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Abstract

In this paper we discuss the stability of Julia sets and �lled{in Julia sets of functions meromorphic in

the complex plane, i. e. rational or transcendental functions or polynomials. To this end, we illustrate

relations to the appearence of repellors and attractors and study some chaotic features of Julia sets.

The main results are: The Julia set is stable if it is a repellor and a �lled{in Julia set is stable if the

corresponding Julia set is a weak repellor. The proofs do not require any assumption concerning the

number of singular values, actually, the functions in question might have an in�nite number of singular

values. In order to illustrate the usage of �lled{in Julia sets applications to (relaxed) Newton's method

are described. Using the stability result for �lled{in Julia sets a closing lemma for polynomials and

entire transcendental functions is proven.
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1 Introduction

Iteration theory for holomorphic functions is an active �eld of research. Here we investigate the

appearence of attractors and repellors in the iteration of holomorphic functions and relations

to stabilty of Julia sets.

Concerning the stability of Julia sets in 1983 Ma~ne, Sad and Sullivan proved that for an

analytic family R : M � P

1

! P

1

; (�; z) 7! R

�

(z) of rational functions R

�

the Julia sets

depend analytically on the parameter on an open and dense subset

f

M of M , cf. [22]. Recently

Letherman and Wood illustrated this result: They discussed the classical Mandelbrot family

and proved directly the boundary of the Mandelbrot set to be @

f

M , cf. [20]. In 1986 Devaney,

Goldberg and Hubbard [12] suggested to approximate the exponential E

�

(z) = �e

z

by the

polynomials p

�;�

(z) = �[1 + (z=�)]

�

. Krauskopf proved for �xed � 2 C the Julia sets of p

�;�

to

converge to the Julia set J (E

�

) of E

�

with respect to the Hausdor� metric provided that either

J (E

�

) equals the complex sphere or E

�

is hyperbolic, cf. [16]. A similar result has been proven

for polynomials by Douady, cd. [13] and for the category of rational functions, cf. [17, 18].

In this paper we study the stability of Julia sets and �lled{in Julia sets of functions meromorphic

on the complex plane C . A function f is called meromorphic if it is a complex analytic mapping

from C to the complex sphere P

1

, i. e. f is either a rational or a transcendental function. For

a given sequence ff

�

g

�2N

of functions meromorphic on C and converging to f uniformly on

compact subsets of C we discuss the convergence of the corresponding Julia sets and �lled{in

Julia sets. In particular, we prove

Main theorem. The Julia set is stable provided it is a repellor and contains 1.

The methods developped in [22] cannot be used in this situation since they make intensive use

of the assumption that the functions in question form an analytic family of rational functions of

constant degree. But now the function f might be a transcendental one and the approximating

functions might be rational | or vice versa. Since we use the convergence on compact subsets

of C it is also possible to approximate a rational function f by rational functions f

�

of di�erent

degree. The arguments in [20] base on special properties of the quadratic family, hence they

cannot be applied here.

The notion of �lled{in Julia sets of polynomials has been introduced by Douady and Hub-

bard [14] in 1985. Later the de�nition has been extended to rational functions, cf. [17, 18]. In

this paper we deal with �lled{in Julia sets for meromorphic functions. In particular, we prove a

�lled{in Julia set to be stable if the corresponding Julia set is a weak repellor, cf. theorem 6.1.

Douady independently established this result for the class of polynomials, cf. [13]. We use our

result for proving a closing lemma for the standard family of the quadratic polynomials and,

more generally, for entire functions. In the subsequent paper [19] the possibility of \uniformly
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closing" recurrent orbits of meromorphic transcendental functions will be discussed.

The present paper is organized as follows. In the next section we recall the de�nitions and

some basic properties of Julia sets and Fatou sets. In the theory of dynamical systems several

de�nitions of the term \repellor" are used. In section 3 we discuss some of them and their

relations to the terms \expanding Julia sets" and \hyperbolic functions". Furthermore, we

introduce the term \weak repellor". Section 4 is devoted to some chaotic features of Julia

sets. In section 5 we prove the main result. Filled{in Julia sets of transcendental functions

will be introduced and studied in section 6. In that section also the according stability result

will be established. In the following section some examples illustrate applications to Newton's

method. The last section deals with the closing lemma for entire functions, cf. [19] for further

investigations.
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2 Notations

In this section we set up notations and recall basic properties of Fatou and Julia sets. The

reader interested in further details and proofs is referred to the monographs [5, 10, 26]. The

material used in the present paper is also covered by [6, 9].

Let �(�; �) denote the chordal metric on the Riemann sphere P

1

. We write

�(z; S) = �(S; z) := inff�(z;w) j w 2 Sg

for z 2 P

1

and S � P

1

. In order to measure the distance of two sets S; T � P

1

we shall use the

Hausdor� metric

d(S; T ) := inff" > 0 j S � U

"

(T ) and T � U

"

(S)g

where U

"

(S) := fz 2 P

1

j �(z; S) < "g.

We �x a domain M � P

1

. A function f is called meromorphic on M if it can be written as the

quotient of two functions holomorphic on M , i. e. f :M ! P

1

is complex analytic. Throughout

this paper we shall deal with rational functions of degree larger than one or transcentental
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functions, only. In other words, we exclude constant functions and M�obius transformations. We

consider a meromorphic function f on M and denote by f

�n

the n{th iterate of f . A point � is

called a periodic point of period n if

(i) f

�n

is complex analytic on some neighbourhood of �

(ii) f

�n

(�) = �

holds. For simplicity we shall use the following

Convention. In the sequel for some complex analytic mapping f : M ! P

1

, � 2 M and

n 2 N := f0; 1; : : : the notion f

�n

(�) will imply that f

�n

(�) is complex analytic on (or has

some complex analytic extension to) some open connected neighbourhood U of � satisfying

M � U � P

1

. In addition, we shall not distinguish between a meromorphic function f :M ! P

1

and its continuation to some domain

f

M satisfying M �

f

M � P

1

.

A periodic point � of f is called attracting, rationally indi�erent, irrationally indi�erent or

repelling if j(f

�n

)

0

(�)j < 1, (f

�n

)

0

(�) = e

2�it

with t 2 Q, (f

�n

)

0

(�) = e

2�it

with t 2 R n Q

or j(f

�n

)

0

(�)j > 1, resp. The set Z := f�; f(�); : : : ; f

�(n�1)

(�)g is called attracting, rational-

ly indi�erent, irrationally indi�erent or repelling cycle, resp. It is called super{attracting if

(f

�n

)

0

(�) = 0 holds. For an attracting cycle Z we de�ne the basin of attraction

A

f

(Z) := fz 2 P

1

j lim

n2N

�(f

�n

(z); Z) = 0g :

Now let M be either the complex plane C or the complex sphere P

1

. In iteration theory for

meromorphic functions the Fatou set F(f) is de�ned to be the union of all open sets U such

that all iterates f

�n

j

U

are de�ned (i. e. are complex analytic) and form a normal family. By

de�nition, the Julia set J (f) is the complement of the Fatou set: J (f) := P

1

n F(f). This

de�nition immediately implies

Lemma 2.1 Let f : C ! P

1

be a meromorphic function. Then the following holds:

1. J (f) and F(f) are completely invariant.

2. J (f) is a compact subset of P

1

and F(f) is an open subset of P

1

.

Here by de�nition, a set S � P

1

is called completely invariant if z 2 S implies f(z) 2 S unless

z is an essential singularity of f , and that z 2 S whenever for some z 2 P

1

f is de�ned and

f(z) = w 2 S holds. Consequently we shall use the notion

f(S) := ff(z) j z 2 S; f is de�ned in zg :

f is de�ned at some point z 2 S if and only if it is complex analytic (as a mapping to P

1

) on

some neighbourhood of z. Throughout this paper the term neighbourhood will denote an open

but not necessarily connected neighbourhood. Following Julia's approach to this theory one

can prove the Julia set to be the closure of the set of repelling periodic points. If f is a rational

function the proof is contained in [9, theorem 4.1]. The case of entire transcendental functions

has been settled by Baker [2]. For meromorphic functions this statement has been proven by

Bhattacharyya [7] in a special case and in the general case by Baker / Kotus / L�u [3].
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Lemma 2.2 Let f : C ! P

1

be a meromorphic function. Then

J (f) = cl

P

1

fz 2 P

1

j z is a repelling periodic point g:

Now, f maps every repelling cycle onto itself and every repelling cycle of f is a repelling cycle

of f

�n

for all n 2 N; n > 0. This proves

Lemma 2.3 Let f : C ! P

1

be a meromorphic function. Then J (f) = J (f

�n

) for every

positive integer n.

Using an existence theorem of repelling periodic points one can show the Julia set not to be

empty. In fact, the Julia set turns out to be a perfect set. In the case of rational functions the

reader interested in the proof is referred to [9, theorem 2.4] and in the meromorphic case to [6,

theorem 3].

Lemma 2.4 Let f : C ! P

1

be a meromorphic function. Then J (f) is a perfect set, i. e. it

does not contain isolated points, and is not empty.

If f is a transcendental function then none of the iterates f

�n

, where n 2 N n f0g, is complex

analytic at 1. Hence1 62 F(f) and we obtain

Lemma 2.5 1 2 J (f) provided f is a transcendental function.

Remark. If f is a polynomial then1 is a super{attracting �xed point and therefore1 2 F(f)

holds.

Closely related to these properties is the topological transitivity of f j

J (f)

.

Proposition 2.6 Let f : C ! P

1

be a meromorphic function. Then for any two open subsets

V;W � P

1

satisfying V \ J (f) 6= ; and W \ J (f) 6= ; there exists some integer n such that

f

�n

(V \ J (f)) \ (W \ J (f)) 6= ;.

This is a direct consequence of the well{known

Proposition 2.7 Let f : C ! P

1

be a meromorphic function. Then for every open set V � P

1

satisfying V \ J (f) 6= ; there exists some integer n 2 N such that f

�n

(V \ J (f)) covers J (f)

except at most two points.
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Proof : First, we �x an open set V � P

1

satisfying V \J (f) 6= ;. Without loss of generality we

may assume V � C .

Case 1. We assume that f

�n

j

V

is complex analytic for every n 2 N. Then the family ff

�n

j

V

g

n2N

cannot miss three points because otherwise it forms a normal family which in turn implies

V \ J (f) = ;. Hence f

�n

(V \ J (f)) covers J (f) except at most two points for some n 2 N.

Case 2. We assume that f

�n

j

V

is not complex analytic for some integer n 2 N. Then, in

particular, f has an essential singularity at 1. We may choose n minimal, i. e. we may assume

f

�(n�1)

j

V

to be complex analytic and 1 2 f

�(n�1)

(V ) =: U . Due to the open mapping theorem

U is an open neighbourhood of 1. But 1 is an essential singularity of f , hence, Picard's

theorem implies f(U n f1g) to cover the complex sphere except at most two points. Thus

f

�n

(V \ J (f)) covers J (f) except at most two points.

2

The dynamics of f on the Fatou set are well understood. We call a componentG of F(f) periodic

if f

�n

(G) � G holds for some positive integer n. Clearly, every component of F(f) is either a

wandering domain or eventually periodic. Throughout this paper component means connected

component. In addition, the periodic components occur in �ve varieties. We summarize these

statements.

Theorem 2.8 Let f : C ! P

1

be a meromorphic function and G a component of F(f). Then G

is either a wandering domain, i. e. f

�n

(G)\ f

�m

(G) = ; for all n;m 2 N satisfying 0 � m < n,

or for some integer n 2 N the component of F(f) containing f

�n

(G) is periodic. If G is periodic

then we have one of the following possibilities: 1. attracting basin

2. parabolic basin

3. Siegel disc

4. Herman ring

5. Baker domain.

Using the notion of limit sets we brie
y discuss the periodic components, the reader interested

in further details is referred to [6, chapter 4] or [8].

De�nition 2.1 Let f : C ! P

1

be a meromorphic function and z 2 P

1

. Then O(z) := ff

�n

(z) j

n 2 Ng is called the orbit of z. If f

�n

is de�ned at z for every n 2 N then the !-limit set is

de�ned to be the set of all accumulation points of the sequence ff

�n

(z)g

n2N

.

Remark. In order to avoid missunderstandings we note that !(z) is not the closure cl (O(z))

of the orbit O(z).

Example. The map f : z! z+ z

2

has 0 as a parabolic, i. e. rationally indi�erent, �xed point.

In particular, 0 2 J (f) holds. For every z in the basin attached to 0, cf. possibility 2 below,

we obtain

!(z) = 0 but cl (O(z)) = O(z) [ !(z) :

For a component G of the Fatou set exactly one of the following possibilities occurs:
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1. If G is contained in an attracting basin then there exists an attracting cycle Z such that

!(z) = Z for every z 2 G. In this case lim

n!1

�(f

�n

(z); Z) = 0 uniformly on compact

subsets of G and Z � F(f).

2. If G is contained in a parabolic basin then there exists a rationally indi�erent cycle Z such

that !(z) = Z for every z 2 G. In this case lim

n!1

�(f

�n

(z); Z) = 0 uniformly on compact

subsets of G and Z � J (f) holds.

3. If G is a Siegel disc or a Herman ring then f

�n

j

G

is biholomorphically conjugated to an

irrational rotation for some integer n 2 N.

4. If G is a Baker domain then f is transcendental and there exist integers m; p such that the

sequence ff

�(np+m)

j

G

g

n2N

converges to1 uniformly on compact subsets of G, in particular,

1 2 !(z) for every z 2 G.

We summarize the properties needed in the sequel.

Proposition 2.9 Let G be a component of the Fatou set F(f) of a meromorphic function

f : C ! P

1

and O(G) the union of all components

e

G of F(f) satisfying f

�n

(G) \ f

�m

(

e

G) 6= ;

for some n;m 2 N.

1. O(G) is a basin of attraction of some attracting cycle Z � F(f) if and only if there exists

some neighbourhood U of J (f) such that !(z) \ U = ; for every z 2 G.

2. G is a Baker domain or a wandering domain or O(G) is a parabolic basin if and only if

!(z) 2 J (F ) for every z 2 G.

3. In all other cases O(G) contains a Siegel disc or a Herman ring. Then !(z) � F(f) for

every z 2 G but for every open neighbourhood U of J (f) there exists some z 2 G satisfying

!(z) � U .

Later we shall need further informations concerning Siegel discs and Herman rings. Since f j

G

is

conjugated to a rotation G for each � 2 Gnfzg !(z) is an analytic Jordan curve invariant w.r.t.

f and G is either simply or doubly connected. In the latter case, G is called Herman ring. In

the �rst case G is called a Siegel disc and contains an irrationally indi�erent �xed point z 2 G.

The irrationally indi�erent periodic point is called linearizable. An irrationally indi�erent point

which is not center of a Siegel disc is called non{linearizable.

3 Attractors, repellors and Julia sets

Several notions of attractors are used for describing dynamical systems. Let g : X ! X be a

self mapping of a topological or metric space X. We consider a set A �� X invariant under g,

i. e. g(A) � A. If there exists an open neighbourhood U � X of A such that \

n2N

g

�n

(U) = A

then A is called \attractor senso lato", cf. [25], or \attracting set", cf. [1]. Since the dynamics

in A might be not very interesting, e. g. A might consist of �xed points or split into several

unrelated pieces, further conditions are imposed.A is called an \attractor" if it contains a dense

orbit, cf. [1], or, equivalently, g acts topological transitively on A, i. e. for two set V;W � A

relatively open in A there exists some integer n such that g

�n

(V )\W 6= ;, cf. [25] or section 4.
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Repelling sets and repellors can be de�ned analogously. But when dealing with a transcendental

function f : C ! P

1

one di�culty arises: 1 is an element of the Julia set J (f), hence f is a

self mapping of neither C or P

1

nor J (f). For this reason we translate the de�nitions and work

with the complement of repellors.

De�nition 3.1 Let f : C ! P

1

be a meromorphic function and K � P

1

a compact set. K is

called repelling set if for every component G of P

1

nK there exists some open neighbourhood U

of K such that !(z) � P

1

n U holds for every z 2 G.

K is called repellor if it is a repelling set and f acts topologically transitively on K.

Later we shall use weak repellors.

De�nition 3.2 Let f : C ! P

1

be a meromorphic function and K � P

1

a compact set. K is

called weak repelling set if !(z) � P

1

nK holds for every z 62 K.

K is called weak repellor if it is a weak repelling set and f acts topologically transitively on K.

The di�erence between these two de�nitions is the following: Points not lying on but close to a

repellor will move away from the repellor under interation while points not lying on but close to

a weak repellor do not approach the weak repellor. Obviously, every repelling cycle is a repellor

and every �nite union of repelling cycles is a repelling set. Invariant curves lying in a Siegel

disc or Herman ring are examples for weak repelling sets. The complex sphere is always a weak

repelling set as well as a repelling set. It is a weak repellor as well as a repellor if and only if

the sphere equals the Julia set of f . In order to illustrate the di�erent notions of repellors we

state

Proposition 3.1 Let f : C ! P

1

be a meromorphic function. Then J (f) is a

(i) weak repellor if and only if f hasn't any rationally indi�erent cyle, Baker domain or

wandering domain

(ii) repelling set if and only if it is a weak repellor and f hasn't any Siegel disc or Herman

ring

(iii) repellor if and only if it is a repelling set.

Proof : This is an immediate consequence of proposition 2.6 and of the classi�cation of the

components of the Fatou set, cf. prop. 2.9.

2

In iteration theory for rational functions the term \expanding map" is often used instead of

repellor. A rational function f is called expanding if there exist a number n 2 N and a real

constant c > 1 such that j(f

�n

)

0

(z)j � c on J (f). Equivalent to this is the hyperbolicity of f ,

i. e. all critical points are absorbed by attracting cycles, cf. [9, theorem 6.5]. This implies the

Fatou set to consist of the basins of attraction of some attracting cycles only and the Julia set

7



to have measure zero. In other words, if f is an expanding rational map then J (f) is a repellor

by proposition 3.1. But the reverse is not true, cf. counterexample below.

In case of entire functions some problems arise, nevertheless one can show f to be a repellor if

all �nite singular values are lying in the Fatou set, cf. [21, 24]. There the expanding property

has also been studied. Sometimes the term \hyperbolicity" is replaced by \subhyperbolicity"

(i. e. each critical point has either a �nite orbit or is attracted to some attracting cycle) or

\semihyperbolicity" (i. e. none of the critical points in J (f) is recurrent | cf. section 8 |

while each critical point in F(f) is absorbed by some attracting cycle). If p

�

(z) = z

2

+ �,

F(p

�

) = A

p

�

(1) and c = 0 (the only �nite critical point) is recurrent, then J (p

�

) is a repellor

but p

�

is neither hyperbolic nor subhyperbolic nor semihyperbolic.

Counterexample.We consider the quadratic polynomial f(z) = z

2

�2. Then J (f) = [�2; 2],

cf. [9, theorem 12.1], and the basin of the super{attracting �xed point1 equals the Fatou set.

Now, proposition 3.1 yields that J (f) is a repellor. But f

0

(0) = 0 hence the Julia set J (f)

contains the critical point 0. This proves f to be neither expanding nor hyperbolic.

4 Chaotic features of Julia sets

The purpose of this section is to discuss some features of Julia sets known to the experts in

the subject but whose documented proofs in the literature seem to need some clari�cation. The

following investigation of some chaotic features is guided by the goal to work with topological

properties only, i. e. to avoid the use of any metric on C or P

1

. In other words, we treat f just

as a topological dynamical system.

Although chaotic dynamical systems have received a great deal of attention there exists no

universally accepted de�nition of chaos. Nevertheless, a rational function is commonly said to

act chaotically on its Julia set. But only in the case of polynomials this statement has been

proven, cf. [11]. Devaney has used the following

De�nition 4.1 Let f be a continuous self mapping of some metric space X. f is called chaotic

if the following conditions hold:

(TOT) f acts topological transitively on X

(PPD) The periodic points of f are lying dense in X,

(SIC) f has sensitivity on initial conditions.

(SIC) means that there exists some constant � > 0 such that for every x 2 X and every neigh-

bourhood U of x there is a point � 2 U satisfying

e

d(f

�n

(x); f

�n

(�)) > � for some integer n

(here

e

d denotes an arbitrary distance function on X). These properties are also called \chaotic

features" by Arrowsmith/Place, cf. [1, p.244]. As another \chaotic feature" the following prop-

erty is widely accepted

(DO) There exists some x 2 X such that ff

�n

(x)g

n2N

is a dense subset of X.

8



Among these four properties the third one is crucial, for two reasons. Firstly, it is the only

one involving a metric on X. Secondly, sensitivity on initial conditions is not preserved under

topological conjugation, unless X is a compact space, cf. [4]. At the same place it is proven,

that (TOT) and (PPD) imply (SIC). In our setting the Julia set is a compact subset of the

Riemann sphere but f is not a self mapping of J (f) since 1 might be an essential singularity

of f and in that case is an element of J (f). Therefore we have to rede�ne the term \sensitivity

on initial conditions". We say that a meromorphic function f : C ! P

1

has sensitivity on initial

conditions on X, where X � P

1

, if for some constant � > 0 the following holds: For every z 2 X

such that f

�n

(z) is de�ned for every n 2 N and for every neighbourhood U of z there exists

some � 2 X \ U and some integer n 2 N such that �(f

�n

(z); f

�n

(�)) � �. Using this de�nition

the above implication holds in this setting, too, cf. proposition 4.2.

Remark. For rational (or entire) functions all iterates of all (�nite) points are well{de�ned.

Problems arise for meromorphic transcendental functions, only. Since the set of all periodic

points is lying dense in the Julia set the set fz 2 J (f) j f

�n

(z) is well{de�ned for all n 2 Ng is

a dense subset of the Julia set. In fact, the poles of f are forming a discrete subset of C , hence

the set of those points for which some iterate is not de�ned is countable. Since the Julia set is

perfect it is uncountable. Hence, the de�nition given above can be interpreted as sensitivity on

initial conditions almost everywhere on J (f).

Theorem 4.1 Let f be either a continuous self{mapping of some metric space X or meromor-

phic, i. e. f : C ! P

1

and X � P

1

an arbitrary compact set. Then

(i) (TOT) and (PPD) imply (SIC)

(ii) (TOT) is equivalent to (DO).

Proof :

We consider the case where f : X ! P

1

is meromorphic and X � P

1

, only, but the same proof

works in the other case, too.

(i) We follow [4]. Thereby we shall simplify the arguments and improve the sensitivity con-

stant. Since the periodic points are lying dense in X we may choose two cycles, say Z

1

and Z

2

. We de�ne " := inff�(z

1

; z

2

) j z

1

2 Z

1

; z

2

2 Z

2

g. We �x z 2 X such that f

�n

(z)

is de�ned for every n 2 N and a neighbourhood U of z. There is one cycle Z 2 fZ

1

; Z

2

g

satisfying �(z; Z) �

"

2

. Since the periodic points are lying dense in X there exists a periodic

point � 2 U \X of period p 2 N.

Now, for any given number � > 0 the continuity of f implies the existence of some neigh-

bourhood V of Z satisfying f

��

(V ) � U

�

(Z) where � = 0; : : : ; p � 1. The topological

transitivity yields the existence of a point � 2 U satisfying f

�k

(�) 2 V for some k 2 N.

We choose m 2 N such that pjm and k � m � k + p � 1. Then f

�m

(�) 2 U

�

(Z) and

f

�m

(�) = � 2 U

�

(z) �(f

�m

(�); f

�m

(�)) >

"

2

� 2� which in turn implies either

�(f

�m

(�); f

�m

(z)) >

"

4

� �

or

�(f

�m

(�); f

�m

(z)) >

"

4

� � :

9



Hence, every constant � 2]0;

"

4

[ can be used as sensitivity constant.

(ii) Obviously, (DO) implies (TOT). Now, we assume (TOT) and prove the existence of a

point z 2 X having an orbit which is a dense subset of X. First, we choose a countable

covering fW

�

g

�2N

of X satisfying

1. W

�

\X 6= ; for all � 2 N and

2. if U \X 6= ; for some open set U then W

�

� U for some � 2 N.

We have to show the existence of a point z 2 X such that for every � 2 N there exists

some integer n

�

2 N with f

�n

�

(z) 2 W

�

.

We choose ẑ 2 X and a neighbourhood V

0

of ẑ. Now, the topological transitivity implies

the existence of some integer n

0

with f

�n

0

(V

0

) \ W

0

6= ;. In particular, f

�n

0

(z

0

) 2 W

0

for some z

0

2 V

0

. In addition, there exists some neighbourhood V

1

� V

0

of z

0

satisfying

f

�n

0

(V

1

) � W

0

. Now, we proceed by induction and end up with a sequence fz

�

g

�2N

and

open sets fV

�

g

�2N

such that for every � 2 N

1. z

�

2 V

�

2. V

�+1

� V

�

and

3. f

�n

�

(z

�

) 2 W

�

holds. We �x an accumulation point z of the sequence fz

�

g

�2N

and write S := \

�2N

V

�

.

Then f

�n

�

is de�ned on S and f

�n

�

(z) 2 f

�n

�

(S) � W

�

for every � 2 N. Hence z has a

dense orbit in X.

2

Question 1. Does the set S constructed above consists of exactly one point?

As a side{e�ect part (i) of the proof establishes a relation between the sensitivity constant and

the distribution of the repelling cycles: Every posity number � <

1

4

supfdist(Z

1

; Z

2

)g where

Z

1

; Z

2

� X are arbitrary cycles and dist(Z

1

; Z

2

) := inff�(z;w) j z 2 Z

1

; w 2 Z

2

g can be used

as sensitivity constant. The reverse of this statement seems to be unknown. Hence we ask:

Question 2. Does the sensitivity constant provide any information about the location of the

periodic points?

Another interesting problem is to �nd bounds for the sensitivity constant.

Question 3. What are su�cient or necessary conditions on f for

1

2

diam(X) to be the optimal

bound for the sensitivity constant?

For each meromorphic function f and X = J (f) the answer to the third question can be

given. In order to establish this result we give a direct proof for f to have sensitivity on initial

conditions on J (f).

Proposition 4.2 Let f : C ! P

1

be a meromorphic function, 0 < � <

1

2

diam

P

1

(J (f)) and

z

0

2 J (f) such that all iterates f

�n

are de�ned at z

0

. Then every open neighbourhood U of z

0

contains a point z 2 U \ J (f) such that �(f

�n

(z

0

); f

�n

(z)) > � for some n 2 N.

10



Proof : We write D := diam

P

1

(J (f)). Due to Proposition 2.7 there exists some integer n

such that f

�n

(U \ J (f)) covers J (f) except at most two points. Now we choose two points

�

1

; �

2

2 J (f) such that �(�

1

; �

2

) = D. Since J (f) is perfect, i. e. it doesn't contain isolated

points, there exists a sequence fw

m

g

m2N

� J (f) converging to �

1

. This proves f

�n

(�

1

) = w

m

1

and �(f

�n

(�

1

); �

1

) <

1

2

(D � �) for some m

1

2 N and some �

1

2 J (f) \ U satisfying f

�n

(�

1

) =

w

m

1

. Analogously we obtain some �

2

2 J (f) \ U satisfying �(f

�n

(�

2

); �

2

) <

1

2

(D � �). Now,

�(f

�n

(�

1

); f

�n

(�

2

)) > 2� and therefore �(f

�n

(z); f

�n

(�

1

)) > � or �(f

�n

(z); f

�n

(�

2

)) > �.

2

We give an example showing the bound

1

2

diam

P

1

(J (f)) to be optimal.

Example.We consider the polynomial p(z) = 4z

3

� 3z and prove

Lemma 4.3 J (p) = [�1; 1].

Proof : The �nite �xed points of p are �

0

= 0 and �

1;2

= �1, the critical points are c

1;2

= �

1

2

and the critical values are v

1;2

= �1. Thus all critical points are preperiodic which implies

A

p

(1) = F(p) and all the �nite �xed points to be repelling. Now, p maps [�1; 1] onto itself.

This proves [�1; 1] \A

p

(1) = ; and therefore [�1; 1] � J (p). In addition, [�1; 1] is backward

invariant with respect to p, i. e. p

�1

([�1; 1]) � [�1; 1]. Hence we obtain J (p) = [�1; 1] and

2 = diam

C

(J (p)).

2

For simplicity we use diam

C

instead of diam

P

1

. We �x some constant C � 1 =

1

2

diam

C

(J (p)).

The invariance of the Julia set and p(�

0

) = �

0

yield �(p

�n

(z); p

�n

(�

0

)) � C for every z 2 J (p)

and n 2 N. This implies that C cannot be used as sensitivity constant.

We close this section by showing that proposition 4.2 can not be generalized to arbitrary

mappings. In particular, we establish

Proposition 4.4 There exists a family ff

n

g

n2N

of chaotic C

1

{self{mappings of the unit circle

S

1

such that

1

n

is the optimal bound for the sensitivity constant of f

n

for every n 2 N .

Proof : We consider the polynomial p(x) = 4x

3

� 12x

2

+ 9x. p is a chaotic real analytic self{

mapping of J (p) = [0; 2]. Let X := R=2Z. Then X

�

=

S

1

and p can be viewed as a self{mapping

of R=2Z. We have diam

R

(X) = 2. For x 2 R let [x] denote the remainder w. r. t. division by 2,

i. e. [x] 2 R=2Z, x � [x]mod2 and x� [x] 2 2Z. We now �x n 2 N and de�ne

f

n

: X ! X;x!

1

n

(p([nx] + (nx� [nx]) + 2) :

These functions are C

1

{self{mappings of X. Since the second derivatives at the points

2�

n

, where

� = 0; : : : ; n � 1, do not exist we have f

n

62 C

2

(X).
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For � = 0; : : : ; n � 1 f

n

is a proper mapping of degree 3 from the interval

h

2�

n

;

2(�+1)

n

i

onto

h

2(�+1)

n

;

2(�+2)

n

i

. Since f(

2�+1

n

) =

2�+3

n

holds the sensitivity constant has to be smaller than

1

n

.

On the other hand, f

�n

n

is a chaotic self{mapping of each interval

h

2�

n

;

2(�+1)

n

i

. This proves that

every number C 2]0;

1

n

[ can be used as sensitivity constant.

2

5 Stability of Julia sets

In this section let f denote a function meromorphic on the complex plane. We assume 1 2

J (f) and choose a sequence ff

n

g

n2N

of functions f

n

meromorphic on the complex plane and

converging to f uniformly on compact subsets of C . The assumption 1 2 J (f) is essential,

the purpose is to exclude some pathological cases where the main theorem does not hold.

Counterexample. Let f be a polynomial of degree larger than 1 and g : C ! P

1

an entire

transcendental function. We de�ne f

n

(z) := f(z) +

1

n

g(z). Then the functions f

n

converge to f

on compact subsets of C as n tends to1. Since f is a polynomial1 is a super{attracting �xed

point which in turn implies1 2 F(f). But due to lemma 2.5 the Julia sets J (f

n

) contain 1

for every n 2 N and therefore J (f) is not the limit of the sets J (f

n

).

In order to prove the main result we establish two lemmas.

Lemma 5.1 Let Z � C be an attracting cycle of f and K � A

f

(Z) a compact set. Then there

exists some integer n

0

2 N such that n � n

0

implies

(i) there exists an attracting cycle Z

n

� A

f

(Z) of f

n

and

(ii) K � A

f

n

(Z

n

).

Remark. The proof will give lim

n!1

Z

n

= Z.

Proof : It is well{known that attracting basins are persistent under C

1

{perturbations, cf. [15].

In this complex analytic setting we give a Rouch�e{type argument.

After replacing f by a suitable iterate we may assume Z = fzg where z 2 C . Now, Rouch�e's

theorem yields the existence of a sequence fz

n

g

n2N

of attracting �xed points z

n

of f

n

satisfying

lim

n!1

z

n

= z. Since z is an attracting �xed point of f there exists some " > 0 such that

f(U

"

(z)) �� U

"

(z) �� F(f)

holds. Since the functions f

n

converge to f uniformly on U

"

this implies

f

n

(U

"

(z)) �� U

"

(z)

12



for almost every n 2 N. For simplicity we assume this to hold for every n 2 N. Using Schwarz'

lemma we obtain lim

m!1

f

�m

n

j

U

"

(z)

� z

n

uniformly on U

"

(z). This proves U

"

(z) �� A

f

n

(Z

n

) �

F(f

n

) for every n 2 N. There exists some number m 2 N such that f

�m

(K) �� U

"

(z). Again

the uniform convergence lim

n!1

f

n

j

K

= f j

K

yields the existence of some integer n

0

2 N such

that n � n

0

implies f

�m

n

(K) �� U

"

(z) � F(f

n

) :

2

Lemma 5.2 For every " > 0 there exists some n

0

2 N such that J (f) � U

"

(J (f

n

)) for every

n � n

0

.

Proof :We assume the hypothesis of the lemma to be false. Then for some " > 0 there exists a

point z 2 J (f) satisfying z =2 U

"

(J (f

n

)), for almost every n 2 N. Since the repelling periodic

points of f are lying dense in J (f) one of them, we call it �, is contained in U

"

(z). Since the

functions f

n

converge to f uniformly on some neighbourhood of � by Rouch�e's theorem there

exists a sequence f�

n

g

n2N

of repelling periodic points of f

n

converging to �. But �

n

2 J (f

n

), a

contradiction.

2

We now prove the main theorem

Theorem 5.3 If J (f) is a repellor, i.e. F(f) consists of attracting basins only, and 1 2 J (f)

holds then lim

n!1

d(J (f

n

);J (f)) = 0.

Remark. In case that f is transcendental there might exist in�nitely many attracting cycles.

But for every neighbourhood U of J (f) P

1

n U contains a �nite number of attracting cycles,

only.

Proof : By proposition 2.9 and 3.1 the Fatou set of f can be written as the union of basins of

attraction. 1 2 J (f) implies Z � C for every attracting cycle of f . We �x " > 0. Lemma 5.1

yields the existence of some integer n

1

2 N such that n � n

1

implies J (f

n

) � U

"

(J (f)).

Due to lemma 5.2 for every " > 0 there exists some integer n

2

2 N such that n � n

2

implies

J (f) � U

"

(J (f

n

)). Combining these results we obtain d(J (f);J (f

n

)) < " for n � maxfn

1

; n

2

g.

2
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6 Stability of �lled{in Julia sets

In [14] �lled{in Julia sets of polynomials are de�ned to be the complement of the basin of

attraction of 1. Clearly, this de�nition makes use of the fact that for every polynomial 1 is

an attracting �xed point. But in case of a rational function this does not hold in general. In

the case of a transcendental function 1 is always an element of the Julia set. Hence we have

to rede�ne the term \�lled{in Julia set".

De�nition 6.1 Let f : C ! P

1

be a meromorphic function having at least one attracting

cycle. Let fZ

j

g

j2I

be a non{empty family of attracting cycles of f (not necessarily containing

all attracting cycles of f). Then we call K(f) := P

1

n ([

j2I

A(Z

j

)) the �lled{in Julia set of f

(w. r. t. fZ

j

g

j2I

).

Remarks.

1. The index set I needs not to be �nite.

2. For polynomials and after choosing I = f1g and Z

1

= f1g this de�nition coincides with

that given in [14].

Now, we �x a sequence ff

n

g

n2N

of functions f

n

meromorphic on the complex plane and con-

verging to f uniformly on compact subsets of C . For sequences of index sets fI

n

g

n2N

and

families fZ

j;n

g

j2I

n

of attracting cycles of f

n

, where n 2 N, we obtain the �lled{in Julia sets

K(f

n

) := P

1

n ([

j2I

n

A(Z

j;n

)). Clearly, it is possible to choose these sets such that

Condition C. lim

n!1

d

�

S

j2I

Z

j

;

S

j2I

n

Z

j;n

�

= 0

holds.

Remarks.

1. Due to the choices which we have had to be done for fZ

j

g

j2I

and fZ

j;n

g

j2I

n

the construction

of K(f

n

) seems to be technical and, possibly, arti�cial. But in the most relevant cases one is

dealing with rational functions or transcendental functions of �nite type, i. e. functions with

a �nite number of singular values. In these cases f has a �nite number of attracting cycles,

hence there is no choice for the \approximating" cycles Z

j;n

.

2. For examples illustrating the use of the term �lled{in Julia sets the reader is referred to the

next section.

Now we are able to state the second main result.

Theorem 6.1 lim

n!1

d(K(f);K(f

n

)) = 0 provided J (f) is a weak repellor, 1 2 J (f) and

condition C holds.
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Proof :We recall the fact that the sets J (f), K(f), J (f

n

) and K(f

n

) are closed and completely

invariant under f and f

n

, resp. Let

C := f all accumulation points of sequences fz

n

g

n2N

with z

n

2 K(f

n

)g :

We have to show C = K(f). Using lemma 5.1 one obtains C \ ([

j2I

A(Z

j

)) = ;, i. e. C � K(f).

Lemma 5.2 yields @K(f) = J (f) � C.

We notice that C;K(f) and K(f

n

) are closed sets. We assume C 6= K(f). Then there exists

some domain G �� K(f) n C such that G \K(f

n

) = ; for almost every n 2 N (for simplicity

we assume for all n 2 N). Since J (f) is a weak repellor proposition 3.1 yields that f hasn't

any wanderering domain, Baker domain or rationally indi�erent cycle. In particular, every

component of F(f) is eventually periodic. Since G \ J (f) = ; and K(f) and C are invariant

under f we may assume that G lies in a periodic component of F(f). After switching to some

iterate of f we may assume G to lie in an invariant component of F(f). We have to consider

two cases:

1. G �� A for some component A of F(f) containing an attracting �xed point z

0

of f ,

2. G lies in a Siegel disc or Herman ring of f .

Case 1.We have G �� A � K(f) and G �� (P

1

nJ (f)). Thus z

0

=2 [

j2I

Z

j

. Using lemma 5.1

we conclude that G lies in the basin of some attracting cycle of f

n

for (almost) every n 2 N.

Due to condition C, this cycle is not an element of fZ

j;n

g

j2I

n

for (almost) every n 2 N. Hence

we obtain G � K(f

n

), in particular, G \K(f

n

) 6= ; for (almost) every n 2 N, a contradiction.

Case 2. If G lies in a Siegel disc or Herman ring then there exists some integer m such that

[

m

�=0

f

��

(G) �� K(f) n K(f

n

) contains an invariant curve �. This implies � and f(�) to be

homotopic in P

1

nK(f

n

) for (almost) every n 2 N which in turn proves � to be homologous to

zero in P

1

nK(f

n

). Now we consider the cases \Siegel disc" and \Herman ring" separately.

Case 2.1 Herman ring.

Since the Herman ring H is doubly connected � is not homologous to zero in G. This proves

e

G \ J (f) 6= ; for every component

e

G of P

1

n �. In particular,

e

G contains a repelling periodic

point ~z of f . Now, Rouch�e's theorem yields the existence of a sequence fz

n

g

n2N

of repelling

period points z

n

of f

n

such that lim

n!1

z

n

= ~z. But this implies z

n

2 J (f

n

) for every n 2 N.

Thus � cannot be homologous to zero in C nK(f

n

) � C n J (f

n

), a contradiction.

Case 2.2 Siegel disc.

Let S denote the Siegel dic. P

1

n � splits into two components. Let G

1

denote that containing

@S. Then the other component, say G

2

, contains the center �

2

of the Siegel disc, which is an

irrationally �xed point of f .

@S � J (f) and the density of the repelling periodic points imply the existence of a repelling

periodic point �

1

2 G

1

. Now, Rouch�e's theorem yields the existence of repelling periodic points

z

n

2 G

1

for (almost) every n 2 N and lim

n!1

z

n

= �

1

. But z

n

2 J (f). Since � is homologous

to zero in P

1

nK(f

n

) this implies G

2

� P

1

nK(f

n

) = [

j

n

2I

n

A(Z

j

n

;n

).

Again Rouch�e's theorem yields the existence of �xed points z

n

of f

n

converging to �

2

. The latter

implies z

n

2 G

2

for (almost) every n 2 N. According to the fact z

n

62 K(f

n

) the �xed point z

n
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has to be attractive, in particular, Z

j

n

;n

= z

n

for some j

n

2 I

n

. Now, condition C yields Z

j

= �

2

for some j 2 I. Thus �

2

= lim

n!1

z

n

has to be an attracting �xed point of f , a contradiction.

2

7 Examples

Example 1. The Mandelbrot family

For some �xed integer d � 2 we consider the family P : C �P

1

; (�; z)! p

�

(z) = z

d

+ �.

By a suitable change of coordinates we might arrange 1 2 J (p

�

). But for convenience

we don't do that.

1 is an attracting �xed point of p

�

for every � 2 C . We denote its basin of attraction by

A

�

and write K

�

:= P

1

nA

�

. Then K

�

is a �lled{in Julia set which we call the standard

�lled{in Julia set. We choose some sequence f�

n

g

n2N

� C converging towards some � 2 C

and write I = I

n

= f0g and Z

0

= Z

0;n

= f1g for every integer n. Since polynomials

don't have Baker domains or wandering domains J (p

�

) is a weak repellor if and only if

p

�

hasn't any rationally indi�erent periodic point. Thus we obtain

Corollary 7.1 Let � 2 C and f�

n

g

n2N

� C be a sequence converging to �. If J (p

�

) is a

weak repellor, i. e. p

�

hasn't any rationally indi�erent cycle, then lim

n!1

d(K

�

;K

�

n

) = 0

where K

�

and K

�

n

denote the standard �lled{in Julia sets of p

�

and p

�

n

, resp.

Example 2. Relaxed Newton's method for polynomials

For a polynomial p the relaxed Newton's method is de�ned as

N

h;p

(z) = z � h

p(z)

p

0

(z)

;

where h 2]0; 2[. For h 2]0; 2[ each root of p is an attracting �xed point of N

h;p

. We �x

h 2]0; 2[ and choose some sequence fh

n

g

n2N

�]0; 2[ converging to h. For simplicity we

write f := N

h;p

and f

n

:= N

h

n

;p

. Now, for every n 2 N let I

n

= I and Z

j;n

= Z

j

= p

�1

(0).

Then condition C is obviously satis�ed and we may apply theorem 6.1. Since f is a

rational function and rational functions don't have Baker domains or wandering domains

we obtain

Corollary 7.2 lim

n!1

d(K(f);K(f

n

)) = 0 holds for the �lled{in Julia sets K(f) :=

P

1

n[

j2I

A

f

(z

j

) and K(f

n

) := P

1

n[

j2I

A

f

n

(z

j

) provided f hasn't any rationally indi�erent

cycle.

In other words, the set of initial values causing Newton's method not to converge to a

root depends continuously on h provided J(N

h;p

) is a weak repellor.
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Example 3. Newton's method for transcendental functions

For a meromorphic function g : C ! P

1

Newton's method is de�ned as N

g

(z) = z�

g(z)

g

0

(z)

.

We �x g such that all roots and all poles of g are simple and choose some sequence fg

n

g

n2N

of meromorphic functions g

n

: C ! P

1

converging to g w.r. t. the convergence on compact

subsets of C . Since all roots and poles of g are simple the functions N

g

n

converge to N

g

uniformly on compact subsets of C . By construction, the sets fz

j

g

j2I

and fz

j;n

g

j2I

n

of

all roots of g resp. g

n

satisfy condition C. We write K := K(N

g

) and K

n

:= K(N

g

n

).

Newton's method for g or g

n

fails to converge if and only if the initial value is an element

of K or K

n

, resp. We obtain

Corollary 7.3 lim

n!1

d(K

n

;K) = 0 provided J (N

g

) is a weak repellor, i. e. N

g

hasn't

any Baker domain, wandering domain or rationally indiferent cycle.

In other words: The set of \bad" initial guesses depends continuously on the function g

provided J (N

g

) is a weak repellor.

8 Closing recurrent orbits

In this section we deal with the problem of closing recurrent orbits. The goal is to �nd conditions

under which the closing lemma of Pugh{Robinson holds in the class of holomorphic functions.

To this end we �rst recall the de�nition of recurrent orbits and the closing lemma. Then we

apply the results obtained in the previous sections to study the possibility of closing recurrent

orbits. A subsequent paper [19] will deal with variations of the closing lemma.

De�nition 8.1 Let be M a topological manifold and f a continuous self{mapping of M . A

point p 2M is called recurrent if p 2 !(p).

The question is whether or not there exists a self{mapping g ofM such that g is (in some sense)

\close" to f and g has a periodic point \close" to p. Then we call O(p) and p to be closable. In

the situation of de�nition 8.1 the answer is trivially positive. Pugh{Robinson settled the case

where M is a manifold.

Lemma 8.1 (Pugh{Robinson) Let be M a compact real C

1

{manifold, f a C

1

{di�eo-

morphism of M and p a recurrent point. Then there exists a sequence fg

n

g

n2N

of C

1

{di�eo-

morphisms of M converging to f and each having a periodic point p

n

2 M such that

lim

n!1

p

n

= p holds.

We are interested in the occurence of recurrent points for meromorphic mappings. As explained

in section 4 every meromorphic function f : C ! P

1

has dense orbits in the Julia set, i. e.
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there exist points � 2 J (f) such that J (f) = cl (!(�)) holds. Clearly, each point in O(�) is

recurrent. Since the repelling periodic points are lying dense in J (f) it is possible to close these

recurrent orbits: We choose g

n

= f and a sequence fz

n

g

n2N

of repelling periodic points z

n

of

f

n

converging to �. We note

Lemma 8.2 Let f : C ! P

1

be a meromorphic function. Then in J (f) there is a dense subset

of recurrent points and every recurrent point � 2 J (f) is closable.

Now, we look for recurrent points in the Fatou set. Due to the classi�cation given in proposi-

tion 2.9 a point lying in some Baker domain, wandering domain or parabolic basin cannot be

recurrent. A point lying in some attracting basin is recurrent if and only if it is an element of the

attracting cycle. But in this case it has already a closed orbit. Hence we need to consider Siegel

discs and Herman rings, only. Since on these domains f (or some iterate of f) is conjugated to

an irrational rotation each element of a Siegel disc or a Herman ring is recurrent. We note

Lemma 8.3 Let f : C ! P

1

be a meromorphic function. A point � 2 F(f) is recurrent if and

only if it is an attracting periodic point or element of a Siegel disc or a Herman ring.

As a direct consequence of corollary 7.1 we obtain for the generalized Mandelbrot family

Proposition 8.4 Let be p(�; z) = z

d

+ �, where d 2 N, d � 2, � 2 C , and � 2 P

1

a recurrent

point. Then there exists a sequence f�

n

g

n2N

converging to � and a sequence fz

n

g

n2N

of periodic

points z

n

of p(�

n

; � ) converging to �.

Proof : If � 2 J (p(�; � ) then we apply lemma 8.2. We now assume � 2 F(p(�; � )). As explained

above we need not to consider the case where � is an attracting periodic point. Since polynomials

don't have Herman rings we only need to consider the case where � is contained in some Siegel

disc S of p(�; � ). Then, in particular, we have � 2 @M

d

, where M

d

denotes the set of those

parameter values � 2 C such that J (p(�; � ) is connected. Now, we choose some sequence

f�

n

g

n2N

� C nM

d

converging to �. Then J (p(�

n

; � )) = C n A

p(�

n

; � )

(1) =: K

�

n

holds. Due

to corollary 7.1 we obtain K

�

:= C n A

p(�; � )

(1) = lim

n!1

K

�

n

. Since the repelling periodic

points of p(�

n

; � ) are lying dense in K

�

n

every point z 2 K

�

is accumulation point of repelling

periodic points of p(�

n

; � ). In particular, there exists a sequence fz

n

g

n2N

of repelling periodic

points z

n

of p(�

n

; � ) converging towards �.

2

Clearly, in the proof we have used the fact that we are able to perturb p(�; �) such that the

center of the Siegel disc becomes a repelling periodic point. This is essential as the following

result shows.
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Proposition 8.5 Let be p(�; z) = �z + �z

2

, where � 2 C n f0g, and �x � = e

2�it

, where

t 2 R=Q satis�es the Brjuno{condition. Then p(�; �) has a Siegel disc S with center 0 and for

every sequence f�

n

g

n2N

converging to some �

�

2 C n f0g the functions p(�

n

; �) have Siegel disc

S

n

(with center 0) converging to S, in particular, in this family recurrent points lying in the

Siegel disc S are not closable (within this particular family).

Yoccoz proved that if � = e

2�it

, where t 2 R=Q satis�es the Brjuno{condition, cf.[28], then

p(�; �) has a Siegel disc S, cf. [29]. The proposition is a direct consequence of a result of

Sullivan, cf. [27, thm.3] or Pommerenke/Rodin, cf. [23, thm.6].

Now, we generalize proposition 8.4 to arbitrary entire functions.

Theorem 8.6 Let f : C ! C be an entire function, i. e. a polynomial or an entire transcen-

dental function, and � 2 C a recurrent point. Then there exists a sequence of entire functions

ff

n

g

n2N

and a sequence fz

n

g

n2N

of repelling periodic points z

n

of f

n

such that f

n

converges to f

uniformly on compact subsets of C and lim

n!1

z

n

= � holds. Furthermore, if f is a polynomial

then the f

n

can be chosen to be polynomials satisfying deg(f) = deg(f

n

).

Proof : Due to lemma 8.2 and lemmma 8.3 and since entire functions don't have Herman rings

we only have to consider the case where f has a Siegel disc S and � 2 S. Without loss of

generality we may assume 0 to be the center of the Siegel disc. Since the repelling periodic

points are lying dense in the Julia set it is su�cient to prove

Claim 1.

Let U be an arbitrary neighbourhood of � and choose f

n

such that 0 is a repelling, a rationally

indi�erent or a non{linearizable irrationally indi�erent periodic point of f

n

for (almost) every

n 2 N. Then U \ J (f

n

) 6= ; for almost every n 2 N.

and

Claim 2.

Let be z

0

2 C a periodic point of some entire function f and a 6= 0 the multiplier of z

0

, i. e. we

assume z

0

not to be a super attracting periodic point. For every sequence fa

n

g

n2N

converging

to a there exists a sequence of entire functions f

n

converging to f on compact subsets of C such

that z

0

is a periodic point of f

n

with multiplier a

n

.

Proof of claim 1.

We assume the claim not to hold. Without loss of generality we may assume U �� S. There

exists some integer m such that V := [

m

�=0

f

��

(U) contains some invariant curve �. The Julia

set J (f) is contained in Ext(�) and contains at least three repelling periodic points, say w

1

, w

2

and w

3

. For j = 1; 2; 3 there are sequences fw

j;n

g

n2N

converging to w

j

, where w

j;n

is a repelling
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periodic point of f

n

. In particular, W

n

:= fw

1;n

; w

2;n

; w

3;n

g � J (f

n

) and W

n

\ V = ;.

� and f(�) are homotopic in V . This implies � and f

n

(�) to be homotopic in V and therefore

� and f

�m

n

(�) to be homotopic in F(f

n

) for (almost) every n 2 N and for every m 2 N. Since

f

n

is an entire function it is a proper mapping from Int(f

�m

n

(�)) to Int(f

�(m+1)

n

(�)), hence

V [ Int(�) � F(f

n

). But there exists a sequence fz

n

g

n2N

of periodic points converging to 0.

By Rouch�e's theorem these points are uniquely determined. Since (almost) all of these points

are elements of Int� and therefore of F(f

n

) they have to be either attracting or linearizable

irrationally indi�erent, a contradiction.

Proof of claim 2.

Let m be the period of z

0

(w. r. t. f). We write z

�

:= f

��

(z

0

) for � = 1; : : : ;m�1. In particular,

z

�

6= 0 = z

0

, where �

1

; : : : ;m� 1, and a =

Q

m�1

�=0

f

0

(z

�

) hold. We de�ne

p

n

(z) = b

n

z

m�1

Y

�=1

(z � z

�

)

2

with b

n

:=

a

n

� a

Q

m�1

�=1

z

2

�

f

0

(z

�

)

and write f

n

:= f+p

n

. Then for every n 2 N f

n

is an entire function and lim

n!1

a

n

= a implies

f

n

to converge to f uniformly on compact subsets of C . By construction, f

n

(z

�

) = f(z

�

) for

� = 0; : : : ;m� 1, hence z

0

is a periodic point of f

n

for every n 2 N. We compute its multiplier.

By construction, we have f

0

n

(z

�

) = f

0

(z

�

) for � = 1; : : : ;m� 1. Thus we obtain

(f

�m

n

)

0

(z

0

) =

0

@

f

0

(z

0

) + b

n

m�1

Y

�=1

z

2

�

1

A

�

m�1

Y

�=0

f

0

(z

�

) = a

n

as desired.

In the case where f is a polynomial and f

n

is supposed to be a polynomial of the same degree

we have to replace claim 2 by

Claim 3.

Let be z

0

2 C an indi�erent periodic point of period m of some polynomial f . Then there exists

a sequence of polynomials f

n

converging to f w. r. t. uniform convergence on P

1

such that z

0

is

a repelling periodic point of period m of f

n

.

Proof of claim 3.

We start as above but in order to obtain deg(f

n

) = deg(f) we have to add an argument

involving qc{surgery. Let a denote the multiplier of z

0

w. r. t. f . We write z

�

:= f

��

(z

0

) for

� = 1; : : : ;m� 1. In particular, z

�

6= 0 = z

0

holds. We de�ne

p

n

(z) = b

n

z

m�1

Y

�=1

(z � z

�

)

2

where b

n

:=

a

n

Q

m�1

�=1

z

2

�

f

0

(z

�

)

and choose some open neighbourhoods V and W of 1 satisfying 1 2 W �� V �� A

f

(1).

Then there exists a C

1

{cut{o� function h : C ! P

1

which is identical to 1 on P

1

n V and

vanishes identically on W . We de�ne g

n

:= f + h � p

n

. Then f

n

converges to f uniformly on P

1

.

By construction, g

n

(z

�

) = f(z

�

) for � = 0; : : : ;m�1, hence z

0

is a periodic point of g

n

for every
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n 2 N. Its multiplier turns out to be

n+1

n

a. But jaj = 1, hence z

0

is a repelling point of period

m of g

n

. For n su�ciently large g

n

is holomorphic on P

1

except on the open set U := V n cl (W )

where W �� V �� A

g

n

(1). Furthermore, g

n

is orientation preserving and a proper self{

mapping of P

1

. Now, after changing the complex structure we obtain polynomials f

n

which are

conjugated to g

n

by some quasiconformal mapping '

n

: P

1

! P

1

. Without loss of generality we

may assume '

n

(z

0

) = z

0

and �

1

(1) =1. The uniform convergence g

n

! g implies the �

n

to

converge to the identity uniformly on P

1

which in turn yields deg(f

n

) = deg(f). Since z

0

is a

repelling periodic point of g

n

and this property is preserved under homoemorphic conjugation

this proves the claim.

2
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