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Abstract

We present a de�nition for a Julia set J(f) for a generic class of polynomial endomorphisms

f : C

n

! C

n

, so called strict polynomials. This de�nition is based on a special kind of

behavious of families of holomorphic maps which we call weakly normal convergence. For n =

1, our de�nition is equivalent to the usual one, which gives the points z 2 C

1

where the iterates

of f do not form a normal family. Moreover, the Julia set J(f

1

� : : :�f

n

) � C

n

for a product

of one-dimensional polynomials f

i

: C ! C turns out to be the product J(f

1

) � : : :� J(f

n

)

of the associated Julia sets J(f

i

) � C. In particular the Julia set of the standard torus map

�

2

: C

2

! C

2

which is given by (x; y) 7! (x

2

; y

2

) is the torus S

1

� S

1

. We describe a family

of quadratic polynomial endomorphisms f : C

2

! C

2

, so called torus maps, which display

dynamical behaviour similar to that of �

2

. We investigate the topological structure of their

Julia sets { they are non-trivially homotopic to the torus { as well as measure theoretic aspects

and potential theory. Finally it turns out that the alternative ways to describe the Julia-set

(taken from the theory for dimension one) { closure of the set of repelling periodic points,

Shilov-boundary of the set of points with bounded forward orbit, inverse iteration of non-

exceptional points, support of the (harmonic) measure of maximal entropy { are equivalent

to the de�nition using weakly normal convergence for torus maps.

0 Introduction

The iteration of holomorphic maps of one variable is one of the most lively �elds of current mathematical

research. Since its beginnings in the twenties of this century the theory of iteration of holomorphic

endomorphisms of the Riemann sphere (= rational functions) has become well developed. It is now a

natural question to ask for possible generalizations to the higher dimensional case.

There are two di�erent ways to approach the problem: One can �x one special class of endomorphisms

of a complex space and study their particular dynamics. This has been done for the case of polynomial

automorphisms of C

2

, so called complex H

�

enon maps; we would like to mention the work of Bedford

and Smillie (e.g. [2], [3], [4], [5]). There are also investigations of endomorphisms of complex projective

spaces, hence homogeneous polynomial mappings, for example by Fornaess and Sibony (e.g. [8]).

One might investigate the dynamics of skew products in C

2

(cf. [16]). Another approach is to consider

polynomial endomorphisms of complex spaces in general (at least as general as possible) and to look for

characteristics of their dynamical behaviour which might become the equivalent of normal convergence

and the Julia set in dimension one. We shall follow the latter method.

We motivate our approach by recalling the dynamical properties of a polynomial endomorphism

f : C

1

! C

1

. Our goal is to �nd a criterion which guarantees that an entire mapping behaves like a

polynomial. It turns out that it is su�cient to be able to control the minimal and maximal growth rate

�
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of a mapping. We are also interested in di�erent characterizations of the Julia set, e.g. J(f) as closure

of the set of repelling periodic points of f , or J(f) de�ned by use of normal convergence, or as support

of a measure of maximal entropy for f , or as topological boundary (or in C

1

equivalently the Shilov

boundary) of the compact set K(f) of points with bounded forward orbit under iteration of f .

Keeping in mind this information we describe the set of those polynomial mappings f : C

n

! C

n

for arbitrary n 2 N which ful�ll a growth condition similar to that of polynomials in C

1

. We call these

maps strict polynomials. This class of endomorphisms is closed under composition, hence also under

iteration. As strict polynomials are proper, they are compatible with the one-point-compacti�cation of

C

n

. Moreover strict polynomials are dense in the parameter space of polynomials of a given degree. We

should point out a certain relation of strict polynomials with endomorphisms of projective spaces, namely

f : C

n

! C

n

is a strict polynomial if and only if its principal part [f ] (i.e. the monomials of maximal

algebraic degree) induce a nondegenerate homogenous mapping of C

n

to itself, hence an endomorphism

of the projective space P

n�1

. Moreover, a strict polynomial f : C

n

! C

n

can always be continued to P

n

.

However, we will not make use of this and work in the a�ne space C

n

only.

It turns out that for a strict polynomial f : C

n

! C

n

the set K(f) is compact, hence it makes sense

to investigate the di�erent de�nitions for a Julia set mentioned above. We discuss them by looking

at the standard torus map �

2

: (x; y) 7! (x

2

; y

2

). This leads to a de�nition for a Julia set using a

re�ned form of normal convergence. We call this type of convergence weakly normal convergence. It

considers convergence on analytic sets instead of \full\ open sets. We should note that there is a certain

similarity with the de�nition for the projective space ([8]). Yet the careful reader will notice that it is

essential for our theory that weakly normal convergence does not exclude convergence to in�nity, whereas

in Sibony-Fornaess-theory it does matter in which direction an orbit approaches in�nity. For n = 1,

normal convergence and weakly normal convergence are equivalent. Furthermore, for the special case of

n-vectors of polynomials of one variable, we show that the Julia set in C

n

is exactly the product of the

associated one-dimensional Julia sets. As a direct consequence we obtain the equivalence of the di�erent

de�nitions in this case.

In the last part we illustrate our ideas by investigation of a class of maps f : C

2

! C

2

, whose dynamics

are similar to the behaviour of �

2

. We show that their Julia sets are homotopic to the torus, that the

dynamic gives a mixing repeller, and that the Julia set (in our de�nition) equals the support of the

measure of maximal entropy. Finally we shall see that the Julia set also coincides with the support of

the measure induced by the Green current which is given by the Shilov boundary of K(f), and equals

the closure of the set of repelling periodic points of f .

1 Background from dimension 1

This short section containing only well known facts about the iteration of polynomials in C is intended

to serve as a kind of \programme\. On the one hand a \good\ theory for dimension n > 1 should

also contain these results (at least according to our taste), on the other hand, the careful study of their

relations will lead us to the de�nitions of strict polynomials and weakly normal convergence.

The investigation of polynomials f : C ! C of one variable is an especially fruitful �eld of research.

This is mainly due to several properties of polynomial mappings as there are surjectivity, �nite mapping

degree, the compactness of the set K(f) of points with bounded forward orbit, the possibility to compute

the Green function of the complement of K(f) by a dynamical method. We ask for one characteristic

property of polynomials which implies all the qualities mentioned above, and distinguishes polynomials

from other entire mappings. We derive the main properties of Julia sets of polynomials and explain the

di�erent (but equivalent) de�nitions for the Julia set.

A possible characterization of a polynomial is given by the following lemma.

Lemma 1.1

An entire map f : C ! C is a polynomial of degree p 2 N if and only if one can �nd constants

k

1

; k

2

> 0; r 2 R such that

k

1

� jzj

p

� jf(z)j � k

2

� jzj

p

(1)

holds for all jzj > r (see [19], p. 11). 2
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We de�ne the constant mapping f : z 7! 0 to have degree �1.

In order to avoid trivialities let us assume from now on that p � 2.

We shall have a look at some well known facts about polynomials and show that they can all be proven

using only (1).

Lemma 1.2

The composition of polynomials is again a polynomial.

Proof: Let f; g : C ! C be polynomials of degree p

0

, p

00

, respectively. Hence, for some strictly positive

l

1

; l

2

;m

1

;m

2

, and r

0

; r

00

2 R,

l

1

� jzj

p

0

� jf(z)j � l

2

� jzj

p

0

for jzj > r

0

, and

m

1

� jzj

p

00

� jg(z)j � m

2

� jzj

p

00

for jzj > r

00

.

If we de�ne

p := p

0

� p

00

;

k

1

:= l

1

�m

p

0

1

;

k

2

:= l

2

�m

p

0

2

;

r := max

n

r

00

;

p

00

p

r

0

=m

1

o

;

a simple calculation yields that, for jzj > r,

k

1

� jzj

p

� jf(g(z))j � k

2

� jzj

p

;

which shows that f � g is a polynomial of degree p. 2

Concerning the iteration of polynomials we obtain the following result.

Corollary 1.3

All iterates (for k 2 N) of a polynomial f : C! C given by

f

k

:= f � : : : � f

| {z }

k times

are also polynomials (of degree p

k

). 2

Theorem 1.4

Polynomials are proper mappings.

Proof: In order to prove that a polynomial f : C ! C is proper we have to show that under f the

inverse image L := f

�1

(K) of any compact set K b C is again compact. Assume there was K such that

L was not compact for a polynomial f (where k

1

; k

2

; r are de�ned as in (1)). In any case L is closed. If

it were unbounded one could �nd z

�

2 L such that

jz

�

j > max

z2K

n

r;

p

p

(jzj+ 1)=k

1

o

:

But then

jf(z

�

)j > max

z2K

fjzj+ 1g;

which gives a contradiction, since f(z

�

) lies in K. 2

As an immediate consequence we derive the following corollary.

Corollary 1.5

A polynomial admits a continuation to C := C [ f1g by setting

f(1) := 1:

2
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That this compacti�cation makes sense for dynamical purposes is seen by the next theorem.

Theorem 1.6

The attracting basin F

1

:= F

1

(f) for \in�nity\, i.e. the set of points whose forward orbits eventually

leave any compact set in C (\converge to in�nity\), is not empty.

Proof: If we de�ne

R

f

:= max

n

r; 1

.

p�1

p

k

1

o

;

we get, for jzj � � �R

f

with � > 1,

jf(z)j � � � jzj:

By induction it follows that

�

�

f

k

(z)

�

�

� �

k

� jzj;

hence

�

�

f

k

(z)

�

�

tends to in�nity for jzj > R

f

. 2

Moreover, F

1

is open, as it is the complement of the compact set

K := K(f) :=

�

z 2 C :

�

�

f

k

(z)

�

�

stays bounded

	

:

This fact is easily seen, since with

B

R

f

:= fz 2 C : jzj < R

f

g

we get

F

1

=

1

[

k=0

f

�k

�

{B

R

f

�

;

and

K =

1

\

k=0

f

�k

�

B

R

f

�

: (2)

The fact that f is proper implies that f has constant rank n on a dense open subset of C

n

(the complement

of the critical locus Crit where the Jacobi-determinant J

f

of f vanishes) (cf. [23], p. 301).

The following is well known.

Theorem 1.7

A polynomial f : C! C is surjective and has mapping degree p.

Proof: This is just the fundamental theorem of algebra. Note that it is possible to prove it using only

the minimum principle for holomorphic maps and (1) (see, e.g. [22], p. 189). 2

Corollary 1.8

A polynomial f : C! C has p

k

periodic points of order k 2 N (counted with multiplicity). 2

Corollary 1.9

For a polynomial f , the set K(f) is not empty. 2

Let us now recall some facts about the Julia sets of polynomials. We need the following de�nition.

De�nition 1.10 (normal family)

([26], p. 33) A family F of holomorphic mappings on a domain G � C is called normal in G if every

sequence of functions (f

n

) � F contains either a subsequence which converges to a limit function g 6� 1

uniformly on each compact subset of G, or a subsequence which converges uniformly to 1 on each

compact subset. F is called normal at a point z 2 G if there exists a subdomain z 2 G

0

� G such that

F is normal in G

0

.

It is common to de�ne the Julia set for a polynomial using normal convergence.
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De�nition 1.11 (Julia set for a polynomial)

For a polynomial f : C! C, the Julia set J(f) is de�ned as the complement of those points where the

sequence of iterates of f is normal. The (open) set of points where (f

k

) is normal is called Fatou set

F (f). Of course, J(f) = {F (f) is closed.

Since outside K(f) we get convergence to 1 (cf. theorem 1.6), we see that J(f) must be contained in

K(f) and is a compact set. We can even be more precise using the following theorem.

Theorem 1.12 (Montel)

([26], p. 35) A family of holomorphic mappings on a domain G which is locally bounded is normal in G.

Proof: The proof is based on the theorem of Arz�ela-Ascoli-Bourbaki ([27], p. 151) which states that an

equicontinuous family of continuous functions on a metric space which is bounded is already normal, if

the family is also bounded. Cauchy's integral formula ([22], p. 152) gives boundedness of the derivatives

of holomorphic mappings (hence equicontinuity) if only the mappings are locally bounded. 2

Montel's theorem 1.12 immediately yields

Theorem 1.13

For a polynomial f : C! C we get

J(f) = @K(f): (3)

Proof: Montel's theorem implies that

o

K

(f) � F (f), hence J(f) � @K(f). Evidently the sequence (f

k

)

restricted to a domain G which contains a boundary point z

�

2 @K cannot be normal, as it contains

the open set G \ {K(f) where (f

k

) converges to 1 as well as z

�

itself where (f

k

) takes only bounded

values. 2

We note

Theorem 1.14

J(f) = @K(f) is a compact completely invariant set, i.e.

f(J(f)) = J(f) = f

�1

(J(f))

(see e.g. [7], sec. I.2, and cor. 11.1). 2

We can give another characterization of the Julia set in view of corollary 1.8. We need the following

de�nition.

De�nition 1.15 (repelling periodic point)

A periodic point z

�

of order k 2 N

�

of f : C! C, i.e. z

�

2 C with

f

k

(z

�

) = z

�

; (4)

is called repelling, if its multiplier

�(z

�

) :=

@

@z

�

f

k

(z

�

)

�

has modulus greater than 1.

Theorem 1.16

([1], th. 6.9.2) The Julia set of a polynomial f : C! C is the closure of the union of its repelling periodic

points. 2

Brolin states a theorem which permits to calculate J(f) by inverse iteration.

Theorem 1.17

([7], l. 6.3) Let E be a closed set which contains no accumulation point of the successors of a point from

F (f). If we set

E

k

:= f

�k

(E);

then the sequence (E

k

) converges uniformly to J(f). 2
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Corollary 1.18

Obviously, for r � R

f

, @B

r

ful�lls the condition of theorem 1.17. We get

J(f) = lim

k!1

f

�k

(@B

r

):

2

We shall give yet another approach. We need some additional machinery (see [11]).

Let A

0

denote the algebra of functions which are holomorphic on some neighbourhood of K where K is

a compact polynomially convex set in a complex space, e.g. K := K(f) for a polynomial. Let

A := A

0

be its closure (in the algebra C(K) of continuous functions with the topology of uniform convergence).

The space of maximal ideals A of A is in this case (K is assumed to be polynomially convex) isomorphic

to K. Each of those ideals consists of all functions which vanish at a point z 2 K. Hence in the following

we will de�ne the terms determining set and boundary for K though they are usually de�ned for A.

De�nition 1.19 (determining set)

A closed subset Q b K is a determining set if for each ' 2 A there exists a z

�

2 Q such that

j'(z

�

)j = k'k

K

:= max

z2K

j'(z)j:

For example, K itself is a determining set.

De�nition 1.20 (boundary)

A minimal (i.e. no proper subset is also determining) determining set Q is called a boundary of K.

Theorem 1.21

For K, a uniquely determined boundary exists. It is called the Shilov boundary @

SH

K of K. 2

Theorem 1.22

A point z

�

2 K lies in @

SH

K if and only if for each neighbourhood U 3 z

�

there exists a peak function

'

U

2 A such that j'

U

j has its maximum in U but takes only smaller values on {U . 2

In the special case of Julia sets of polynomials we obtain the following result.

Theorem 1.23

The Julia set of a polynomial f : C! C equals the Shilov boundary of the set of points with bounded

forward orbit:

J(f) = @

SH

K(f): (5)

Proof: The maximum principle for holomorphic functions implies that any ' 2 A takes its maximal

modulus in the boundary, hence @

SH

K(f) � @K(f). Without loss of generality we might assume that

z

�

2 @K(f) and that U 3 z

�

in theorem 1.22 is given by a ball B

"

(z

�

). We choose z

0

2 {K(f) with

jz

�

� z

0

j < "=2 and de�ne

'

U

(z) :=

1

z � z

0

:

Evidently '

U

2 A and j'(z)j takes its maximum in U but only smaller values outside. For, j'(z

�

)j > 2=",

but if z =2 U then j'(z)j < 2=". 2

A theorem of Gromov's (see [14]) states that the maximal entropy of a map from an n-dimensional

complex projective space which has algebraic degree p is n � log(p). Lyubich proved the following result.

Theorem 1.24

([21]) For a rational endomorphism f : C ! C there exists a unique measure �

f

of maximal entropy

log deg(f). Its support is J(f). 2
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In the survey [7] of Brolin's �

f

is already identi�ed as the harmonic measure for K(f) which can be

obtained by calculating the Green function of {K(f) (cf. (62)) or in the following way.

Theorem 1.25

([7], th. 16.1) For any z 2 C (with maybe one exception) the sequence

�

f

k

:= f

�k

(�

z

)

�

p

k

:=

X

f

k

(�)=z

�

�

,

p

k

;

where �

�

denotes the unit mass in � and inverse images are counted with multiplicity, converges weakly

to �

f

. 2

He also states a result concerning the chaotic behaviour of f on J(f).

Theorem 1.26

([7], th. 17.1) The action of f on J(f) is topologically mixing. 2

2 Strict polynomials and weak normal convergence

The reader will have noticed that we have been putting a lot of emphasis on deriving everything in the

previous section from the inequalities (1). We will now harvest the fruits of this labour.

2.1 The class of strict polynomials

The main goal of this section is to investigate a possible higher dimensional analogue to polynomials

in C

1

, in particular to (1). We simply take (1) and replace the modulus j � j by a norm k � k which is

compatible with the usual metric on C

n

. This leads to the following de�nition.

De�nition 2.1 (strict polynomial)

([17], ch. 1) An entire mapping f : C

n

! C

n

is called a strict polynomial of degree p 2 N if for some

k

1

; k

2

> 0, r 2 R,

k

1

� kzk

p

� kf(z)k � k

2

� kzk

p

(6)

holds for kzk > r.

The analogues to theorems 1.2 to 1.6 can be proven simply by changing j � j to k � k.

Theorem 2.2

The composition of strict polynomials is again a strict polynomial. 2

Corollary 2.3

All iterates (for k 2 N) of a polynomial f : C

n

! C

n

given by

f

k

:= f � : : : � f

| {z }

k times

are also strict polynomials (of degree p

k

). 2

Theorem 2.4

Strict polynomials are proper mappings. 2

Corollary 2.5

A strict polynomial admits a continuation to C

n

:= C

n

[ f1g by setting

f(1) := 1:

2
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Theorem 2.6

The attracting basin F

1

:= F

1

(f) for \in�nity\, i.e. the set of points whose forward orbits eventually

leave any compact set in C

n

(\converge to in�nity\), is not empty. 2

Later we will use the radius R

f

de�ned as in theorem 1.6.

Only the analogue to 1.7 requires a little more work. We apply Bezout's theorem instead of the

fundamental theorem of algebra and get

Theorem 2.7

A strict polynomial f : C

n

! C

n

is surjective and has mapping degree p

n

.

Proof: Evidently only the terms with maximal degree are relevant in order to check if f is strict or not.

Namely f is strict if and only if the homogeneous vector [f ] of terms of maximal degree (= p) has no

non-trivial zero. This follows from the fact that f � [f ] only contains monomials of degree less than or

equal to p� 1. Hence

kf(z) � [f ](z)k = O

�

kzk

p�1

�

;

and these terms can be neglected in (6). This characterization of strictness allows us to extend a strict

polynomial f from C

n

to the n-dimensional complex projective space P

n

. All holomorphic endomorphisms

of P

n

can be represented as homogeneous polynomial vectors

~

f : C

n+1

! C

n+1

without non-trivial zeros

(cfer. [28], 1.x4). Thus we add a variable z

0

to the n a�ne ones z

1

; : : : ; z

n

and a (n + 1)-st component

z

p

0

to the vector f , such that after multiplying each monomial in f with a suitable power of z

0

to get a

homogeneous n-vector f

�

of degree p, the resulting polynomial vector

~

f := (f

�

; z

p

0

) is also homogeneous

of degree p.

~

f has no non-trivial zeros, since if z

0

= 0, then [f ] has to vanish, which implies that

z

1

= : : : = z

n

= 0. If z

0

6= 0, the last component does not vanish. In order to verify the theorem we have

to show that each point c = (c

1

; : : : ; c

n

) 2 C

n

has p

n

inverse images under f (counted with multiplicity),

respectively, that ~c = (c

1

; : : : ; c

n

; 1) does so for

~

f . Let us check the zeros of the endomorphism represented

by

~

f

~c

:=

~

f � ~c � z

p

0

;

where ~c = (c

1

; : : : ; c

n

; c

n+1

) 2 C

n+1

n f0g. Bezout's theorem (see [28], p. 199) gives the existence of

exactly p

n

zeros of

~

f

~c

(counted with multiplicity) as endomorphism of P

n

, provided one can show that

~

f

~c

has only isolated zeros. But if c

n+1

= 0, then z

0

= 0 must hold, which implies like above that [f ] must

also vanish, hence z

0

= : : : = z

n+1

= 0. For c

n+1

6= 0, without loss of generality c

n+1

= 1, we get as �rst

n components exactly f � c which is still a strict polynomial of degree p. If there were a non-isolated zero

of

~

f

~c

in C

n+1

in this case, then the same would hold for f � c in C

n

. But that implied the existence of

an at least one-dimensional (unbounded) algebraic set were f � c vanished in contradiction to (6). Hence

each c 2 C

n

has p

n

inverse images under f (counted with multiplicity) in C

n

. 2

The analogues to corollaries 1.8 and 1.9 are evident.

Remark 2.8

It is clear that we have to expect J(f) � @K(f) as the proof of 1.12 is simply an application of Cauchy's

integral formula which has a complete analogue in higher dimensions ([12], p. 13). 2

Corollary 2.9

A strict polynomial f : C

n

! C

n

has p

kn

periodic points of order k 2 N (counted with multiplicity). 2

Corollary 2.10

For a strict polynomial f : C

n

! C

n

, the set K(f) is not empty. 2

Remark 2.11

We had mentioned in the proof of theorem 2.7 that only [f ], the terms of maximal degree of f , are

relevant for the strictness of f . Hence by changing the coe�cients of [f ] slightly we can make any non-

strict mapping f strict. This already shows that strict polynomials are dense in the parameter space of

polynomials of a given (algebraic) degree. 2
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Remark 2.12

We should note that condition (6) can be weakened in order to obtain a bigger class of endomorphisms,

the so called (p; q)-regular mapppings (cf. [18], ch. 2). We require that for some p; q 2 N, k

1

; k

2

> 0,

r 2 R,

k

1

� kzk

p

� kf(z)k � k

2

� kzk

q

holds for kzk > r.

2.2 The standard torus map and weakly normal convergence

In chapter 1 we stated di�erent but equivalent de�nitions for the Julia set J(f) of a polynomial f : C!

C.

I: de�nition 1.11 de�nes the Julia set in terms of normal convergence;

IIa: theorem 1.13 describes J(f) as boundary of the set of points with bounded forward orbit;

IIb: theorem 1.23 is similar but uses the Shilov boundary instead of the topological boundary of K(f)

(Note that in higher dimension these boundaries are in general not equivalent);

III: theorem 1.16 gives J(f) as closure of the set of repelling periodic points of f ;

IV: with theorem 1.24 J(f) is de�ned as the support of the measure �

f

of maximal entropy for f which

can be obtained (see theorem 1.25) as lim

k!1

f

�k

(�

z

)=p

k

;

V: with theorem 1.18 J(f) is calculated by approximation as lim

k!1

f

�n

(@B

r

), where r � R

f

; note

that we might write @

SH

B

r

instead of @B

r

.

We shall illustrate our ideas with an easy example.

De�nition 2.13 (standard torus map)

We de�ne the standard torus map �

2

: C

2

! C

2

by

�

2

:

�

x

y

�

7!

�

x

2

y

2

�

:

It is obvious that

K(�

2

) = B� B:

Further, in view of remark 2.8 we see that

@K(�

2

) = (S

1

� S

1

)

_

[ (B� S

1

)

_

[ (S

1

� B) (7)

=

�

set of points where (f

k

) is not normal convergent.

	

:

Each of the sets in (7) is completely invariant. The two latter ones are not compact, but contain the

compact invariant sets f0g � S

1

, S

1

� f0g, resp. We see that f restricted to either of

(S

1

� S

1

)

_

[ (f0g � S

1

)

_

[ (S

1

� f0g)

gives rise to a topologically mixing system, however only the subsystem f j

S

1

�S

1
has maximal topological

entropy 2 log(2), whereas the others yield log(2) (each obtained by considering suitably normalized

Lebesgue measure on the sets). From the point of view of theorem 1.24 and the theorems 1.14 and

1.26 the set S

1

� S

1

is the right candidate to become the Julia set of �

2

. S

1

� S

1

is also compatible

with theorem 1.23. To see this we need an additional de�nition.

De�nition 2.14

A set D � C

n

is called a Weil analytic polyhedron if it can be de�ned in terms of �nitely many

holomorphic functions '

i

: G! C, i = 1; : : : ; N , on a domain G � C

n

with D � G, by

D := fz 2 G : j'

i

(z)j < 1 for all ig :

We call the set

�(D) := fz 2 G : j'

i

(z)j = 1 for all ig

the skeleton of D.

9



With this terminology we obtain the following result.

Theorem 2.15

([10], th. 15.4) Let D be a Weil analytic polyhedron de�ned as above. If for each vector

� := (�

1

; : : : ; �

n

) 2 (S

1

)

n

and each set of indeces

1 � i

1

< i

2

< : : : < i

n

� N

the set

�(�) :=

�

z 2 G : '

i

j

(z) = �

i

j

for all i

j

	

consists of a set of discrete points then

@

SH

D = �(D):

2

Evidently

o

K

(�

2

) = B�B is aWeil analytic polyhedron de�ned by the coordinate functions '

1

(x; y) := x,

'

2

(x; y) := y. It ful�lls the conditions of theorem 2.15 as

�(�

1

; �

2

) = f(�

1

; �

2

)g:

We deduce

@

SH

K(�

2

) = �(B� B) = S

1

� S

1

:

We shall now present a re�ned version of normal convergence, in order to single out the \real Julia set\

from the set @K(f) which is given by the usual normal convergence in C

n

. For the standard torus map

�

2

we note that the set of points where the sequence of iterates of �

2

is not normal convergent consists

of the points in (7). However, for (x

�

; y

�

) in S

1

�B (in B� S

1

), there still is some convergent behaviour.

Namely ff

k

g restricted to fx

�

g�B (restricted to B�fy

�

g) is a normal family. Moreover, this also holds

for any (x

0

; y

0

) in the open neighbourhood C � B [ B�C of these (x

�

; y

�

).

The above kind of \partial convergence\ motivates the following de�nition. Let ff

k

g be a family of

holomorphic functions (f

k

: U ! C

n

) on a domain U � C

n

.

De�nition 2.16 (weakly normal)

ff

k

g is called weakly normal in a point z 2 U if there are

� an open neighbourhood V of z;

� a family C

x

of at least one-dimensional (complex) analytic sets indexed by the points x 2 V ,

such that

� each x lies in the corresponding analytic set C

x

;

� for each x 2 V the family ff

k

g restricted to C

x

\ V is normal (including convergence to in�nity).

Now we can state the de�nition for the Julia set of a strict polynomial.

De�nition 2.17 (Julia set of a strict polynomial)

We de�ne the Julia set J(f) of a strict polynomial f : C

n

! C

n

to be the set of points where the family

ff

k

g of iterates of f is not weakly normal.

Let us check if this gives J(�

2

) = S

1

� S

1

for the standard torus map. Evidently, J(�

2

) is a closed

set according to the de�nition of weakly normal. We already know that J(�

2

) is contained in S

1

� S

1

.

Clearly, one cannot obtain normal convergence on any (at least one-dimensional) analytic set containing

one of the repelling periodic points (exp(2�i � r=(2

k

� 1)); exp(2�i � s=(2

k

� 1))), r; s 2 N, k 2 N

�

, of f .

But these points are dense in S

1

� S

1

. We conclude that indeed J = S

1

� S

1

. 2

Properties of J(f ):

10



J(f) is closed and contained in @K(f), hence compact.

J(f) is also forward invariant (f(J(f)) � J(f)), as (cf. de�nition 2.16), for z 2 {J(f), the inverse image

f

�1

(V ) of the open set V is again open and f

�1

(C

x

) consists of analytic sets containing f

�1

(x), hence

f

�1

(x) � {J(f), and thus f(J(f)) � J(f)

To show that also f

�1

(J(f)) � J(f) we require the following two theorems.

Theorem 2.18 (Open Mapping Theorem)

([13], p. 108) A holomorphic mapping f : C

n

! C

n

with discrete �bers is open. 2

and

Theorem 2.19 (Proper Mapping Theorem)

([13], p. 213) For a holomorphic map f : C

n

! C

n

which is proper, the image set f(C) of an analytic set

C is again an analytic set of the same dimension. 2

Hence, for z 2 {J(f), the image f(V ) of V is open, and the f(C

x

) are again analytic sets which contain

the f(x). This implies f(z) 2 {J(f), thus f

�1

(J(f)) � J(f). 2

Remark 2.20

For n = 1, weakly normal and normal convergence give the same result as one-dimensional analytic sets

are just open sets in C. 2

Let us have a look at the behaviour of products of one-dimensional maps. For n polynomials f

i

: C! C

in one variable, where deg(f

i

) � p � 2, we de�ne a polynomial vector f : C

n

! C

n

by setting

f(z

1

; : : : ; z

n

) := (f

1

(z

1

); : : : ; f

n

(z

n

)) :

Evidently f is strict of degree p. Let J(f

i

) � C denote the Julia set of each f

i

: C ! C. Then the

following theorem holds.

Theorem 2.21

For f : C

n

! C

n

like above,

J := J(f) =

n

X

i=1

J(f

i

):

Proof: Clearly,

K := K(f) =

n

X

i=1

K(f

i

)

and

@K = f(z

1

; : : : ; z

n

) 2 K : there exists an i 2 f1; : : : ; ng such that z

i

2 J(f

i

)g :

We consider the subsets

@K

(i)

:=

n

(z

i

; : : : ; z

n

) 2 @K : z

i

2

o

K

(f

i

)

o

(which might be empty for @K(f

i

) = K(f

i

), e.g. for J(f

i

) a Cantor set).

For z 2 @K

(i)

, the connected component of

o

K

(f

i

) which contains z

i

is denoted

o

K

z

(f

i

). If z 2 @K

(i)

then

we de�ne

V :=

n

(x

1

; : : : ; x

n

) : x

i

2

o

K

z

(f

i

); and jx

j

� z

j

j < " for all j = 1; : : : ; n

o

:

Clearly, for each x 2 V , ff

k

g restricted to the intersection of V and

C

x

:= fx

1

g � : : :�

o

K

z

(f

i

) � : : :� fx

n

g

is normal, hence z is a weakly normal point. This shows that

@K

(i)

\ J = ;

11



for all i = 1; : : : ; n, and we conclude

J � @K n

n

[

i=1

@K

(i)

=

n

X

i=1

J(f

i

):

As, for each i, repelling periodic points of f

i

are dense in J(f

i

), the same holds for the repelling periodic

points of f in X

n

i=1

J(f

i

). By the same argument as in the case of �

2

J �

n

X

i=1

J(f

i

):

2

We shall show that we get the same set J(f) by the di�erent de�nitions.

Theorem 2.22

In the product case we obtain (let r � R

f

)

J(f) :=

�

z 2 C

n

: (f

k

) is not weakly normal at z

	

(8)

= @

SH

(K(f)) (9)

= fz : z is a repelling periodic point of fg (10)

= lim

k!1

f

�k

(@

SH

B

r

) (11)

= supp

�

measure �

f

of maximal entropy for f

�

: (12)

Proof: Let us show that form (8) is equivalent to form (9). In view of theorem 1.22 we have to show

that for the points z

�

2 J(f) and open sets U 3 z

�

there exist peak functions '

U

: C

n

! C, further

that for z

�

=2 J(f) one cannot �nd '

U

for arbitrary U 3 z

�

. For one-dimensional maps f

i

we know

J(f

i

) = @

SH

K(f

i

), hence for z

�

i

2 U

i

� C we can �nd appropriate peak functions '

U

i

: K(f

i

) ! C. We

may assume that U is given in the form

Q

i

U

i

and set '

U

(z) :=

Q

i

'

U

i

(z

i

). This shows J(f) � @

SH

K(f).

The remaining points z

�

2 @K(f) lie in sets @K

(i)

. If we regard a mapping '

U

restricted to

fz

�

1

g � : : :�K(f

i

) � : : :� fz

�

n

g

we see by the maximum principle that it takes its maximum in

fz

�

1

g � : : :� @K(f

i

) � : : :� fz

�

n

g

hence by iterating the argument we see that any '

U

takes its maximal modulus in

@K(f

1

) � : : :� @K(f

n

) = J(f);

hence @

SH

K(f) � J(f).

In order to show the equivalence of (8) to (10) we note that for a repelling periodic point of f : C

n

! C

n

we require (4) and that the operator norm










�

D

�

f

k

��

�1










is smaller than 1. In the case of a product we

obtain

D

�

f

k

(z

�

)

�

�1

=

0

B

B

B

@

�

@

@z

1

�

f

k

1

(z

�

)

�

�

: : : 0

.

.

.

.

.

.

.

.

.

0 : : :

�

@

@z

n

�

f

k

n

(z

�

)

�

�

1

C

C

C

A

�1

;

hence z

�

is a repelling periodic point of f if and only if each component z

�

i

is a repelling periodic point

for f

i

.

In order to prove equivalence of (8) and (11) we note (let �

i

: C

n

! C be the projection to the i-th

coordinate)

�

i

�

f

�k

�

@

SH

B

r

��

= f

�k

i

�

�

i

(@

SH

B

r

)

�

:

Using theorem 1.25 we handle (12) in a similar fashion.

�

f

k

(z) := �

f

1

k

(z

1

) 
 : : :
 �

f

n

k

(z

n

):

2
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3 Torus maps

In dimension 1 it is well known that the Julia sets of mappings of the form

f

c

: z 7! z

2

+ c (13)

with jcj small are Jordan curves (see [1], 1.6, 9.9 and [7], Th. 8.1) and show similar dynamical behaviour

as �

1

: z 7! z

2

. It is easy to see that this holds if jcj <= 1=4� " for some " � 0. We want to obtain a

similar result concerning strict polynomials f : C

2

! C

2

with respect to �

2

. We shall be interested in

sharp results, i.e. we do not just want to establish the existence of some tiny epsilon-ball in parameter

space where f shows similar behaviour, but would like to obtain a \large\ set such that one might actually

\see\ the results using numerical approximation. We proceed in several steps. First we show that the

Shilov boundary of K(f) is contained in J(f) (this is part of (9)). But @

SH

K(f) is also contained

in (@K)

�

:= lim

k!1

f

�k

�

@

SH

B

R

f

�

like in (11). In the next step we show the equality of (@K)

�

and

@

SH

K(f) using the fact that (@K)

�

is homotopic to a torus in G

1xy

. We prove that the sequence (f

k

) is

weakly normal on @K n (@K)

�

. As @

SH

K(f) is the support of the measure induced by the Green current

(which has maximal entropy) we have the equivalence of (8), (9), (11), (12). Finally we show that there

are no repelling periodic points outside G

1xy

but that they are dense in J(f) which gives equivalence to

(10).

First let us assure the reader that we are not dealing with empty \phantom sets\ J(f).

Theorem 3.1

For a strict polynomial f : C

n

! C

n

the Julia set J(f) contains the Shilov boundary @

SH

K(f) of

K(f).

Proof: Let z

�

2 @K(f) n J(f). Assume the existence of V; fC

x

g as in de�nition 2.16. Further take an

open set U 3 z

�

with U �� V and assume the existence of a peak function '

U

as in theorem 1.22. By

the maximum principle for complex spaces with boundary (see [13], p. 110) '

U

restricted to U \ C

x

for

x 2 U takes its maximal modulus in @U \ C

x

, hence it follows that z

�

=2 @

SH

K(f) and thus

@

SH

K(f) � J(f):

2

Corollary 3.2

For a strict polynomial f : C! C the Julia set J(f) is not empty. 2

Let us consider an arbitrary strict polynomial f : C

2

! C

2

of (algebraic) degree 2 (cf. theorem 2.7). It

is given by a complex polynomial vector of the form

f :

�

x

y

�

7!

�

a � x

2

+ b � x � y + c � y

2

+ d � x+ e � y + f

A � y

2

+B � x � y + C � x

2

+D � y + E � x+ F

�

: (14)

Here, small letters and capitals are chosen such that conjugation with the coordinate exchange map

� : (x; y) 7! (y; x) simply exchanges a and A, b and B, etc. Strictness of f depends only on [f ], namely

f : C

2

7! C

2

is strict if and only if [f ] induces an endomorphism of P

1

of the same algebraic degree. In

the special case (14) this means that the one-dimensional rational map

~

f : z 7!

a � z

2

+ b � z + c

A+B � z + C � z

2

has mapping degree 2. This is easily checked by calculating the Sylvester determinant (cf. [25], p. 38)

S(f) := (a �A� c �C)

2

� (a �B � b �C) � (A � b�B � c): (15)

If S(f) 6= 0 then f is strict of degree 2.

From lemma 1.2 we deduce that we can apply linear mappings from GL(2;C) and translations in C

2

as conjugation mappings to obtain normal forms of strict polynomials f : C

2

! C

2

. Evidently, in our

case, the coe�cients of [f ] are only a�ected by conjugation with members of GL(2;C). If we interpret
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this in the projective space P

1

these maps correspond exactly to the holomorphic M

�

obius transforms on

the Riemann sphere. Let us recall that they operate threefold transitive on P

1

([20], p. 65). We will make

use of this in order to obtain a suitable normal form.

If f is strict of degree 2 the Riemann-Hurwitz Theorem ([9], p. 128) gives us the existence of exactly

2 di�erent critical values �

1

and �

2

(and also 2 critical points c

1

, c

2

) of

~

f . Because of the threefold

transitivity of the M

�

obius group on P

1

we can move the critical points of

~

f to 0 and 1 (then the critical

values become c=A, a=C, resp.) by conjugation with a suitable M

�

obius map. Translation back to C

2

and

[f ] tells us that we can always �nd a GL(2;C)-mapping such that conjugation of [f ] with this map gives

another homogenuous map [f ]

�

such that the planes C � (0; 1) (

�

=

"

0\), C � (1; 0) (

�

=

"

1\) are the only

inverse images of their image planes C � (c; A), C � (a;C) resp.

�

1

and �

2

are exactly those parameter values (2 C) for which

a � z

2

+ b � z + c

A +B � z + C � z

2

= � (16)

has a double root. This is equivalent to the quadratic equation (if one �

i

= 1, we conjugate (16) with

z 7! 1=z)

(a � � �C) � z

2

+ (b� � �B) � z + (c � � �A) = 0

having only one solution (in z), which is the case if

(a� � �C) � (c� � �A) = (b� � �B)

2

: (17)

For our normal form we want to achieve that the critical points are 0 and 1, hence the critical values

are c=A and a=C. Together with (17) this implies

A � b� c �B = 0; (18)

a �B � C � b = 0:

Strictness of f and the form of S(f) (see (15)) show that in this case

0 6= S(f) = (a �A � c �C)

2

;

hence (a;C) and (c; A) are linearly independent and (18) can only be valid if b = B = 0.

This gives the �rst step towards a normal form: We might assume f to be given in the form

f :

�

x

y

�

7!

�

a � x

2

+ c � y

2

+ d � x+ e � y + f

A � y

2

+ C � x

2

+D � y + E � x+ F

�

: (19)

We want to consider maps similar to the standard torus map �

2

, hence let us assume that in (19) a�A 6= 0.

By conjugation with '

A

: (x; y) 7! (a � x;A � y) we achieve a = A = 1, and the form

f :

�

x

y

�

7!

�

x

2

+ c � y

2

+ d � x+ e � y + f

y

2

+C � x

2

+D � y +E � x+ F

�

: (20)

Further conjugation with '

D

: (x; y) 7! (x+ d=2; y +D=2) yields the �nal normal form

f :

�

x

y

�

7!

�

x

2

+ c � y

2

+ e � y + f

y

2

+C � x

2

+E � x+ F

�

: (21)

De�ning

c � C :() (jcj < jCj _ (jcj = jCj ^ arg(c) < arg(C)))

where arg(c) 2 [0; 2�) we can demand (conjugation with �!) that in (21) we have

c � C

or

c = C ^ e � E

or

c = C ^ e = E ^ f � F

or

c = C ^ e = E ^ f = F:

14



We use the abbreviations

k(y) := c � y

2

+ e � y + f

`(x) := C � y

2

+E � x+ F:

k(y) and `(y) are the equivalents to the constant c in (13). Of course it were useless to demand that they

were bounded for all x and y. This would imply that k and ` were constants and f a product mapping.

We could simply apply theorem 2.22. But theorem 2.6 tells us that it is su�cient to control k and ` on

B

R

f

.

De�nition 3.3 (Torus Map)

A quadratic strict polynomial f : C

2

! C

2

given by (21) is called a torus map if for some " > 0

kk(y)k

B

1=2+

p

1=2�"

k`(x)k

B

1=2+

p

1=2�"

)

� 1=4� ":

We shall later see that in this case 1=2 +

p

1=2� " plays the role of R

f

. We de�ne

� := 1=4� ";

% := 1=2 +

p

";

%

0

:= 1=2�

p

";

r := 1=2 +

p

1=2� ":

Note that

%

0

2

= %

0

� �;

%

2

= % � �;

r

2

= r + �;

� = % � %

0

;

1 = % + %

0

:

The Bernstein-inequality implies for x; y 2 C

kk(y)k � � � (maxf1; jyj=rg)

2

;

and

k`(x)k � � � (maxf1; jyj=rg)

2

:

From the Cauchy-inequality we deduce

jf j; jF j � �;

jej; jEj � �=r;

jcj; jCj � �=r

2

:

An easy calculation yields that the terms on the right are monotonously falling (for " 2 (0; 1=4]) and we

get

0 � jf j; jF j � 1=4; (22)

0 � jej; jEj � (

p

2� 1)=2; (23)

0 � jcj; jCj � 3� 2

p

2: (24)

Let us distinguish between three regions in C

2

G

0

:=

�

(x; y) 2 C

2

: jxj; jyj < %

	

;

G

1

:=

�

(x; y 2 C

2

) : maxfjxj; jyjg> r

	

;

G

1

:= C

2

n (G

0

[G

1

)

=

�

(x; y) 2 C

2

: % � maxfjxj; jyjg � r

	

:

15



G

0

is mapped to itself as, for jxj; jyj < %, one calculates

jx

2

+ k(y)j < %

2

+ �

= %; (25)

and analoguously

�

�

y

2

+ `(x)

�

�

< %: (26)

We deduce that the family

n

f

k

�

�

G

0

o

of iterates of f restricted to G

0

is normal convergent, hence

G

0

� F (f):

For z = (x; y) 2 G

1

, without loss of generality jyj � jxj, hence with 0 � � � 1; � > 1,

jxj = � � r;

jyj = � � jxj;

we calculate in the case jyj � r

jx

2

+ k(y)j � �

2

� r

2

� �

= �

2

� r + �

2

� �� �

= � � jxj+ �

2

� �

� � � jxj:

If jyj > r we see that

jx

2

+ k(y)j � �

2

� r

2

� �

2

� r

2

� �=r

2

= �

2

� r + �

2

� �� �

2

� �

= �

2

� jxj �

�

� � �

2

�

� �

� � � jxj:

A similar inequality holds for jyj � jxj and jy

2

+ `(x)j. It follows that G

1

is also mapped to itself and

the family

n

f

k

�

�

G

1

o

converges to in�nity. We obtain the inclusion

J � @K � G

1

:

Now we devide the remaining set G

1

in the following sets.

G

1xy

:=

�

(x; y) 2 C

2

: % � jxj; jyj � r

	

;

G

1x

:=

�

(x; y) 2 C

2

: % � jxj � r; jyj < %

	

;

G

1y

:=

�

(x; y) 2 C

2

: jxj < %; % � jyj � r

	

:

From (25) and (26) we deduce that f maps points from G

1x

to G

1x

; G

0

; or G

1

. Points of G

1y

are

mapped in G

1y

; G

0

, or G

1

.

(25) and (26) also tell us that

f

�1

(G

1xy

) � G

1xy

(27)

and

f

�1

(G

1x

) � G

1x

_

[ G

1xy

;

f

�1

(G

1y

) � G

1y

_

[ G

1xy

:

The critical points of f (where f does not have full rank) are given by the zeros of the Jacobi-determinant.

jDf(x; y)j = det

�

2 � x 2 � c � y + e

2 �C � x+ E 2 � y

�

= 4 � (1� c �C) � x � y � 2 � (c �E � y + C � e � x):

16



A critical point (x; y) ful�lls the equations

(2 � (1� c �C) � y � C � e) � x = c �E � y; (28)

(2 � (1� c �C) � y � c �E) � y = C � e � x: (29)

Let us investigate the critical points (x; y) in

{G

1

= G

0

_

[ G

1xy

_

[ G

1x

_

[ G

1y

;

hence jxj; jyj � r and

jDf(x; y)j = 0:

Lemma 3.4

There are no critical points in G

1xy

.

Proof: Assume that % � jyj � r. From (22), (23), (24) we obtain the following inequalities

j2 � (1 � c �C)j � 2 �

�

�

1� jcj � jCj

�

�

� jyj

� 2 �

�

1�

�

3� 2

p

2

�

2

�

� %

� 2 �

�

1� 9 + 12

p

2� 8

�.

2

= 12 �

p

2� 16;

and

jC � ej � jCj � jej

�

�

3� 2

p

2

�.

2 �

�

p

2� 1

�

= 5=2 �

p

2� 7=2

� 12 �

p

2� 16:

From (28) we deduce that

x =

c �E � y

2 � (1 � c �C) � y �C � e

;

which yields

jxj �

jcj � jEj � jyj

�

�

2 � j1� c �Cj � jyj � jCj � jej

�

�

�

�=r

2

� �=r � r

�

12 �

p

2� 16

�

�

�

5=2 �

p

2� 7=2

�

=

�

2

=r

2

19=2 �

p

2� 25=2

=

� � (1=2�

p

")

r

2

�

�

19=2

p

2� 25=2

�
� %

� %;

hence (x; y) 2 G

1x

. Analogously, jxj � %, (x; y) 2 Crit \ {G

1

implies (x; y) 2 G

1y

. 2

Corollary 3.5

In G

1xy

all inverse branches f

�k

�

�

�

G

1xy

: G

1xy

! G

1xy

of f

k

are well-de�ned. 2

We want to estimate the norm of Df

�1

as linear operator in G

1xy

. For the maximum norm

k(x; y)k := maxfjxj; jyjg

17



in C

2

the appropriate norm for a linear map induced by a matrix

�

a

11

a

12

a

21

a

22

�

is

kAk := maxfja

11

j+ ja

12

j; ja

21

j+ ja

22

jg :

For the inverse of Df we compute

Df

�1

�

�

f(x;y)

=

1

4 � (1� c �C) � x � y � 2 � (C � e � x+ c �E � y)

�

2 � y �(2 � c � y + e)

�(2 �C � x+ E) 2 � x

�

:

Hence










Df

�1

�

�

f(x;y)










=

max f2 � jyj+ j2 � c � y + ej; 2 � jxj+ j2 �C � x+Ejg

�

�

4 � (1� c �C) � x � y � 2 � (C � e � x+ c �E � y)

�

�

:

We note that

1 � r < 1=2 +

p

1=2;

and

% � jyj � r

hence for � := jxj=jyj

%=jyj � � � r=jyj:

Evidently,

2 � jyj � 1:

Now we are able to estimate the maximal dilatation of Df

�1

:

j2 � c � y + ej+ j2 � yj

j4 � (1� c �C) � x � y � 2 � (C � e � x+ c �E � y)j

�

2 � (1 + jcj) � jyj+ jej

4 � (1� jcj � jcj) � jxj � jyj � 2 � jcj � jej � jxj � 2 � jcj � jEj � jyj

=

1

4 � jyj

�

2 �

�

1 + �=r

2

�

� jyj+ �=r

(1� �

2

=r

4

) � � � jyj � (1 + �) � �

2

=r

3

=

1

4 � jyj

�

2 �

�

r

2

+ �

�

� jyj+ � � r

3

(r

4

� �

2

) � � � jyj � (1 + �) � �

2

� r

2

=

1

4 � jyj � r

�

2 �

�

r

2

+ �

�

� jyj+ � � r

3

(r

2

+ �) � � � jyj � (1 + �) � �

2

=

1

4 � jyj � r

�

2 � (r + 2 � �) � jyj+ � � r

3

((r + 2 � �) � jyj � �

2

) � � � �

2

:

Clearly this term becomes maximal with minimal � = %=jyj, hence

j2 � c � y + ej+ j2 � yj

j4 � (1� c �C) � x � y � 2 � (C � e � x+ c �E � y)j

�

1

4 � r

�

2 � (r + 2 � �) � jyj+ � � r

3

((r + 2 � �) � % � �

2

) � jyj � �

2

� %

This gets maximal for minimal jyj = %, thus

j2 � c � y + ej+ j2 � yj

j4 � (1� c �C) � x � y � 2 � (C � e � x+ c �E � y)j

�

1

4 � r � %

�

2 � (r + 2 � �) � % + � � r

3

(r + 2 � �) � %� 2 � �

2

=

1

4 � r � %

�

2 � (r + 2 � �) + %

0

� r

3

(r + 2 � �)� 2 � � � %

0

=

1

4 � r � %

�

2 � r + 4 � �+ %

0

� r

3

r + 2 � � � %

:
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The term on the right is a continuous function of ". For " = 1=4, hence � = 0 = %

0

and r = 1 = %, it

takes the value 1=2. Hence there exists a 0 � "

1

< 1=4, such that on G

1xy

, for some � < 1,







Df

�1







� �: (30)

This means that in this case Df

�1

is contracting with factor �, Df is expanding by at least 1=� on G

1xy

.

From now on let us assume that " � "

1

.

With (2) and f

�1

�

B

R

f

�

� B

R

f

we see that

K = lim

k!1

f

�k

�

B

R

f

�

:

Let us now investigate the set

(@K)

�

:= lim

k!1

f

�k

�

@B

R

f

�

:

We need the following lemma.

Lemma 3.6

Let K

i

, i 2 N be a sequence of non-empty compact polynomially convex sets in C

n

such that K

i+1

� K

i

.

Denote the intersection with K

1

, hence

K

1

:= lim

i!1

K

i

=

1

\

i=1

K

i

:

In this case

@

SH

K

1

� lim

i!1

@

SH

K

i

:

Proof: Let z

�

2 @

SH

K

1

. Hence for � > 0, 1=2 > � > 0 there exists a function #

�;z

�

2 A such that

sup

z2K

1

j#

�;z

�

(z)j = sup

z2B

�=2

(z

�

)\K

1

j#

�;z

�

(z)j = 1;

sup

z2{B

�=2

(z

�

)\K

1

j#

�;z

�

(z)j < �=4:

We choose a holomorphic mapping #

0

�;z

�

2 A

0

for which

sup

z2K

1

�

�

#

�;z

�

(z) � #

0

�;z

�

(z)

�

�

< �=4:

#

0

�;z

�

is de�ned on some neighbourhood of K

1

. #

0

�;z

�

is still a peak function for B

�=2

(z

�

), since

sup

z2B

�=2

(z

�

)\K

1

�

�

#

0

�;z

�

(z)

�

�

� 1� �=4;

sup

z2{B

�=2

(z

�

)\K

1

�

�

#

0

�;z

�

(z)

�

�

< �=4 + �=4:

We can �nd a �-neighbourhood B

�

(K

1

) of K

1

such that #

0

�;z

�

and the derivative D#

0

�;z

�

are de�ned in

B

�

(K

1

) and the derivative is bounded, i.e.

sup

z2B

�

(K

1

)

�

�

D#

0

�;z

�

(z)

�

�

< ! < 1:

We choose � > 0 such that

! � � < �=4;

� < �; �=2:

Then, for z 2 B

�

(K

1

)

sup

z2B

�

(K

1

)nB

�

(z

�

)

�

�

D#

0

�;z

�

(z)

�

�

< �=4 + �=4 + �=4 = 3 � �=4; (31)

sup

z2B

�

(z

�

)\K

1

�

�

D#

0

�;z

�

(z)

�

�

> 1� �=4� �=4 = 1� �=2: (32)
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Since K

1

= lim

i!1

K

i

we can �nd an index i

�

such that for i � i

�

K

i

� B

�

(K

1

):

#

0

�;z

�

restricted to K

i

(where i � i

�

) must take its maximal modulus in @

SH

(K

i

). From (31) and (32) we

deduce that

@

SH

(K

i

) \ B

�

(z

�

) 6= ;;

hence

@

SH

K

1

� lim

i!1

@

SH

K

i

:

2

Corollary 3.7

The Shilov boundary of K, which is contained in J by theorem 3.1, is contained in the limit of the

inverse images of the Shilov boundary of B

R

f

.

@

SH

K � (@K)

�

:= lim

k!1

f

�k

�

@

SH

B

R

f

�

: (33)

Proof: The sets f

�k

�

B

R

f

�

are Weil analytic polyhedra de�ned by

'

k;1

(x; y) :=

1

R

f

� �

1

� f

k

(x; y);

'

k;2

(x; y) :=

1

R

f

� �

2

� f

k

(x; y);

hence

@

SH

f

�k

�

B

R

f

�

= f

�k

�

@

SH

B

R

f

�

:

Now set K

i

:= f

�i

�

B

R

f

�

in lemma 3.6. 2

Lemma 3.8

(@K)

�

is homotopic to a torus in G

1xy

.

Proof: Note that since kDf(z)k 6= 0 for all z 2 @

SH

B

R

f

f j

f

�1

(

@

SH

B

R

f

)

: f

�1

�

@

SH

B

R

f

�

! @

SH

B

R

f

is a covering map of degree 4. This implies that the compact set f

�1

�

@

SH

B

R

f

�

is homeomorphic to

the torus @

SH

B

R

f

(see [27], p. 231). Fix an isotopy � in G

1xy

from @

SH

B

R

f

to f

�1

�

@

SH

B

R

f

�

such

that each point z = �(z; 0) 2 @

SH

B

R

f

is joined by a recti�able curve 


0

z

= �(z; [0; 1]) � G

1xy

to

�(z; 1) 2 f

�1

�

@

SH

B

R

f

�

. One can assume that the length of all 


z

is bounded by a constant �. We

de�ne a second family 


1

of curves in G

1xy

by taking 


1

z

to be the inverse image of the unique curve 


0

z

�

which starts in the endpoint of 


0

z

. Evidently the length of the curves 


1

z

is bounded by � ��. We proceed

inductively to obtain curves 


k

z

of length bounded by � � �

k

. Obviously the concatenation




1

z

:= 


0

z

� 


1

z

� 


2

z

� : : :

has bounded length � � �

�

1��

, hence a unique endpoint 
(z) exists. It is easy to see that


 : @

SH

B

R

f

! (@K)

�

z 7! endpoint of 


1

z

is a continuous surjective mapping.

A homotopy from @

SH

B

R

f

to (@K)

�

in G

1xy

is obtained in the following way. Note that � was given as

� : @

SH

B

R

f

� [0; 1] ! G

1xy
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with

�(z; 0) = z

for z 2 @

SH

B

R

f

, and

�(z; 1) 2 f

�1

�

@

SH

B

R

f

�

:

If we de�ne

�

1

(z; t) :=

(

t 2

�

1� 2

�k

; 1� 2

�(k+1)

�

: f

�k

�

�

�

�

z;

t+2

�k

�1

2

�(k+1)

��

t = 1 : 
(z);

where f

�k

�

is chosen such that trace

�

f

�k

�

�

�

z;

t+2

�k

�1

2

�(k+1)

��

yields 


k

z

, we obtain the desired homotopy. 2

We shall prove that in (33) we actually get equality of @K and (@K)

�

.

Lemma 3.9

For two disjoint compact disks D;E � B there exists a holomorphic function

' : B! B;

such that for given 1=2 > % > 0

inf

z2E

j'(z)j � 1� %; (34)

sup

z2D

j'(z)j � %: (35)

Proof: Without loss of generality we can assume that

D = B

�

(s);

E = B

�

(t)

with s; t 2 [0; 1], s < t, and �; � > 0, such that D;E � B and D \E = ;. For some �; # > 0

E � B

�

(1);

D \B

�+#

(1) = ;:

We realize ' as a mapping of the following form: For �; � > 0 we de�ne

'

�;�

: z 7!

�

1 + � � z

�

�

��

:

In order to obtain (34) and (35) it is su�cient to choose � and � such that

�

1 +

�

�

�

��

� �%; (36)

and

�

1 +

� + #

�

�

��

� %:

We deduce

� + #

��

p

% � 1

� � �

�

��

p

1� % � 1

; (37)

hence we have to choose � (depending on �; #; %) such that

� + #

#

�

��

p

% � 1

��

p

1� % � 1

:

As for 0 < % < 1=2

lim

�&0

��

p

%� 1

��

p

1� % � 1

= 1;

we can �nd such a � and can also choose a � which ful�lls (37). 2
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Corollary 3.10

For a �nite set of pairwise disjoint compact nonempty bidisks B

i

= D

i

� E

i

, i = 0; : : : ; r in B� B and

any constant 0 < � < 1=2 there exists a holomorphic function

' : B� B! B

such that

inf

z2B

0

j'(z)j � 1� �;

sup

z2B

i

i=i;:::;r

j'(z)j � �:

Proof: Fix 1=2 > % > 0 such that

1�

r

p

1� � � %;

r

p

% � %:

Since the B

i

are pairwise disjoint, for i = 1; : : : ; r,

D

i

\D

0

= ;; (38)

or

E

i

\E

0

= ;: (39)

In case (38) we use lemma 3.9 on D

i

; D

0

; % and obtain

'

i

: B ! B;

x 7! '

i

(x)

with

inf

x2D

0

j'

i

(x)j � 1� %;

sup

x2D

i

j'

i

(x)j � %:

We de�ne

 

i

: B� B! B

as

 

i

(x; y) := '

i

(x):

In case of (39) we apply 3.9 to E

0

; E

1

; % and obtain

'

i

: B ! B;

y 7! '

i

(y)

with

inf

y2E

0

j'

i

(y)j � 1� %;

sup

y2E

i

j'

i

(y)j � %:

We de�ne

 

i

: B� B! B

by

 

i

(x; y) := '

i

(y):

Evidently, ' : B� B! B de�ned by

'(x; y) :=

r

Y

i=1

 

i

(x; y)

has the desired properties. 2
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Remark 3.11

The generalization to the case of higher dimensional polydisks in B

n

, n > 2, is evident. Furthermore the

possibility of the replacement of B� B by B

R

f

is obvious. 2

Theorem 3.12

With z

�

the whole backward orbit

�

f

�k

i

(z

�

)

	

of z

�

is contained in @

SH

K (we index the 4

k

di�erent k-th

inverse branches by integers i).

Proof: We apply theorem 1.22. Fix one inverse branch f

�k

0

of f

k

. For U 3 f

�k

0

(z

�

) we �nd an open set

V 3 z

�

such that f

�k

0

� U and the inverse images f

�k

i

(V ) are contained in disjoint bidisks D

i

�E

i

� B

R

f

.

For V we have a peak function '

V

. For the D

i

� E

i

� B

R

f

we can construct ' as in corollary 3.10.

Then

�

U

: z 7! '(z) � '

V

� f

k

(z)

is a peak function for U . 2

As @

SH

K 6= ; there exists at least one point z

�

2 @

SH

K = @

SH

K \ (@K)

�

. We are done if we prove the

next theorem.

Theorem 3.13

For z

�

2 (@K)

�

the set of inverse images

�

f

�k

i

(z

�

)

	

is dense in (@K)

�

.

Proof: Fix z

0

2 (@K)

�

and � > 0. Let

� := diam ((@K)

�

)

and choose

k >

� � log(�)

log(�)

:

We have

d

�

f

k

(z

0

); z

�

�

� �;

hence if we apply f

�k

0

, the inverse branch of f

k

which maps f

k

(z

0

) to z

0

, we get that

d

�

z

0

; f

�k

(z

�

)

�

� � � �

k

< �:

2

Corollary 3.14

The Shilov boundary of K equals the set of limit points of the sequence

�

f

�k

�

@

SH

B

R

f

��

:

@

SH

K = (@K)

�

:

2

It is trivial to see that (@K)

�

is forward invariant and backward invariant. If z

�

2 (@K)

�

, hence z

�

is the

endpoint of some 


1

z

, where z 2 @

SH

B

R

f

, then f(z

�

) is endpoint of 


1

f��(z)

. If z

�

2 f

�1

(z

�

) then z

�

is

endpoint of some 


1

z

0

where �(z

0

) 2 f

�1

(z).

In order to determine J(f) completely it remains to show that @K n (@K)

�

� F (f).

Lemma 3.15

For z 2 G

1xy

either z 2 (@K)

�

or f

k

(z) eventually leaves G

1xy

(and stays outside according to (27)).

Proof: If for some z

0

f

k

(z

0

) 2 G

1xy

for all k 2 N we apply the same idea as in theorem 3.13. Fix

z

�

2 (@K)

�

and show that inverse images of z

�

come arbitrarily close to z

0

. (@K)

�

is closed, hence

z

0

2 (@K)

�

. 2

(27) covers the case of points mapped to G

0

; G

1x

; G

1y

, and G

1

. We also know that G

0

[ G

1

� F (f).

Thus we are left with the z 2 G

1xy

which are eventually mapped to G

1x

(or analoguously G

1y

) and whose

forward orbit stays in this set. We shall show that any z of this kind has a stability set C

z

given by a

complex analytic set in @K n (@K)

�

whose second projection is all of B

%

. As the f

k

map C

z

in K � B

R

f
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which is a bounded, hence hyperbolic set in C

2

, we see that

�

f

k

�

�

C

z

�

is normal convergent. Thus we are

left with �nding C

z

for the z 2 @K n (@K)

�

.

We shall start with the open set G

1xy

n (@K)

�

. For any z

�

2 G

1xy

n (@K)

�

the boundary of K in a

neighbourhood of z

�

is given as the limit of f

�k

(@B

R

f

n �(B

R

f

)). From lemma 3.4 and corollary 3.5

we deduce that in G

1xy

n (@K)

�

the elements of f

�k

(@B

R

f

n �(B

R

f

)) are in fact complex manifolds.

This enables us to apply the following theorem of Rutishauser's ([24], Satz 2, and [29], theorem (C)) to

construct C

z

�

.

Theorem 3.16

A sequence of (complex) analytic (C

i

) sets in a domain B whose areas or sheet numbers are bounded is

normal in that sense that one can extract a subsequence (C

�

i

) which converges in B to an analytic set of

the same dimension. 2

In our treatment of the remaining case z

�

2 G

1y

, G

1x

, resp., we follow [15], p. 271 �. The following

theorem allows much more general conditions than those given by the iteration of a torus map. The

reader might simultaneously follow the description on ps. 29 - 31, where we apply 3.17 in the case of a

torus map.

Let for some � > 0

e = (w; x; y) 2 B

�

(0; 0; 0) � C

3

:

(We will use B

�

(0; 0) for balls in C

2

, B

�

(0) in C

1

, resp.) Assume that we are given a sequence of

holomorphic maps

T

n

: B

�

(0; 0; 0)! C

3

;

with

T

0

(e) = e;

T

n

(e) :=

0

@

U

n

(w)

A

n

� x+ F

n

(e)

B

n

� y +G

n

(e)

1

A

;

where the complex constants A

n

; B

n

ful�ll the relations

jA

n

j � �;

jB

�1

n

j � 1=�;

with � < 1 and � > 1, hence in particular B

n

6= 0 for all n � 1. Furthermore let

U

n

(0) = 0;

F

n

(0; 0; 0) = 0;

G

n

(0; 0; 0) = 0;

and assume that, for all w

a

; w

b

2 B

�

(0),

jU

n

(w

a

)� U

n

(w

b

)j � jw

a

� w

b

j; (40)

�nally, for some 0 < � < 1=10 with

0 < � < 1� 2 � � < 1 + 5 � � < �;

and for all e

a

; e

b

2 B

�

(0; 0; 0), the relations

jF

n

(e

a

)� F

n

(e

b

)j

jG

n

(e

a

)� G

n

(e

b

)j

�

� �

2

� ke

a

� e

b

k (41)

shall hold. We obtain a second sequence of maps by setting

S

n

:= T

n

� : : : � T

1

:
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We de�ne its stability set D with respect to B

�

(0; 0; 0) as

D :=

1

\

n=1

D

n

; (42)

where D

n

denotes the set where S

n

is actually de�ned.

We shall prove the following theorem.

Theorem 3.17

Under the above assumptions there exists a holomorphic map

y

0

: B

�

(0; 0)! B

�

(0)

such that

D = f(w; x; y) : y = y

0

(w; x) on B

�

(0; 0)g : (43)

If we set

e

0

:= (w

0

; x

0

; y

0

(w

0

; x

0

))

for (w

0

; x

0

) 2 B

�

(0; 0), and

e

k

:= S

k

(e

0

) = (w

k

(x

0

; w

0

); x

k

(x

0

; w

0

); y

k

(w

0

; x

0

));

then for k � 0

e

k

= (0; 0; 0)

holds if and only if w

0

= x

0

= 0. Furthermore, for another pair (w

0

; x

0

) 2 B

�

(0; 0) we get

jy

k

(w

0

; x

0

)� y

k

(w

0

; x

0

)j � (1� 2 � �) � (� � jw

0

�w

0

j+ jx

k

(w

0

; x

0

)� x

k

(w

0

; x

0

)j); (44)

and

jx

k

(w

0

; x

0

) � x

k

(w

0

; x

0

)j � � � jw

0

�w

0

j+ (�+ 2 � �

2

)

k

� jx

0

� x

0

j: (45)

Moreover, y = y

0

(w; x) is \invariant\ on B

�

(0; 0), i.e.

y

k

(w

0

; x

0

) � y

0

(w

k

(w

0

; x

0

); x

k

(w

0

; x

0

)): (46)

Evidently, D is a possible choice for C

0

if we want to show weak normality of the family fS

n

g. For

the proof of 3.17 we need some additional relations.

Propositon 3.18

Let n > 0, e

0

; e

0

2 D

n

, and de�ne, for k 2 N, e

k

:= S

k

(e

0

), e

k

:= S

k

(e

0

).

a) The inequality

jy

m

� y

m

j � (1� 2 � �) � (� � jw

m

� w

m

j+ jx

m

� x

m

j) (47)

for some 0 � m < n (e.g., if w

m

= w

m

, x

m

= x

m

!) implies, for k = m + 1; : : : ; n, that

jy

k

� y

k

j � � � jw

k

�w

k

j+ jx

k

� x

k

j;

jy

k

� y

k

j � a

k�m

� jy

m

� y

m

j;

where

a := � � �=(1� 2 � �) > (1 + �)=(1� 2 � �) > 1:

b) The inequality

jy

n

� y

n

j < (1� 2 � �) � (� � jw

n

� w

n

j+ jx

n

� x

n

j)

together with the de�nitions

c

n

:=

n

X

k=0

(�+ �

2

)

k

;

c := lim

n!1

c

n

= 1=(1� �� �

2

);
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and, of course,

�

2

� c

n

< �

2

� c < �;

imply that, for k = 0; : : : ; n,

jy

k

� y

k

j � (1� 2 � �) � (� � jw

k

� w

k

j+ jx

k

� x

k

j); (48)

and

jx

k

� x

k

j � min

�

� � jw

0

� w

0

j+ (�+ �

2

)

k

; �

2

� c

k

	

< �: (49)

Proof: (of a)) (47) implies that

� � ke

m

� e

m

k � jy

m

� y

m

j=(1� 2 � �): (50)

By (40) and (41) we have

jw

m+1

� w

m+1

j � jw

m

�w

m

j

and

jx

m+1

� x

m+1

j � � � jx

m

� x

m

j+ � � jy

m

� y

m

j=(1� 2 � �);

so that, again by (47), as � < 1,

� � jw

m+1

� w

m+1

j+ jx

m+1

� x

m+1

j � (1 + �) � jy

m

� y

m

j=(1� 2 � �):

(50) and (40), (41) give

jy

m+1

� y

m+1

j � (� � �=(1� 2 � �)) � jy

m

� y

m

j = a � jy

m

� y

m

j:

Proof: (of b)) (48) is a direct consequence of a). In order to obtain (49), we note that (48) implies

je

k

� e

k

j � jw

k

� w

k

j+ jx

k

� x

k

j

� jw

0

� w

0

j+ jx

k

� x

k

j:

By (41)

jx

k+1

� x

k+1

j � �

2

� jw

0

�w

0

j+ (�+ �

2

) � jx

k

� x

k

j:

Now (49) follows by induction. 2

Propositon 3.19

Write

S

n

(e) = (P

n

(e); Q

n

(e); R

n

(e)):

Then there exists a holomorphic function

y

0n

: B

�

(0; 0)! B

�

(0)

such that

(w; x; y

0n

(x;w)) 2 D

n

;

and y

0n

(w; x) = 0 if (w; x) = 0, furthermore

R

n

(w; x; y) = 0

if and only if y = y

0n

(w; x).

Proof: Let

w

0

:= w

0

= w;

x

0

:= x

0

= x;

and

e

0

:= (w

0

; x

0

; y

0

) 2 D

n

;

e

0

:= (w

0

; x

0

; y

0

) 2 D

n

;
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hence (47) holds for m = 0, thus by 3.18 a)

jR

n

(w; x; y

0

)�R

n

(w; x; y

0

)j � a

n

� jy

0

� y

0

j: (51)

It follows that, for �xed (w; x), the equation

R

n

(w; x; y) = 0 (52)

can have at most one solution y.

We de�ne

F

n

:= f(w; x) : (52) has a solution y; (w; x; y) 2 D

n

g :

In particular, (w; x) = (0; 0) 2 F

n

6= ;.

We shall show that F

n

= B

�

(0; 0). By (51) we see that for D

y

R

n

(w; x; y) is invertible if (x; y) 2 D

n

, also

that










(D

y

R

n

)

�1










� 1=a

n

:

Now we set

D

0

:= D

y

R

n

(w

0

; x

0

; y

0

)

and write (52) as

y �D

�1

0

R

n

(w; x; y) = y;

so that a solution of (52) is a �xedpoint of the map

y 7! y �D

�1

0

R

n

(w; x; y) =: C

w;x

(y):

Since D

y

C

w;x

= 0 at (w

0

; x

0

; y

0

), we get for some # < 1 that

kD

y

C

w;x

k < # (53)

for (w; x; y) close to (w

0

; x

0

; y

0

). Let us assume that (53) actually holds in all of B

�

(0; 0; 0) where R

n

is

de�ned. Thus each C

w;x

is a contraction map of B

�

(0) into B

�

(0).

Now let (w; x) 2 F

n

so that

e

0n

(w; x) = (w; x; y

0n

(w; x)) 2 D

n

:

For k = 0; : : :, we put

e

kn

(w; x) := S

k

(e

0n

(w; x)) = (w

kn

(w; x); x

kn

(w; x); y

kn

(w; x)):

Thus

y

nn

(w; x) = R

n

(e

0n

(x; y)) = 0;

hence, if (w

0

; x

0

) 2 F

n

, proposition 3.18 b) gives

jy

kn

(w

0

; x

0

) � y

kn

(w

0

; x

0

)j � (1 � 2�) � (� � jw

0

� w

0

j+ jx

kn

(w

0

; x

0

)� x

kn

(w

0

; x

0

)j) (54)

and

jx

kn

(w

0

; x

0

)� x

kn

(w

0

; x

0

)j � � � jw

0

� w

0

j+ (� + �

2

)

k

� jx

0

� x

0

j (55)

for k = 0; : : : ; n.

In particular, for 0 � k � n, and 1 � m � n

jx

mn

(w; x)j � � � jwj+ (�+ �

2

) � jxj

< (�+ 2 � �) � �

< �;

and

jy

kn

(w; x)j � (1� 2 � �) � (2 � � � jwj+ jxj)

< (1� 4 � �

2

) � �

< �:

2
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Propositon 3.20

By the uniform continuity and the boundedness we obtain a holomorphic limit function

y

0

(w; x) := lim

n!1

y

0n

(w; x) (56)

on B

�

(0; 0) which contains the stability set (42)

D � f(w; x; y) : y = y

0

(w; x) on B

�

(0; 0)g ; (57)

furthermore, (44) and (45) hold.

Proof: Let 1 � k � n. Since

w

0n

(w; x) = w

0k

(w; x) = w

and

x

0n

(w; x) = x

0k

(w; x) = x;

proposition 3.18 a) with m = 0 in (47) and y

kk

= 0 give

� > jy

kn

j = jy

kn

� y

kk

j � a

k

� jy

0n

(w; x)� y

0k

(w; x)j:

This proves the statement concerning (56) as a > 1.

Keeping k �xed and letting n!1 in (54), (55) gives (44) and (45), hence

jy

k

j � (1� 4 � �

2

) � � < �

for k � 0, and, for k � 1,

jx

k

j � (�+ 2 � �) � � < �:

This implies (57). 2

Propositon 3.21

Relations (43) and (46) do hold.

Proof: We have to show the reverse to (57).

Suppose that (w; x; y) 2 D, but y 6= y

0

(w; x), and let, for k = 0; : : : ; n,

e

kn

(w; x) = S

k

(w; x; y

0n

(w; x));

and, for k 2 N,

e

k

(w; x) = S

k

(w; x; y)

Since

w

0n

= w

0

= w;

x

0n

= x

0

= x;

proposition 3.18 a) and y

nn

= 0 give

jy

n

j = jy

nn

� y

n

j

� a

n

� jy

0n

(w; x)� yj

� a

n

� jy

0

(w; x)� yj;

but the last term converges to in�nity, which contradicts (w; x; y) 2 D. Hence, for each (w; x) 2 B

�

(0; 0)

there is only one y such that e = (w; x; y) is the stability set.

(46) follows by application of this uniqueness statement. 2
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It is clear that y

0

constructed as above ful�lls all the conditions of theorem 3.17, which is hereby proven.2

Now let us return to the case of a torus map. We de�ne

%

�

:= 1=2� 1=2 �

p

";

then

G

�

1y

:= f(x; y) : % � jyj < r; jxj< %�g � G

1y

;

and analoguously G

�

1x

.

Assume that for a z

�

= (x

�

0

; y

�

0

) and all n 2 N

(x

�

n

; y

�

n

) := f

n

(x

�

0

; y

�

0

) 2 G

�

1y

:

Let us now de�ne a sequence of polynomial maps T

n

on B

�

(0; 0; 0) according to 3.17.

T

0

(w; x; y) := (0; x

�

0

; y

�

0

) + (w; x; y);

T

n+1

(w; x; y) :=

�

w; f ((x

�

n

; y

�

n

) + (x; y))� (x

�

k+1

; y

�

k+1

)

�

:

For k � 1, these maps have the form

T

n

(x; y) =

0

@

w

A

n

� x+ F

n

(x; y)

B

n

� y + G

n

(x; y)

1

A

where

A

n

= 2 � x

�

n

;

B

n

= 2 � y

�

n

;

and

F

n

(x; y) = (e + 2 � c � y

�

n

) � y + x

2

+ c � y

2

;

G

n

(x; y) = (E + 2 �C � x

�

n

) � x+ y

2

+C � x

2

;

We can choose

� := 2 � %

�

;

� := 2 � %:

For e

a

= (w

a

; x

a

; y

a

); e

b

= (w

b

; x

b

; y

b

) 2 B

�

(0; 0; 0) we obtain the estimates

jF

n

(e

a

)� F

n

(e

b

)j �

�

�

(e + 2 � c � y

�

n

) � (y

a

� y

b

) + (x

2

a

� x

2

b

) + c � (y

2

a

� y

2

b

)

�

�

� (je+ 2 � c � y

�

n

j+ jx

a

+ x

b

j+ jcj � jy

a

+ y

b

j) � ke

a

� e

b

k

�

�

�=r + 2 � �=r + 2� + 2 � � � �=r

2

�

� ke

a

� e

b

k; (58)

and

jG

n

(e

a

) �G

n

(e

b

)j �

�

�=r + 2 � � � %

�

=r

2

+ 2� + 2 � � � �=r

2

�

� ke

a

� e

b

k (59)

If we choose " big enough, say " > "

2

, and choose � small, we get that for all e

a

; e

b

in B

�

(0; 0; 0); n 2 N

�

,

jF

n

(e

a

) � F

n

(e

b

)j

jG

n

(e

a

) �G

n

(e

b

)j

�

< �

2

� ke

a

� e

b

k

where we can choose � such that

0 < � < 1=10

and

� < 2 �

p

"=5:
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Then, for all n 2 N

�

,

jA

n

j � 1� 2 � �; (60)

jB

n

j �

1

1 + 5 � �

(61)

We can apply theorem 3.17, once we have shown that the assumption on (53) holds. But let, for z

�

as

above,

�

A

n

B

n

C

n

D

n

�

:= Df(x

�

n

; y

�

n

);

then

�

A

n

B

n

C

n

D

n

�

:= Df

n

(x

�

0

; y

�

0

) =

�

A

n�1

B

n�1

C

n�1

D

n�1

�

� : : : �

�

A

0

B

0

C

0

D

0

�

:

For D

y

R

n

in (53) we have to consider

D

y

(�

2

� f

n

(x

�

0

; y

�

o

)) = D

n

in our case.

We obtain the relations

B

n+1

= A

n

� B

n

+B

n

� D

n

;

D

n+1

= C

n

� B

n

+D

n

� D

n

;

and (58), (59) imply that for all i 2 N

2 � r � jD

i

j � 2 � %;

jA

i

j < 2 � %

�

;

jB

i

j < �

2

;

jC

i

j < �

2

;

hence with

�

n

:=

�

�

�

�

B

n

D

n

�

�

�

�

we get

jB

n+1

j � 2 � %

�

� jB

n

j+ �

2

� jD

n

j;

jD

n+1

j � 2 � % � jD

n

j � �

2

� jB

n

j

= jD

n

j � (2 � % � �

2

� �

n

):

But we have

�

0

< �

2

=(2 � %) � 1

and

�

n+1

�

2 � %

�

� �

n

+ �

2

2 � %� �

2

� �

n

;

thus, if �

n

� 1, then

�

n+1

�

2 � %

�

+ �

2

2 � %� �

=

�+ �

2

� � �

2

<

(1� �)

2

1 + 5 � � � �

2

< 1:
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Thus the assumption holds for all n 2 N

�

since

jD

n+1

j � (� � �) � jD

n

j � jD

n

j � jD

0

j > 1:

We have constructed T

n

such that

S

n

(w; x; y) = (w; f

n

(z

�

+ z) � f

n

(z

�

));

hence the stability set D (dependent on z

�

) yields C

z

�

, hence z

�

2 F . We have shown that (@K)

�

= J .2

Corollary 3.22

For a torus map (8), (9), and (11) are equivalent de�nitions for the Julia set. 2

We are left with (10) and (12). We shall start with (12).

The family of plurisubharmonic (psh) functions on C

n

with minimal growth is de�ned as

G := fu psh on C

n

: u(z) � log(1 + kzk) + C

u

g

where C

u

is a constant. We de�ne for a compact K b C

n

G

�

K

(z) := sup fu 2 G : u � 0 on Kg :

The generalized Green function for K in C

n

is then given by

G

K

(z) := lim sup

�!z

G

�

K

(�):

G

K

is uniquely determined and by a result of Siciak (see [6]) one can compute G

K

by

G

K

(z) = sup

P2P

�

1

deg(P )

� log(jP (z)j)

�

; (62)

where P is a certain class of polynomials. By applying dd

C

to G

K

one obtains a current �

K

whose n-th

product induces a measure �

K

with support exactly the Shilov boundary @

SH

K of K.

In our situation (K = K(f) for a strict polynomial f : C

n

! C

n

of degree p � 2) we can take

P :=

�

�

i

� f

k

	

i=1;:::;n; k2N

in (62), since we deduce from (6) that for kzk > R

f

k

p

k

�1

1

� kzk

p

k

�







f

k

(z)







� k

p

k

�1

2

� kzk

p

k

;

and

1

p

k

� log

�

k

p

k

�1

1

� kzk

p

k

�

�

1

p

k

� log







f

k

(z)







�

1

p

k

� log

�

k

q

k

�1

2

� kzk

p

k

�

:

From

log kzk+

p

k

� 1

p

k

� log(k

1

) �

1

p

k

� log







f

k

(z)







� log kzk+

p

k

� 1

p

k

� log(k

2

)

we derive the existence of the limit

G

0

K

(z) := lim

k!1

1

p

k

� log







f

k

(z)







on {K. Minimal growth, continuity, and G

0

K

j

K

� 0 are evident. Hence G

0

K

= G

K

. As by construction

G

K

(f(z)) = d �G

K

(z);

we see that

�

K

� f = d

n

� �

K

;

which implies that �

K

has maximal entropy.

Since we already know that the Shilov boundary and the Julia set are equal, we obtain the following

equivalence.
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Corollary 3.23

For a torus map (8) and (12) are equivalent. 2

In order to give an alternative way to obtain �

f

, let us investigate the torus structure of J .

The torus S

1

� S

1

can be parametrized by

(x; y) = (exp(2�i � s); exp(2�i � t)) (63)

with s; t 2 I := [0; 1). The repelling periodic points of �

2

of order k are those points where s and t are

given by

s =

s

0

2

k

� 1

; t =

t

0

2

k

� 1

(64)

with integers 0 � s

0

; t

0

� 2

k

� 1. We want to determine the equivalents of those points for f . In order to

do so we establish a conjugation of the following type

S

1

� S

1

S

1

� S

1

J J:

�

2

j

S

1

�S

1

//

�

��

�

��

f

//

(65)

We will make use of the fact that the inverse images of (1; 1) 2 S

1

� S

1

under �

2

are dense in S

1

� S

1

(corresponding to all pairs of binary rationals (s; t) in [0; 1)� [0; 1)). By theorem 3.13 also the inverse

orbit of �(1; 1) under f is dense in J .

In order to �nd a suitable value for �(1; 1) (where (1; 1) corresponds to s = t = 0, resp.) let us investigate

the inverse branches of f on G

1xy

. If we �x X

0

; Y

0

2 G

1xy

, hence

% � jX

0

j; jY

0

j � r; (66)

and assume in addition

� �=2 < arg(X

0

); arg(Y

0

) < +�=2; (67)

then any inverse image (x; y) of (X

0

; Y

0

) must ful�ll the equation

�

x

2

+ k(y)

y

2

+ `(x)

�

=

�

X

0

Y

0

�

: (68)

By (27), also

% � jxj; jyj � r:

From (68) and

jk(y)j; j`(x)j � �

we deduce that the solution (x; y) with arguments close to 0 ful�lls

� (�=2 + 2 � arcsin (�=(2 � %)))/ 2 < arg(x); arg(y) < (�=2 + 2 � arcsin (�=(2 � %)))/ 2:

Hence if

arcsin(%

0

=2) < �=4

then (x; y) also ful�lls (66) and (67), and we can iterate the procedure. But we have

%

0

:= 1=2�

p

" < 1=2 <

p

2:

Thus we can apply the same inverse branch of f to (X

1

; Y

1

) := (x; y) and continue to get a sequence of

points (X

k

; Y

k

) with limit point (X

1

; Y

1

) 2 J which must be a �xedpoint of f . We set

�((exp(2�i � 0); exp(2�i � 0))) := (X

1

; Y

1

):

The mapping degree of f is 4, J is backward invariant and does not contain any critical point, thus

f

�1

(�(1; 1)) consists of �(1; 1) itself and three other points. We de�ne the one with y-argument close to
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0 to be �((exp(2�i � 1=2); exp(2�i � 0))). From the remaining two with y-argument close to �� we set the

one with x-argument close to 0 to be �((exp(2�i � 0); exp(2�i � 1=2))) the other to become �((exp(2�i �

1=2); exp(2�i � 1=2))). We can continue in the obvious fashion to get �((exp(2�i � s); exp(2�i � t))) for all

binary rationals (s; t) 2 [0; 1)� [0; 1). By (30) the mapping � thus de�ned on the points of S

1

� S

1

with

binary rational arguments is continuous and can be extended to all of S

1

� S

1

. By the above remark its

image is all of J and it is clear that the images of �((exp(2�i � s); exp(2�i � t))) with (s; t) like in (64) are

on the one hand dense in J on the other are periodic points of f . (30) shows that these points are in fact

repelling periodic points of f . We have shown that

J � fz : z is repelling periodic point of fg :

Clearly any periodic point in G

0

must be attracting and G

1

contains1 as only attracting periodic point.

The equivalence of (10) to the other de�nitions of J follows if we can show that there are no repelling

periodic points in G

1x

and G

1y

. But in the case of a �xedpoint z

�

of f

k

in one of these sets we can lift

the map f

k

: D ! D restricted to the stability set D of z

�

to a selfmap of the unitdisk:

~

f : B! B with

�xedpoint 0. The derivative of

~

f in 0 has modulus at most 1 according to the lemma of Pick ([22], p.

194). This contradicts










�

D

�

f

k

�
�

�1










< 1 for z

�

. We have shown the equivalence of (10) to the other

de�nitions of J for a torus map.

Remark 3.24

We should remark that the map � can be used to transport the Lebesgue-measure on S

1

�S

1

to J and

thereby obtain an invariant measure (by virtue of (65)) which has maximal entropy. (65) also shows that

f j

J

is actually topologically mixing. 2
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