein et al., 2006 ) during or in absence of a task
n various age ranges and frequencies. However, research efforts in this
irection for the resting-state across the lifespan are generally limited
 Rempe et al., 2023 ). Providing normative maps of neuronal signatures
ith age and split for sex may be particularly crucial for studies in sex
nd gender-based medicine or cognitive phenomena. 

Finally, we aimed at quantifying how the lifetime changes in neu-
onal patterns relate to those in brain structure. A growing body of lit-
rature has established correlations between co-activation patterns and
tructural connectivity using MR imaging ( Suárez et al., 2020 ), but less
ften in context with aging ( Park et al., 2022 ). Evidence from fMRI stud-
es suggests that structure-function coupling in general ( Medaglia et al.,
018 ) and its development during youth relates to functional and cog-
itive flexibility ( Baum et al., 2020 ). As such, investigating which brain
eatures are similarly age-dependent contribute to understanding per-
urbations in cognitive tasks ( Suárez et al., 2020 ) and deviations in
athological states that often affect both structural and functional cir-
uits (e.g., Stier et al. (2022) ). However, the relation of haemodynamic
onnectivity during rest to MEG networks is complex and does not fol-
ow simple linear dynamics for single frequency bands ( Shafiei et al.,
022 ; Tewarie et al., 2016 ). At the same time, a close relationship be-
ween beta oscillations and brain structural properties is likely, since
EG signals in this frequency range contributed most to fMRI networks

 Shafiei et al., 2022 ; Tewarie et al., 2016 ). In our study, we sought
o bring together lifespan patterns for fast neuronal activity measured
sing MEG and MRI-derived cortical thickness as index of the brain’s
acrostructural organization. Gradual cortical thinning from childhood
p into old age has been consistently reported, with a few exceptions
or different age effects in the anterior cingulate cortex, entorhinal, and
emporopolar cortices ( Frangou et al., 2022 ). 

Overall, this study set out to track the brain’s functional profile in
8- to 88-year-old individuals using source-reconstructed popular MEG
2 
easures ( Sadaghiani et al., 2022 ) and to investigate differences among
exes and intersections with cortical thickness. We hypothesized linear
nd non-linear associations between age and MEG power and connectiv-
ty, respectively, resolved for six frequency bands with spatially distinct
egional patterns. To exclude the possibility that our age-related MEG
nd cortical thickness findings are confounded by intracranial volume
ariability ( Leonard et al., 2008 ), we incorporated it as a factor into our
tatistical analyses together with sex. 

. Materials and methods 

.1. Data and participants 

In our study, we used cross-sectional open-access data provided
y the Cambridge center for Aging and Neuroscience (Cam-CAN) data
epository. The Cam-CAN project encompassed several phases, includ-
ng cognitive assessments, interviews and health and lifestyle question-
aires, and structural and functional brain examinations ( Shafto et al.,
014 ). 650 resting-state MEG data sets and T1-weighted MR-images
ere available from phase two of the study ( Taylor et al., 2017 ), a

ubset of which we initially analyzed ( n = 450). After excluding data
ith motion artifacts, noise, sleep, or failed Freesurfer reconstruction
 n excluded = 72), 350 cleaned MEG and MRI data were randomly se-
ected from the remaining data sets for further analysis in a balanced
esign. In total, we report on seven age groups, each with 50 indi-
iduals aged 18 to 88 years, divided into ten-year increments and bal-
nced by sex (see demographic data in Table 1). All included individ-
als were cognitively normal (Mini Mental State Examination score <
4; Folstein et al. (1975) ) and free of neurological or psychiatric condi-
ions (e.g. dementia, epilepsy, head injury with severe sequelae, bipolar
isorder, schizophrenia) and substance abuse history. Individuals with
ommunication problems (hearing, speech, or visual impairment), lim-
ted mobility, or MRI/MEG contraindications were excluded. For details
n the study protocol and datasets see Shafto et al. (2014) . The study was
onducted in accordance with the Declaration of Helsinki ( World Med-
cal Association, 2013 ) and approved by the local ethics committee,
ambridgeshire 2 Research Ethics Committee. Data collection and shar-

ng for this project was provided by the Cam-CAN ( https://camcan-
rchive.mrc-cbu.cam.ac.uk/dataaccess/ ). 

.2. MRI acquisition 

Anatomical data were acquired using a 3T Siemens TIM Trio scanner
ith a 32-channel head coil. T1-weighted images were derived from
D MPRAGE sequences with TR = 2250 ms, TE = 2.99 ms, TI = 900 ms;
A = 9 deg; FOV = 256 × 240 × 192 mm; 1 mm isotropic; GRAPPA = 2;
A = 4mins 32 s), and T2-weighted images from 3D SPACE sequences
ith TR = 2800 ms, TE = 408 ms, TI = 900 ms; FOV = 256 × 256 × 192 mm;
 mm isotropic; GRAPPA = 2; TA = 4mins 30 s). 

.3. MEG acquisition 

Resting-state data were recorded using a 306-channel VectorView
EG system (Elekta Neuromag, Helsinki) with 102 magnetometers and

04 planar gradiometers (sampling at 1 kHz with a 0.03 Hz high pass
lter). Individuals were assessed in a seated position in a magneti-
ally shielded room at a single site (MRC Cognition and Brain Science
nit, University of Cambridge, UK) for 8 min and 40 s. At the same

ime, four coils continuously measured the head position within the
EG helmet. Additionally, electrocardiogram (ECG) and electrooculo-

ram (EOG, horizontal and vertical) were recorded to track cardiac sig-
als and eye-movements. Individuals were instructed to keep their eyes
losed and sit still. 

https://camcan-archive.mrc-cbu.cam.ac.uk/dataaccess/
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.4. MRI processing and individual head models 

For mapping MEG sensor level data onto individual cortical sur-
aces, anatomical information was derived from T1- and T2-weighted
mages and reconstructed using FreeSurfer 6.0.0 ( https://surfer.
mr.mgh.harvard.edu/ ). We applied surface-based mapping (SUMA;
aad and Reynolds (2012) ), which resampled the cortical surfaces to
002 vertices per hemisphere (ld factor = 10), based on the ‘fsaver-
ge’ template mesh provided by FreeSurfer and SUMA. The individual
eshes were realigned to the Neuromag sensor space based on anatom-

cal landmark coordinates provided by Cam-CAN. We used the “single
hell ” method implemented in Fieldtrip to compute the leadfields and
ndividual head models for MEG source projection. 

.5. MEG processing 

Preprocessed MEG data was available through the Cam-CAN
epository. For each dataset Elekta Neuromag Maxfilter 2.2 was
pplied using temporal signal space separation (10 s window, 0.98
orrelation limit) to remove external interference and artefacts, line
oise (50 Hz and its harmonics), and to correct for bad channels
nd head movements. Using Fieldtrip ( Oostenveld et al., 2011 ),
e resampled the data to 300 Hz, initially high-pass filtered at
 Hz (first order Butterworth), and segmented the data into trials
f 10 s length. Trials containing artifacts were removed following
n automatic approach for both MEG channel types separately (see
ttps://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/
or further details). In brief, the data was bandpass filtered at 110 to
40 Hz (9th order Butterworth) for optimal detection of muscle
rtifacts and z-transformed for each channel and timepoint. The z-
ransformed values were averaged over all channels so that artifacts
ccumulated and could be detected in a time course representing
tandardized deviations from the mean of all channels. Finally, all
ime points that belonged to the artifact were marked using artifact
adding, and data trials whose z-values were above a threshold of
4 were excluded. The remaining data were then low-pass filtered at
0 Hz (first-order Butterworth), and independent component analysis
ICA) was applied to identify ocular and cardiac artifacts. Ocular
omponents were automatically identified based on their similarity
o EOG channel signals (average coherence > 0.3 and amplitude
orrelation coefficient > 0.4). Cardiac components were identified
hen coherent with the ECG signal (average coherence > 0.3) or based
n the averaged maximum peaks timelocked to the ECG (QRS com-
lex, see https://www.fieldtriptoolbox.org/example/use_independent_
omponent_analysis_ica_to_remove_ecg_artifacts/ ). For each data set,
he automatic selection of the components was visually checked.
n a few cases, we had to manually select the relevant ICA compo-
ents because the ECG/EOG was noisy. We visually inspected all
leaned data for quality control and rated vigilance of individuals
ccording to the criteria of the American Academy of Sleep Medicine
 https://aasm.org/ ). Thirty trials from the cleaned data scored as
awake ” ( > 50% alpha activity within a trial) were randomly selected
or source analysis as good reliability has been shown for the metrics of
nterest for five minutes of data ( Marquetand et al., 2019 ). Only signals
rom magnetometers (102 channels) were used and beamforming
pplied (dynamic imaging of coherent sources; Gross et al. (2001) ) to
roject sensor data to the surface points (source space) in the frequency
omain. MEG power and cross-spectral densities were computed for
ix conventional frequency bands (delta: 2 ± 2 Hz, theta: 6 ± 2 Hz,
lpha 10 ± 2 Hz, low beta 16 ± 4 Hz, high beta 25 ± 4 Hz and gamma
0 ± 8 Hz) based on fast Fourier spectral analysis using multitapers
Discrete Prolate Spheroidal Sequences tapers). Source projection was
arried out using leadfields and adaptive spatial filters (regularization:
ambda = 5%). The coherency coefficient was estimated between all
airs of vertices (source points, n = 2238) and the imaginary part was
erived to account for potential field spread ( Nolte et al., 2004 ). The
3 
bsolute imaginary part of coherency was our connectivity measure of
nterest, reflecting phase synchrony between signals. We averaged all
onnections of a vertex to obtain the overall strength of a vertex, and
or each individual also across all vertices to get a global connectivity
nd power index. To provide an overview of connectivity and power
istributions across age groups, the frequency spectra of each individual
n this study were calculated for 1-Hz bins and averaged for young,
iddle-aged, and old participants (Suppl Fig. 1). 

.6. Cortical thickness estimations 

At each vertex of the cortical surface derived from the
reesurfer/SUMA procedure, individual cortical thickness measures
ere calculated, which describe the distance between the gray-white
atter and pial boundaries. Smoothing of individual thickness maps
ere applied using a heat kernel of size 12 mm full width at half
aximum in AFNI ( https://afni.nimh.nih.gov/ ). 

.7. Permutation-based analysis of lifespan and sex differences 

Previous studies have reported linear and non-linear relationships
etween age and MEG measures and better performance of quadratic re-
ression than linear regression ( Gómez et al., 2013 ). We therefore exam-
ned the relationship between age and the imaging metrics (connectiv-
ty, power, or cortical thickness) by fitting linear models with the metrics
s dependent variables and age, age 2 , sex, and intracranial volume as
ndependent variables. We mean centered the individual age values be-
ore squaring them to reduce the correlation between the linear and the
uadratic terms. The full model was estimated either for the global met-
ics or for the metrics at each vertex (surface point) in the brain and in
ach frequency band separately. The non-parametric statistic tool PALM
Permutation Analysis of Linear Models; Winkler et al., 2014 ) was used
o generate permutations for the respective models with tail approxima-
ion for accelerated inference (500 permutations) ( Winkler et al., 2016 ).
ingle t contrasts were computed, that is, for positive and negative lin-
ar age effects, and for convex and concave quadratic age terms. Using
ALM, we also investigated sex differences in the trajectory of connec-
ivity and power over the lifespan. For each age decade, 25 males and
5 females were included to ensure a balanced design giving 175 in-
ividuals per sex in total. Models were fitted to test whether the beta
oefficients for the age and age 2 effects on connectivity or power in
ach frequency band differed between males and females while correct-
ng for the influence of total intracranial volume. For all analyses using
he above described permutation approach, p -values were derived from
he permutation distribution, at the tail of which a generalized Pareto
istribution was fitted ( Winkler et al., 2016 ), and corrected for multi-
le comparisons (family-wise error, FWE) at cluster level resulting from
hreshold-free cluster enhancement ( Smith and Nichols, 2009 ). We set
he significance level at p = 0.05 or equivalently -log10( p ) ∼ 1.3. The
artial correlation coefficient ( r partial ) was estimated as an effect size for
he independent variables based on the t -values and degrees of freedom
f the global models ( Rosenthal et al., 1994 ). r partial indicates the degree
f association between two variables at which the influence of other
ariables in the model has been eliminated ( Bortz and Schuster, 2011 ):
alues of ± 0.1 reflect a small effect, ± 0.3 represent a moderate effect,
nd ± 0.5 is a large effect ( Field et al., 2012 ). 

.8. Spin-tests for correspondence of age effects on brain structure and 

EG markers 

To statistically relate age effects on connectivity or power to those
n cortical thickness, we used the unthresholded t -value maps derived
rom the main analyses on lifespan differences without the application
f threshold-free cluster enhancement ( Smith and Nichols, 2009 ). We
stimated Spearman rank correlations between the t -maps for the lin-
ar (negative) and quadratic (inverted U-shaped) age effects on corti-

https://surfer.nmr.mgh.harvard.edu/
https://www.fieldtriptoolbox.org/tutorial/automatic_artifact_rejection/
https://www.fieldtriptoolbox.org/example/use_independent_component_analysis_ica_to_remove_ecg_artifacts/
https://aasm.org/
https://afni.nimh.nih.gov/
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al thickness and the maps of the linear and quadratic age effects on
onnectivity and power, respectively. Statistical significance for each
orrelation was assessed based on null distributions generated using
0,000 random rotations of the spherical projection of the cortical sur-
ace (SUMA) ( “spin-test ”; Alexander-Bloch et al. (2018) ). This approach
nsures the spatial embeddedness of the t -maps, as the rotational align-
ent is randomized rather than assuming exchangeability of the surface
oints. Rotations were applied to each hemisphere separately. The sig-
ificance level was set to 5%. 

.9. Structure-function relationships beyond age 

Finally, we explored if there was an overarching link between cor-
ical thickness and functional MEG levels when considering the entire
ifespan data. Because strong structure-function correspondence can be
xpected in functionally relevant systems ( Vázquez-Rodríguez et al.,
019 ), we averaged the individual cortical thickness and MEG values
cross surface-vertices corresponding to respective functional resting-
tate networks ( Yeo et al., 2011 ). PALM was run for each of the net-
orks on both hemispheres (500 permutations, accelerated inference
 Winkler et al., 2016 )) and false discovery rate (FDR) applied to cor-
ect for multiple comparisons at the 14 networks. For each network,
e report the effect of cortical thickness on the MEG markers after cor-

ecting for the effects of age, age 2 , sex, and total intracranial volume.
he results for the functional networks were visualized using the ‘ggs-
gYeo2011’ package in R Statistical Software (R Core Team, 2020 ). 

. Results 

.1. Lifespan differences in phase-based connectivity and effects of sex 

We found that connectivity varied linearly with age in mainly poste-
ior parts of the brain with similar topographies for the frequency bands
tudied, involving cuneus and inferior parietal regions ( p FWE < 0.05).
he direction of the effect was positive for the theta and gamma fre-
uency bands and, conversely, negative in the alpha to high beta bands
 Fig. 1 ). Despite relatively local association patterns with age, the lin-
ar effects in these frequency bands were also significant on a global
evel for theta, alpha, and gamma (range global r partial = 0.09–0.17,
uppl Table 2). Interestingly, there was a different pattern for the low
nd high beta bands in central and frontotemporal regions that signifi-
antly followed a quadratic function with age ( Fig. 1 ). That is, middle
ge groups exhibited the strongest beta connectivity levels in compari-
on with young or old age groups (vertex-wise and globally with r partial 

anging from 0.18 to 0.21, Suppl Table 2). There was no evidence for
ain effects of sex or interaction effects for age and sex, except for delta

onnectivity, such that females had a steeper slope for delta connectivity
han males in the cuneus and parietal regions. At a global level, the inter-
ction was not significant for the linear age effects, but for the quadratic
ge term, overall pointing to differences in delta connectivity between
he sexes ( Fig. 3 , Suppl Table 4). 

.2. Lifespan differences in power and effects of sex 

Age effects on power were mostly distinct from those on connectiv-
ty and tended to be focused on anterior-temporal and central regions
ith shifts from lower to higher frequency bands. Specifically, power in

he theta to gamma bands showed a significant positive association with
ge, globally (range global r partial = 0.12–0.25, Suppl Table 3) and with
ost prominent effects in frontotemporal, insular, and central regions

 Fig. 2 ). There was also a significant negative association with global
elta power ( r partial = 0.11, Suppl Table 3), which did not survive cor-
ections for multiple comparisons in the vertex-analysis. Furthermore,
e observed quadratic age effects on power ( Fig. 2 ). Delta power and

ess strong theta power, globally showed a dip in the middle ages (range
lobal r partial = 0.10–0.19, Suppl Table 4) with a strong anterior-basal
4 
mphasis, whereas the opposite direction was found for the beta and
amma bands peaking in the middle ages (range global r partial = 0.10–
.22). Of note, the quadratic age effects in high beta and gamma were
rominent in the cingulate and central areas, overlapping spatially, at
east in part, with the quadratic age effects on beta connectivity. More-
ver, we found a significant main effect of sex in gamma power for a few
lusters in the frontal cortex (data not shown). Main effects of sex for
he remaining frequency bands were not significant (either vertex-wise
r globally, Suppl Table 3). However, as with connectivity, sex-specific
nalyses for power revealed differing lifespan trajectories for the delta
and between males and females, with a stronger linear decline for men
han women. This was the case in the global analysis (Suppl Table 4)
s well as in frontocentral regions, cingulate, and precuneus ( Fig. 3 ). In
rontal brain areas, there was also an interaction effect between age and
ex in the theta range, which was not significant at a global level ( Fig. 3 ;
uppl Table 4). 

.3. Assessment of structural alterations across adulthood 

In accordance with previous reports ( Frangou et al., 2022 ), a dom-
nant pattern of a significant gradual decrease of cortical thickness
ith age was observed. This linear age effect was significant, globally
 p = 0.002) and in most of the brain areas investigated ( Fig. 4 A), partic-
larly in temporal regions, supramarginal and inferior parietal regions,
osterior cingulate, central, insular and caudle middle frontal regions.
n a few areas, cortical thickness followed a quadratic trajectory with
ge, with the highest values in the middle age groups in the right tem-
oral pole, parahippocampal and lateral occipital areas ( Fig. 4 A), as
reviously reported ( Frangou et al., 2022 ). 

.4. Relating lifespan patterns for cortical thickness and MEG markers 

The cross-sectional course of cortical thickness with age spatially cor-
esponded to that of beta and delta oscillations ( Fig. 4 B and 4 C). Specifi-
ally, the linear decrease of cortical thickness with age was mostly corre-
ated with age effects on MEG power, particularly in the beta (quadratic
ge effects low beta r s = 0.431, p spin = 0.007; high beta r s = 0.479,
 spin = 0.002) and delta frequency bands (linear age effect, r s = 0.314,
 spin = 0.008). This correspondence was weaker in the remaining fre-
uency bands and did not reach significance after applying the spin test
 r s ranging from |.014–0.366| for linear and quadratic age effects on
ower, p spin > 0.05; Suppl Table 5). There was also a moderate, but sig-
ificant correlation between cortical thinning and age effects on connec-
ivity in the delta band (linear age effect, r s = 0.343, p spin = 0.004) and
eaker, non-significant correlations in the remaining frequency bands
 r s ranging from |.051–0.267| for linear and quadratic age effects, p spin 
 0.05; Suppl Table 5). Conversely, patterns of quadratic age effects on
ortical thickness mainly corresponded to age effects on connectivity,
amely in the low beta band (linear age effect, r s = 0.360, p spin = 0.024),
elta (quadratic age effect, r s = − 0.218, p spin = 0.028), and marginally
n the alpha band (linear age effect, r s = 0.0.295, p spin = 0.050). There
ere no other significant overlaps between the t -statistics for cortical

hickness and connectivity in the other frequency bands ( r s ranging from
 < 0.001–0.193| for linear and quadratic age effects, p spin > 0.05; Suppl
able 6) nor with power maps ( r s ranging from |.012–0.289| for linear
nd quadratic age effects, p spin > 0.05; Suppl Table 6). 

.5. Correspondence of oscillatory activity and brain structure beyond age 

We further assessed the influence of brain structure on functional
EG markers at the level of functional resting-state networks ( Yeo et al.,

011 ). With an exception for the delta band, there was a tendency of
ositive associations between cortical thickness and MEG levels in mul-
imodal regions, and negative associations in unimodal regions (Suppl
ig. 2). These were significant for connectivity in the lower frequency
ands and power in the higher frequency bands ( Fig. 4 D). Specifically,
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Fig. 1. Frequency-specific associations between age and connectivity. ( A ) The plots show individual (raw) values of global connectivity ( n = 350) across early and late 
adulthood for the six frequency bands investigated. The black lines represent linear relationships between age and raw global connectivity values, while the gray lines 
represent quadratic relationships. Statistical analyses yielded significant linear effects of age in the theta, alpha, and gamma frequency bands (range r partial = 0.09–
0.17). The quadratic term in the regression model was significant for the beta1 and beta2 bands (range r partial = 0.18–0.21). See Suppl Table 2 for statistical details. 
In (B) and (C), significant effects of age on vertex connectivity are highlighted. (B) The blue color bar indicates significant negative effects of age, whereas the red 
color bar represents significant positive associations. (C) The purple color bar indicates significant quadratic effects of age following an inverted U-shaped pattern 
(concave). Results for the U-shaped term (convex) were not significant and are not displayed. The significance level was set at -log10 p > 1.3 (equivalent to p < 0.05), 
family-wise error corrected (FWE). We estimated linear models for each frequency band separately with connectivity as the dependent variable, and age, age 2 , sex, 
and intracranial volume as independent variables and performed permutation-based analysis (at a global and vertex-level). ImCoh = imaginary part of coherency. 
Left = left hemisphere, right = right hemisphere. 
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elta connectivity in the ventral attention network was predicted by cor-
ical thickness, which was also the case for the frontoparietal and motor
etworks when not corrected for the number of networks tested. Simi-
arly, there was a positive association for theta and alpha connectivity in
he DMN at the uncorrected level. Conversely, cortical thickness in so-
atomotor and visual networks negatively predicted beta and gamma
ower in these regions. However, only the pattern for gamma power
urvived corrections for multiple comparisons. 
5 
. Discussion 

Using a large set of age-stratified MEG resting-state recordings, we
rovide crucial insights into how phase-based connectivity and power
re expressed in whole-brain networks from early adulthood to old age.
he markers showed distinct, frequency- and sex-specific associations
ith age, likely reflecting physiological processes at various adult life

tages. We further provide evidence for spatial co-variation between cor-
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Fig. 2. Frequency-specific associations between age and power. ( A ) The plots show individual (raw) values of global power ( n = 350) across early and late adulthood 
for the six frequency bands investigated. The black lines represent linear relationships between age and raw global power, while the gray lines represent quadratic 
relationships. Power values (fT 2 ) were log10-transformed for visualization purposes. Statistical analyses yielded significant linear effects of age on global power 
in all frequency bands (range r partial = 0.11–0.25). The quadratic term in the regression model was significant for the delta, theta, beta1, beta2, and gamma bands 
(range r partial = 0.10–0.22). See Suppl Table 3 for statistical details. In ( B ) and ( C ), significant effects of age on vertex-power are highlighted. ( B ) The red color bar 
indicates significant positive effects of age. ( C ) The green color bar depicts significant quadratic effects of age following a U-shaped pattern (convex), while the purple 
color bar indicates significant effects following an inverted U (concave). The significance level was set at -log10 p > 1.3 (equivalent to p < 0.05), family-wise error 
corrected (FWE). We estimated linear models for each frequency band separately with power as the dependent variable, and age, age 2 , sex, and intracranial volume 
as independent variables and performed permutation-based analysis (at a global and vertex-level). Left = left hemisphere, right = right hemisphere. 
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ical thickness and delta/beta oscillations across the lifespan, suggesting
hat both modalities reflect similar maturation and aging processes. Ex-
ending earlier structure-function findings based on MRI, cortical thick-
ess predicted MEG narrowband levels across the entire study sample,
ositively in multimodal and negatively in unimodal networks. 

.1. Frequency-dependent connectivity differences with age 

Our study addresses the gap that phase-based neural organization
cross a broad age range has been primarily reported using fMRI meth-
6 
ds or EEG/MEG connectivity without providing spatial information on
he effects ( Sahoo et al., 2020 ). Here, phase coupling varied primarily in
osterior brain regions in a linear fashion, whereas in central-temporal
reas, beta band connectivity peaked at midlife. Remarkably, the linear
ge effects across the frequency bands tended to be local and of similar
opography, with an increase in mainly the theta range and also gamma,
nd a decrease in alpha to high beta. Hence, connectivity alterations
n these frequency bands possibly reflect different but related func-
ional processes in posterior brain regions. The cross-sectional nature of
ur study and the lack of behavioral correlates only allow speculations
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Fig. 3. Sex-specific trajectories for MEG markers with age. ( A ) The plot shows individual global connectivity (raw values) across early and late adulthood separately 
for males ( n = 175) and females ( n = 175) in the delta band, with a significant interaction of sex and age on global connectivity (quadratic effect), such that the 
age effect curve was narrower for females than for males. However, at the vertex-level, the slopes for the sexes were significantly different only for the linear age 
effect on delta connectivity and prominent in the cuneus. (B) Shown are significant interactions between sex and linear age effects on global power in the delta band 
and on delta and theta power at the vertex level, with emphasis on frontal regions. Global power values (fT 2 ) were log10-transformed for visualization purposes. 
The significance level was set at -log10 p > 1.3 (equivalent to p < 0.05), family-wise error corrected (FWE). We estimated linear models to test whether the age 
trajectories of power differed between males and females in each frequency band using permutation-based analysis. See Suppl Tables 3 and 4 for statistical details. 
The black lines in the global plots represent linear relationships between age and global raw MEG values, while the gray lines represent quadratic relationships. 
ImCoh = imaginary part of coherency. Left = left hemisphere, right = right hemisphere. 
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bout the underpinnings of these effects, but an attempt will be made
ere. Theta coupling appears to change along an anterior-posterior gra-
ient with age, with frontal decreases during adolescence, which was
elated to cognitive control ( Marek et al., 2018 ), and increases in pos-
erior regions during adulthood ( Hunt et al., 2019 ) as observed in our
tudy. In general, theta oscillations are believed to temporally coordi-
ate higher-frequency activity such as gamma ( Canolty et al., 2006 ),
ogether supporting feedforward signaling in the visual cortex of pri-
ates ( Bastos et al., 2015 ). Feedback communication instead relied on

he beta band ( Bastos et al., 2015 ). Thus, our connectivity findings
ight mirror age-related effects for visual processes in these frequency

ands and coincide with an fMRI study in elderlies, which reported
educed selective responsiveness of the visual cortex to visual stimuli
nd slowing of perceptual speed study ( Park et al., 2004 ). In a Cam-
AN data study, early visual areas exhibited decreased occurrence of
icrostates ( Coquelet et al., 2020 ; Tibon et al., 2021 ). In higher-order

rain areas, however, such transient neuronal states occurred more fre-
uently with age, which correlated with lower fluid but not crystalline
ntelligence possibly indicating lower flexibility and coordination in the
rain ( Tibon et al., 2021 ). We also found a different pattern for age
ffects in higher-order regions, compatible with the notion that these
reas show protracted maturation compared with lower-order regions
 Sydnor et al., 2021 ). Notably, this was only the case for connectiv-
ty in the beta band. Here, the levels peaked around the 50 s, possi-
ly subserving intellectual, behavioral, and socioemotional processes
hrough distributed long-range connections in the brain ( Buckner and
rienen, 2013 ; Kopell et al., 2000 ; Sepulcre et al., 2010 ; Sydnor et al.,
021 ). Overall, the spatial description of MEG phase connectivity dur-
ng rest across the lifespan reveals prominent effects for sensory and
ssociation regions in specific frequencies. 

.2. Age-related power shifts from low to high frequencies 

With regards to power, we replicate a well-described shift from lower
o higher frequency bands with age ( Coquelet et al., 2020 ; Gómez et al.,
013 ; Hunt et al., 2019 ; Marek et al., 2018 ; Miskovic et al., 2015 ;
empe et al., 2023 ; Whitaker et al., 2016 ) and report regional infor-
7 
ation on the effects. Interestingly, we found an increase with age for
lpha power in temporal regions together with comparable studies using
ource reconstruction methods ( Hunt et al., 2019 ; Rempe et al., 2023 ).
onversely, previous studies based on sensor-level data tended to indi-
ate an age-related alpha power decrease ( Polich, 1997 ; Thuwal et al.,
021 ; Tröndle et al., 2023 ), suggesting that the choice of analysis space
s likely a source of discrepancies between studies. Overall, the lin-
ar age effects on power across frequencies were accentuated in cin-
ulate and insular regions connected to multiple, widely different brain
unctions ( Nieuwenhuys, 2012 ). These include interoception that may
ary gradually with age, for example, for pain, temperature, or tactile
timuli ( Jones et al., 2010 ), as well as temporal and social perception
 Schirmer et al., 2016 ). Besides linear age effects, we found U-shaped
rajectories in anterior-basal areas for delta, and, to some extent, also for
heta power, which might be linked to the development ( Campbell and
einberg, 2009 ) or decline of frontal cognitive functions. For example,
ecline in executive functions with age is thought to be related to struc-
ural changes in the frontal lobe ( Greenwood, 2000 ; West, 2000 ). Con-
istently, a decrease in fluid intelligence and multitasking was found in
he Cam-CAN data, to which specific prefrontal changes in gray and
hite matter contributed ( Kievit et al., 2014 ). Future studies should
ddress this neurocognitive relationship across age in more detail, but
he possible importance of delta oscillations for cognitive processes has
een discussed previously ( Harmony, 2013 ). Power in higher frequency
ands like high beta and gamma exhibited a reverse effect with midlife
eaks in cingulate and central brain regions. Cingulate regions are con-
idered part of the DMN ( Buckner et al., 2008 ), relate to internal cog-
ition ( Buckner et al., 2008 ; Raichle et al., 2001 ), and have been pro-
osed to contribute to metastability of intrinsic connectivity ( Leech and
harp, 2014 ). Also, abnormal structure and function in this part of the
ortex is associated with many neurological and psychiatric disorders
ith onset in adolescence and old age ( Zhang and Raichle, 2010 ). Fi-
ally, our findings for the beta band in the central cortex might fur-
her link to altered levels of event-related activity. Central regions and
eta band activity are classically related to movement ( Jurkiewicz et al.,
006 ; Pfurtscheller and Neuper, 1997 ; Pfurtscheller et al., 1996 ) and
ave been shown to change across the lifespan during button pressing
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Fig. 4. Age effects on cortical thickness and relation to MEG mark- 
ers. (A) Age effects on global and vertex-wise cortical thickness 
across early and late adulthood. The black line represents the lin- 
ear relationship between age and raw global thickness, while the 
gray line represents a quadratic relationship. The linear negative 
age effect was significant in various brain regions with an empha- 
sis on temporal-parietal regions (blue color bar). Cortical thick- 
ness in a few clusters followed a quadratic relationship with age 
(red color bar, non-significant on a global level). Shown are t - 
values after threshold-free cluster enhancement (TFCE) for signifi- 
cant vertices. Left = left hemisphere, right = right hemisphere. (B) 
The gradual decrease in cortical thickness significantly correlated 
with age-related patterns for mostly delta (linear) and beta power 
(quadratic), but also for delta connectivity (linear). (C) There was 
also a significant spatial overlap between the quadratic age effects 
on cortical thickness and those on delta (quadratic), alpha, and 
beta connectivity (linear). Spearman rank correlation coefficients 
( r s ) were tested for significance using a spatial permutation pro- 
cedure (spin-test, 10,000 rotations). Note that the regression lines 
were added to the plots for visualization purposes only. (D) Across 
the entire adult lifespan sample, cortical thickness levels signifi- 
cantly aligned with connectivity levels in the delta to alpha bands. 
A negative effect of cortical thickness was observed for high fre- 
quency power. Only t -values in networks that were significant at 
the uncorrected level are shown. The full t -maps can be found in 
Suppl Fig. 2. Note that only the structure-function correspondence 
for delta connectivity in the ventral attention network and gamma 
power in the sensorimotor network survived corrections for the 
number of networks tested (FDR-correction). 
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asks, as measured in the Cam-CAN data set ( Bardouille et al., 2019 ).
ltogether, power alterations in our study spatially encompassed the
ajor players of the association and sensorimotor networks with differ-

nt sensitivities for age effects. 

.3. Divergent MEG trajectories among adult males and females 

Furthermore, our results point to sex-specific effects on resting-state
ariability in adults in low-frequency delta and theta after accounting
or intracranial volume. Our sample of 25 individuals of each sex per
ife decade may not yet be sufficient to detect sex effects reliably. Also,
ower reliability of M/EEG estimates in the delta range and susceptibility
o noise might have led to the different slopes for males and females. On
he other hand, our study was age- and sex-balanced, suggesting differ-
nces in oscillations, which, as alluded to above, might play a dominant
ole in development and age-related decline. For example, the "occipi-
al delta of youth" is a well-known EEG phenomenon that usually dis-
8 
ppears with the transition to adulthood ( Ebner et al., 2006 ) and might
ollow a different course between the sexes, extending into middle and
ate adulthood. A similar scenario might be conceivable for functional
etwork organization, which develops from increasing integration up to
arly adulthood ( Oldham et al., 2022 ; Schäfer et al., 2014 ) towards less
ithin-network connectivity in old age ( Damoiseaux, 2017 ). It should be
oted though, that the interaction effects of sex in our study were limited
o the low frequency range and largely mirror the overall lifespan effects
ound. This argues for delta connectivity differences in the trajectories
utatively associated with visual processes in the occipital cortex. Vari-
bility in delta/theta power trajectories might reflect sex-related differ-
nces in cognitive frontal lobe functions as described above. Generally,
imilar studies in adults using MEG amplitude and phase measures have
een scarce. One recent work consistently reported effects of sex in delta,
heta, and alpha power across a wide age range ( Rempe et al., 2023 ).
nother study found sex-specific reconfigurations of EEG microstates
uring maturation and in old age, similarly pointing to different tra-
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ectories of temporal dynamics for males and females ( Tomescu et al.,
018 ). Nonetheless, further studies should systematically focus on sex-
imorphic patterns using electrophysiology across adulthood and asso-
iate them with other phenotypes to explore behavioral associations. 

.4. Correspondence between MEG activity and cortical thickness across 

dulthood 

Finally, we show that, at the cross-sectional level, the age trajectories
or mainly delta and beta band oscillations spatially resembled that for
ortical thickness. In general, the correspondence was of moderate effect
ize ( r s ∼ 0.2–0.5), similar to previous attempts directly linking struc-
ural and functional connectivity using MRI ( Suárez et al., 2020 ). No-
ably, variation in cortical thickness is arranged along a poster-anterior
xis that is thought to have unfolded during neurogenesis and to be
elated to myelination ( Sydnor et al., 2021 ) and genetic components
 Valk et al., 2020 ). Similarly, beta band power has been expressed
losely along this posterior-anterior axis, which was less stringent in the
heta and alpha bands ( Mahjoory et al., 2020 ). In addition, evidence is
ccumulating that cortical alterations during development also occur
long a hierarchical order ( Sydnor et al., 2021 ), as mentioned previ-
usly, for example, for delta and beta power in opposite directions in
n adolescent sample ( Marek et al., 2018 ). Thus, it is conceivable that
scillatory activity and cortical macrostructure follow spatially similar
athways during adulthood. 

Moreover, cortical thickness significantly explained variance in MEG
onnectivity in ventral attention and default mode networks across the
ntire sample, hence across all age groups, and mainly in the delta to
lpha frequencies. Interestingly, rapid state reconfigurations in these
requency bands have been shown to form the default mode activa-
ion pattern incorporating regions that support higher-order cognition
 Vidaurre et al., 2018 ). The coupling between cortical thickness and
ow-frequency neuromagnetic connectivity might thus be the backbone
f cognitive processes during adulthood. Conversely, our data revealed
 negative effect of cortical thickness on high-frequency power in sen-
orimotor, visual, and dorsal attention networks. The cortex in sensori-
otor regions is thinner than in association areas and exhibits stronger
yelination that has been related to beta and gamma activation patterns

efore ( Hunt et al., 2016 ), consistent with our findings. We further ex-
end previous investigations on structure-function interrelations using
RI that have reported the opposite, that is, decoupling towards mul-

imodal cortex but tight coupling in unimodal sensory and motor areas
 Suárez et al., 2020 ; Vázquez-Rodríguez et al., 2019 ). Therefore, the re-
ationship between brain activity at different temporal scales and macro-
nd microstructural features may be non-trivial. Importantly, our results
ay rely on mixed effects or be driven by particular age groups and

hould be confirmed in appropriate samples with specific age ranges.
n addition, simple correlative models may not be sufficiently suited
o describe complex interactions between brain structure and function.
s previously suggested, microscale attributes and detailed topologi-
al information could substantially improve the modeling approaches
 Suárez et al., 2020 ). 

.5. Further considerations 

Our study has limitations. First, the results are based on resting-
tate activity with eyes closed and may be different with eyes open
ata, which typically are more artifactual. The eyes open scenario might
ead to less alpha power in the visual cortex ( Berger, 1929 ; Petro et al.,
022 ) and stronger age effects on theta power as previously reported
n adolescents ( Petro et al., 2022 ). For MEG phase-connectivity, dif-
erences between eyes open and closed conditions have been largely
nexplored, but fMRI studies point to effects beyond the visual cor-
ex ( Agcaoglu et al., 2019 ; Patriat et al., 2013 ). In general, high sig-
al power, hence a better signal-to-noise ratio, leads to a more sta-
le phase estimation ( Daffertshofer and van Wijk, 2011 ) and thus, po-
9 
entially to a more robust estimation of age effects. This further im-
lies non-physiological dependency between MEG power and phase-
ynchronization measures, but also physiological coupling has been
oted ( Tewarie et al., 2019 ). In our study, the spatial profile for the
ge effects on power and connectivity were mostly distinct except in
he beta frequencies. Here, the age trajectories exhibited some spatial
verlap and might either reflect common biological processes through
oordination across distant brain regions and/or technical associations
 Tewarie et al., 2019 ). 

Moreover, what occurs as frequency-specific changes in power may
e confounded by shifts in center frequencies, reductions in broadband
ower or changes of the aperiodic exponents ( Donoghue et al., 2020 ).
o account for this concern, we performed spectral parametrization of
he broadband MEG power spectrum and overall found comparable age
ffects for the aperiodic-adjusted power as with the original power spec-
rum, pointing to true effects for oscillatory power. Please see Suppl Figs.
3 and S4 for further details. We would like to point out that the rela-
ively small effect sizes of the age effects on the global estimates suggest
hat many other factors contribute to the variance in our data. Another
imitation is that the cross-sectional design of the study is not suitable
or determining individual long-term trajectories ( Lindenberger et al.,
011 ) and cohort effects cannot be excluded ( Sliwinski et al., 2010 ). 

. Conclusions 

Overall, we complement age-related (f)MRI literature with investi-
ations of fast neuronal activity at rest for whole-brain networks. Source
econstruction of MEG signal characteristics yielded relevant spatial in-
ormation about lifespan signatures that depend on temporal proper-
ies and partially on sex. The covariation of cortical thickness and MEG
elta/beta oscillations throughout life reported here may provide an in-
egrative imaging model for cognitive or clinical phenotypes. The asso-
iations between cortical thickness and MEG markers beyond age sub-
tantially contribute to the current perspectives on cortical structure-
unction relationships with reverse effects for unimodal and multimodal
egions. Our findings have important implications for many studies us-
ng M/EEG. When applying similar measures in clinical cohorts, conver-
ence or divergence from the patterns in healthy individuals could be
ested, primarily to understand brain pathology and advance the devel-
pment of biological disease markers. 
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