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Background: In digital pathology, image properties such as color, brightness, 
contrast and blurriness may vary based on the scanner and sample preparation. 
Convolutional Neural Networks (CNNs) are sensitive to these variations and may 
underperform on images from a different domain than the one used for training. 
Robustness to these image property variations is required to enable the use of 
deep learning in clinical practice and large scale clinical research.

Aims: CNN Stability Training (CST) is proposed and evaluated as a method to 
increase CNN robustness to scanner and Immunohistochemistry (IHC)-based 
image variability.

Methods: CST was applied to segment epithelium in immunohistological cervical 
Whole Slide Images (WSIs). CST randomly distorts input tiles and factors the 
difference between the CNN prediction for the original and distorted inputs 
within the loss function. CNNs were trained using 114 p16-stained WSIs from the 
same scanner, and evaluated on 6 WSI test sets, each with 23 to 24 WSIs of the 
same tissue but different scanner/IHC combinations. Relative robustness (rAUC) 
was measured as the difference between the AUC on the training domain test set 
(i.e., baseline test set) and the remaining test sets.

Results: Across all test sets, The AUC of CST models outperformed “No CST” 
models (AUC: 0.940–0.989 vs. 0.905–0.986, p < 1e − 8), and obtained an improved 
robustness (rAUC: [−0.038, −0.003] vs. [−0.081, −0.002]). At a WSI level, CST 
models showed an increase in performance in 124 of the 142 WSIs. CST models 
also outperformed models trained with random on-the-fly data augmentation 
(DA) in all test sets ([0.002, 0.021], p < 1e-6).

Conclusion: CST offers a path to improve CNN performance without the need 
for more data and allows customizing distortions to specific use cases. A python 
implementation of CST is publicly available at https://github.com/TIGACenter/
CST_v1.
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Introduction

Advances in both digital pathology and the application of Deep 
Learning (DL) on Whole Slide Images (WSI) are rapidly progressing, 
and accordingly, multiple applications are being developed (1). 
Convolutional Neural Networks (CNNs) have shown to be highly 
effective in performing tasks such as nuclei classification and 
segmentation (2, 3), tissue type segmentation (4), and WSI-level or 
lesion-level diagnosis (5, 6), even exceeding human performance for 
some diagnostic tasks in controlled scenarios, such as the detection of 
lymph node metastases in breast cancer (7–9).

One of the main limitations of DL, and an ongoing challenge for 
its application in healthcare, is the poor performance of CNNs trained 
on single-source data when used on new data sets (10). Slight 
variations in color, noise, contrast, compression loss, rotation and 
other properties can cause DL models to misclassify (11, 12), thus 
showing a lack of robustness to image variability. In digital pathology, 
this variability can be caused by the use of different scanners, sample 
preparation and even environmental factors. Evidence shows that DL 
models underperform on WSIs from different scanners compared to 
those used to generate the training sets (13, 14). DL models evaluating 
Immunohistochemistry (IHC) stains and rare-event detection might 
especially suffer from slide heterogeneity (15). Since IHC biomarkers 
are evaluated for clinical decision making, the robustness of the 
classification is of critical importance for a clinical use of DL models.

We here propose an adaptation of CNN Stability Training (CST) 
(16) for WSIs for improving robustness to biological and technical 
variations (samples, sample processing and optical image acquisition) 
and for evaluating IHC staining patterns. CST was originally designed 
to increase DL model robustness to image distortions like cropping, 
JPEG compression and image resizing. Here we extend this initial idea 
further and apply it to two major challenges of Whole Slide Imaging 
which are (1) the use of different scanners and (2) the use of different 
IHC stains. With CST, DL models are trained to maximize agreement 
between the outputs for pairs of original and artificially distorted 
images through a parallel augmentation. Distorted images are 
randomly generated on the fly during training, through composition 
of artificial distortions to emulate naturally occurring medical image 
variations: blurriness, color, brightness and contrast. Implementing 
the CST approach in software code requires encapsulating any given 
CNN network structure into a two-input-channel frame layout. This 
frame layout is highly customizable, and allows to adapt any CNN 
architecture to specific challenges of robustness. CST shares 
conceptual similarities with supervised contrastive learning (17, 18), 

since both attempt to increase agreement between outputs on original 
and artificially distorted images. While recent contrastive learning 
work usually targets agreement between feature representations, CST 
directly targets agreement between CNN likelihoods.

We have applied CST for the automatic segmentation of 
epithelium in IHC-stained cervical WSIs. IHC-staining creates a 
patterned appearance of the biomarkers under study over a 
homogenous hematoxylin background. The pattern is highly relevant 
for the diagnostic evaluation. In combination with technical 
distortions arising from variations in the sample itself, the sample 
preparation and/or its scanning can make a robust segmentation very 
challenging. Automatic segmentation is a prerequisite for the 
automatic quantification of IHC expression in subareas of WSIs, 
supporting a more objective computationally-based diagnosis of 
cervical precancer (Cervical Intraepithelial Neoplasia grade 2 and 3, 
CIN2 and CIN3) and early detection of cervical cancer. We evaluated 
and compared DL models trained with and without CST, on WSIs 
from three different scanner models, two of which were not used for 
training. This allowed us to evaluate robustness to distortions caused 
by the use of different scanners and, therefore, the potential benefit of 
using CST.

Human papillomavirus (HPV) testing has been approved for 
primary cervical cancer screening as a rapid genetic testing for 
Cervical Intraepithelial Neoplasia (CIN) in its different grades. HPV 
is the main medical cause for CIN and cervical cancer and is 
transmitted by skin-to-skin or mucosa-to-mucosa contact. The virus 
reaches and infects germinal cells in the basal layer of the epithelium, 
usually near the transformation zone. Some HPV infections are more 
persistent, making them harder to eradicate by the body’s immune 
system. The extended duration of these infections causes the 
proliferation of abnormal cells. As the proliferation of abnormal cells 
persists, almost the whole thickness of the epithelium becomes 
neoplastic. p16INK4a (short: p16) has an important role in cell cycle 
regulation (19) as it is upregulated Human Papilloma Virus (HPV) 
infection resulting in an over activation of the cell proliferation (20). 
HPV further additionally interferes with the cell death functions 
causing affected epithelial cells to become neoplastic, and leading 
eventually to the development of CIN. The cell cycle regulator p16 
serves as an indirect marker for this HPV oncogene activity (20). p16 
is used in IHC assays like the CINtec Kit (Roche) for the diagnosis of 
CIN and has been shown to reduce an otherwise high inter-observer 
variability of cervical histology (19–25). The tissue frequently reacts 
to this transformation with an immune cell infiltration which varies 
for individual patients. The strength of this immune response is thus 
considered potentially indicative of patient prognosis. CD3 and CD8 
T-cell co-receptors are histological hallmarks of such immune cell 
infiltration which allow to potentially predict prognosis or eventually 
response to cancer treatment (26–28). The analysis of different IHC 
such as p16, CD3, and CD8 can contribute to a more precise diagnosis 
and prognosis of the disease. Therefore, having CNNs that are robust 

Abbreviations: CNN, Convolutional neural network; CST, CNN stability training; 

WSI(s), Whole slide image(s); DL, Deep learning; CIN, Cervical intraepithelial 

neoplasia; HT, Hamamatsu NanoZoomer HT; S360, Hamamatsu NanoZoomer 

S360; XR, Hamamatsu NanoZoomer XR; AUC, Area under the ROC Curve; DC, 

Distortion combination; IHC, Immunohistochemistry.
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to different scanners and to different IHC stains is a requirement for 
the large-scale processing of WSIs.

The biomarker p16 may stain larger areas of the epithelium with 
an eventual gradient of intensity toward the tissue surface. The 
staining pattern is indicative of the actual diagnosis and thus a strong 
heterogeneity of the spatial expression pattern of p16 is core to its 
nature. In contrast, CD3 and CD8 show a cellular and membrane-type 
like pattern. With the purpose of evaluating robustness to variations 
in IHC patterns, we trained CNNs with p16-stained WSIs only, and 
evaluated on WSIs stained with p16, CD3 and CD8.

The main contributions of this work are the following:

 • We propose a novel stability framework setup to train CNNs 
which allows an increase in robustness to image distortions using 
CST, in the context of digital pathology.

 • We show that the segmentation accuracy of a DL model which 
was trained on examples of one scanner model may significantly 
drop when applied on a different scanner model of the same 
manufacturer (here Hamamatsu Photonics Nanozoomer).

 • We propose a set of domain-specific distortions for image 
properties (i.e., contrast, color, brightness, blurriness) for the 
implementation of CST.

 • Using the p16, CD3 and CD8 biomarkers, we validate how far 
CST can improve segmentation performance on WSIs from 
different scanner models, and may further improve performance 
on WSIs from the same scanner.

 • We benchmark CST with traditional on-the-fly data 
augmentation using the same domain-specific distortions for 
image properties.

Materials and methods

Datasets

We used 256 WSIs from tissue samples from the Study to 
Understand Cervical Cancer Early Endpoints and Determinants 
(SUCCEED) conducted by the Division of Cancer Epidemiology and 

Genetics of the National Cancer Institute (DCEG-NCI) in 
collaboration with the University of Oklahoma (21, 22). SUCCEED 
was a cross-sectional study of women 18 years of age or older with an 
abnormal Pap smear who were referred to colposcopy or treatment at 
the University of Oklahoma (OUHSC) between 2003 and 2011. 
Written informed consent was obtained from all women enrolled in 
the study, and Institutional Review Board approval was provided by 
OUHSC and the US National Cancer Institute (NCI). The biopsy 
specimens were collected at the colposcopy visit among women with 
abnormal screening results. Sections from paraffin-embedded tissue 
blocks were cut at the University of Oklahoma. Sections were fixed 
onto glass slides and stained either for p16 (monoclonal antibody 
clone E6H4, no dilution, Roche), CD3 (monoclonal antibody clone 
SP7, dilution 1:100, Diagnostic BioSystems) or CD8 (monoclonal 
antibody clone SP16, dilution 1:100, Diagnostic BioSystems) at the 
University of Heidelberg. These slides were then digitized into WSIs 
using three different whole-slide scanner models from Hamamatsu: 
NanoZoomer-HT (HT), NanoZoomer-XR (XR) and NanoZoomer 
S360 (S360). In order to induce blur, an additional set of WSIs was 
generated intentionally out-of-focus, using offsets of 5–20 μm of the 
microscopic objective. Finally, epithelium regions within the WSIs 
were manually annotated by researchers at the DCEG-NCI using the 
software NDP.view2 from Hamamatsu. All slides were scanned at 20× 
magnification (1 pixel = 0.45 × 0.45 μm2).

The WSIs were separated into one training set and six test sets, as 
detailed in Table 1. The dataset generation and curation process is 
presented with more detail in Supplementary material. The training 
set corresponds to 114 WSIs of p16-stained tissue slides from different 
patients, scanned with the HT. The six test sets correspond to WSIs of 
slides with varying IHC stains and/or digitized with different scanner 
models. Test sets with p16 staining were generated by scanning the 
same glass slides using different scanners (resulting in the datasets 
P16-HT-baseline, P16-XR and P16-S360), and scanning intentionally 
out-of-focus (resulting in the dataset P16-HT-oof). The test sets with 
CD3 and CD8 staining were generated using different sections of the 
same tissue block used for p16 staining, which is why these WSIs look 
morphologically similar but not identical between each other (see 
Figure  1). All WSIs from the test sets come from different tissue 
samples than those used for the training set. The manual annotations 

TABLE 1 Datasets used for training and testing.

Purpose
Stain-scanner 
abbrev.

Type of 
staining

Scanner No of WSIs
No of 

epithelium 
tiles

No of non-
epithelium 
tissue tiles

Training P16-HT train P16 NanoZoomer-HT 114 405.992a 607.627

Testing

P16-HT baseline P16 NanoZoomer-HT 24 12.601b 66.221b

P16-HT-oof P16
NanoZoomer-HT (WSIs scanned 

intentionally out-of-focus)
23 9.792b 54.164b

P16-XR P16 NanoZoomer-XR 24 11.416b 58.259b

P16-S360 P16 NanoZoomer S360 23 11.132b 59.239b

CD3-HT CD3 NanoZoomer-HT 24 11.297b 69.095b

CD8-HT CD8 NanoZoomer-HT 24 11.073b 71.365b

All DL models were trained with p16 slides scanned with the NanoZoomer-HT. These were tested on datasets generated using different scanners (P16-HT baseline, P16-XR and P16-S360), 
intentionally out of focus (P16-HT-oof) and using different IHC stains (CD3-HT and CD8-HT). a8-fold data augmentation was applied by means of 90° rotations and flipping to correct class 
imbalance. bThe reason for the difference in the number of tiles between test sets is the preprocessing method, where background or excessively blurred tiles were discarded from the set. Due 
to variations in focus and/or contrast, some tiles may have been discarded as background in some test sets but not in others. This is especially evident for the P16-HT-oof test set.
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were used as labels to train the CNNs with the training set, and as the 
gold standard to evaluate CNN performance with the test sets.

Figure 1 illustrates the naturally occurring variability caused by 
the use of different scanner models, the lack of focus and the use of 
different IHCs. Distortions caused by different scanners or machine 
operators can be seen as changes in color, contrast, brightness of blur. 
On the other hand, distortions caused by the IHC stain can be defined 
as variations in color patterns, as these biomarkers may express in 
different colors and over different tissue regions. The p16 IHC is 
expressed as a brown stain covering a large region of the epithelium, 
while the CD3 and CD8 IHC are expressed as brown blobs scattered 
around and inside the epithelium.

Before being used for training and testing, all WSIs were 
preprocessed into 128x128px tiles without overlap. Tiles 
corresponding to background (i.e., WSI area without tissue) were 
removed from all datasets in a two-step process. First, a histogram 
threshold was applied on a grayscale version of each tile, by setting 
a maximum number of pixels within a specific range from the 
intensity median. Tiles not passing this criterion were labeled as 
background and removed. Second, a laplacian filter was applied to 
the remaining tiles for edge detection. Tiles with a lower edge 
sharpness than the set criterion were also labeled as background and 
removed. Supplementary Figures  1–8 describing the process are 
available in Supplementary material. Next, tiles were labeled 1 for 
“epithelium” tiles (i.e., within the manually annotated region of the 
WSI) or 0 for “non-epithelium” (i.e., outside of the manually 
annotated region of the WSI). Finally, an 8-fold data augmentation 
was applied only on the “epithelium” tiles of the training set to 
reduce the class imbalance by applying three rotations (90°, 180°, 

and 270°) and flipping, resulting in over 1 million tiles for training. 
The 8-fold value was chosen over a lower fold due to the large gap in 
the ratio between “non-epithelium” and “epithelium” tiles, of 
approximately 11:1.

CNN stability training for robustness

The goal of CNN stability training (CST) is to reduce the 
variability of the softmax outputs caused by input image distortions 
while training a CNN. In other words, if an image x and its distorted 
version x ′  are similar, then the output f xθ ( )  should be similar to 
f xθ ′( )  as well, given the DL model’s set of trainable parameters θ. 

For this purpose, the CST approach incorporates a “stability 
component” in the calculation of the objective loss function, which 
aims to maximize agreement between the softmax of an image and its 
distorted version. Specifically, given an image x and its distorted 
version x ′ , the loss function is calculated as a composition of two 
distance measures:

 
θ θ α θ′ ⋅ ′= +

0( , , ; ) ( , ; ) ( , , )stabx x y x y x x  
 

(1)

Where y  represents the one-hot encoded ground truth for image 
x. 0  is the distance between the prediction of the original image and 
its true label, which forces the DL model to correctly predict image 
classes during training. The stability component stab  is the distance 
between the prediction of the original image and the prediction of the 
distorted image. This component constrains the objective loss function 

FIGURE 1

Example WSIs showing image variability. Slides were stained for p16 (A–D), CD3 (E) or CD8 (F), and scanned with the NanoZoomer HT (A,B,E,F), XR 
(D) or S360 (C). Scanner-caused image variability (between A–D) can be observed as variations in color, blur or contrast, while staining-caused image 
variability (between A,E,F) can be observed as variations in color patterns, associated with the biomarker expression. p16 expression can be observed 
on neoplastic cells within the epithelium, while CD3 and CD8 expression can be observed as scattered brown stains over CD3+ and CD8+ T cells, 
mostly in the stroma surrounding the neoplastic epithelium. Slight morphological differences can be observed between WSIs stained for CD3, CD8 
and p16, as these constitute different slices of the same tissue. WSIs were scanned at 20× resolution (1 pixel = 0.45 × 0.4 μm2).
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and forces the DL model to minimize the distance between the 
prediction for x and x’ during training. The parameter α determines 
the weight of the stability component in the objective loss function. 
The value of α has to be fine-tuned, and will differ depending on the 
dataset and the level of distortion applied to it. Selecting α = 0  is 
equivalent to training without CST.

For mini-batch training with N images per batch, the distance 0  
is calculated as the Binary Cross-entropy between the DL model’s 
output for the batch X and its respective set of true labels, Y :

 
( )( )θ θ

= =
= − ⋅∑ ∑

0 ,,1 1
1, ; ;( |) N C

i c ii ci cX Y y P y x
N


 

(2)

where ∈ 



,i cy Y  is the ground truth regarding class c for image 
x Xi ∈  (i.e., yi c



, =1  if xi  belongs to class c, 0 otherwise) and 
P y xi c i, |; |;θ( )  is the likelihood predicted by the DL model for image 
xi  to belong in class c. On the other and, the stability component 
stab  is calculated as the Kullback–Leibler Divergence between batch 
X and the distorted batch X’ (16, 23):

 
( ) ( )

( )
θ

θ θ
θ= =

 
= − ⋅   ′

′ 
∑ ∑ ,

,1 1 ,

| ;1( , , ) | ; log
| ;

N C i c i
stab i c ii c i c i

P y x
x x P y x

N P y x


 
(3)

where P y xi c i, |; |;′( )θ  is the likelihood predicted by the DL model for 
the distorted image x i′  to belong in class c. It can be observed that 
stab  is not affected by the correctness of the prediction (i.e., how 
close the likelihood for x i′  is to class c); it is only concerned with how 
close the likelihoods for xi  and x i′  are to each other. The training 
process is described in Figure 2.

Data augmentation

Data augmentation is a method traditionally used in deep learning 
to increase the size of the training dataset, improve model 
generalization and avoid overfitting. It consists in applying distortions 
to the input images, thus artificially attempting to expand the training 
domain. When applied on-the-fly (instead of being applied a priori 
over the training dataset), random transformations are applied during 
training, in a similar way as the random transformations applied 
for CST.

The training setting is the same as a classical setting to train a 
CNN except for the addition of the same distortion layer used for CST, 
between the input image and the base architecture. The loss function, 
0,  is calculated as the Binary Cross-entropy between the DL model’s 
output for the batch X and its respective set of true labels.

Performance and robustness metrics: AUC 
and rAUC

The performance metric used for this work was the Area Under 
the ROC Curve (AUC). We calculated the AUC over the total number 
of tiles for all test sets to evaluate overall performance. Tiles within the 
regions manually annotated as “epithelium” were labeled positive, and 
tiles outside these regions were labeled as negative. These labels were 
used as the ground truth to build the ROC curves and to 
calculate AUC.

Regarding robustness, the AUC on the P16-HT-baseline test set 
( AUCbase ) was used as a baseline performance for each DL model, 
because it has no variability with respect to the training set. To 
quantify robustness of a DL model on other test sets, we used the 

FIGURE 2

Schema for the training process with CST and the testing setup. Multiple models were trained using different Distortion Combinations (DC) and α 
values (where α = 0 means no CST; training). During the training process, input tiles pass through a distortion layer which generates a distorted version 
of the tiles. Both the original and the distorted tiles are fed to an InceptionV3 CNN in parallel, which outputs a likelihood for each, Output 1 and Output 
2. Loss components 0  and stab  are calculated using BCE (Eq. 2) and KLD (Eq. 3), respectively. An ensemble loss function (Eq. 1) is calculated with 
both values. The trained DL models are evaluated on the baseline testing set (P16-HT-Baseline) and on the remaining five testing sets with real-world 
distortions (testing). Tile-wise and WSI-wise analyses are performed over the model outputs, and performance is compared through the analysis of the 
ROC curves and the calculation of AUC and rAUC.
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difference between AUCbase  and the AUC of the test sets, AUCtestset , 
which we called rAUCtestset :

 rAUC AUC AUCtestset testset base= −  (4)

where rAUCtestset ≥ 0  constitutes perfect relative robustness.
Statistically significant differences between DL model results were 

calculated over the total number of tiles for each dataset, using the fast 
version of DeLong’s algorithm for comparing the AUC of correlated 
ROC curves (24). Additionally, we calculated the AUC at WSI level to 
analyze performance from a WSI perspective, and created a boxplot 
to analyze WSI-wise results.

Experiments and results

We developed 13 models with InceptionV3 as a base architecture. 
Each model corresponds to an ensemble of its three best performing 
epochs (i.e., the three epochs with lowest validation BCE during 
training). The model output is the average of the output of these three 
epochs.” The combination of multiple model weights trained with 
different initial weights and data order is called Deep Ensemble, and 
is used to obtain a better generalization performance and out-of-
distribution robustness (19, 20, 25). The results for each independent 
epoch are provided in Supplementary Table 1.

Each model was trained with a different value for the parameter 
α and a different Distortion Combination (DC), as shown in Table 2. 
A DC corresponds to a sequence of random artificial distortions 
applied to an input image to generate a distorted output image. For 
this experimental setup we proposed and evaluated a set of DCs, as 
described in the next section, “Distortion Combinations.” One model 
was trained without CST (model “No CST”) by setting α = 0 , which 
cancels stab  from the loss function, as described in equation (1). 
Seven models were trained with CST, and an additional five models 
were trained with on-the-fly data augmentation, using the same 

distortion combinations from CST. All models were trained on the 
same training set, P16-HT Train.

After training the DL models, we evaluated their performance in 
the task of segmenting epithelium on the six test sets described in the 
section “Datasets.” Performance was measured as AUC, and 
robustness was measured using equation (4), which corresponds to 
the difference between the AUC on each test set and the AUC of the 
test set P16-HT-baseline (i.e., same scanner and IHC as the training 
set). Figure 2 illustrates the testing process for each DL model.

We used the Keras API implemented on the TensorFlow library. 
During training, the distortion layer generates distorted tiles from the 
original input tiles, and both are inputted to the InceptionV3 CNN, 
which outputs a likelihood for each.

Distortion combinations

For this work, CST involved the application of distortions in color, 
contrast, brightness and blur. We  selected these image properties 
based on a visual interpretation of the main differences between WSIs. 
We proposed four different DCs which apply random distortions of 
these image properties within certain ranges, as described in Table 3. 
These ranges increase from DC 1 to DC 4, so the use of a higher DC 
implies that some images will be highly distorted.

A distortion in color corresponds to the addition of dR, dG, 
and dB to the RGB values of every pixel in the image. A distortion 
in brightness corresponds to the addition of ⋅255 Ld  to every 
pixel RGB value in the image. A distortion in contrast corresponds 
to the computation of the channel-wise pixel mean ∝C

chan  and the 
channel-wise adjustment of each pixel component value xchan to 
( )µ µ− ⋅ +chan chan chan

C C Cx d . A distortion in blur corresponds to 
the convolution of the image with a gaussian kernel centered in 
0 (i.e., µK = 0 ), a standard deviation σK and a kernel size that 
depends on the DC. dR, dG, dB, dL, dC, and σK are random values 
between ranges determined by the DC being used for the training 
of a specific DL model. During training, every image that is used 

TABLE 2 List of trained DL models.

Model α Distortion combination Fixed hyper-parameters

No CST 0 –

CST1 1 1

CST2 1 2

CST3 1 3

CST4 1 4 Epochs: 15

CST5 2 2 Optimizer: SGD

CST6 10 2 Learning rate: 1e − 3

CST7 100 2 Momentum: 0.9

DA1 – 1 Decay: 1e − 6

DA2 – 2

Batch size: 64
DA2_v2 – 2*

DA3 – 3*

DA4 – 4*

All models share a set of fixed hyper-parameters involved in the model optimization process. Each model has a different value for α and/or a different DC. *Within the DCs used to train 
DA2_v2, DA3 and DA4, the σK was set to 

σ
255

.
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as input to the network will be distorted with a different value of 
dR, dG, dB, dL, dC and σK, so all images will be distorted differently. 
Since the ranges for all image properties contain a “no distortion” 
value (i.e., 1 for dC, 0 for all the others), some images will have a 
low distortion. Figure 3 illustrates randomly generated examples 
of distortions obtained using the four different DCs. It can 
be  observed that DCs 1 to 3 have no distortion on the green 
channel. An exploratory analysis of the variability between 
images showed that the green channel did not significantly 
change between images, so we  decided to omit it with the 
exception of DC4, which represents the DC with 
highest distortions.

Segmentation performance without CST

The purpose of this section was to evaluate the performance of 
model “No CST” in order to determine a base robustness to real-
world distortions without CST. This gave us exemplary insight into 
the impact that the use of different scanner models and IHC stains 
has on DL model performance and, therefore, the importance of 
robustness for applications in digital pathology. Model “No CST” was 
evaluated on all test sets: P16-HT-baseline (i.e., same domain used for 
training), P16-XR, P16-S360, P16-HT-oof, CD3-HT, and CD8-HT.

Segmentation performance for model “No CST” is described in 
the first row of Table 4. It was calculated as the AUC over the total 

TABLE 3 Distortion combinations that were evaluated.

Image property
Distortion combination (DC)

1 2 3 4

Color (red) dR ∈ [−5, 5] dR ∈ [−5, 5] dR ∈ [−20, 20] dR ∈ [−20, 20]

Color (green) 0 0 0 dG ∈ [−20, 20]

Color (blue) dB ∈ [−5, 5] dB ∈ [−5, 5] dB ∈ [−20, 20] dB ∈ [−20, 20]

Contrast dC ∈ [0.8, 1.2] dC ∈ [0.8, 1.2] dC ∈ [0.6, 1.6] dC ∈ [0.6, 1.6]

Brightness dL ∈ [−0.3, 0.3] dL ∈ [−0.3, 0.3] dL ∈ [−0.5, 0.5] dL∈ [−0.5, 0.5]

Blur

(Gaussian kernel)
0

kernel size: 5×5

μK = 0.0

σK ∈ [0.0, 1.0]

kernel size: 5×5

μK = 0.0

σK ∈ [0.0, 5.0]

kernel size: 9×9

μK = 0.0

σK ∈ [0.0, 5.0]

The cell color describes the level of distortion: green, yellow, orange, and red cells depict no distortion, low distortion, medium distortion, and high distortion, respectively. Color distortions 
correspond to an addition of dR, dG, dB to the respective RGB channels of the image, where dR, dG, dB are random values between a range determined by the DC. Contrast and brightness 
distortions correspond to an adjustment of d to the contrast and brightness levels of the image.

FIGURE 3

Examples of randomly generated distorted tiles with the four different DCs. Three examples are presented for each DC. Tiles generated with DC = 1 are 
visually similar to the original, and the difference increases progressively on each combination. Finally, the tiles distorted with DC = 4 seem visually as 
the most different from the original.
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TABLE 4 Performance of the CST models, DA models and “No CST” model on the six test sets.

P16-HT 
(baseline)

P16-HT-oof P16-XR P16-S360 CD3-HT CD8-HT All test sets

Model Parameters AUCbase
AUCoof 

(rAUCoof)
AUCXR 
(rAUCXR)

AUCS360 
(rAUCS360)

AUCCD3 
(rAUCCD3)

AUCCD8 
(rAUCCD8)

AUCAll Min AUC

No CST α = 0 0.986 0.919 (−0.067) 0.928 (−0.058) 0.905 (−0.081) 0.984 (−0.002) 0.974 (−0.012) 0.953 0.905

CST1 α = 1, DC = 1 0.986 0.901 (−0.085) 0.936 (−0.050) 0.931 (−0.055) 0.983 (−0.003) 0.973 (−0.013) 0.950 0.901

CST2 α = 1, DC = 2 0.985 0.921 (−0.064) 0.957 (−0.028) 0.962 (−0.023) 0.984 (−0.001) 0.977 (−0.008) 0.963 0.921

CST3 α = 1, DC = 3 0.978 0.940 (−0.038) 0.968 (−0.010) 0.956 (−0.022) 0.975 (−0.003) 0.975 (−0.003) 0.959 0.940

CST4 α = 1, DC = 4 0.987 0.933 (−0.054) 0.958 (−0.029) 0.954 (−0.033) 0.985 (−0.002) 0.980 (−0.007) 0.967 0.933

CST5 α = 2, DC = 2 0.986 0.920 (−0.066) 0.949 (−0.037) 0.954 (−0.032) 0.984 (−0.002) 0.974 (−0.012) 0.960 0.920

CST6 α = 10, DC = 2 0.989 0.918 (−0.071) 0.964 (−0.025) 0.961 (−0.028) 0.986 (−0.003) 0.983 (−0.006) 0.970 0.918

CST7 α = 100, DC = 2 0.980 0.867 (−0.113) 0.927 (−0.053) 0.921 (−0.059) 0.975 (−0.005) 0.960 (−0.020) 0.942 0.867

DA1 DC = 1 0.987 0.916 (−0.071) 0.952 (−0.035) 0.940 (−0.047) 0.985 (−0.002) 0.978 (−0.009) 0.961 0.916

DA2 DC = 2 0.839 0.921 (0.082) 0.898 (0.059) 0.919 (0.080) 0.848 (0.009) 0.852 (0.013) 0.857 0.848

DA2_v2 DC = 2* 0.984 0.915 (−0.069) 0.948 (−0.036) 0.935 (−0.049) 0.982 (−0.002) 0.973 (−0.011) 0.957 / 0.915 0.915

DA3 DC = 3* 0.977 0.930 (−0.047) 0.940 (−0.037) 0.932 (−0.045) 0.972 (−0.005) 0.965 (−0.012) 0.944 0.930

DA4 DC = 4* 0.979 0.925 (−0.054) 0.948 (−0.031) 0.941 (−0.038) 0.976 (−0.003) 0.970 (−0.009) 0.950 0.925

Values in parenthesis correspond to AUCtestset − AUCbase. Cells marked in green represent the best performing (i.e., highest AUC) model for each test set, respectively. CST models had the highest AUC in all test sets. *Within the DCs used to train DA2_v2, DA3 and 

DA4, the σK was set to 
σ
255

. Overall robustness is measured as the minimum performance delivered over all distortions.
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number of tiles, for each test set. It can be observed that this model 
performed better on the P16-HT-baseline testing set (AUCbase = 0.986) 
than on the remaining five datasets. This result was aligned with our 
expectations, since this test set belongs to the same domain as the 
training set (i.e., same scanner, same IHC).

Regarding the test sets with different IHC stains, performance 
relative to P16-HT-baseline decreased by 0.002 (AUCCD3 = 0.984) and 
0.012 (AUCCD8 = 0.974), as compared to the performance in P16-HT-
baseline. Interestingly, the CD3 and CD8 biomarkers do not stain the 
neoplastic epithelial tissue like p16, but model “No CST” was still able 
to correctly classify neoplastic epithelium tiles without p16 expression, 
despite never having seen it before (remembering that model “No 
CST” was trained exclusively with p16 WSIs, where neoplastic 
epithelium is stained in brown as shown in Figure 1). This shows that, 
even though there was a decrease in performance, model “No CST” 
was able to generalize through normal DL model training.

Regarding the segmentation on WSIs from different scanners, a 
greater decrease in performance was observed for model “No CST.” 
AUC for the P16-XR and P16-S360 decreased in 0.058 and 0.081, 
respectively (AUCXR = 0.928, AUCS360 = 0.905) when compared to 
the performance on the P16-HT-baseline. Performance on the 
P16-HT-oof test set (i.e., scanned out of focus) was also significantly 
lower than on the baseline test set (rAUCoof = −0.067).

The lowest relative performance was observed on the P16-S360 test 
set, most likely caused by the noticeable difference in color and contrast 

between the NanoZoomer HT and the NanoZoomer S360. The low 
performance on the P16-HT-oof test set also shows that variability caused 
by scanning out-of-focus had a high impact in segmentation performance, 
even when using the same scanner and evaluating on the exact same 
slides. Two segmentation comparisons can be observed in Figure 4, where 
the column Predicted mask: model “No CST” shows the segmentation 
results for slides from the P16-HT-baseline as well as for P16-S360 and 
P16-HT-oof. In both comparisons, the decrease in performance is shown 
as a clear increase in the number of False Positive tiles.

This experiment allowed us to quantify the effect that different 
scanners and scan quality (e.g., blurriness due to poor focus) had on DL 
model performance. Even though the exact same glass slides were used 
to build the baseline test set and the remaining scanner-distorted test sets 
(P16-S360, P16-HT-oof and P16-XR), the segmentation performance of 
model “No CST” on these was noticeably lower for the latter.

Segmentation performance with CST and 
data augmentation

After obtaining the reference performances of model “No CST,” 
the next step was to evaluate models with CST to determine if there is 
an improvement in performance and, therefore, a higher robustness 
to distortions associated with real-world image variability. CST 
models were trained using the training set P16-HT Train as well; 

FIGURE 4

Examples of epithelium segmentation with and without CST. “No CST” model has a lower performance than CST models on WSIs from a different 
domain than the one used for training. CST models also outperform on WSIs from the same domain used for training.
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however, different values of α (1, 2, 10, 100) and different DCs (1, 2, 3, 
4) were used. Additionally, five models were trained using data 
augmentation. Models DA1-DA4 were trained using DC1-4, 
respectively, to enable comparability between CST and traditional data 
augmentation. However, as described in Table 2, a second version of 
DA2 was trained (DA2_v2), and the value of σK for the training 
process of models DA2_v2, DA3 and DA4 was reduced to σ

255
 to 

reduce the negative impact of a high level of blurring.
Figure 5 shows the ROC curves and the AUC of the “No CST” 

model (blue) and the best CST model (red) for each test set. At a first 
glance, it can be observed that the best CST model outperformed 
model “No CST” in all test sets. The difference in AUC is statistically 
significant in all cases, based on the DeLong’s paired test for correlated 
ROC curves. The p-values of the correlation test between all models 
are available in Supplementary Tables 2–8 for each test set. Greater 
improvements were observed in the test sets with scanner variations, 
P16-HT-oof (0.919 to 0.940), P16-XR (0.928 to 0.968) and P16-S360 
(0.905 to 0.962). Improvements were also observed, to a lower degree, 
on the test sets with IHC-based variability: CD3-HT (0.984 to 0.986), 
CD8-HT (0.974 to 0.983). Results displayed in Table 4 show that the 
best performing model (i.e., highest AUC) was a CST model in all test 
sets (highlighted in green).

Within the CST models, CST7 (α = 100, DC = 2) showed a low 
performance consistently in all test sets. This suggests that an 
excessively high value of α may have a counterproductive effect during 
model training, leading the model to prioritize robustness over 
performance. On the other hand, the DC did not seem to follow that 
same pattern. The model with the highest DC, CST4 (α = 1, DC = 4), 
had a high performance consistently in all test sets. However, the 
model with the highest overall AUC was CST6 (α = 10, DC = 2), with 
an AUC of 0.970 on the cumulated test set.

In terms of robustness, with the exception of model CST7, the 
least robust model (i.e., the model with the lowest rAUCtest_set) was 
consistently the model “No CST” in all test sets. All CST models 
presented a higher robustness than model “No CST,” with the 
exception of the previously mentioned CST7 on the P16-XR test set. 
rAUCtest_set ranged from −0.002 to −0.081 for model “No CST,” while 
the best CST models ranged between −0.003 and −0.038.

From a WSI-wise perspective, Figure 6 shows the distribution of 
the AUC calculated for each individual WSI. The green lines represent 
WSIs where the AUC increased with CST over model “No CST,” while 
the red lines represent the opposite. CST models improved their AUC 
compared to “No CST” in 124 of the 142 WSIs with an improvement 
ranging between 0.001 and 0.195, while 5 WSIs had no improvement 
and 13 WSIs had a decrease ranging between −0.013 and −0.001. 
Supplementary Figures 1–8 comparing the performance of all models 
is available in Supplementary material.

The models with data augmentation showed improved relative 
predictive performance, as well as an improvement in relative 
robustness as compared with the “No CST” model. However, the best 
CST models outperformed the best DA models across all test sets 
([0.002, 0.021], p < 1e − 6).

A significant performance decrease was observed across almost 
all datasets for model DA2, especially on WSIs coming from the HT 
scanner (AUC between 0.839 and 0.921), suggesting that the inclusion 
of blur in the distortion layer might have caused overfitting. The 
decision was made to reduce the value of σK for the training process 
of DA2_v2, DA3 and DA4. The performance of these three models on 

images from the same scanner (P16-HT, CD3-HT and CD8-HT) was 
lower than the performance of DA1, suggesting a possible underfitting 
associated with the higher color, contrast and brightness distortions 
from DC3 and DC4, as well as blur on the three models. The training 
process with CST seemed more tolerant to high levels of distortion 
during training. CST3 and CST4 show a good performance on blurry 
images, as well as images from different scanners, even with high 
distortion levels for all image properties.

Discussion

Training robust CNNs is a challenge in all fields of application of 
DL. Humans are able to bypass sources of image variability that 
actually confuse DL models (12). Gaussian noise or salt and pepper 
patterns, slight color perturbations, blur and other distortions do not 
prevent people from recognizing objects, but neural networks may 
struggle even if these perturbations are visually unnoticeable (12, 26). 
To the authors’ knowledge, currently there is no research on the 
robustness to variability caused by different scanners and IHC for 
cervical WSI segmentation tasks. Additionally, no studies involving 
the use of CST were found to address this issue.

In the context of digital pathology, different methods have been 
applied to improve DL robustness. Domain adaptation has been used to 
obtain stain invariant features between multi-sourced WSIs during CNN 
training (27, 28), although results appear not to be conclusive either due 
to the CNN classification performance or to the size of the validation set. 
Data augmentation has also been applied to increase robustness, by 
adding images with color space or pixel level distortions (29), even in 
multi-center and multi-organ experimental settings (30). Data 
augmentation is easy to implement and can help increase robustness to 
image variability. Nonetheless, the challenge of addressing the high 
heterogeneity caused by different sample preparations, scanners and 
scanning conditions still persists. It has also been observed that the use of 
data augmentation with distorted images may cause underfitting (16).

Stain color normalization has also been used to address WSI 
heterogeneity (15, 30–33). While the previously described methods 
attempt to make DL models robust to image variability within the 
training process, stain normalization is intended as a preprocessing 
step to reduce image variability before the classification or 
segmentation task. Sparse autoencoders have been applied to reduce 
staining heterogeneity, reducing the difference between “template” and 
“distorted” images (15). Multi-scale feature extraction has also been 
used to eliminate color deviations from a base image set (32).

Recently, contrastive learning has gained popularity due to its 
remarkable performance in classification tasks by means of 
unsupervised training (17, 34–36). This constitutes a novel application 
of a relatively old concept, where the similarity between feature 
embeddings is calculated to train networks to recognize similar and 
dissimilar images (37). Feature embedding and softmax output 
contrasting though similarity-based loss functions has also been used 
to increase robustness to different types of distortions, primarily in the 
context of object classification (38). Before the term was coined as 
such, Contrastive Learning-based methods have been applied to 
increase robustness to compression loss, downscaling and rescaling, 
random cropping and gaussian noise as sources of image variability 
(16, 23). Although these methods have only been tested on artificially 
distorted test sets, they contributed toward the design of this work. 
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FIGURE 5

ROC curve of the “No CST” (blue), best CST and best DA models for each test set. In all test sets, CST outperformed “No CST” and DA, including the 
baseline testing set, P16-HT-baseline. In all testing sets, the improvement is statistically significant based on DeLong’s paired test for correlated ROC 
curves (p < 1.40e − 4). The correlation tests between all models are available in Supplementary Tables 2–8 for each test set.

FIGURE 6

Distribution of the AUC per WSI on all test sets. Orange boxplots correspond to the results of the “No CST” model. Blue boxplots correspond to the 
results of the best CST model for each respective test set. The green arrow lines show WSIs where the model with CST outperformed the “No CST” 
model. The red arrow lines show WSIs where the opposite occurs.
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Additionally, to the authors’ knowledge these methods have not been 
evaluated directly to address robustness in digital pathology, nor have 
these been validated in a real world scenario with heterogeneous WSIs.

In the field of digital pathology, using DL models that are robust 
to real-world image distortions can enable large-scale research with 
WSIs from different sources and with different preparations. This was, 
as a matter of fact, our major motivation for this work. Within our 
experimental setup, we sized the potential effect of real-world image 
distortions in the automatic segmentation of epithelium in cervical 
WSIs, and we evaluated if CST can increase DL model robustness to 
such distortions. For this purpose, we generated WSI datasets using 
different scanner models and samples with different IHC, which 
we used to evaluate segmentation performance of DL models trained 
with and without CST.

In general, epithelium was accurately segmented on WSIs from 
the same scanner used for training (i.e., Hamamatsu-HT). 
Interestingly, although the DL models were trained exclusively with 
p16-stained tissue, neoplastic epithelium was also correctly classified 
for WSIs stained for CD3/CD8. Similarly, the presence of stained 
CD3+ and CD8+ T cells in the stroma did not affect the correct 
classification of tissue as stroma. Overall, DL models trained with CST 
still had a higher performance on these test sets, including the set from 
the same domain as the training set (i.e., p16-stained from 
NanoZoomer-HT). A possible explanation is that there may 
be visually imperceptible “signatures” for each scanner, caused by the 
combination of hardware and software used in the generation of the 
images. Different lenses, lights, z-plane calculation algorithms and 
focal point selection algorithms are just some of these. There are 
already studies that show the poor generalization between images 
from different institutions. These even show that CNNs can detect the 
institutions where images were generated, which further validates the 
theory of a “signature” (39).

Regarding segmentation on WSIs from different scanner models 
(i.e., NanoZoomer-XR and NanoZoomer-S360), results showed a 
significant lack of robustness from the “No CST” model. While it 
correctly segmented WSIs from the same domain as the training set, 
segmentation performance decreased significantly on WSIs from 
different scanner models, even though these WSIs were generated 
using the exact same slides. This poor segmentation of WSIs from 
different scanners further supports the idea of a possible scanner 
“signature.” Similarly, segmentation on WSIs scanned out-of-focus 
suffered a significant decrease in performance, as expected due to the 
loss of information caused by the blurriness.

In comparison, CST proved to be effective in increasing robustness 
to real-world image distortions, given the experimental setup used for 
this work. The best CST model outperformed the “No CST” model in 
all test sets without exception, thus validating this method as a 
potential first line of defense to image variability. Performance of CST 
varied depending on the weight of the stability component (i.e., α) and 
the magnitude of the distortions (i.e., DC) used in the setup for this 
work. Our results show that increasing the weight of the stability 
component α improves DL model performance up to a certain level, 
but performance decreases after that level. This makes sense 
intuitively: for example, a loss function with α =∞  will force the DL 
model to maximize stability while completely disregarding the 
accurate prediction of the input class. On the other hand, increasing 
the DC (i.e., the strength of the distortion), seems to further improve 
the predictive performance.

When compared with data augmentation, CST proved to be more 
effective in general for the selected ɑ and DC values. Results suggest 
that using strong distortions may lead to model underfitting when 
training with data augmentation, as observed with blur and on a lower 
degree with color, brightness and contrast. This may be due to the 
introduction of unrealistic variations in the images, which do not 
reflect the true distribution of the data, leading models to learn these 
variations instead of the relevant image patterns. In this context, the 
performance of data augmented models was consistent with the 
literature regarding the subject. The fact that CST uses the original 
images during the training process may be attenuating the effect of 
these high distortions, therefore reducing the risk of underfitting.

The main limitation of CST is that it doubles the computing time 
during training, since the input is doubled on every training iteration 
(16). However, each distorted image has a random variation of its 
properties, so the DL model learns to stabilize from multiple random 
distortions, as opposed to statically augmented datasets. For further 
research in robustness, we would like to increase the number of test slides 
and evaluate CST on slides from different sources (e.g., new scanners and 
new scanning conditions), as well as evaluating the effect of distortions 
on single properties to gain a deeper understanding of the effect these 
hyper-parameters have on robustness and overall performance. Another 
limitation of this method is the optimization of ɑ and DC. Here, this was 
done through trial and error in an approach similar to grid search, which 
requires training and evaluating multiple models. A potential 
improvement for CST may be to incorporate the optimization of ɑ and 
DC during training, as additional training parameters.

The clinical motivation behind this work is to develop automated, 
robust methods to generate quantitative metrics that support the 
diagnosis and risk stratification of CIN and cervical cancer. This work 
specifically focused on the automated detection of epithelial tissue 
using deep learning. Further work will address the extraction of 
quantitative metrics from WSIs of cervical histology, including metrics 
to quantify the color and morphological patterns associated with IHC 
stains. For this purpose, challenges associated with scanner and 
IHC-based image variability will need to be addressed as well. The 
focus of this work was on biomarkers for p16, CD3, and CD8 given 
their use in the diagnosis, prognosis and risk stratification of cervical 
cancer and other forms of squamous carcinoma.

Immune cells have been reported as biomarkers to predict patient 
outcome and response to treatment (40). T cells have shown higher 
density in stromal regions where there is inflammation of tissue 
caused by the presence of tumors. The presence of CD3+ and CD8+ 
T cells and their relevance for the prognosis of colorectal cancer has 
been known principally since the 1980s (41, 42). But due to their 
dispersed appearance only the advent of digital pathology allowed 
their exact quantification serving as a basis for prognosis and 
subsequently also prediction of patient response (43).

More recently, regarding cervical cancer, immune cell analysis has 
also been used to evaluate patient response to experimental treatments 
for cervical cancer, as well as to analyze immune response to 
chemotherapy (44, 45). In the case of CIN, immune cell analysis was 
performed on a small cohort to evaluate the relation between immune 
responses and CIN grade progression (46). Examples like these 
suggest that immune cell analysis in cervical cancer is currently an 
open field, with potential to assist in the research for new treatments. 
It could also be a useful method to stratify patients based on their 
cancer type, to evaluate response to treatment and to predict patient 
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outcome. The use of IHC enables the visualization of immune cells, 
such as CD3+ and CD8+ T cells.

The automatic quantification of multiple IHC stains on different 
sections of the same tissue block may provide insight into the 
underlying relations between the biological events that trigger their 
respective biomarker expressions. The relation between immune cell 
response and epithelial neoplastic tissue can be monitored to stratify 
risk, evaluate response to treatment and increase prognostic accuracy. 
Additionally, a shift from a qualitative to a quantitative assessment of 
biomarker expression may assist in reducing the high interobserver 
variability that is currently observed in CIN diagnosis (47–49). 
Reproducible quantitative metrics can be  generated by using 
automated image analysis tools, making diagnoses explainable and 
easier to share within interconsultation between pathologists.
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