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Abstract1

Forest disturbances in Europe are very likely to increase in fre-2

quency and intensity. Assessing their economic consequences is re-3

quired to identify feasible adaptation strategies. Such economic cal-4

culations depend on estimates for the reduction in revenues after dis-5

turbance events. These losses can be caused by both a lower wood6

quality as well as an oversupply on the wood markets. Despite its7

importance, data-driven approaches to quantify the consequences of8

disturbances on wood revenues in Central Europe are rare. We applied9

econometric time series analysis with Structural Vector Autoregressive10

(SVAR) models to harvest and sales data from Hesse, Germany. Ad-11

ditionally, we derived estimates for reductions in wood revenues for12

integration in bioeconomic simulation models. Our analyses indicate13

that the observed losses in wood revenues for spruce after disturbances14

are mainly due to an oversupply on the wood markets, rather than a15

loss in wood quality. In addition, the results suggest that calamities of16

transregional extent or multiple disturbances in subsequent years are17

likely to reduce wood revenues beyond the assumptions often used in18

bioeconomic simulation models. Although our results for beech were19

more ambiguous, they indicate that losses in revenues for beech after20

disturbances in the past were mainly due to a reduced wood quality.21

Our study highlights the importance of taking a differentiated view on22

the consequences of disturbances on wood revenues, considering their23

spatial extent and species-specific mechanisms.24
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1 Introduction33

In the years 2018-2020, Central European forests suffered from a sequence34

of storm and drought events. This period of disturbances resulted in un-35

precedented forest damages, with 277,000 ha having to be reforested in Ger-36

many alone (Bundesministerium für Ernährung und Landwirtschaft, 2021).37

The economic consequences for forest enterprises were estimated to exceed38

12.7 billion Euros (Möhring et al., 2021). Such disturbance events clearly39

underline the need for an ecological and economic transition of Central Eu-40

ropean forests (Schuldt et al., 2020). Identifying adaptation strategies, which41

also allow forest enterprises to buffer the economic consequences of climate42

change, will be key to such a transition.43

Bioeconomic modeling has proven helpful in assessing the economic im-44

pacts of climate change on forestry (e.g. Paul et al., 2019; Thiele et al., 2017)45

and in the identification of suitable adaption strategies (e.g. Fuchs et al.,46

2022; Möllmann & Möhring, 2017; Müller et al., 2019). Such models usually47

require estimates for occurrence probabilities and economic consequences of48

disturbances. Regarding the associated tree mortality, Staupendahl (2011)49

developed an estimation approach, which has recently been improved by50

Brandl et al. (2020), and Senf and Seidl (2021a) described the forest dis-51

turbances regimes based on remote sensing. However, capturing the adverse52

economic consequences of forest disturbances is still challenging. They in-53

corporate three main aspects: Potential increases in harvest costs, decreases54

in wood revenues, and long-term consequences due to the suboptimal timing55

of the harvest. Our study focuses on revenues as we found a considerable56
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lack of empirical studies that estimate the impacts of disturbances on wood57

revenues in Central Europe. In the North American forestry literature, sev-58

eral econometric studies have addressed the effects of disturbances, such as59

the Hurricanes Hugo (Prestemon & Holmes, 2000; Yin & Newman, 1999)60

and Katrina (Sun, 2016), or the Biscuit fire (Zhai & Kuusela, 2020), on mar-61

ket prices. Since such econometric estimates were not available for Central62

Europe, previous simulation studies on impacts of and adaptation to cli-63

mate change estimated the reduction in wood revenues due to disturbances64

based on expert knowledge. For example, Dieter (2001) assumed a reduction65

of 50 % for the net revenues of spruce and beech, which seemed plausible66

when compared to wood prices after a storm in 1990. However, Staupendahl67

and Möhring (2011) assumed a reduction of only 30 %, while Knoke et al.68

(2021) even assumed negative net revenues for extreme disturbance events.69

Möllmann and Möhring (2017) quantified reductions in wood revenues based70

on a survey of forest managers and owners and found that storm events re-71

duced the revenues of conifers by 15.2 % and those of deciduous species by72

21.3 %.73

Therefore, this study seeks to quantify the impacts of disturbances on wood74

revenues based on data from a forest enterprise. This should provide empir-75

ical estimates for future simulation models.76

Bioeconomic simulations usually require an estimation of the magnitude77

of reduction in wood revenues. However, a deeper understanding of the un-78

derlying mechanisms may allow for a more thorough assessment of the eco-79

nomic impacts of disturbances. The average revenue per cubic meter wood80

depends on the composition of the wood assortments sold (several products)81
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and on the market prices of the distinct assortments. We hypothesize that82

disturbances alter the average revenue in two ways: firstly, through quality83

losses, which alter the assortment composition, and secondly, through lower84

market prices caused by higher wood supply. Disturbances lead to biophysi-85

cal wood damages, such as broken logs, boreholes from insects, or secondary86

fungal infestations. These damages reduce the wood value since the share87

of high-value timber can be expected to be reduced. For instance, Loeffler88

and Anderson (2018) found that infestations by mountain pine beetles in the89

US reduced the sawlog volume by 15 %, increasing up to 50 % in advanced90

attack stages. We refer to this effect as the “quality effect”. Additionally,91

large disturbances lead to an extraordinary high wood supply due to salvage92

activities (see e.g. Toth et al., 2020). This supply can be considered highly93

inelastic to price changes (e.g. Marsinko et al., 1996; Prestemon & Holmes,94

2008). Consequently, the market prices will fall in the short run (e.g. Preste-95

mon & Holmes, 2000; Yin & Newman, 1999) and therefore, also the average96

wood revenue. We refer to this effect as the “market effect”. Potential long-97

run effects of disturbances, such as a future reduction in wood supply due98

to reduced wood stocks (e.g. Prestemon & Holmes, 2000) were out of the99

scope of our analysis. Distinguishing between quality and market effect is100

important for investigating the spatial effects of disturbances. In contrast101

to regularly occurring minor disturbances, large-scale events affecting entire102

enterprises or regions would influence not only the wood quality but also the103

wood markets.104

The quality effect could be quantified by standard regression analyses of105

wood damages on the corresponding revenues. In contrast, the market effect106
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may require more advanced methods from the field of time series analysis,107

due to time lags in the market responses. It is, for example, likely that a108

higher wood supply reduces revenues with a certain delay, due to already109

signed contracts (see Möhring et al., 2021), and that the effect lasts longer110

since market prices are also lower in the following years.111

Previous studies that applied time series analyses in forestry are, for ex-112

ample, Alavalapati et al. (1997), who assessed the influence of exchange rates113

and the U.S. pulp price on Canadian pulp price, and Hetemäki et al. (2004)114

as well as Kolo and Tzanova (2017), who forecast wood exports. Time series115

analyses have been used to study the impacts of policy decisions on wood116

markets, e.g., regarding trade restrictions (Baek & Yin, 2006) or protection117

of species (Yin, 2001). Kożuch and Banaś (2020) studied relations between118

Central European markets for beech round wood and Fuhrmann et al. (2021)119

those between prices of round wood and products of wood industry. Most120

applications of time series analyses in forest economics have focused on mar-121

ket prices and the trade of wood products. In contrast, our study targets122

the level of large forest enterprises. In this context, identifying the effects123

of forest disturbances on actual wood revenues, which also consider changes124

in wood quality, is more informative than studies limited to the effects on125

market prices.126

Empirical analyses of operational data, such as book-keeping data and127

forest management records, can be challenging since these are not collected128

and structured for scientific questions and methods. However, operational129

data can better reflect the impact of disturbances on the revenues of single130

forest enterprises than government statistics can. The latter usually aggre-131
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gate data from several enterprises and experience significant averaging effects.132

Thus, analyses based on such statistics are likely to underestimate the im-133

pact at the enterprise level. In this study, we contribute by estimating quality134

and market effects of disturbances based on harvest and sales records from135

HessenForst, the public forest service of the Federal State of Hesse in Cen-136

tral Germany, which manages a forest area of 326,320 ha (Thünen-Institut,137

2015). This data base is representative for single large forest enterprises, but138

also provides a sufficient number of harvest and sale records from years influ-139

enced by disturbances. Based on this data, we derive the share of damaged140

wood, as an indicator for wood quality, the harvest volume, as an indicator141

for wood supply, and the average revenue per cubic meter wood.142

We use Vector Autoregressive (VAR) models to investigate the dynamics143

between wood revenues and harvest volume as well as the share of dam-144

aged wood. Within the VAR framework, we test for Granger Causality to145

infer which variable is better suited to predict revenues. We further adopt146

the well-established tool of structural VAR (SVAR) models (Sims, 1980) to147

determine the consequences of hypothetical shocks (disturbances) to the har-148

vest volume or the share of damaged wood on wood revenues. In the SVAR149

framework, causal investigations are performed by tracing out the effect of150

such exogenous structural shocks in one of the variables (ceteris paribus) on151

the other variables in the system using Impulse Response Functions (IRFs)152

(see Lütkepohl, 2007). The underlying structural shocks are mutually uncor-153

related and have a clear economic interpretation. The suitability of SVARs154

to infer the causal relationships in commodity markets was, among others,155

demonstrated by Dalheimer et al. (2021), who analyzed how oil-supply shocks156
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affect the prices for corn in Sub-Saharan African countries.157

Examples of SVAR and IRF applications in forest research include: Lin-158

den and Uusivuori (2002), who assessed the response of wood markets in159

Finland to negative supply shocks due to forest conservation measures, and160

Zhou and Buongiorno (2006), who estimated the transmission of local sup-161

ply shocks to neighboring markets. Compared to intervention analysis, as162

often applied in the context of forest disturbances, where a dummy variable163

describes the effects of a single disturbance event (e.g. Prestemon & Holmes,164

2000; Yin & Newman, 1999; Zhai & Kuusela, 2020), our approach with165

SVARs allows for a detailed and continuous description of disturbance char-166

acteristics. We disentangle the effects of higher wood supply and lower wood167

quality on a continuous scale and additionally include a dummy variable,168

similar to intervention analysis, for transregional calamity events. Lemoine169

(2021) highlighted an additional advantage of IRFs for estimating the con-170

sequences of disturbances to ecosystems. Since IRFs allow for the standard-171

ization of shocks and responses, the estimated disturbances can be easily172

compared across scientific studies. IRFs are therefore a promising method173

for estimating the reduction in wood revenues after disturbances. Such stan-174

dardized results, compared to results referring to a specific historic event,175

are particularly useful for future, more general applications in bioeconomic176

models. However, IRFs have rarely been applied in the corresponding liter-177

ature.178

Applying econometric methods, our study seeks to disentangle the effect179

of quality losses and market reactions for the two economically most im-180

portant species in Germany: Norway spruce (Picea abies (L.) KARST) and181
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European beech (Fagus sylvatica L.). As a novel feature, we calculated IRFs182

with different shock intensities to analyze disturbances of varying severity.183

The analyses are guided by the following research questions Q1 -Q5 :184

Q1: Are decreasing revenues predominantly reasoned by higher shares of185

damaged wood (quality effect) or by higher wood supplies (market effect)186

and is this effect consistent across the two species?187

Q2: Do transregional disturbances further decrease revenues?188

Q3: By what order of magnitude and in which time horizon do revenues189

decline after disturbances of varying severity?190

Q4: By what order of magnitude and in which time horizon do sequential191

disturbances decrease revenues?192

Q5: How can the econometric results be applied in future bioeconomic sim-193

ulation models?194

Thus, our study contributes to a more sophisticated understanding and mod-195

eling of the direct economic consequences of disturbances by distinguishing196

between species and the extent and severity of the disturbance event, as well197

as by estimating the development of revenues in the years following the event.198
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2 Method199

2.1 Data200

We used operational data from the public forests of Hesse, managed by Hes-201

senForst, the public forest service of the Federal State of Hesse, Germany.202

In 2012, the Hessian public forest was composed of 34 % European beech,203

21 % spruce, 10 % oak, 10 % pine, and 22 % other species or open areas,204

covering altogether 326,320 ha of forest land (Thünen-Institut, 2015). The205

Hessian forests extend over the German low mountains as well as the Rhine-206

Main plain and are located in Central Germany. The public forests of Hesse207

supplied about 40 % of the harvested wood of European beech as well as Nor-208

way spruce in Hesse between 2002 and 2012 (Thünen-Institut, 2015). It can209

be expected that HessenForst’s wood sales will have a considerable impact on210

Hessian markets and that disturbance-induced increases in harvest volumes211

are representative of the entirety of Hesse. The forests’ stocks and harvest212

volumes are almost in line with the average of all federal forests in Germany213

as well as the German average (Thünen-Institut, 2015). The species com-214

position differs notably only by a higher share of beech and a lower share215

of pine (Thünen-Institut, 2015). We thus consider the analyzed data and216

most of the related wood supply chains to be representative for other public217

enterprises and also for large private enterprises.218

We used two distinct operational data bases of HessenForst, the annual219

harvest records (48, 258 entries for spruce and beech) and the annual sales220

records (620, 706 entries for spruce and beech). Both were available for the221

years 2005-2020 for 41 forestry districts (ranging from 1, 700 to 21, 600 ha,222
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with 8, 400 ha on average). The harvest data contained the volume of har-223

vested wood and whether it was a salvage harvest (“damaged”) or not. The224

sales data contained information about the sold volumes by wood assort-225

ments (defined by dimension and quality1), the respective revenues, and the226

types of sale2.227

Our study considers the two most abundant species, Norway spruce and228

European beech, as examples of a coniferous and a deciduous species, respec-229

tively. We compiled three time series for both species (Fig. 1): Based on the230

harvest records, we calculated (i) the total harvest volume in each year and231

(ii) the annual share of damaged wood, including damages by abiotic, biotic,232

and unknown disturbance agents. Based on the sales records, we calculated233

(iii) the annually averaged wood revenues. By “revenues” we refer to the234

average observed revenues earned by HessenForst per cubic meter of wood235

that was actually sold in the respective year, before subtracting harvest costs.236

Specifically, we calculated the averaged revenues across all assortments per237

year, weighted by the actual shares of the assortments. In contrast, “prices”238

refer to market prices of specific wood assortments and, by definition, do239

1The assortment classification distinguishes between sawlogs and pulpwood (Supple-
ments A.VII, B.VI). For sawlog assortments, quality classes from A to D (where A is the
highest quality) and dimension classes (diameter in the middle of the log) are defined. In
2015, a new master agreement on roundwood classification was introduced in Germany
(RVR, Deutscher Forstwirtschaftsrat e.V. & Deutscher Holzwirtschaftsrat e.V., 2020), but
the actual assortment criteria depend on the potential wood buyers. In the period ana-
lyzed, a trend can be observed, for example, from the sale of separate qualities (e.g. B
and C) to mixed qualities (e.g. B/C). Since we refer to averaged revenues across all as-
sortments and not to the prices of individual assortments, changes solely related to this
classification can be considered to be of minor importance for our results.

2We considered roadside sales, wood out of storage (wet and dry), auctions and submis-
sions. We added the value of the harvest costs, based on the model of von Bodelschwingh
(2018), to revenues from stumpage sales (about 15 % of the total volume sold) in order to
homogenize the types of sale.
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not take into account disturbance-induced changes in wood quality. We used240

nominal values as reported by HessenForst.241

We normalized harvest volumes and revenues to the base year 2013, which242

is in the middle of the time series and not directly affected by exceptional243

disturbances, “calamities” (Fig. 1, detailed calamity definition below). 100 %244

thus refers to a situation without such large disturbances. This relative245

formulation provides a direct interpretation of the magnitude of changes in246

revenues compared to the change in harvest volumes due to disturbances and247

can be easily transferred and compared to other situations or regions. The248

share of harvested wood recorded as damaged was not normalized. It is by249

construction limited to 0-100 % since it is calculated as the harvest volume250

recorded as damaged divided by the total harvest volume in the year.251

A common problem using operational data from forest enterprises is that252

the harvested wood from a specific harvest activity cannot be directly related253

to its sale. In contrast to harvest records, sales data refer to wood assort-254

ments. Assortments of one harvest activity may be sold to different clients at255

different points in time and may also be combined with wood from other har-256

vest activities. Especially in calamity years, the resulting time lag between257

harvest and sale can become exceptionally long. Therefore, for our study, we258

lacked a direct connection between harvest volume or share of damaged wood259

and revenues. Hence, if the year was not a reliable identifier for both data260

sets – since harvest and sale of the same wood may occur in different years –261

classical regression analyses would not be applicable. In a lag-order selection262

between harvest and sale volumes, we clearly rejected the null hypothesis of263

no inter-annual time lag between harvest and sale of wood, for both spruce264
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Figure 1: Time series harvest volume, share of damaged wood and wood
revenue (per cubic meter wood) in the Hessian public forests from 2005 to
2020. Harvest volume and wood revenue are expressed as indices with a
non-calamity base year in the middle of the time series (2013 = 100 %). The
share of damaged wood is the annual proportion of damaged wood volume
in the total harvest volume.

and beech (Supplements A.I.1 and B.I.1). Consequently, we applied time265

series models that explicitly consider time lags between the variables. We266

applied methods of VARs, SVARs and IRFs using the R (R Core Team, 2020)267

packages vars (Pfaff & Stigler, 2018), and tseries (Trapletti et al., 2020).268

2.2 Model estimation269

For research questions Q1 -Q4, we estimated two separate VARs for each270

species. We first modeled the relationships between revenues and harvest271

volumes and then distinctly the relationships between revenues and shares272
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of damaged wood. Due to the limited lengths of the time series, we did not273

consider a complex model that combines all three series in one VAR. The274

VARs were the basis for all further analyses.275

For Q1, we conducted unidirectional Granger Causality tests (Granger,276

1969) between revenues and the harvest volume, as an indicator of wood277

supply, and the share of damaged wood, as an indicator of wood quality. We278

conducted separate Granger Causality tests for the harvest volume and for279

the share of damaged wood to ensure that the influences of each variable280

on revenues could definitely be attributed to that variable. This indicated281

whether the revenues change mainly due to the market or due to the quality282

effect. For Q2, we implemented a dummy variable calamity for years with283

transregional calamities in the VARs and directly interpreted the estimated284

coefficient. For Q3 and Q4, we calculated SVARs from the reduced-form285

VARs to evaluate the model dynamics under erratic shocks of the harvest286

volume or the share of damaged wood by means of IRFs. In order to support287

the application of our findings in future simulation studies (Q5 ), we inter-288

preted the econometric results under consideration of possible limitations in289

the observed data and proposed aggregated reduction factors (Section 4).290

Since simulation studies often refer to losses in net revenues, we enriched our291

IRF analyses of gross revenues with estimates for increases in harvest costs.292

The proposed assumptions were consistently derived for Hessian conditions,293

but were based on expert knowledge and recent experience of HessenForst294

rather than on econometric analyses.295

Q3 and Q4 required the modeling of the response of revenues to changing

harvest volumes, respectively shares of damaged wood. The applied IRFs
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require the dynamic structural form of a VAR. An SVAR of order p can

generally be expressed in the form

Byt = Cxt−1 + εt, εt ∼ (0,Σε), (1)

with yt = (y1,t, ..., yK,t)
′ as a vector of K observed time series variables and B296

as a (K ×K) matrix summarizing the contemporaneous structural relations297

between the time series variables. The vector xt−1 contains a constant and298

p lags of yt (x′t−1 = (y′t−1, ..., y
′
t−p, 1)′) and C is a (K × (Kp + 1)) matrix of299

lagged structural coefficients. εt is a vector of uncorrelated, structural error300

terms with a diagonal covariance matrix Σε (see e.g Lütkepohl, 2007, for a301

detailed description of the structural model).302

In this study, we were interested in analyzing the linkages between rev-303

enues bt and one explanatory variable at (the harvest volume or the share304

of damaged wood), i.e. we estimated a bivariate model (K = 2) with305

yt = (at, bt)
′. Therefore, the general form (Equation 1) can be specified306

to307

 1 −βab

−βba 1


at
bt

 = Cxt−1 + εt. (2)

Solving for at and bt yields the following structural model:

at = βabbt + c′1xt−1 + ε1t, (3)

bt = βbaat + c′2xt−1 + ε2t. (4)
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Equation 4 models the determinants of revenues with the contemporaneous308

effect of wood supply (or wood quality) given by βba. For instance, a negative309

shock ε1t represents a shift in the wood supply curve that leads to a higher310

available wood supply on the market and may be caused, for example, by a311

calamity.312

Since the required structural form cannot be recovered directly from the

data, we first had to estimate the model in the reduced-form representation.

It is obtained by pre-multiplying B−1 to Equation 1 such that yt only depends

on its own history

yt = Axt−1 + ut, ut ∼ (0,Σu), (5)

where A = B−1C is a matrix containing the autoregressive parameter and313

intercept terms and ut = B−1εt is a vector consisting of reduced-form error314

terms with a non-diagonal covariance matrix Σu. Equation 5 thus allows for315

cross-equation correlations of the residuals ut. Nevertheless, the VAR param-316

eter can be estimated consistently via least squares or maximum likelihood317

methods (Lütkepohl, 2007).318

After estimation of the reduced-form VAR, the structural parameter of319

the SVAR can be obtained by pre-multiplying the matrix B to the estimated320

version of Equation 5, where Σu = B−1(B−1)′.3 The SVAR models are thus321

conditioned on the residuals of the reduced-form VAR, which means that322

the main objective of the reduced-form VAR in our analyses is to provide323

consistent estimates of the residuals.324

3A simplifying standardization often made during estimation is that the covariance
matrix of the structural shocks is equal to an identity matrix Σε = IK .
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The general issue in SVAR analysis is that the structural form is under-325

identified (Lütkepohl, 2007). In our study, there are 4 parameters in B−1, but326

the reduced-form covariance matrix only providesK(K+1)/2 = 3 restrictions327

in the form 0 = vech(Σu) − vech(B−1(B−1)). Therefore, we had to add one328

additional restriction to the system.329

A common approach in the SVAR literature is to restrict one short-run330

parameter in B (Kilian & Lütkepohl, 2017; Sims, 1980). The assumption331

behind the restriction is that not all variables are affected by an immediate332

feedback. We implemented the restriction βab = 0, implying that the harvest333

volume responds to changes in revenues with a delay of at least one year.334

This restriction appears reasonable for two reasons: Firstly, it is unlikely335

that forest enterprises would immediately adopt their short-term operational336

planning to changing wood prices. Secondly, this parameter played a minor337

role in our study, as we do not elaborate the response of revenues on the338

harvest volume or on the share of damaged wood.339

In order to describe possible effects of extraordinarily large disturbances340

not confined to Hesse relative to undisturbed years, we identified years with341

transregional disturbances, referred to as “calamities”. We included a dummy342

variable for these years in the reduced-form VAR, which enabled us to cal-343

culate distinct intercept terms for years with and without such events. The344

formulation is similar to a pulse variable in previous intervention analyses345

(see e.g. Prestemon & Holmes, 2000; Yin & Newman, 1999; Zhai & Kuusela,346

2020), but the dummy variable decoded multiple events in the time series.347

We considered only immediate, no lagged, effects of this variable. We inter-348

preted the resulting difference between the intercepts as the additional effect349
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of transregional calamities on revenues (Q2 ). We assumed that negative ef-350

fects of such events can go beyond the effects of an increased harvest volume351

or share of damaged wood in Hesse since, e.g., the processing, transporting,352

or storage capacities are limited and the industry cannot acquire the entire353

available wood volume. This could additionally decrease the revenues due354

to over-proportionally decreasing market prices. We defined “calamity year”355

as a year in which the total harvested volume of all species across Germany356

exceeded the long-term German mean plus the standard deviation. Accord-357

ing to Genesis online (Federal Statistical Office Germany (Destatis), 2021),358

covering 1998-2020, the years 2007 (storm Kyrill) as well as 2019 and 2020359

(bark beetle outbreaks after storm Friederike in 2018 and a severe drought)360

were such calamity years with calamity = 1 (calamity = 0 otherwise).361

Usually, the impulse in IRFs amounts to one standard deviation of the362

impulse variable (Lütkepohl, 2007). For Q3, we defined different shock in-363

tensities, i.e. magnitudes of the impulse, in order to simulate disturbance364

events of varying severity. This was done by re-scaling the contemporaneous365

structural relations in B−1 in relation to the harvest volume. The resulting366

matrix R relates the impulse to the harvested wood in the reference year 2013367

and thus enables shock estimations of varying intensities by multiplying the368

column with shock.intensity:369

R1∗ =
B−11∗

B−111

· shock.intensity. (6)

Since the impulse variable is the normalized harvest volume, a shock.intensity370

of 1 means, for example, that the harvest volume shock is as high as the har-371
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vest volume in 2013. Thus, the total harvest volume is twice as high as in372

a year without transregional calamities. The IRFs for the share of dam-373

aged wood were calculated similarly, but refer to an increase in the share of374

damaged wood in percentage points.375

For Q4, we calculated revenue responses to multiple disturbances in subse-376

quent years by adding the responses, shifted by one year. For example, shocks377

in 2 subsequent years were calculated as br1 = b1, b
r
2 = b2 +b1, b

r
3 = b3 +b2, . . . .378
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3 Econometric results379

Our results indicate that the effects which reduce wood revenues after dis-380

turbances are different for spruce and beech.381

3.1 Identifying covariates influencing wood revenues382

(Q1 -Q2 )383

We estimated VAR models for wood revenues dependent on the harvest vol-384

ume and the share of damaged wood. The comparison of the estimated VARs385

and the Granger Causality analyses suggested that the revenues of spruce and386

beech are explained by different covariates.387

3.1.1 Spruce388

Our results suggest that the harvest volume is better suited than the share389

of damaged wood to explain the development of spruce revenues.390

We applied the four most common lag-order selection procedures to find391

the model that best balances complexity and accuracy (Supplement A: Tab. 3392

and 6). The model selection suggested VARs with a time lag of 2 years and a393

dummy variable for calamity years. Regarding Q1, we were mainly interested394

in the cross-variable effects between the revenues and the harvest volumes and395

between the revenues and the share of damaged wood (Tab. 1, for the full396

model summaries see Supplement A). We investigated these cross-variable397

effects separately for each model and compared the distinct results.398

Firstly, we compared the adj. R2 of the models, which both indicated rel-399

atively good fits. With an adj. R2 of 0.88, the VAR of the revenues and the400
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harvest volume was slightly better than the VAR with the revenues and the401

share of damaged wood (0.83, Tab. 1). The Granger Causality test further402

supported this finding. It tests the null hypothesis that the respective covari-403

ate does not Granger-cause revenues. With a p-value of 0.12, the hypothesis404

of a non-causal relationship between harvest volumes and revenues is more405

likely to be rejected than between the shares of damaged wood and revenues406

(p-value of 0.62). Although the null hypothesis cannot be rejected at any con-407

ventional significance level, the remarkable difference in p-values reinforces408

the aforementioned tendency that the revenues of spruce are mainly influ-409

enced by the harvest volume (market effect), whereas there is no evidence410

for a strong relationship between revenues and the share of damaged wood411

(quality effect).412

We further corroborated this finding by incorporating all three time se-413

ries in one VAR (Supplement A.V), which confirmed that revenue changes414

are mainly explained by the harvest volume, our indicator for wood supply.415

The coefficients of the relationship between revenues and harvested volumes416

were only slightly altered compared to the VAR considering only the harvest417

volume. The share of damaged wood thus did not improve the model con-418

siderably and reduced the adj. R2. Based on these findings, and due to the419

limited degrees of freedom in the VAR with all three time series4, we build420

all following analyses on the harvest-volume model.421

Regarding Q2, we were interested in the influence of the calamity dummy422

variable. The model selection procedure (Supplement A: Tab. 3) confirmed423

4For the IRFs based on the VAR that includes all time series, we refer the reader to
Supplement A.V. One should bear in mind the limitations of this model, which nevertheless
provides the same conclusions as the harvest-volume model.
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Table 1: Estimated coefficients of the VAR models describing the wood rev-
enues of spruce dependent on the harvest volume or share of damaged wood.
Harvest volumes and revenues are expressed in relation to the non-calamity
year 2013. const: intercept term, calamity: dummy variable for calamity
years, l1,l2: the variable is lagged by 1-2 years, respectively.

Coefficient Estimate Standard Error

Model 1: effect of harvest volume (adj. R2 = 0.88)

harvest volume, l1 -0.054 0.027
revenue, l1 0.695 0.388
harvest volume, l2 -0.040 0.031
revenue, l2 -0.526 0.224
const 0.902 0.328
calamity -0.202 0.077

Model 2: effect of share of damaged wood (adj. R2 = 0.83)

share of damaged wood, l1 -0.127 0.134
revenue, l1 1.184 0.405
share of damaged wood, l2 0.039 0.123
revenue, l2 -0.650 0.260
const 0.459 0.399
calamity -0.134 0.092

the relevance of the calamity dummy variable, which had a considerable424

negative effect on wood revenues (Tab. 1: model 1). Thus, in years with425

transregional calamities, wood revenues were estimated to be additionally426

reduced by 20.2 %-points.427

3.1.2 Beech428

In the case of beech, the VAR using the share of damaged wood to predict429

revenues achieved a higher explanatory power than the VAR based on the430

harvest volume. However, the estimated VARs for beech showed less signals431

than those for spruce, since all 3 time series of beech appeared to have a432
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lower volatility in their historic development (Fig. 1).433

Our model selection procedure (Supplement B: Tab. 3 and 5) suggested434

VARs with a time lag of up to 3 years and a dummy variable for calamity435

years. Similar to spruce, the VARs differed in their explanatory power436

(Tab. 2). However, for the beech revenues, the share of damaged wood437

appeared to be more important. The adj. R2 was 0.58 for the VAR with the438

harvest volume and 0.82 for the VAR with the share of damaged wood. This439

trend was supported by the Granger Causality test, p = 0.285 for the harvest440

volume and p = 0.015 for the share of damaged wood. This indicated the441

relative importance of the share of damaged wood (quality effect) compared442

with the harvest volume (market effect).443

The model incorporating all 3 time series (Supplement B.V) supported444

these findings. Among the VARs with harvest volume, share of damaged445

wood and a combination of both, the model using only the share of damaged446

wood reached the highest adj. R2. The estimated coefficients were less sta-447

ble compared to the spruce models. However, this might be related to the448

limitation that a maximum lag order of 2 years could be considered when449

combining all 3 time series, while a lag order of up to 3 years was chosen450

for the separate VARs in Tab. 2. In summary, the analyses indicated that451

it is most likely that the beech revenues are mainly related to the share452

of damaged wood (quality effect) rather than the harvest volume (market453

effect).454

Although the model selection suggested the integration of the dummy455

variable for calamity years, its effect remained much smaller than in the456

spruce model (Tab. 2: model 4, compared to Tab. 1: model 1).457
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Table 2: Estimated coefficients of the VAR models describing the wood rev-
enues of beech dependent on the harvest volume or share of damaged wood.
Harvest volumes and revenues are expressed in relation to the non-calamity
year 2013. const: intercept term, l1,l2,l3: the variable is lagged by 1-3 years,
respectively.

Coefficient Estimate Standard Error

Model 3: effect of harvest volume (adj. R2 = 0.58)

harvest volume, l1 0.165 0.166
revenue, l1 -0.179 0.372
harvest volume, l2 0.118 0.144
revenue, l2 -0.477 0.357
harvest volume, l3 -0.013 0.088
revenue, l3 0.540 0.231
const 0.900 0.258
calamity 0.022 0.048

Model 4: effect of share of damaged wood (adj. R2 = 0.82)

share of damaged wood, l1 -0.209 0.187
revenue, l1 -0.125 0.346
share of damaged wood, l2 -0.285 0.080
revenue, l2 -0.415 0.195
share of damaged wood, l3 -0.165 0.129
revenue, l3 -0.003 0.136
const 1.662 0.487
calamity 0.003 0.031

3.2 Responses of wood revenues to disturbance im-458

pulses (Q3 -Q4 )459

Based on the VARs, we calculated SVARs and IRFs to investigate the effects460

of exogenous shocks. We interpreted the influence of these shocks on wood461

revenues as the consequences of biophysical disturbances. Thus, the varying462

intensities of the shocks in harvest volume or share of damaged wood are463

interpreted as disturbances of varying severity. In addition to this, we sim-464
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ulated how multiple disturbances in subsequent years would influence wood465

revenues for spruce in our IRF framework.466

3.2.1 Spruce467

The Granger Causality test identified the harvest volume as a key covariable468

in the estimation of spruce revenues. We thus focused on IRFs with shocks469

in the harvest volume to quantify the effect of disturbances. A shock twice as470

high as in a non-calamity year (shock intensity 1) already led to a decrease471

in wood revenues by about 12 % in the year of the disturbance (Fig. 2a,472

Tab. A1). This effect persisted in the two subsequent years (about 14 %473

and 10 %) and subsided in the third year. The decrease in revenues linearly474

increased with the shock intensity (compare Fig. 2a from upper to lower475

panel) and reached up to 41 % for a shock intensity of 3. The highest supply476

in the observations corresponded to a shock intensity of 3.54 (storm Kyrill in477

2007, Fig. 1), which would cause a decrease in revenues of 43 % in the same478

and 49 % in the following year. In the case of calamity events, which also479

affect transregional wood markets, the decrease in wood revenues for a shock480

intensity of 3 would be 36 % + 20 % = 56 %, i.e. the sum of the IRF (Fig. 2a)481

and the estimated calamity dummy variable (Tab. 1: model 1).482

We further used the IRFs to simulate a series of years with disturbances in483

direct succession (Fig. 2b) comparable to situations such as in the years 2018-484

2020 in Hesse (Fig. 1b). The results suggested that for single disturbances485

none of the simulated shock intensities reduced revenues by > 50 %. In486

contrast, for multiple shocks in subsequent years, such high losses in revenues487
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Figure 2: Impulse response of the relative wood revenues of spruce on sup-
ply shocks of harvest volume for different shock intensities (a) and multiple
subsequent disturbances (b). Shock intensities denote the magnitude of the
supply shock (harvest volume) in relation to the non-calamity year 2013.
n.shocks denotes the number of subsequent years with supply shocks. The
maximum shock observed in the data was about 3.54. Please note that the
years > 5 are shown to reveal that the shocks subside to 0. The responses
after 5 years should be interpreted as being 0. Confidence intervals were
derived from 2, 000 bootstrap iterations.

were estimated even for a shock intensity of 25.488

To summarize, the IRFs suggest remarkable reductions in spruce revenues489

for historically realistic shocks in the harvest volume, i.e. higher wood supply.490

The different shock intensities further illustrate that these reductions might491

considerably differ dependent on the severity of the disturbance event. We492

further found that the revenues recovered quite quickly and reached their493

previous level in the third year after the simulated disturbance.494

5Please note that responses resulting in negative revenues (responses < −1) arise due
to the linearity of VARs and are a model artifact, see Section 5. Such values would mean
that the wood buyer is paid for taking the wood, as our study refers to gross revenues.
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3.2.2 Beech495

Based on the Granger Causality results, we focused on shocks in the share496

of damaged wood in the case of beech. The IRFs of the wood revenues on497

higher shares of damaged wood revealed a small but significant decrease in498

revenues after disturbances (Fig. 3 and Tab. A1). The revenues recovered499

within 4 years. Assuming an increase of 0.3 in the share of damaged wood,500

the reduction in revenues was about 0 in the year of the shock, and raised501

up to 9 % in the second year. Thus, in contrast to supply shocks for spruce,502

the onset of the decline in revenues after quality shocks of beech was more503

delayed. This might, for example, be related to longer storage times before504

sale. The decrease of only 9 % for an increase in the share of damaged wood505

of 0.3 seems to be comparably small. However, one should consider that the506

0.3 shock refers to the average share of damaged wood sold by HessenForst507

in one year. In contrast, regarding a single stand, a disturbance event can508

lead to an increase of 100 percentage-points in the share of damaged wood509

with a corresponding decrease in revenues of up to 30 %.510
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Figure 3: Impulse response of the relative wood revenues of beech on shocks
in the share of damaged wood. Shock intensities denote the additional share
of damaged wood. The maximum shock observed in the data was about 0.38.
Please note that the years > 5 are shown to reveal that the shocks subside to
0. The responses after 5 years should be interpreted as being 0. Confidence
intervals were derived from 2, 000 bootstrap iterations.
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4 Derivation of reduction factors for salvage511

revenues (Q5 )512

In this section, we illustrate for future bioeconomic models how our econo-513

metric results can be translated into simplified reduction factors for salvage514

revenues. These factors will be implemented in a wood valuation model515

for Central Germany provided as R-package woodValuationDE. This step re-516

quired the incorporation of expert knowledge in order to add assumption on517

the increase of harvest costs and to critically interpret our econometric IRF518

results against the background of the underlying data. We expect our ex-519

emplifying suggestions to be useful for a wide range of bioeconomic studies,520

but recommend extensive sensitivity analyses, particularly for beech, due to521

some limitations in our study (see Section 5).522

We calculated factors, by which wood revenues are reduced, for 3 differ-523

ent spatial extents of disturbances: small disturbances affecting only single524

stands, those of regional relevance (Hesse in our study), and transregional525

calamities. For small disturbances, we propose only the consideration of the526

quality effect since it is unlikely that such marginal additional salvage vol-527

umes will affect regional (Hessian) wood markets. In contrast, we suspect528

that regional disturbances additionally cause oversupply and thus a decline529

in market prices. Consequences of transregional calamities were implemented530

by adding the estimated dummy variable for calamity years.531

We calculated these factors as the mean IRF of a 5 year horizon, which532

is a typical time period in forest management plans and yield tables. For533

the shock intensity of the harvest volume, we took the 0.95 quantile of the534
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observed harvest volume, i.e. shock intensity 3.39 for spruce and 0.19 for535

beech. For the shock in damaged wood, we assumed an increase from 0 to536

100 %, since it is most likely that a harvest measure is recorded as damaged537

or undamaged in the operational data, irrespective of the actual shares of538

damaged trees. Thus, the assumption that the entire volume of a salvage539

harvest is recorded as damaged does not overestimate the actual damages.540

The proposed factors (Tab. 3) can be interpreted as aggregations of market541

effect, quality effect, and the calamity dummy variable (for the full calcula-542

tions see Supplement C).543

Table 3: Suggested factors for the reduction in wood revenues and increase
in harvest costs for salvage harvests.

Disturbance
extent

Relative reduction in wood
revenues

Relative increase in
harvest costs

Spruce

stand 10 % 15 %
region 34 % 15 %
transregional 54 % 25 %

Beech

stand 15 % 15 %
region 30 % 15 %
transregional 30 % 25 %

For spruce, our models could not identify a considerable quality effect,544

however, at least a small effect seems plausible (see Section 5). An additional545

analysis (Supplement A.VI) generally confirmed the econometric results and546

suggested a quality-related decrease in revenues of 1 to 8 % in calamity years.547

We thus assumed an effect of quality losses of 10 % for 5 year horizons for548

conservative economic calculations at the stand level. Thus, we suggest,549
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based on our empirical results, that disturbances in single-stands have a550

rather limited effect on spruce revenues while considerable market effects551

lead to losses of 54 % after transregional calamities.552

For beech, no large calamities, which could have led to oversupply, were553

observed in our data. We therefore assumed that future supply peaks may554

indeed have a market effect. However, we expect this effect to be smaller555

than that calculated for spruce, since beech is not known to respond with556

sudden, synchronized mortality events (see Section 5). We thus assumed557

a market effect, which reduces revenues by 15 %. Therefore, we suggest558

that wood from salvage harvests of beech has a lower quality and suspect559

an additional market effect after future, larger disturbances. However, we560

strongly recommend sensitivity analyses.561

The assumed increase in harvest costs for salvage harvests (Tab. 3) was562

determined based on expert knowledge as well as recent experience with563

contracts of HessenForst for highly mechanized harvest operations. We dis-564

tinguished between effects of higher efforts for harvest operations in damaged565

stands and additional costs in situations where capacities are limited due to566

an increased demand, such as after transregional calamities.567
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5 Discussion568

Our study demonstrated that SVARs have a high potential for estimating the569

economic consequences of forest disturbances. Previous studies on the effects570

of disturbances on wood markets analyzed effects of single, specific distur-571

bance events (e.g. Prestemon & Holmes, 2000; Sun, 2016; Yin & Newman,572

1999; Zhai & Kuusela, 2020). In contrast, the SVARs allowed us to study573

the potential feedback of revenues on a variety of hypothetical disturbance-574

induced shocks. We see a particular advantage in standardizing the shocks575

(cf. Lemoine, 2021), as this improves the applicability of the empirical results576

for future simulation modeling. In addition, time series methods proved use-577

ful in making operational data, which were not collected for research pur-578

poses, available for econometric analysis.579

Q1: Decreasing revenues of spruce after disturbances were mainly related580

to an increase in wood supply. In contrast, the decreasing revenues of beech581

were mainly related to a reduced quality.582

The importance of oversupply for spruce revenues confirms the findings583

of, e.g., Toth et al. (2020), who found a strong effect of increased salvage584

logging due to bark beetle calamities on Czech wood prices. Falling market585

prices for wood apparently do not prevent oversupply, if forest management586

cannot entirely compensate the salvage volumes by reducing planned harvest587

activities (see Bergen et al., 2013). This unavoidable salvage supply can588

be expected to be inelastic to changes in wood prices (e.g. Marsinko et al.,589

1996; Prestemon & Holmes, 2008), making it a key driver of price dynamics,590

as indicated by our results. Additionally, changes in wood demand, such591
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as those hypothesized for sawmill by-products in Austria (Fuhrmann et al.,592

2021), may influence the wood market. These effects were out of the scope593

of our analysis, but can be assumed to be of minor importance for spruce594

since our supply model already reached a high explanatory power.595

We could not identify a considerable decline of spruce revenues due to596

losses in wood quality after disturbances. However, the share of wood recorded597

as damaged increased in calamity years (Fig. 1). In fact, the detailed assort-598

ment data showed that the average quality of sawlogs was reduced. Nev-599

ertheless, the altered assortment composition seemed to be less important600

for the averaged revenues, since the share of the low-value pulpwood ranged601

between 20 and 28 % over all years (Supplement A.VII) and thus, at most,602

increased only slightly. In their survey, which focused solely on quality losses,603

Möllmann and Möhring (2017) found 15.2 % lower revenues for conifers after604

disturbances. On the one hand, it is conceivable that market and quality ef-605

fects cannot be strictly separated based on expert knowledge. On the other606

hand, this indicates that there could at least be a small quality effect for607

spruce, which could not be identified by our VAR estimation due to, e.g., the608

time series covering only 16 years.609

In contrast to spruce, we did not find a clear influence of the harvest610

volume on beech revenues. This may be partially explained by the observed611

harvest volumes of beech (Fig. 1a), which were largely constant. Thus, a612

potential reaction of beech market prices to oversupply is well possible, if613

future disturbances lead to higher supplies than observed in our study. The614

period of drought and heat (2018-2020) with synchronized calamities across615

Central Europe (see Senf & Seidl, 2021b), might have increased mortality616
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rates of beech (Obladen et al., 2021). However, salvage harvests of beech are617

most likely lagged because timely sanitation fellings in spruce forests limit618

the harvest capacity, and mortality due to drought occurs less suddenly than619

storm events.620

The less conclusive VAR estimations for beech compared to spruce sug-621

gest that further variables influence beech revenues. For example, increasing622

hazard probabilities with age (Staupendahl, 2011) may lead to higher shares623

of larger beech trees in salvage harvests. Since larger trees usually contain624

higher shares of valuable sawlogs (e.g. Offer & Staupendahl, 2018), the de-625

creased wood quality after disturbances might be partially covered by a gen-626

erally higher quality in the damaged subgroup. However, based on our data627

sets, we were not able to explicitly capture this effect, e.g., by VARs con-628

sidering diameters or the shares of sawlogs. Future studies with data which629

directly link disturbances to assortment compositions may provide more de-630

tailed insights. Furthermore, the consideration of other exogenous effects631

in related markets (cf. Zhai & Kuusela, 2020) may improve the models for632

beech. Interesting aspects in our context could be financial crises (Schick,633

2019) and oil-price induced changes in fuelwood demand (Härtl & Knoke,634

2014).635

None of the VAR models showed evidence for instability. The residu-636

als did not contain autocorrelation (Supplements A: Fig. 1, B: Fig. 3), and637

adding additional time series (Supplements A.V, B.V) did not alter the ob-638

served trends, which emphasizes the consistent estimation of the VAR. For639

example, Adenomon et al. (2015) found that for time series data with a lim-640

ited sample size, even high correlation (> 0.9) among the variables did not641
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require any correction procedure. However, it is noteworthy that the lim-642

ited sample size in our analysis does not allow for a straightforward increase643

of model dimensionality. Against this background, panel VARs (PVARs)644

would be a promising model class for future analyses. For instance, under645

common homogeneity assumptions and exploitation of the region structure646

within data, pooled regressions would significantly increase the degrees of647

freedom (see e.g. Baltagi et al., 2000). Since this goes beyond the scope of648

this paper, we leave this interesting topic for future research.649

Q2: Transregional calamities additionally reduced spruce revenues by about650

20 %.651

Years with transregional calamities generally differed from those without652

calamities. Consequently, model selection chose the integration of a dummy653

variable for calamity years. This suggests that wood markets of neighboring654

regions influence each other, as shown by Zhou and Buongiorno (2006) for the655

U.S., and that declining prices at regional markets are additionally driven by656

the salvage harvests in neighboring regions. The dummy variable might also657

capture effects that arise at high supply rates but cannot be fully incorporated658

in the linear VARs (Equation 1). Such effects can be limited transport or659

storage capacities of sawmills that suddenly limit a further increase in the660

short-term demand for wood. The dummy variable’s influence on beech661

revenues was small and positive and is probably a model artifact related to662

the less conclusive VAR estimations.663

Q3: The reduction in revenues was highly sensitive to the assumed dis-664

turbance severity. The negative effect subsided within 3-4 years.665

Our results fit well with factors applied in earlier studies, but relate the666
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decline in revenues directly to characteristics of the disturbance event. For667

instance, increasing the harvest volume of spruce by a factor of 2 reduced rev-668

enues by about 28 % (Fig. 2), which is close to the 30 % in Staupendahl and669

Möhring (2011). Assuming the same regional intensity but a transregional670

extent (by considering the additional calamity dummy variable, Tab. 1), we671

received a reduction of about 48 % (cf. 50 % in Dieter, 2001, but for net672

revenues). This shows that explicitly linking the decline in wood revenues673

to the assumed disturbance severity and its spatial extent is important for674

interpreting its simulated economic impact. As compared to earlier esti-675

mates based on expert-knowledge, such as Dieter (2001) or Staupendahl and676

Möhring (2011), our approach allows for the characterization of the assumed677

disturbance events and the consideration of the development of revenues in678

the years after the event. In line with, e.g, Yin and Newman (1999), the679

short-run negative loss in revenues subsided quite quickly, limiting the ad-680

verse economic consequences. We focused on the short-term effects of dis-681

turbances, however, the short recovery period in the IRFs may indicate that682

there was no long-term effect on wood prices, with reduced inventories leading683

to lower supply and increased market prices (cf. e.g. Prestemon & Holmes,684

2000, 2008). This could change in the near future, due to subsequent, tran-685

sregional calamities in recent years with considerable damage, especially in686

spruce forests (cf. Möhring et al., 2021).687

In Möllmann and Möhring (2017), the quality effect was more important688

for deciduous species (−21.3 %) than for conifers (−15.2 %). While we could689

not confirm the quality effect for spruce, the estimated effect for beech was690

even higher. When comparing damaged and undamaged stands, i.e. a shock691
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of 100 % in the share of damaged wood, our IRFs suggested a decrease of up692

to 30 % in beech revenues. Nevertheless, our results may actually underesti-693

mate the quality effect for beech due to a possible bias we could not capture694

in our estimation. Practical experience, particularly in recent years, has em-695

phasized that beech trees which have strongly deteriorated in quality are not696

economical to harvest, while sanitation felling is not necessary. Hence, parts697

of the severely damaged beech trees were most likely not considered in our698

harvest and sales data and, in contrast, are preserved as habitat trees.699

Q4: Declines in revenues after multiple disturbances in subsequent years700

far exceed declines after single events.701

We even found a complete loss of revenues in subsequent large distur-702

bances (Fig. 2b). However, our study refers to gross revenues. The estimated703

negative revenues (IRF < −1) are presumably a model artifact due to the704

linearity assumption in VARs (Equation 1). In contrast to this assumption,705

a non-linear relationship between wood supply and market prices could be706

hypothesized (cf. e.g. Prestemon & Holmes, 2008). For example, an increas-707

ing attractiveness of export markets, such as China, may buffer parts of the708

oversupply and decline in local market prices (Toth et al., 2020), underlining709

the fact that the VAR estimates should be extrapolated with care.710

Q5: Our results shed new light on the quantitative understanding of the711

consequences of disturbances for wood revenues. Their implications are infor-712

mative for future bioeconomic forest modeling of impacts of and adaptation713

to climate change as well as for practical forest management decisions.714

Our results recommend distinguishing the consequences of disturbances715

for wood revenues by tree species, spatial extent, and time since the event.716

39



Thus, simulation studies applying simplified assumptions, such as constant717

reduction factors for salvage revenues, might only partially capture the under-718

lying mechanisms. Future bioeconomic simulations should account for losses719

in beech revenues due to lower quality, while focusing on the market effect720

for spruce. Studies aiming to differentiate between regularly occurring minor721

disturbances and synchronized transregional calamities should also consider722

the disturbances’ spatial extents in the economic valuation. For example,723

disturbances in single stands most likely cause limited quality losses rather724

than affecting market prices.725

In order to simplify the application of our econometric results for Central726

Germany, we proposed reduction factors for salvage revenues. However, in727

particular for beech, our VAR estimations were inconclusive, which might be728

related to the discussed length of our time series and the historic development729

of beech harvest volumes. Consequently, we had to apply some expert-based730

assumptions during the derivation of these factors. We therefore recommend731

a critical application with intensive sensitivity analyses. We further em-732

phasize that the derived reductions in revenues refer to the actual volume733

sold. After disturbances, the economic situation of a forest enterprise can be734

further impaired by larger proportions of harvest residuals or damaged but735

unsalvaged volumes (e.g. Möhring et al., 2021). The amount of unsalvaged736

volumes would therefore need to be estimated separately if required in future737

applications.738

The length of the time series was a technical limitation for the applied739

statistics and the data referred to only one forest enterprise. The operational740

data set, with a large number of harvest and sales records behind each year,741
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nevertheless allowed us to derive informative and reliable results for spruce742

and important indications for mechanisms in the case of beech. The spruce743

harvest volumes of HessenForst had a high explanatory power at the regional744

wood market. The Hessian softwood supply chains are typical for German745

spruce supply chains with a limited number of large timber industry compa-746

nies supplying their products to national and European, but also to the world747

market (for a map of the German sawmill industry see Döring et al., 2017).748

The supply chains for beech can be expected to be more specialized since749

Hesse has the highest shares of beech in Germany (Thünen-Institut, 2015).750

The regional aggregation of hardwood-based industries (cf. e.g. Döring et al.,751

2017) indicates an above-average demand. We expect the qualitative results752

on market and quality effect for spruce, but with a few limitations also those753

for beech, to be well transferable to other Central European regions. Nev-754

ertheless, one should consider that the VARs and IRFs were derived based755

on the historic developments and might not cover future changes in wood756

demand, e.g., as feedstock for an expanding bioeconomy (e.g. Hennig et al.,757

2016), or possible effects of increased or altered disturbance dynamics (e.g.758

Seidl et al., 2017; Senf & Seidl, 2021a).759

Our results are relevant for forest management in that we identified over-760

supply as a key reason for declining spruce revenues after disturbances on a761

quantitative basis. This implies that disturbances in spruce are of minor im-762

portance for a forest enterprise’s revenues as long as spatially synchronized,763

large-volume salvage harvest can be avoided. Our results underline the im-764

portance of integrating spruce in less vulnerable mixed stands (e.g. Brandl et765

al., 2020; Griess et al., 2012) with lower shares in the species portfolio. This766
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would reduce the total volume of a single species at risk during disturbances.767

Under such strategies, spruce might still be an economically reasonable tree768

species – despite its comparably high mortality probabilities (cf. e.g. Fuchs769

et al., 2022; Paul et al., 2019). Our results further suggest that the com-770

mon practice of storing spruce after disturbances (Zimmermann et al., 2018)771

can indeed be promising in mitigating high losses in revenues. On the one772

hand, the immediate oversupply can be mitigated, which may restrain the773

decline in revenue. On the other hand, a value-preserving storage may help774

to avoid selling wood in a poor market situation one or two years (Fig. 2a)775

after disturbances.776
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6 Conclusion and outlook777

From our study, we conclude that SVARs and IRFs are promising tools for778

exploring the economic consequences of disturbance events for forest enter-779

prises. Our application of these econometric methods to Central European780

harvest and sales data highlight the importance of distinguishing between781

two reasons for disturbance-induced losses in revenues: 1) The quality re-782

duction due to biophysical damages and 2) the market price reduction due783

to oversupply. Most importantly, we found that these effects are species-784

sensitive, with declining spruce revenues being mainly related to oversupply785

and those of beech mainly to quality losses. This finding is likely to apply786

to other species, but also to other countries due to differences in contracting787

practices, wood assortments, and disturbance patterns.788

The quantitative results on market and quality effects are of high rele-789

vance for future bioeconomic models. We suggest factors by which revenues790

are assumed to be reduced in the case of disturbance events. These species-791

specific factors allow, for example, for an improved consideration of sever-792

ity and spatial extent of (stochastic) disturbance events when implementing793

their economic consequences in Monte-Carlo simulations to support species794

selection (cf. Fuchs et al., 2022).795

Future econometric studies could refine our approach for the consider-796

ation of spatial extent and synchronization of disturbance-induced revenue797

losses. A promising alternative to our dummy variable for disturbances of798

transregional extent are space-time models (cf. Zhou & Buongiorno, 2006),799

which explicitly estimate the interactions between neighboring submarkets.800
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For bioeconomic modeling, such information would allow for the considera-801

tion of the spatial dependency of losses in revenues after disturbances. This802

would be of high appeal, for example, for exploring economic adaptation803

strategies to spatially correlated extreme weather events in landscape-level804

simulations.805

However, our study also clearly underlines the challenges and limitations806

of operational data sets for econometric studies. Future studies could over-807

come some limitations of our analyses, particularly the short time series, by808

using data from private forest enterprises. They often have access to longer809

time series, which would allow for the consideration of more covariables, for810

example, related to wood demand. However, the data would represent a811

smaller proportion of a state’s harvests and sales and might be less represen-812

tative for the trends on regional wood markets and other forest enterprises.813

It could also be of interest to distinguish models between disturbance agents,814

such as bark beetles and storms (cf. Möllmann & Möhring, 2017). Regarding815

beech, the current drought period in Germany may provide additional data816

of more severe damages in beech forests (cf. Obladen et al., 2021; Schuldt et817

al., 2020), which could be used to test the indications identified in our study.818

We provide an example for applications of the often available but chal-819

lenging operational data sets in time series analyses. Despite the further820

developments needed, we believe that such retrospective analyses may offer821

important information for future forest management decisions under climate822

change.823
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Appendix863

Table A1: Impulse response of the relative averaged wood revenues on shocks
of harvest volume (spruce) or share of damaged wood (beech) for the first
5 years. Shock intensities denote the magnitude of the harvest volume supply
shock in relation to the time series mean or the additional share of damaged
wood, respectively.

Shock intensity Horizon [years]

0 1 2 3 4 5

Spruce: impulse of harvest volume

1 -0.121 -0.138 -0.095 -0.018 0.023 0.016
2 -0.241 -0.276 -0.191 -0.035 0.046 0.033
3 -0.362 -0.413 -0.286 -0.053 0.068 0.049

Beech: impulse of share of damaged wood

0.1 0.001 -0.021 -0.030 -0.020 -0.002 -0.002
0.2 0.001 -0.042 -0.061 -0.040 -0.004 -0.003
0.3 0.002 -0.063 -0.091 -0.060 -0.006 -0.005
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- Abschätzung der ökonomischen Schäden der Extremwetterereignisse969

der Jahre 2018 bis 2020 in der Forstwirtschaft [Total damage amounts970

to 12.7 billion Euros - Estimation of the economic damage caused by971

the extreme weather events 2018 to 2020 in forestry]. Holz-Zentralblatt ,972

147 (9), 155–158.973

Möllmann, T. B., & Möhring, B. (2017). A practical way to integrate974

risk in forest management decisions. Ann. For. Sci., 74 (4), 75. doi:975

doi:10.1007/s13595-017-0670-x976

Müller, F., Augustynczik, A. L. D., & Hanewinkel, M. (2019). Quanti-977

fying the risk mitigation efficiency of changing silvicultural systems978

under storm risk throughout history. Ann. For. Sci., 76 (4), 116. doi:979

doi:10.1007/s13595-019-0884-1980

Obladen, N., Dechering, P., Skiadaresis, G., Tegel, W., Keßler, J., Höllerl,981
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I. Pre-analyses of the data sets

library(tidyverse)
library(tseries)
library(vars)
library(kableExtra)
library(corrplot)
library(ggpubr)

I.1. Lag order selection harvest and sale volumes
We tested whether there is evidence for any time lag between the annual volumes of harvests and sales data.
For this, we conducted a lag order selection testing a maximum lag order lag.max = 2.
lago.vol <- VARselect(dat.spruce.rel[, c("harvest.vol",

"sale.vol")],
type = "const",
lag.max = 2,
exo = dat.spruce.rel[, "calamity"])

Table 1: Lag order selection (lag.order in years) of harvest volume and sale volume based on 4 selection
criteria.

criterion lag.order
AIC 2
HQ 2
SC 1

FPE 2

All criteria suggested a lag order > 0 (Tab. 1), which confirmed that the series had inter-annual relationships.
Therefore, we applied methods of time series analysis for the subsequent analyses.

I.2. Correlations

Table 2: Correlations between the variables.

revenues harvest.vol share.wood.damaged
revenues 1.00 -0.76 -0.70
harvest.vol -0.76 1.00 0.83
share.wood.damaged -0.70 0.83 1.00
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II. Market effect
II.1. Model selection
We selected the VAR model based on two lag order selections with lag orders of up to only 3 years, as our time
series had a length of only 16 years. Higher lag orders could have led close to a saturated model. Restricting
the lag order also reduced potential problems with multicollinearity. We tested models with and without the
dummy variable for years with transregional calamities.
# without dummy
lago.harv.rev <- VARselect(

dat.spruce.rel[, c("harvest.vol",
"revenues")],

type = "const",
lag.max = 3)

# with dummy
lago.harv.rev.dummy <- VARselect(

dat.spruce.rel[, c("harvest.vol",
"revenues")],

type = "const",
lag.max = 3,
exo = dat.spruce.rel[, "calamity"])

Table 3: Lag order selection (lag order in years) of harvest volume and average wood revenues based on 4
selection criteria. Tested for 3 years at maximum.

model AIC FPE HQ SC
lag order 2 + dummy -8.1 0.000347 -8.22 -7.60
lag order 2 -7.8 0.000447 -7.88 -7.36
lag order 3 + dummy -7.7 0.000650 -7.89 -7.05
lag order 3 -7.6 0.000647 -7.72 -6.99
lag order 1 + dummy -5.8 0.003136 -5.88 -5.46
lag order 1 -5.0 0.006908 -5.05 -4.73

All criteria suggested a lag order of 2 years. The models including dummy variables for years with transregional
calamities performed better in terms of AIC (Tab. 3).
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II.2. VAR
II.2.1. VAR estimation

We fitted a VAR according to the model selection to determine the effect of the harvest volume (market
effect) on wood revenues.
var.harv.rev <- vars::VAR(

as.ts(dat.spruce.rel[, c("harvest.vol",
"revenues")],

start = 2005),
p = 2,
type = "const",
ic = "AIC",
exogen = dat.spruce.rel[, "calamity"])

summary(var.harv.rev)

##
## VAR Estimation Results:
## =========================
## Endogenous variables: harvest.vol, revenues
## Deterministic variables: const
## Sample size: 14
## Log Likelihood: 28.728
## Roots of the characteristic polynomial:
## 0.7173 0.7173 0.598 0.598
## Call:
## vars::VAR(y = as.ts(dat.spruce.rel[, c("harvest.vol", "revenues")],
## start = 2005), p = 2, type = "const", exogen = dat.spruce.rel[,
## "calamity"], ic = "AIC")
##
##
## Estimation results for equation harvest.vol:
## ============================================
## harvest.vol = harvest.vol.l1 + revenues.l1 + harvest.vol.l2 + revenues.l2 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 0.008583 0.212554 0.040 0.9688
## revenues.l1 -3.408894 3.064179 -1.112 0.2982
## harvest.vol.l2 -0.354536 0.240853 -1.472 0.1792
## revenues.l2 -0.058336 1.768443 -0.033 0.9745
## const 5.126792 2.590041 1.979 0.0831 .
## calamity 2.212032 0.611405 3.618 0.0068 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.5855 on 8 degrees of freedom
## Multiple R-Squared: 0.8918, Adjusted R-squared: 0.8242
## F-statistic: 13.19 on 5 and 8 DF, p-value: 0.001079
##
##
## Estimation results for equation revenues:
## =========================================
## revenues = harvest.vol.l1 + revenues.l1 + harvest.vol.l2 + revenues.l2 + const + calamity
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##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 -0.05385 0.02693 -1.999 0.0806 .
## revenues.l1 0.69522 0.38824 1.791 0.1111
## harvest.vol.l2 -0.04041 0.03052 -1.324 0.2220
## revenues.l2 -0.52564 0.22407 -2.346 0.0470 *
## const 0.90208 0.32817 2.749 0.0251 *
## calamity -0.20189 0.07747 -2.606 0.0313 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.07418 on 8 degrees of freedom
## Multiple R-Squared: 0.9287, Adjusted R-squared: 0.8842
## F-statistic: 20.85 on 5 and 8 DF, p-value: 0.000213
##
##
##
## Covariance matrix of residuals:
## harvest.vol revenues
## harvest.vol 0.34280 -0.041391
## revenues -0.04139 0.005503
##
## Correlation matrix of residuals:
## harvest.vol revenues
## harvest.vol 1.000 -0.953
## revenues -0.953 1.000
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II.2.2. Residual analysis

par(mfrow = c(2, 1))
pacf(resid(var.harv.rev)[,"revenues"],

main = "PACF of the Residuals")
acf(resid(var.harv.rev)[,"revenues"],

main = "ACF of the Residuals")
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Figure 1: The autocorrelation function and the partial autocorrelation function reveal no remarkable
autocorrelation of the model residuals. It can be followed that there is no evidence against our assumption of
consistently estimated residuals.
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II.3. SVAR and IRF
II.3.1. Shocks of varying intensity

Based on the estimated reduced-form VAR, we calculated SVARs and IRFs for shocks of varying intensity.
shock.intensities <- 1:3

dat.harv.rev.plot <- tibble()

var.harv.rev.irf.orig <- vars::irf(
var.harv.rev,
n.ahead = 10,
ci = 0.95,
runs = 2000,
ortho = TRUE)

for (i in shock.intensities) {

var.harv.rev.irf <- var.harv.rev.irf.orig

# rescaling the IRF to modify the shock intensity
# (identical to modifying the B matrix as described in the manuscript)
var.harv.rev.irf$irf$harvest.vol <-

(var.harv.rev.irf.orig$irf$harvest.vol /
var.harv.rev.irf.orig$irf$harvest.vol[1, 1]) *

i

dat.harv.rev.plot <- dat.harv.rev.plot %>%
bind_rows(

c(shock.intensity = i,
corr.factor = 1 /

var.harv.rev.irf.orig$irf$harvest.vol[1, 1] *
i,

var.harv.rev.irf$irf$harvest.vol[, 2])
)

}

For the results, see also Figure 2a in the main text.

II.3.2. Multiple shocks in subsequent years

Additionally, we simulated the IRFs for multiple shocks in subsequent years.
dat.harv.rev.plot.gath <-

dat.harv.rev.plot %>%
gather("horizon",

"response.revenues",
-shock.intensity,
-corr.factor) %>%

mutate(horizon = as.numeric(horizon))

dat.harv.rev.mult.shocks <-
dat.harv.rev.plot.gath %>%
group_by(shock.intensity) %>%
arrange(shock.intensity,
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Table 4: Impulse response of average revenues on shocks in the harvest volume. The shock intensity denotes
the magnitude of the additional harvested volume in relation to the harvest volume in 2013. The maximum
observed shock in the time series was about 3.54.

horizon shock.intensity = 1 shock.intensity = 2 shock.intensity = 3
0 -0.121 -0.241 -0.362
1 -0.138 -0.276 -0.413
2 -0.095 -0.191 -0.286
3 -0.018 -0.035 -0.053
4 0.023 0.046 0.068
5 0.016 0.033 0.049
6 0.006 0.012 0.019
7 0.005 0.010 0.015
8 0.001 0.003 0.004
9 -0.003 -0.006 -0.009
10 -0.002 -0.005 -0.007

horizon) %>%
mutate(

`n.shocks = 1` = response.revenues,
# two (additive) shocks of the same intensity
`n.shocks = 2` = response.revenues +

lag(response.revenues,
default = 0),

# three (additive) shocks of the same intensity
`n.shocks = 3` = `n.shocks = 2` +

lag(response.revenues,
default = 0)

)

For the results, see also Figure 2b in the main text.
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Table 5: Impulse response of average revenues on multiple shocks in the harvest volume. The shock intensity
denotes the magnitude of the additional harvested volume in relation to the harvest volume in 2013. The
maximum observed shock in the time series was about 3.54. n.shocks denotes the number of subsequent
calamity years. Multiple shocks are assumed to be additive due to the linear formulation of VAR models.

shock.intensity horizon n.shocks = 1 n.shocks = 2 n.shocks = 3
1 0 -0.121 -0.121 -0.121
1 1 -0.138 -0.259 -0.379
1 2 -0.095 -0.233 -0.371
1 3 -0.018 -0.113 -0.208
1 4 0.023 0.005 -0.012
1 5 0.016 0.039 0.062
1 6 0.006 0.023 0.039
1 7 0.005 0.011 0.017
1 8 0.001 0.006 0.011
1 9 -0.003 -0.002 0.000
1 10 -0.002 -0.005 -0.009
2 0 -0.241 -0.241 -0.241
2 1 -0.276 -0.517 -0.759
2 2 -0.191 -0.466 -0.742
2 3 -0.035 -0.226 -0.417
2 4 0.046 0.010 -0.025
2 5 0.033 0.078 0.124
2 6 0.012 0.045 0.078
2 7 0.010 0.022 0.035
2 8 0.003 0.013 0.023
2 9 -0.006 -0.003 -0.001
2 10 -0.005 -0.011 -0.017
3 0 -0.362 -0.362 -0.362
3 1 -0.413 -0.776 -1.138
3 2 -0.286 -0.699 -1.113
3 3 -0.053 -0.339 -0.625
3 4 0.068 0.016 -0.037
3 5 0.049 0.118 0.186
3 6 0.019 0.068 0.117
3 7 0.015 0.033 0.052
3 8 0.004 0.019 0.034
3 9 -0.009 -0.005 -0.001
3 10 -0.007 -0.016 -0.026
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III. Quality effect
III.1. Model selection
In line with the VAR analysis on the harvest volume, we selected the VAR model for the share of damaged
wood based on two lag order selections with lag orders up to 3 years, and tested models with and without a
dummy variable for large-scale calamities.
# without dummy
lago.dam.rev <- VARselect(

dat.spruce.rel[, c("share.wood.damaged",
"revenues")],

type = "const",
lag.max = 3)

# with dummy
lago.dam.rev.dummy <- VARselect(

dat.spruce.rel[, c("share.wood.damaged",
"revenues")],

type = "const",
lag.max = 3,
exo = dat.spruce.rel[, "calamity"])

Table 6: Lag order selection (lag order in years) of the share of damaged wood and average wood revenues
based on 4 selection criteria. Tested for 3 years at maximum.

model AIC FPE HQ SC
lag order = 2 -8.3 0.000272 -8.38 -7.86
lag order = 2 +dummy -8.2 0.000305 -8.35 -7.72
lag order = 3 +dummy -7.9 0.000534 -8.09 -7.25
lag order = 3 -7.9 0.000481 -8.02 -7.28
lag order = 1 +dummy -7.5 0.000589 -7.55 -7.13
lag order = 1 -6.8 0.001189 -6.81 -6.49

All criteria suggested a time lag of 2 years without a calamity dummy (Tab. 6). However, the AICs of the
models with and without a dummy were very similar. We therefore decided to use the model with a dummy
variable anyway to enhance the comparability with the model for the market effect.
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III.2. VAR
III.2.1. VAR estimation

We fitted a VAR according to the model selection to determine the effect of the share of damaged wood
(quality effect) on wood revenues.
var.dam.rev <- vars::VAR(

as.ts(dat.spruce.rel[, c("share.wood.damaged",
"revenues")],

start = 2005),
p = 2,
type = "const",
ic = "AIC",
exogen = dat.spruce.rel[, "calamity"]

)

summary(var.dam.rev)

##
## VAR Estimation Results:
## =========================
## Endogenous variables: share.wood.damaged, revenues
## Deterministic variables: const
## Sample size: 14
## Log Likelihood: 28.215
## Roots of the characteristic polynomial:
## 0.8244 0.8244 0.7301 0.7301
## Call:
## vars::VAR(y = as.ts(dat.spruce.rel[, c("share.wood.damaged",
## "revenues")], start = 2005), p = 2, type = "const", exogen = dat.spruce.rel[,
## "calamity"], ic = "AIC")
##
##
## Estimation results for equation share.wood.damaged:
## ===================================================
## share.wood.damaged = share.wood.damaged.l1 + revenues.l1 + share.wood.damaged.l2 + revenues.l2 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## share.wood.damaged.l1 -0.03640 0.33880 -0.107 0.9171
## revenues.l1 -1.90130 1.02670 -1.852 0.1012
## share.wood.damaged.l2 -0.53834 0.31146 -1.728 0.1222
## revenues.l2 -0.31173 0.65757 -0.474 0.6481
## const 2.81881 1.01015 2.790 0.0235 *
## calamity -0.00773 0.23388 -0.033 0.9744
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.2248 on 8 degrees of freedom
## Multiple R-Squared: 0.7201, Adjusted R-squared: 0.5451
## F-statistic: 4.116 on 5 and 8 DF, p-value: 0.03793
##
##
## Estimation results for equation revenues:
## =========================================
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## revenues = share.wood.damaged.l1 + revenues.l1 + share.wood.damaged.l2 + revenues.l2 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## share.wood.damaged.l1 -0.12723 0.13373 -0.951 0.3693
## revenues.l1 1.18437 0.40527 2.922 0.0192 *
## share.wood.damaged.l2 0.03923 0.12294 0.319 0.7578
## revenues.l2 -0.65021 0.25957 -2.505 0.0367 *
## const 0.45949 0.39874 1.152 0.2824
## calamity -0.13418 0.09232 -1.453 0.1842
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.08874 on 8 degrees of freedom
## Multiple R-Squared: 0.898, Adjusted R-squared: 0.8343
## F-statistic: 14.09 on 5 and 8 DF, p-value: 0.0008589
##
##
##
## Covariance matrix of residuals:
## share.wood.damaged revenues
## share.wood.damaged 0.05054 -0.014546
## revenues -0.01455 0.007876
##
## Correlation matrix of residuals:
## share.wood.damaged revenues
## share.wood.damaged 1.0000 -0.7291
## revenues -0.7291 1.0000
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III.2.2. Residual analysis

par(mfrow = c(2, 1))
pacf(resid(var.dam.rev)[,"revenues"],

main = "PACF of the Residuals")
acf(resid(var.dam.rev)[,"revenues"],

main = "ACF of the Residuals")

2 4 6 8 10

−
0.

4
0.

2

Lag

P
ar

tia
l A

C
F

PACF of the Residuals

0 2 4 6 8 10

−
0.

5
0.

5

Lag

A
C

F

ACF of the Residuals

Figure 2: The autocorrelation function and the partial autocorrelation function reveal no remarkable
autocorrelation of the model residuals. It can be followed that there is no evidence against our assumption of
consistently estimated residuals.
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III.3. SVAR and IRF
Based on the estimated reduced-form VAR, we calculated SVARs and IRFs for shocks of varying intensity.
shock.intensities <- seq(0.1, 0.7, 0.2)

dat.dam.rev.plot <- tibble()

var.dam.rev.irf.orig <- vars::irf(
var.dam.rev,
n.ahead = 10,
ci = 0.95,
runs = 2000,
ortho = TRUE)

for (i in shock.intensities) {

var.dam.rev.irf <- var.dam.rev.irf.orig

# rescaling the IRF to modify the shock intensity
# (identical to modifying the B matrix as described in the manuscript)
var.dam.rev.irf$irf$share.wood.damaged <-

(var.dam.rev.irf.orig$irf$share.wood.damaged /
var.dam.rev.irf.orig$irf$share.wood.damaged[1, 1]) * i

dat.dam.rev.plot <- dat.dam.rev.plot %>%
bind_rows(

c(shock.intensity = i,
corr.factor = 1 /

var.dam.rev.irf.orig$irf$share.wood.damaged[1, 1] * i,
var.dam.rev.irf$irf$share.wood.damaged[, 2])

)

}

Table 7: Impulse response of average revenues on shocks in the share of damaged wood. The shock intensity
denotes the magnitude of the additional share of damaged wood. The maximum observed, additional share
of damaged wood to the non-calamity situation (2013) was about 0.76.

horizon shock.intensity = 0.1 shock.intensity = 0.3 shock.intensity = 0.5 shock.intensity = 0.7
0 -0.029 -0.086 -0.144 -0.201
1 -0.047 -0.140 -0.234 -0.328
2 -0.039 -0.118 -0.197 -0.275
3 -0.019 -0.058 -0.097 -0.136
4 -0.004 -0.011 -0.018 -0.025
5 0.008 0.023 0.039 0.054
6 0.015 0.045 0.075 0.105
7 0.015 0.046 0.076 0.107
8 0.010 0.029 0.049 0.068
9 0.003 0.010 0.016 0.023
10 -0.002 -0.005 -0.008 -0.012
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Figure 3: Impulse response of average revenues on shocks in the share of damaged wood. The shock intensity
denotes the magnitude of the additional share of damaged wood. The maximum observed, additional share
of damaged wood to the non-calamity situation (2013) was about 0.76.
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IV. Granger causality
Linear hypothesis test, whether the harvest volume or the share of damaged wood Granger-causes revenues.
causality(var.harv.rev, cause = "harvest.vol")$Granger

##
## Granger causality H0: harvest.vol do not Granger-cause revenues
##
## data: VAR object var.harv.rev
## F-Test = 2.4246, df1 = 2, df2 = 16, p-value = 0.1203
causality(var.dam.rev, cause = "share.wood.damaged")$Granger

##
## Granger causality H0: share.wood.damaged do not Granger-cause revenues
##
## data: VAR object var.dam.rev
## F-Test = 0.48933, df1 = 2, df2 = 16, p-value = 0.6219
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V. Combined market and quality effect
We also tested a VAR combining the effects of the harvest volume and share of damaged wood on revenues in
one model.

V.1. Model selection
Due to the limited length of the time series, we tested a maximum lag order of 2 when considering 3 time
series in one model.
lago.harv.dam.rev <- VARselect(dat.spruce.rel[, c("harvest.vol",

"share.wood.damaged",
"revenues")],

type = "const",
lag.max = 2,
exo = dat.spruce.rel[, "calamity"])

Table 8: Lag order selection (lag order in years) of harvest volume, share of damaged wood, and average
wood revenues based on 4 selection criteria. Tested for 2 years at maximum.

model AIC FPE HQ SC
lag order 2 + dummy -12.0 1.0e-05 -12.13 -10.93
lag order 1 + dummy -9.3 9.9e-05 -9.38 -8.64

All criteria suggested a time lag of 2 years (Tab. 8).
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V.2. VAR
V.2.1 VAR estimation

var.harv.dam.rev <- vars::VAR(
as.ts(dat.spruce.rel[, c("harvest.vol",

"share.wood.damaged",
"revenues")],

start = 2005),
p = 2,
type = "const",
ic = "AIC",
exogen = dat.spruce.rel[, "calamity"])

summary(var.harv.dam.rev)

##
## VAR Estimation Results:
## =========================
## Endogenous variables: harvest.vol, share.wood.damaged, revenues
## Deterministic variables: const
## Sample size: 14
## Log Likelihood: 48.615
## Roots of the characteristic polynomial:
## 0.7999 0.7999 0.7911 0.7911 0.4001 0.4001
## Call:
## vars::VAR(y = as.ts(dat.spruce.rel[, c("harvest.vol", "share.wood.damaged",
## "revenues")], start = 2005), p = 2, type = "const", exogen = dat.spruce.rel[,
## "calamity"], ic = "AIC")
##
##
## Estimation results for equation harvest.vol:
## ============================================
## harvest.vol = harvest.vol.l1 + share.wood.damaged.l1 + revenues.l1 + harvest.vol.l2 + share.wood.damaged.l2 + revenues.l2 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 0.07597 0.26475 0.287 0.7838
## share.wood.damaged.l1 -0.52571 1.09912 -0.478 0.6494
## revenues.l1 -4.21722 3.10801 -1.357 0.2236
## harvest.vol.l2 -0.11563 0.29272 -0.395 0.7065
## share.wood.damaged.l2 -1.30038 0.98374 -1.322 0.2344
## revenues.l2 -0.61819 1.82470 -0.339 0.7463
## const 6.82412 2.86957 2.378 0.0549 .
## calamity 2.00001 0.63367 3.156 0.0197 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.5838 on 6 degrees of freedom
## Multiple R-Squared: 0.9193, Adjusted R-squared: 0.8252
## F-statistic: 9.769 on 7 and 6 DF, p-value: 0.006487
##
##
## Estimation results for equation share.wood.damaged:
## ===================================================
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## share.wood.damaged = harvest.vol.l1 + share.wood.damaged.l1 + revenues.l1 + harvest.vol.l2 + share.wood.damaged.l2 + revenues.l2 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 0.02201 0.11713 0.188 0.8571
## share.wood.damaged.l1 -0.09319 0.48625 -0.192 0.8543
## revenues.l1 -1.72854 1.37498 -1.257 0.2554
## harvest.vol.l2 0.02576 0.12950 0.199 0.8489
## share.wood.damaged.l2 -0.57375 0.43520 -1.318 0.2355
## revenues.l2 -0.37859 0.80724 -0.469 0.6556
## const 2.69158 1.26949 2.120 0.0783 .
## calamity 0.01181 0.28033 0.042 0.9678
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.2583 on 6 degrees of freedom
## Multiple R-Squared: 0.7229, Adjusted R-squared: 0.3996
## F-statistic: 2.236 on 7 and 6 DF, p-value: 0.1731
##
##
## Estimation results for equation revenues:
## =========================================
## revenues = harvest.vol.l1 + share.wood.damaged.l1 + revenues.l1 + harvest.vol.l2 + share.wood.damaged.l2 + revenues.l2 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 -0.05521 0.03644 -1.515 0.1805
## share.wood.damaged.l1 0.01483 0.15129 0.098 0.9251
## revenues.l1 0.76172 0.42780 1.781 0.1253
## harvest.vol.l2 -0.06094 0.04029 -1.513 0.1812
## share.wood.damaged.l2 0.12088 0.13541 0.893 0.4064
## revenues.l2 -0.48564 0.25116 -1.934 0.1013
## const 0.76967 0.39498 1.949 0.0992 .
## calamity -0.18139 0.08722 -2.080 0.0828 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.08036 on 6 degrees of freedom
## Multiple R-Squared: 0.9373, Adjusted R-squared: 0.8641
## F-statistic: 12.81 on 7 and 6 DF, p-value: 0.003158
##
##
##
## Covariance matrix of residuals:
## harvest.vol share.wood.damaged revenues
## harvest.vol 0.34085 0.12935 -0.045346
## share.wood.damaged 0.12935 0.06671 -0.017734
## revenues -0.04535 -0.01773 0.006458
##
## Correlation matrix of residuals:
## harvest.vol share.wood.damaged revenues
## harvest.vol 1.0000 0.8578 -0.9666
## share.wood.damaged 0.8578 1.0000 -0.8545
## revenues -0.9666 -0.8545 1.0000
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We compared the estimated coefficients and adj.R2 for the three fitted VARs (Tab. 9). The model
considering only the harvest volume showed the highest adj.R2. Considering also the share of damaged
volume (var.harv.dam.rev) only slightly altered the estimated coefficients as compared to the model without
the share of damaged wood. We therefore concluded that the quality effect contributed, at most, only slightly
to the explanatory power of the model, which was related to the harvest volume. This model with 3 time
series was not considered in the main part of the publication as it delivers no additional information compared
with the model with the 2 series harvest.vol and revenues and the higher model complexity is therefore not
reasonable.

Table 9: Comparison of the fitted VAR models for average revenues considering different explanatory
varibales: var.harv.rev: harvest.vol, var.dam.rev: share.damaged.wood, var.harv.dam.rev: harvest.vol and
share.damaged.wood. NA for coefficients which were not considered in the respective model.

coefficient var.harv.rev var.dam.rev var.harv.dam.rev
adj.r.squared 0.884 0.834 0.864
calamity -0.202 -0.134 -0.181
const 0.902 0.459 0.770
harvest.vol.l1 -0.054 NA -0.055
harvest.vol.l2 -0.040 NA -0.061
revenues.l1 0.695 1.184 0.762
revenues.l2 -0.526 -0.650 -0.486
share.wood.damaged.l1 NA -0.127 0.015
share.wood.damaged.l2 NA 0.039 0.121
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V.2.2. Residual analysis

par(mfrow = c(2, 1))
pacf(resid(var.harv.dam.rev)[,"revenues"],

main = "PACF of the Residuals")
acf(resid(var.harv.dam.rev)[,"revenues"],

main = "ACF of the Residuals")
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Figure 4: The autocorrelation function and the partial autocorrelation function reveal no remarkable
autocorrelation of the model residuals. It can be followed that there is no evidence against our assumption of
consistently estimated residuals.
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V.3 SVAR and IRF

harvest.vol: shock.intensity = 3 share.wood.damaged: shock.intensity = 0.7
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Figure 5: Impulse response of average revenues on shocks in the harvest volume (left panels) or share of
damaged wood (right panels), respectively. Both derived based on a VAR with all three time series, but
limited lag order (2 years).

One should consider that the presented IRFs based on all three time series had a maximum lag order of 2
years (due to the length of the time series) and our model selection suggested the simpler model based on the
harvest volumes and revenues. Nevertheless, the findings based on the model with three time series support
the findings presented in the results section, which are based on the VAR with harvest volumes and revenues.
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VI. Correcting the revenues for the market effect
Although the models delivered no clear evidence for an effect of the share of damaged wood on revenues,
we further sought to investigate this anticipated effect. We corrected the revenues for the market effect to
isolate the quality effect. To do so, we assumed that the market effect is comparable between the different
assortments and linked to the development of revenues of a so-called ‘reference assortment’. The reference
assortment for spruce in Hesse are sawlogs of 20 − 29 cm diameter in the middle of the log and of good quality
(B on a scale from A to D, with A being the best quality). An assortment is defined as a homogeneous good –
its revenues’ development should thus solely be driven by effects of supply and demand on the wood markets
rather than quality changes. The development of this reference assortment’s revenue index (revenues.ref.ass,
calculated based on the Hessian revenue data) is therefore interpreted as the pure market effect. We used it
to correct the development of average wood revenues (revenues, see previous analyses) in order to extract
the quality effect (revenues.market.corr):

revenues.market.corr = revenues

revenues.ref.ass
(1)

dat.spruce.qual <- dat.spruce.rel %>%
mutate(revenues.market.corr = revenues / revenues.ref.ass)

summary(dat.spruce.qual$revenues.market.corr)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.9151 0.9949 1.0028 1.0013 1.0193 1.0604

The analysis suggested that there might be further effects influencing the wood revenues, which are, however,
of minor importance compared to the market effect - but certainly worth investigating in further research.
Particularly the years 2018 and 2020 seemed to be influenced by changes in the average quality of the sold
wood. More detailed analyses of the data revealed that this is mainly caused by a higher share of pulpwood
compared to, e.g., 2007 or 2019. In this case, market-corrected revenues decreased by about 8 %. Nevertheless,
one can conclude that the effect of quality on spruce revenues is much smaller than that of oversupply and
not statistically consolidated.

This finding also supports the results of our model selection, where we identified harvest volumes as a key
variable in describing revenues. It further indicates that a possible collinearity between harvest volumes and
shares of damaged wood is of limited importance to our results and conclusions from the models based on
the harvest volumes.
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Figure 6: Relative development of avarage revenues (revenues) as well as revenues of a reference assortment
(revenues.ref.ass) (a) and the development of average revenues corrected for the market effect (b).
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VII. Time series of pulpwood and sawlog proportions
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Figure 7: Time series of relative shares of sawlog and pulpwood assortments sold.
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I. Pre-analyses of the data sets

library(tidyverse)
library(tseries)
library(vars)
library(kableExtra)

I.1. Lag order selection harvest and sale volumes
We tested whether there is evidence for any time lag between the annual volumes of harvests and sales. For
this, we conducted a lag order selection testing a maximum lag order lag.max = 2.
lago.vol <- VARselect(dat.beech.rel[, c("harvest.vol",

"sale.vol")],
type = "const",
lag.max = 2,
exo = dat.beech.rel[, "calamity"])

Table 1: Lag order selection (lag.order in years) of harvest volume and sale volume based on 4 selection
criteria.

criterion lag.order
AIC 2
HQ 2
SC 2

FPE 2

All criteria suggested a lag order > 0 (Tab. 1), which confirmed that the series had inter-annual relationships.
Therefore, we applied methods of time series analysis for the subsequent analyses.

I.2. Correlations

Table 2: Correlations between the variables.

revenues harvest.vol share.wood.damaged
revenues 1.00 0.02 0.09
harvest.vol 0.02 1.00 -0.23
share.wood.damaged 0.09 -0.23 1.00
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II. Market effect
II.1. Model selection
We selected the VAR model based on two lag order selections with lag orders of up to only 3 years, as our time
series had a length of only 16 years. Higher lag orders could have led close to a saturated model. Restricting
the lag order also reduced potential problems with multicollinearity. We tested models with and without the
dummy variable for years with transregional calamities.
# without dummy
lago.harv.rev <- VARselect(

dat.beech.rel[, c("harvest.vol",
"revenues")],

type = "const",
lag.max = 3)

# with dummy
lago.harv.rev.dummy <- VARselect(

dat.beech.rel[, c("harvest.vol",
"revenues")],

type = "const",
lag.max = 3,
exo = dat.beech.rel[, "calamity"])

Table 3: Lag order selection (lag order in years) of harvest volume and average wood revenues based on 4
selection criteria. Tested for 3 years at maximum.

model AIC FPE HQ SC
lag order 3 +dummy -12.1 8.0e-06 -12.28 -11.44
lag order 3 -11.6 1.1e-05 -11.76 -11.03
lag order 2 +dummy -11.2 1.6e-05 -11.28 -10.65
lag order 2 -11.0 1.8e-05 -11.07 -10.55
lag order 1 +dummy -10.5 2.8e-05 -10.58 -10.16
lag order 1 -10.2 3.9e-05 -10.23 -9.91

All criteria suggested a time lag of 3 years and considering the dummy variable for calamity years (Tab. 3).
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II.2. VAR
II.2.1. VAR estimation

We fitted a VAR according to the model selection to determine the effect of the harvest volume (market
effect) on wood revenues.
var.harv.rev <- vars::VAR(

as.ts(dat.beech.rel[, c("harvest.vol",
"revenues")],

start = 2005),
p = 3,
type = "const",
ic = "AIC",
exogen = dat.beech.rel[, "calamity"])

summary(var.harv.rev)

##
## VAR Estimation Results:
## =========================
## Endogenous variables: harvest.vol, revenues
## Deterministic variables: const
## Sample size: 13
## Log Likelihood: 57.985
## Roots of the characteristic polynomial:
## 0.8297 0.8297 0.7541 0.7541 0.598 0.349
## Call:
## vars::VAR(y = as.ts(dat.beech.rel[, c("harvest.vol", "revenues")],
## start = 2005), p = 3, type = "const", exogen = dat.beech.rel[,
## "calamity"], ic = "AIC")
##
##
## Estimation results for equation harvest.vol:
## ============================================
## harvest.vol = harvest.vol.l1 + revenues.l1 + harvest.vol.l2 + revenues.l2 + harvest.vol.l3 + revenues.l3 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 0.821001 0.305103 2.691 0.04325 *
## revenues.l1 -2.383067 0.683929 -3.484 0.01758 *
## harvest.vol.l2 0.003732 0.264761 0.014 0.98930
## revenues.l2 -0.143750 0.656470 -0.219 0.83533
## harvest.vol.l3 -0.175156 0.162225 -1.080 0.32958
## revenues.l3 0.956674 0.425131 2.250 0.07425 .
## const 1.964901 0.474735 4.139 0.00901 **
## calamity -0.213422 0.087471 -2.440 0.05866 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.059 on 5 degrees of freedom
## Multiple R-Squared: 0.9658, Adjusted R-squared: 0.9178
## F-statistic: 20.15 on 7 and 5 DF, p-value: 0.002214
##
##
## Estimation results for equation revenues:

4



## =========================================
## revenues = harvest.vol.l1 + revenues.l1 + harvest.vol.l2 + revenues.l2 + harvest.vol.l3 + revenues.l3 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 0.16477 0.16609 0.992 0.3667
## revenues.l1 -0.17897 0.37231 -0.481 0.6510
## harvest.vol.l2 0.11762 0.14413 0.816 0.4516
## revenues.l2 -0.47718 0.35736 -1.335 0.2393
## harvest.vol.l3 -0.01347 0.08831 -0.153 0.8847
## revenues.l3 0.54005 0.23143 2.334 0.0669 .
## const 0.90038 0.25843 3.484 0.0176 *
## calamity 0.02231 0.04762 0.468 0.6592
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.03212 on 5 degrees of freedom
## Multiple R-Squared: 0.825, Adjusted R-squared: 0.58
## F-statistic: 3.367 on 7 and 5 DF, p-value: 0.1
##
##
##
## Covariance matrix of residuals:
## harvest.vol revenues
## harvest.vol 0.0034807 -0.0007032
## revenues -0.0007032 0.0010315
##
## Correlation matrix of residuals:
## harvest.vol revenues
## harvest.vol 1.0000 -0.3711
## revenues -0.3711 1.0000
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II.2.2. Residual analysis

par(mfrow = c(2, 1))
pacf(resid(var.harv.rev)[,"revenues"],

main = "PACF of the Residuals")
acf(resid(var.harv.rev)[,"revenues"],

main = "ACF of the Residuals")
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Figure 1: The autocorrelation function and the partial autocorrelation function reveal no remarkable
autocorrelation of the model residuals. It can be followed that there is no evidence against our assumption of
consistently estimated residuals.
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II.3. SVAR and IRF
Based on the estimated reduced-form VAR, we derived IRFs for shocks of varying intensity.
shock.intensities <- seq(0.1, 0.3, 0.1)

dat.harv.rev.plot <- tibble()

var.harv.rev.irf.orig <- vars::irf(
var.harv.rev,
n.ahead = 10,
ci = 0.95,
runs = 2000,
ortho = TRUE)

for (i in shock.intensities) {

var.harv.rev.irf <- var.harv.rev.irf.orig

# rescaling the IRF to modify the shock intensity
# (identical to modifying the B matrix as described in the manuscript)
var.harv.rev.irf$irf$harvest.vol <-

(var.harv.rev.irf.orig$irf$harvest.vol /
var.harv.rev.irf.orig$irf$harvest.vol[1, 1]) * i

dat.harv.rev.plot <- dat.harv.rev.plot %>%
bind_rows(

c(shock.intensity = i,
corr.factor = 1 /

var.harv.rev.irf.orig$irf$harvest.vol[1, 1] * i,
var.harv.rev.irf$irf$harvest.vol[, 2])

)

}

Table 4: Impulse response of revenues on shocks in the harvest volume. The shock intensity denotes the
magnitude of the additional harvested volume in relation to the harvest volume in 2013. The maximum
observed shock in the time series was about 0.24.

horizon shock.intensity = 0.1 shock.intensity = 0.2 shock.intensity = 0.3
0 -0.020 -0.040 -0.061
1 0.020 0.040 0.060
2 0.039 0.079 0.118
3 -0.003 -0.007 -0.010
4 -0.015 -0.030 -0.046
5 0.004 0.008 0.011
6 -0.001 -0.002 -0.003
7 -0.006 -0.013 -0.019
8 0.006 0.012 0.018
9 0.006 0.012 0.019
10 -0.004 -0.008 -0.012
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Figure 2: Impulse response of revenues on shocks in the harvest volume. The shock intensity denotes the
magnitude of the additional harvested volume in relation to the harvest volume in 2013. The maximum
observed shock in the time series was about 0.24.
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III Quality effect
III.1. Model selection
In line with the VAR analysis on the harvest volume, we selected the VAR model for the share of damaged
wood based on two lag order selections with lag orders up to 3 years, and tested models with and without a
dummy variable for large-scale calamities.
# without dummy
lago.harv.rev <- VARselect(

dat.beech.rel[, c("share.wood.damaged",
"revenues")],

type = "const",
lag.max = 3)

# with dummy
lago.harv.rev.dummy <- VARselect(

dat.beech.rel[, c("share.wood.damaged",
"revenues")],

type = "const",
lag.max = 3,
exo = dat.beech.rel[, "calamity"])

Table 5: Lag order selection (lag order in years) of share of damaged wood and average wood revenues based
on 4 selection criteria. Tested for 3 years at maximum.

model AIC FPE HQ SC
lag order 3 +dummy -12.5 6.0e-06 -12.60 -11.76
lag order 2 +dummy -12.4 5.0e-06 -12.47 -11.84
lag order 2 -12.2 5.0e-06 -12.32 -11.79
lag order 3 -12.0 8.0e-06 -12.13 -11.40
lag order 1 +dummy -10.6 2.5e-05 -10.71 -10.29
lag order 1 -9.9 5.2e-05 -9.93 -9.61

All criteria suggested a lag order of 2-3 years and considering the calamity dummy (Tab. 5). We followed the
AIC and chose 3 years.

9



III.2. VAR
III.2.1. VAR estimation

We fitted a VAR according to the model selection to determine the effect of the share of damaged wood
(quality effect) on wood revenues.
var.dam.rev <- vars::VAR(

as.ts(dat.beech.rel[, c("share.wood.damaged",
"revenues")],

start = 2005),
p = 3,
type = "const",
ic = "AIC",
exogen = dat.beech.rel[, "calamity"])

summary(var.dam.rev)

##
## VAR Estimation Results:
## =========================
## Endogenous variables: share.wood.damaged, revenues
## Deterministic variables: const
## Sample size: 13
## Log Likelihood: 60.047
## Roots of the characteristic polynomial:
## 0.849 0.7503 0.7503 0.6495 0.6495 0.5208
## Call:
## vars::VAR(y = as.ts(dat.beech.rel[, c("share.wood.damaged", "revenues")],
## start = 2005), p = 3, type = "const", exogen = dat.beech.rel[,
## "calamity"], ic = "AIC")
##
##
## Estimation results for equation share.wood.damaged:
## ===================================================
## share.wood.damaged = share.wood.damaged.l1 + revenues.l1 + share.wood.damaged.l2 + revenues.l2 + share.wood.damaged.l3 + revenues.l3 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## share.wood.damaged.l1 0.210594 0.645622 0.326 0.7575
## revenues.l1 -2.128039 1.195124 -1.781 0.1351
## share.wood.damaged.l2 -0.006083 0.274968 -0.022 0.9832
## revenues.l2 1.143802 0.673193 1.699 0.1501
## share.wood.damaged.l3 -0.502499 0.446737 -1.125 0.3117
## revenues.l3 -0.647735 0.471571 -1.374 0.2280
## const 1.807240 1.682786 1.074 0.3319
## calamity 0.256782 0.108150 2.374 0.0636 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.07204 on 5 degrees of freedom
## Multiple R-Squared: 0.8451, Adjusted R-squared: 0.6283
## F-statistic: 3.898 on 7 and 5 DF, p-value: 0.07669
##
##
## Estimation results for equation revenues:
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## =========================================
## revenues = share.wood.damaged.l1 + revenues.l1 + share.wood.damaged.l2 + revenues.l2 + share.wood.damaged.l3 + revenues.l3 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## share.wood.damaged.l1 -0.209448 0.186790 -1.121 0.3131
## revenues.l1 -0.125266 0.345771 -0.362 0.7320
## share.wood.damaged.l2 -0.284921 0.079553 -3.582 0.0158 *
## revenues.l2 -0.414849 0.194767 -2.130 0.0864 .
## share.wood.damaged.l3 -0.164527 0.129249 -1.273 0.2590
## revenues.l3 -0.003144 0.136434 -0.023 0.9825
## const 1.661845 0.486860 3.413 0.0190 *
## calamity 0.002883 0.031290 0.092 0.9302
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.02084 on 5 degrees of freedom
## Multiple R-Squared: 0.9263, Adjusted R-squared: 0.8231
## F-statistic: 8.976 on 7 and 5 DF, p-value: 0.01401
##
##
##
## Covariance matrix of residuals:
## share.wood.damaged revenues
## share.wood.damaged 5.190e-03 2.927e-05
## revenues 2.927e-05 4.345e-04
##
## Correlation matrix of residuals:
## share.wood.damaged revenues
## share.wood.damaged 1.00000 0.01949
## revenues 0.01949 1.00000

11



III.2.2. Residual analysis

par(mfrow = c(2, 1))
pacf(resid(var.dam.rev)[,"revenues"],

main = "PACF of the Residuals")
acf(resid(var.dam.rev)[,"revenues"],

main = "ACF of the Residuals")
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Figure 3: The autocorrelation function and the partial autocorrelation function reveal no remarkable
autocorrelation of the model residuals. It can be followed that there is no evidence against our assumption of
consistently estimated residuals.
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III.3. SVAR and IRF
Based on the estimated reduced-form VAR, we derived IRFs for shocks of varying intensity.
shock.intensities <- seq(0.1, 0.3, 0.1)

dat.dam.rev.plot <- tibble()

var.dam.rev.irf.orig <- vars::irf(
var.dam.rev,
n.ahead = 10,
ci = 0.95,
runs = 2000,
ortho = TRUE)

for (i in shock.intensities) {

var.dam.rev.irf <- var.dam.rev.irf.orig

# rescaling the IRF to modify the shock intensity
# (identical to modifying the B matrix as described in the manuscript)
var.dam.rev.irf$irf$share.wood.damaged <-

(var.dam.rev.irf.orig$irf$share.wood.damaged /
var.dam.rev.irf.orig$irf$share.wood.damaged[1, 1]) *

i

dat.dam.rev.plot <- dat.dam.rev.plot %>%
bind_rows(

c(shock.intensity = i,
corr.factor = 1 /

var.dam.rev.irf.orig$irf$share.wood.damaged[1, 1] *
i,

var.dam.rev.irf$irf$share.wood.damaged[, 2])
)

}

Table 6: Impulse response of revenues on shocks in the share of damaged wood. The shock intensity denotes
the magnitude of the additional share of damaged wood. The maximum observed, additional share of damaged
wood to the non-calamity situation (2013) was about 0.38.

horizon shock.intensity = 0.1 shock.intensity = 0.2 shock.intensity = 0.3
0 0.001 0.001 0.002
1 -0.021 -0.042 -0.063
2 -0.030 -0.061 -0.091
3 -0.020 -0.040 -0.060
4 -0.002 -0.004 -0.006
5 -0.002 -0.003 -0.005
6 0.002 0.005 0.007
7 0.003 0.005 0.008
8 0.001 0.003 0.004
9 -0.002 -0.003 -0.005
10 0.000 0.000 0.000
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For the results, see also Figure 3 in the main text.

IV. Granger causality
Linear hypothesis test, whether the harvest volume or the share of damaged wood Granger-causes revenues.
causality(var.harv.rev, cause = "harvest.vol")$Granger

##
## Granger causality H0: harvest.vol do not Granger-cause revenues
##
## data: VAR object var.harv.rev
## F-Test = 1.4548, df1 = 3, df2 = 10, p-value = 0.285
causality(var.dam.rev, cause = "share.wood.damaged")$Granger

##
## Granger causality H0: share.wood.damaged do not Granger-cause revenues
##
## data: VAR object var.dam.rev
## F-Test = 5.744, df1 = 3, df2 = 10, p-value = 0.01505
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V. Combined market and quality effect
We also tested a VAR combining the effects of the harvest volume and share of damaged wood on revenues in
one model.

V.1. Model selection
Due to the limited length of the time series, we tested a maximum lag order of 2 when considering 3 time
series in one model.
lago.harv.dam.rev <- VARselect(dat.beech.rel[, c("harvest.vol",

"share.wood.damaged",
"revenues")],

type = "const",
lag.max = 2,
exogen = dat.beech.rel[, "calamity"])

Table 7: Lag order selection (lag order in years) of harvest volume, share of damaged wood, and wood
revenues based on 4 selection criteria. Tested for 2 years at maximum.

model AIC FPE HQ SC
lag order 2 -17.2 0e+00 -17.35 -16.15
lag order 1 -15.8 2e-07 -15.90 -15.15

All criteria suggested a time lag of 2 years (Tab. 7).
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V.2. VAR
V.2.1 VAR estimation

var.harv.dam.rev <- vars::VAR(
as.ts(dat.beech.rel[, c("harvest.vol",

"share.wood.damaged",
"revenues")],

start = 2005),
p = 2,
type = "const",
ic = "AIC",
exogen = dat.beech.rel[, "calamity"])

summary(var.harv.dam.rev)

##
## VAR Estimation Results:
## =========================
## Endogenous variables: harvest.vol, share.wood.damaged, revenues
## Deterministic variables: const
## Sample size: 14
## Log Likelihood: 85.14
## Roots of the characteristic polynomial:
## 0.7554 0.7554 0.7144 0.6868 0.6868 0.2393
## Call:
## vars::VAR(y = as.ts(dat.beech.rel[, c("harvest.vol", "share.wood.damaged",
## "revenues")], start = 2005), p = 2, type = "const", exogen = dat.beech.rel[,
## "calamity"], ic = "AIC")
##
##
## Estimation results for equation harvest.vol:
## ============================================
## harvest.vol = harvest.vol.l1 + share.wood.damaged.l1 + revenues.l1 + harvest.vol.l2 + share.wood.damaged.l2 + revenues.l2 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 0.64915 0.42449 1.529 0.17707
## share.wood.damaged.l1 -0.21726 0.47067 -0.462 0.66063
## revenues.l1 -1.45692 0.86012 -1.694 0.14123
## harvest.vol.l2 -0.40788 0.18628 -2.190 0.07111 .
## share.wood.damaged.l2 -0.39706 0.25034 -1.586 0.16381
## revenues.l2 0.04716 1.09902 0.043 0.96716
## const 2.24101 0.69630 3.218 0.01817 *
## calamity -0.26344 0.06242 -4.220 0.00556 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.07315 on 6 degrees of freedom
## Multiple R-Squared: 0.949, Adjusted R-squared: 0.8896
## F-statistic: 15.96 on 7 and 6 DF, p-value: 0.001734
##
##
## Estimation results for equation share.wood.damaged:
## ===================================================
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## share.wood.damaged = harvest.vol.l1 + share.wood.damaged.l1 + revenues.l1 + harvest.vol.l2 + share.wood.damaged.l2 + revenues.l2 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 -0.45571 0.40982 -1.112 0.3087
## share.wood.damaged.l1 -0.03048 0.45441 -0.067 0.9487
## revenues.l1 -0.23643 0.83040 -0.285 0.7854
## harvest.vol.l2 0.24944 0.17984 1.387 0.2148
## share.wood.damaged.l2 -0.05238 0.24169 -0.217 0.8356
## revenues.l2 -0.63368 1.06105 -0.597 0.5722
## const 1.18702 0.67224 1.766 0.1279
## calamity 0.21487 0.06026 3.565 0.0118 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.07062 on 6 degrees of freedom
## Multiple R-Squared: 0.8819, Adjusted R-squared: 0.7441
## F-statistic: 6.401 on 7 and 6 DF, p-value: 0.01888
##
##
## Estimation results for equation revenues:
## =========================================
## revenues = harvest.vol.l1 + share.wood.damaged.l1 + revenues.l1 + harvest.vol.l2 + share.wood.damaged.l2 + revenues.l2 + const + calamity
##
## Estimate Std. Error t value Pr(>|t|)
## harvest.vol.l1 0.03392 0.13368 0.254 0.80817
## share.wood.damaged.l1 0.06283 0.14823 0.424 0.68642
## revenues.l1 0.35557 0.27088 1.313 0.23727
## harvest.vol.l2 -0.07695 0.05866 -1.312 0.23756
## share.wood.damaged.l2 -0.34744 0.07884 -4.407 0.00453 **
## revenues.l2 -0.16736 0.34611 -0.484 0.64584
## const 0.91519 0.21928 4.174 0.00586 **
## calamity -0.03760 0.01966 -1.913 0.10431
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
##
## Residual standard error: 0.02304 on 6 degrees of freedom
## Multiple R-Squared: 0.8994, Adjusted R-squared: 0.782
## F-statistic: 7.663 on 7 and 6 DF, p-value: 0.01209
##
##
##
## Covariance matrix of residuals:
## harvest.vol share.wood.damaged revenues
## harvest.vol 0.0053510 -0.0004704 0.0001818
## share.wood.damaged -0.0004704 0.0049877 0.0003110
## revenues 0.0001818 0.0003110 0.0005307
##
## Correlation matrix of residuals:
## harvest.vol share.wood.damaged revenues
## harvest.vol 1.00000 -0.09106 0.1079
## share.wood.damaged -0.09106 1.00000 0.1912
## revenues 0.10785 0.19115 1.0000
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We compared the estimated coefficients and adj.R2 for the three fitted VARs (Tab. 8). The model
considering only the share of damaged wood showed the highest adj.R2. Considering also the harvest volume
(var.harv.dam.rev) suggested that the share of damaged wood is the most important influence on wood
revenues of beech. When comparing the estimated coefficients, one should consider that var.harv.rev and
var.dam.rev were calculated with a log order of 3, while the highest possible lag order that could be estimated
for var.harv.dam.rev was 2.

Table 8: Comparison of the fitted VAR models for the average revenues considering different explanatory
varibales: var.harv.rev: harvest.vol, var.dam.rev: share.damaged.wood, var.harv.dam.rev: harvest.vol and
share.damaged.wood. NA for coefficients that were not considered in the respective model.

coefficient var.harv.rev var.dam.rev var.harv.dam.rev
adj.r.squared 0.580 0.823 0.782
calamity 0.022 0.003 -0.038
const 0.900 1.662 0.915
harvest.vol.l1 0.165 NA 0.034
harvest.vol.l2 0.118 NA -0.077
harvest.vol.l3 -0.013 NA NA
revenues.l1 -0.179 -0.125 0.356
revenues.l2 -0.477 -0.415 -0.167
revenues.l3 0.540 -0.003 NA
share.wood.damaged.l1 NA -0.209 0.063
share.wood.damaged.l2 NA -0.285 -0.347
share.wood.damaged.l3 NA -0.165 NA
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V.2.2. Residual analysis

par(mfrow = c(2, 1))
pacf(resid(var.harv.dam.rev)[,"revenues"],

main = "PACF of the Residuals")
acf(resid(var.harv.dam.rev)[,"revenues"],

main = "ACF of the Residuals")

2 4 6 8 10

−
0.

4
0.

2

Lag

P
ar

tia
l A

C
F

PACF of the Residuals

0 2 4 6 8 10

−
0.

5
0.

5

Lag

A
C

F

ACF of the Residuals

Figure 4: The autocorrelation function and the partial autocorrelation function reveal no remarkable
autocorrelation of the model residuals. It can be followed that there is no evidence against our assumption of
consistently estimated residuals.
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V.3 SVAR and IRF

harvest.vol: shock.intensity = 0.3 share.wood.damaged: shock.intensity = 0.3

harvest.vol: shock.intensity = 0.2 share.wood.damaged: shock.intensity = 0.2

harvest.vol: shock.intensity = 0.1 share.wood.damaged: shock.intensity = 0.1
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Figure 5: Impulse response of average revenues on shocks in the harvest volume (left panels) or share of
damaged wood (right panels), respectively. Both derived based on a VAR with all three time series, but
limited lag order (2 years).

One should consider that the presented IRFs based on all three time series had a maximum lag order of 2
years (due to the length of the time series) and our model selection suggested the simpler model based on the
shares of damaged wood and revenues. Nevertheless, the findings based on the model with three time series
support the findings presented in the results section, which are based on the VAR with shares of damaged
wood and revenues.
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VI. Time series of pulpwood and sawlog proportions
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Figure 6: Time series of relative shares of sawlog and pulpwood assortments sold.
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Supplement C: Suggested coefficients for bioeconomic simulation models. Supplementary Material to 'Quantifying the consequences of disturbances on wood revenues with Impulse Response Functions'.

Calculation framework for factors quantifying the consequences of disturbances on wood revenues

Using the simulated IRFs, irrespective of the models' quality, confidence bands, or our interpretations
IRF - harvest.volume IRF - share.wood.damaged dummy multipliers / shock intensities summands factor

0 1 2 3 4 0 1 2 3 4 volume damage dummy volume damage dummy
spruce stand -0,121 -0,138 -0,095 -0,018 0,023 -0,202 0 1 0 0,00 0,00 0,00 0,00

regional -0,202 3,39 1 0 -0,24 0,00 0,00 -0,24
national -0,202 3,39 1 1 -0,24 0,00 -0,20 -0,44

beech stand 0,006 -0,21 -0,303 -0,199 -0,021 0,003 0 1 0 0,00 -0,15 0,00 -0,15
regional 0,003 0,19 1 0 0,00 -0,15 0,00 -0,15
national 0,003 0,19 1 1 0,00 -0,15 0,00 -0,14

Using the simulated IRFs, but applying the suggested assumptions (yellow)
IRF - harvest.volume IRF - share.wood.damaged dummy multipliers / shock intensities summands factor

0 1 2 3 4 0 1 2 3 4 volume damage dummy volume damage dummy
spruce stand -0,121 -0,138 -0,095 -0,018 0,023 -0,1 -0,1 -0,1 -0,1 -0,1 -0,202 0 1 0 0,00 -0,10 0,00 -0,10

regional -0,202 3,39 1 0 -0,24 -0,10 0,00 -0,34
national -0,202 3,39 1 1 -0,24 -0,10 -0,20 -0,54

beech stand -0,15 -0,15 -0,15 -0,15 -0,15 0,006 -0,21 -0,303 -0,199 -0,021 0 0 1 0 0,00 -0,15 0,00 -0,15
regional 0 1 1 0 -0,15 -0,15 0,00 -0,30
national 0 1 1 1 -0,15 -0,15 0,00 -0,30



species year calamity harvest.volshare.wood.damaged revenues
beech 2005 0 0,885637104 0,0641252 0,720547166
beech 2006 0 1,172266514 0,06388973 0,76031622
beech 2007 1 1,242703881 0,449283133 0,97779139
beech 2008 0 1,061345263 0,203051401 1,098589288
beech 2009 0 0,614830494 0,072261594 0,93693171
beech 2010 0 0,823262975 0,22039522 0,948099061
beech 2011 0 1,115252767 0,097813806 1,043726936
beech 2012 0 1,056904968 0,051711223 1,040039917
beech 2013 0 1 0,09180789 1
beech 2014 0 1,039013859 0,063811224 1,047789903
beech 2015 0 1,088393441 0,085967518 1,073660976
beech 2016 0 0,882236253 0,052247982 1,063307423
beech 2017 0 0,793271722 0,066847471 1,008632794
beech 2018 0 0,859563404 0,193437258 1,059495555
beech 2019 1 0,653081389 0,216788119 1,049151965
beech 2020 1 0,464282928 0,472395349 0,9720121
spruce 2005 0 1,580182336 0,380019528 0,591728743
spruce 2006 0 1,64646482 0,555607458 0,685952091
spruce 2007 1 4,540829061 0,978523981 0,714441447
spruce 2008 0 2,352731766 0,950235191 0,713678563
spruce 2009 0 1,083731401 0,655547031 0,711610818
spruce 2010 0 1,817133479 0,826102671 0,870205716
spruce 2011 0 1,169704562 0,423011829 1,031830017
spruce 2012 0 0,962091312 0,266381175 1,016466073
spruce 2013 0 1 0,227608133 1
spruce 2014 0 0,998408771 0,200856571 1,054738753
spruce 2015 0 1,067620988 0,5238018 1,019410973
spruce 2016 0 1,089079178 0,190313917 0,967359067
spruce 2017 0 1,027122653 0,278702916 0,968262143
spruce 2018 0 2,797158876 0,949269332 0,78732467
spruce 2019 1 4,328891413 0,991491884 0,53179015
spruce 2020 1 4,333972758 0,962738802 0,323653929
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