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Abstract

For characteristic subsets of in�nite binary shift spaces, we derive lower bounds for

the Hausdor� dimension with respect to Gibbs measures. Using these estimates,

we then obtain a more re�ned fractal analysis of dissipative phenomena for the

dynamical system which inspired van Strien and Nowicki to construct Julia sets

of positive Lebesgue measure.

I. Introduction.

An application of a result in this paper will give a more re�ned fractal analysis of the

dynamical system which was used in [4] and which led in [7] to a construction of Julia

sets of positive 2-dimensional Lebesgue measure.

The results are �rst described best in terms of this example. For this, we recall

that the model used in [7] may be equipped with metrical structures indexed by the

parameter interval (0; 1) . All that was required in [7] was that for parameter values

greater than 1=2 , the basin of attraction of the `critical point 0 ' is of positive Lebesgue

measure. This naturally raises the question concerning the fractal complexity of the

basin of attraction for parameter values less than or equal to 1=2 . Now, an application

of our method will produce an answer to this question. In particular, by deriving an

exact formula for the Hausdor� dimension of the basin of attraction, we deduce that

the dimension varies continuously in relation to the `metrical parameter'.

In order to demonstrate this application more precisely, we �rst have to recall the

model from [7]. For this, let 0 < q < 1 be �xed. Further, de�ne 
 := (0; 1] =

S

n�0




n

,

where 


n

:
= (q

n+1

; q

n

] for n 2 IN . Let T : 
 ! 
 be the transformation which is

given by (see Fig. 1):

T (!) =

8

<

:

! � q

1 � q

for ! 2 


0

! � q

n+1

q(1� q)

for ! 2 


n

; n � 1 :

�
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We shall prove the following result (see Fig. 2):

Theorem 1.

If D
:
= f! 2 
 : T

n

! ! 0g denotes the domain of attraction of 0 , then

dim

H

(D) =

8

>

<

>

:

� log 4

log q(1� q)

for 0 < q � 1=2

1 for 1=2 � q < 1 :

Fig 1. Graph of T for q = 0:7 Fig 2. dim

H

(D) as a function of q:

The proof of the more delicate part of this result, i. e. the estimate of the lower bound

for 0 < q < 1=2 , will be a consequence of the following general metrical result on

binary shift spaces. { The proof of the following theorem will be given in section 2, and

we refer to that section for the de�nition of Gibbs measures with respect to potentials

and Hausdor� dimensions with respect to measures.

Theorem 2.

Let � be a Gibbs measure on X = f0; 1g

IN

with respect to some potential function f .

Let X be equipped with the usual left shift map � . If D � X supports a � -invariant

ergodic probability measure, then

dim

�

(D) � sup

n

h

�

(�)

�(f)

: � is a �-invariant ergodic probability measure on D

o

;

where h

�

(�) denotes the metric entropy of � with respect to � .
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II. Gibbs measures and lower bounds on dimensions in general.

Consider the binary product space X := f0; 1g

IN

, and let � denote the usual left

shift map on X . Let X be equipped with the product topology, i. e. with the smallest

topology for which the cylinder sets [b

1

; : : : ; b

n

] := f(x

1

; x

2

; : : :) 2 X : x

k

= b

k

for 1 �

k � ng are open, for all (b

1

; : : : ; b

n

) 2 f0; 1g

n

; n 2 IN . In particular, Borel measurability

will refer to this topology. Also, let Z denote the (countable) collection of all cylinder

sets in X ; for a function f on X we adopt the usual notation S

n

f
:
=

P

n�1

k=0

f

�

�

k

:

De�nition 1. (cf. [2])

For a strictly positive, bounded, measurable function f on X; a Borel measure � on

X is called Gibbs with respect to the potential f , if there exists a constant C � 1 such

that, for all x = (x

1

; x

2

; : : :) 2 X and n � 1 ,

C

�1

� exp(�S

n

f(x)) � �[x

1

; : : : ; x

n

] � C � exp(�S

n

f(x)) :

De�nition 2. (cf. [1])

For a �nite measure � on X; F � X; s � 0; � > 0 , let M

s

�

(F )
:
= lim

�#0

M

s

�;�

(F );

where M

s

�;�

(F )
:
= inf

n

P

z2W

�(z)

s

: W � Z s.t. F �

S

z2W

z; �(z) � � 8z 2 W

o

:

Then dim

�

(F ) , the Hausdor� dimension of F with respect to � , is de�ned by

dim

�

(F )
:
= inf fs � 0 :M

s

�

(F ) = 0g :

Note, it is always true that dim

�

(F ) � 1: Furthermore, if �(F ) > 0; then 0 <

M

1

�

(F ) <1 and thus dim

�

(F ) = 1:

We now turn to the proof of Theorem 2, where we refer to the introduction for the

actual statement of this theorem.

Proof of Theorem 2.

Recall the following result of Billingsley ([1]), which states that if m

1

;m

2

are �nite

measures on X; and if # � 0 and F � X are such that

lim

n!1

log m

1

[x

1

; : : : ; x

n

]

log m

2

[x

1

; : : : ; x

n

]

= # for all x = (x

1

; x

2

; : : :) 2 F ;

then dim

m

2

(F ) = # � dim

m

1

(F ):

Now let D � X , and �x a �-invariant ergodic probability measure � concentrated

on D . By monotonicity we may assume that D is measurable. De�ne

D

�

:
=

n

x 2 D : �

1

n

log �[x

1

; : : : ; x

n

]! h

�

(�) and

1

n

S

n

f(x)! �(f)

o

:
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Since f is bounded and hence integrable, we may apply the Shannon-McMillan-Breiman

Theorem (cf. [1], [3]) and the Ergodic Theorem, from which we deduce that D

�

has

full �-measure. Consequently it follows that dim

�

(D

�

) = 1:

Finally, since f > 0 and � is Gibbs with respect to f , we have that, for all x 2 D

�

;

lim

n!1

log �[x

1

; : : : ; x

n

]

log �[x

1

; : : : ; x

n

]

=

h

�

(�)

�(f)

;

and thus, by Billingsley's result,

dim

�

(D) � dim

�

(D

�

) =

h

�

(�)

�(f)

� dim

�

(D

�

) =

h

�

(�)

�(f)

;

which gives the theorem.

2

In the remaining part of this section we shall give some applications of Theorem 2.

In particular we shall see how to apply the theorem in order to derive estimates for

Hausdor� dimensions of certain subsets of the reals.

Let 
 � IR denote a bounded interval of the real line. Suppose that � : 
! X
:
= f0; 1g

IN

is injective, and that �

�1

(B) is a non-empty interval for each non-empty cylinder set

B = [b

1

; : : : ; b

n

] in X: A map � with these properties is called a binary coding of 
:

Note that � is Borel measurable.

The proof of the following proposition, where we have imposed a stronger regularity

condition on � , is an immediate consequence of Theorem 2 and Lemma 1 below.

Proposition 1.

Let � denote the Lebesgue measure on 
: If F � 
 is measurable and if the binary

coding � has the property that �

�

�

�1

is Gibbs with respect to some f , then

dim

H

(F ) � sup

n

h

�

(�)

�(f)

: � is a �-invariant ergodic probability measure on �(F )

o

;

where the supremum is de�ned to be 0 if there is no such �:

Lemma 1.

Assume the situation of Proposition 1. For s � 0 let H

s

denote the s-dimensional

Hausdor� measure on 
 . If we de�ne �
:
= �

�

�

�1

; then there exists a constant c � 1

such that

H

s

(F ) �M

s

�

(�(F )) � c �H

s

(F ) :

Hence, in particular we have that dim

H

(F ) = dim

�

(�(F )):
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Proof. By assumption, the � -preimage of z 2 Z is an interval. Hence j�

�1

zj =

�(�

�1

z) = �(z); which gives the �rst inequality of the lemma.

In order to prove the second inequality, let � be Gibbs with respect to f . Let C be

the constant in the de�nition of the Gibbs property of � . Then, for any x 2 X and

n � 1;

�[x

1

; : : : ; x

n

] � C � exp(�S

n

f(x));

C

�1

� exp(�S

n

f(x)) � exp(�f

�

�

n

(x)) � �[x

1

; : : : ; x

n+1

]:

If we de�ne �

f

:
= C

2

� e

kfk

1

, it follows that �[x

1

; : : : ; x

n

] � �

f

� �[x

1

; : : : ; x

n+1

]:

We shall now �rst show that for any interval U � 
 , there exist two cylinders

z;w 2 Z such that max(j�

�1

zj; j�

�1

wj) � �

f

� jU j and U � �

�1

z [ �

�1

w .

For this, we require a nested sequence fW

k

g

k�1

of partitions of X; where each

W

k

consists of precisely k cylinders. We construct this by induction as follows. Let

W

1

:
= fXg; and assume that W

k

is de�ned. Choose one of the elements z 2 W

k

which are of maximal � -measure. Then, split this z = [a

1

; : : : ; a

n

] into two cylinders

z

0

:
= [a

1

; : : : ; a

n

; 0] and z

1

:
= [a

1

; : : : ; a

n

; 1] , and de�ne the resulting partition to be

W

k+1

: We clearly have that Z =

S

k�1

W

k

: Also, the estimates above imply that

�(v) � �

f

� �(w) for v 2 W

k

; w 2 W

k+1

such that w � v:

Suppose that U � 
 is an interval, where we may assume without loss of generality

that U 6= 
: Let k be the smallest number such that there exists �v 2 W

k

with

�

�1

�v � U (in particular k � 2 ). Let v be the unique element of W

k�1

such that

�v � v: Since �

�1

v 6� U , we have that v 6= �v; which implies that v is one of the

elements in W

k�1

of maximal �-measure. Hence, for all �w 2 W

k�1

;

j�

�1

�wj = �( �w) � �(v) � �

f

� �(�v) = �

f

� j�

�1

�vj � �

f

� jU j:

Now, since �

�1

�w 6� U for all �w 2 W

k�1

, there exists w 2 W

k�1

such that U �

�

�1

v [ �

�1

w ; which gives the assertion above.

In order to complete the proof of the lemma, choose s � 0 such that H

s

(F ) <1:

For � > 0 , let I = I(F; �) be the set of countable coverings of F by intervals of length

at most �=�

f

: Choose a covering fU

k

g 2 I such that, for some " > 0 ,

X

k

jU

k

j

s

� inf

fI

j

g2I

X

j

jI

j

j

s

+ " � 2

s

�H

s

�=�

f

(F ) + " � 2

s

�H

s

(F ) + " ;

where the second inequality is a standard estimate (see e.g. [6]). Further, for each

k , choose v

k

; w

k

2 Z such that max(j�

�1

v

k

j; j�

�1

w

k

j) � �

f

� jU

k

j � � and U

k

�

�

�1

v

k

[ �

�1

w

k

:
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Then

M

s

�;�

(�F ) �

X

k

�(v

k

)

s

+ �(w

k

)

s

� 2�

s

f

X

k

jU

k

j

s

� 2�

s

f

(2

s

�H

s

(F ) + ") :

Since � and " were arbitrary, it follows that M

s

�

(�F ) � 2(2�

f

)

s

H

s

(F ) .

2

We end this section by giving a criterion with which a measure on X may be shown to

be Gibbs with respect to some potential. For this, we de�ne a metric d on X; which

is compatible with the product topology. For x; y 2 X (x 6= y) , let

d(x; y)
:
= exp(�minfn � 1 : x

n

6= y

n

g) :

Lemma 2.

Let � denote a �nite Borel measure on X such that �

�

� is locally (i. e. restricted

to the cylinders [0 ] and [1 ] ) equivalent to �: If I

�

:
= log(d�

�

�=d�) has a H�older

continuous version f with respect to d , then � is Gibbs with respect to f:

Proof. The H�older continuity of f with respect to d implies that there exists 0 < � < 1

and c > 0 such that jf(x)� f(y)j � c �

n

for all n � 1; x 2 X and y 2 [x

1

; : : : ; x

n

]:

Recursively, this gives jS

n

f(x)� S

n

f(y)j � c (� + �

2

+ : : :+ �

n

) � c

0

for all x 2 X

and y 2 [x

1

; : : : ; x

n

]; where c

0

is not dependent on n: Hence

�(X) = �

�

�

n

[x

1

; : : : ; x

n

]

=

Z

[x

1

;:::;x

n

]

d�

�

�

n

d�

d�

=

Z

[x

1

;:::;x

n

]

exp(S

n

f) d�

� exp(S

n

f(x))�[x

1

; : : : ; x

n

]

(where � denotes bounded ratios, with positive bounds independent of n and x ).

Now, since (X; d) is a bounded metric space, the H�older continuity of f implies

that f is bounded.

2
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III. The Hausdor� dimension for the dynamical model.

In this section we shall give the proof of Theorem 1. The reader is asked to recall the

de�nition of the dynamical system (
; T ) , which was given in the introduction.

Before starting with the actual estimates on the Hausdor� dimension of the basin

of attraction, which will be given in section IIIa and IIIb, we introduce two symbolic

representations of 
 = (0; 1]: For 0 < q < 1 , consider the diagram:




X

�

�

q

 

q

�

�

�

�*

H

H

HY

6

Where �; �

q

;  

q

and � are de�ned as follows:

�

q

: This is a simple binary coding, which is obtained by induction as follows. We

start with 
 , and divide 
 into two intervals, both open to the left and closed

to the right, such that the length of the left interval is proportional to q , whereas

the length of the right one is proportional to 1� q: The left subinterval is coded

by 0, and the right one by 1. Now, we treat each of these two intervals separately

as we were treating 
 before and code the so derived four intervals from left

to right by 00; 01; 10 and 11 . The continuation of this process gives that each

element in 
 is uniquely represented by an in�nite binary word. Now, the map

�

q

: 
! X = f0; 1g

IN

associates to each element in 
 its so derived in�nite

word. The map �

q

is easily seen to be a binary coding.

 

q

: This coding is based on an in�nite alphabet, and it is more closely related to the

dynamics of T . According to the rule \ y

k

= n , T

k�1

(!) 2 


n

", associate to

each ! 2 
 an element y = (y

1

; y

2

; : : :) 2 IN

IN

0

. This de�nes a bijection between


 and the set

�
:
= fy 2 IN

IN

0

: y

n+1

� y

n

� 1 for every n � 1 g ;

and the map  

q

: �! 
; obtained in this way, is equivariant in the sense that

 

q

�

�

�

= T

�

 

q

(where �

�

denotes the left shift map on � ).

� : The map � is de�ned by �
:
= �

q

�

 

q

. Clearly, by construction, � maps � in-

jectively into X:

We shall now see that � does not depend on q , which will then also justify the `missing

index' for � . For this we shall describe recursively the preimages �

�1

B of cylinder sets

B � X:

Let Z

1

denote the set of all non-empty cylinders in � .
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We introduce the following abbreviation for a certain type of subsets of � :

[b

1

: � � � :b

k

j b

k+1

]
:
= [b

1

: � � � :b

k

] n

b

k+1

[

c=max(b

k

�1;0)

[b

1

: � � � :b

k

:c ] ;

for k � 0 and b

1

; : : : ; b

k+1

2 IN

0

such that b

n+1

� b

n

�1 for all 1 � n � k (for k = 0 ,

the `left-hand side' is written as [ j b

1

] ). Note that the so de�ned sets are not empty.

Let Z

0

denote the set of all subsets of � , which are obtained in this way.

It will turn out that the � -preimage of a cylinder [a

1

; : : : ; a

n

] � X is in fact contained

in Z

a

n

, for a

n

= 0; 1 .

Clearly, we have that �

�1

[0 ] = [ j 0] and �

�1

[1 ] = [0]: Now, for n � 1 , let a

1

; : : : ; a

n

2

f0; 1g be given. If a

n

= 0 and if �

�1

[a

1

; : : : ; a

n�1

; 0] is equal to [b

1

: � � � :b

m

j b

m+1

] say,

then

�

�1

[a

1

; : : : ; a

n

; 0; 0] = [b

1

: � � � :b

m

j b

m+1

+ 1] ;

�

�1

[a

1

; : : : ; a

n

; 0; 1] = [b

1

: � � � :b

m

:b

m+1

+ 1] :

On the other hand, if a

n

= 1 and if �

�1

[a

1

; : : : ; a

n�1

; 1] is equal to [b

1

: � � � :b

m

] say,

then

�

�1

[a

1

; : : : ; a

n

; 1; 0] = [b

1

: � � � :b

m

j b] ;

�

�1

[a

1

; : : : ; a

n

; 1; 1] = [b

1

: � � � :b

m

:b ] ;

where b
:
= max(b

m

�1; 0): (Warning: Do not confuse cylinders in di�erent shift spaces).

This method gives us a description of all possible � -preimages of cylinder sets in X .

In particular, it is now easy to see that � is in fact independent of q .

It seems helpful to give an illustration of our construction. The following diagram

shows the preimages of all cylinders of length up to n = 4 . For example, �

�1

[0000] =

[ j 3]; �

�1

[0011] = [21] , �

�1

[1111] = [0000] , : : : :

[ ]

[ 0] [0]

[ 1] [1] [0 0] [00]

[ 2] [2] [1 0] [10] [0 1] [01] [00 0] [000]

[ 3] [3] [2 1] [21] [1 1] [11] [10 0] [100] [0 2] [02] [01 0] [010] [00 1] [001] [000 0] [0000]

Fig 3.
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Note that not every point in X corresponds to a point in � ; for example, the utmost left

sequence [ ]; [ j 0]; [ j 1]; [ j 2]; [ j 3]; : : : (corresponding to the point (0000 : : :) 2 X )

decreases in � to the empty set.

The following lemma speci�es the measure-theoretical structures on � and X , which

are induced by the Lebesgue measure on 
 . The lemma is an immediate consequence

of the topological Markov property and the local linearity of T , and we omit its proof.

Lemma 3.

If � denotes the Lebesgue measure on 
 , then

� �

q

:
= �

�

�

�1

q

is the (q; 1� q)-Bernoulli measure on X = f0; 1g

IN

;

� ~�

q

:
= �

�

 

q

is the Markov measure on � with initial distribution � and transition

matrix �; which are given for j; k 2 IN

0

by

�

k

:
= (1 � q)q

k

; �

jk

:
=

8

>

<

>

:

�

k

: j = 0;

�

k�j+1

: j � 1; k � j � 1;

0 : else :

We remark that ~�

q

has the simple probabilistic interpretation as the distribution of

the length of a waiting queue where the number of arriving people per unit time is

geometrically distributed according to �; while one person is served and leaves the

queue (cf. [5]). Also, note that �� 6= �; i. e. the Markov process is not stationary.

III a. Lower bound on dimension.

In this subsection we shall derive for the system (
; T ) the lower bound for the Haus-

dor� dimension of the basin of attraction of the `critical point' 0 .

Proposition 2.

Let D
:
= f! 2 
 : T

n

! ! 0g denote the basin of attraction of 0 . If 0 < q < 1 , then

dim

H

(D) �

(

� log 4= log q(1� q) for q � 1=2

1 for q > 1=2 :

Proof. Let 0 < q < 1 be �xed. We intend to apply Proposition 1 to the binary coding

�

q

: For this, we remark �rst that, by Lemma 2, �

q

= �

�

�

�1

q

is Gibbs with respect to

the H�older continuous function f

q

, which is de�ned, for x = (x

1

; x

2

; : : :) 2 X , by

f

q

(x)
:
=

(

� log q for x

1

= 0;

� log (1 � q) for x

1

= 1:
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We shall show that, for 1=2 < p < 1 , the (p; 1 � p)-Bernoulli measure �

p

(which is

shift invariant and ergodic) is concentrated on �

q

(D): For p in this range, de�ne

�

p

:
=

�

y 2 � :

y

n

n

!

2p � 1

1 � p

�

:

Since (2p � 1)=(1 � p) > 0 and since y

n

! 1 for any y 2 �

p

; it follows that

T

n

( 

q

(y))! 0; from which we deduce that  

q

(�

p

) � D; and hence � (�

p

) � �

q

(D):

By using the interpretation of ~�

p

in terms of a waiting queue, we shall now show that

~�

p

(�

p

) = 1 , which will then imply the desired �

p

(�

q

(D)) = 1:

For this, let Y

0

; Y

1

; : : : denote a sequence of independent and identically distributed ran-

dom variables, de�ned on some abstract probability space (


0

;A; P ) . The distribution

of Y

0

is given by

P (Y

0

= k) = (1 � p)p

k

for k 2 IN

0

:

Also, de�ne random variables X

0

;X

1

; : : : by

X

0

= 0; X

k

= max(X

k�1

� 1; 0) + Y

k�1

for k � 1 :

It can be checked that ~�

p

is precisely the image distribution of P under the map




0

! IN

IN

0

; ! 7! (X

1

(!);X

2

(!); : : :) :

Hence, all we need to show is that

X

n

n

!

2p � 1

1� p

P -almost everywhere :

Let ! 2 fn

�1

P

n�1

k=0

Y

k

! p=(1 � p)g: Since p > 1=2 , there exists n

0

(dependent on

! ), such that

P

n�1

k=0

Y

k

(!) > n (and hence X

n

(!) � 1 ) for all n � n

0

: This implies

that

X

n+1

(!) = X

n

(!)� 1 + Y

n

(!); for all n � n

0

;

and by recursion we get

X

n

(!) = X

n

0

(!)� n+ n

0

+

n�1

X

k=n

0

Y

k

(!); for all n � n

0

+ 1 ;

which then implies that

lim

n!1

1

n

�

X

n

(!) �

n�1

X

k=0

Y

k

(!)

�

= �1 :
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Summarizing the above, we now have that

P

�

X

n

n

!

2p � 1

1� p

�

� P

�

1

n

n�1

X

k=0

Y

k

!

p

(1� p)

;

1

n

�

X

n

�

n�1

X

k=0

Y

k

�

!�1

�

= P

�

1

n

n�1

X

k=0

Y

k

!

p

(1� p)

�

= 1 ;

where the latter equality follows by use of the law of large numbers, taking into account

that the expectation of Y

0

is equal to p=(1 � p) .

We are now in the position to apply Proposition 1, from which we deduce that

dim

H

(D) � sup

1=2<p<1

h

�

p

(�)

�

p

(f

q

)

:

An elementary calculation shows that

h

�

p

(�)=�

p

(f

q

) =

p � log p+ (1 � p) � log(1� p)

p � log q + (1 � p) � log(1� q)

=: �(p; q) :

Hence, the following two observations clearly complete the proof of the proposition:

q � 1=2 : �( � ; q) is monotonically decreasing on (1=2; 1); hence

sup

1=2<p<1

�(p; q) = �(1=2; q) = � log 4= log q(1� q) ;

q > 1=2 : there is p 2 (1=2; 1) such that �(p; q) = 1; namely p
:
= q:

2

III b. Upper bound on dimension.

In this subsection we shall deal with the remaining direction of the estimate for the

Hausdor� dimension of the basin of attraction D . The proof of the following proposition

will be prepared by means of two technical lemmata. In particular, Theorem 1 will be

an immediate consequence of combining this proposition with Proposition 2.

Proposition 3.

If again D
:
= f! 2 
 : T

n

! ! 0g denotes the basin of attraction of 0 , then we have,

for 0 < q < 1=2 ,

dim

H

(D) � � log 4= log q(1� q) :
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The idea is to construct e�ective �nite coverings of the set

�

0

:
= fy 2 � : y

n

> 0 for all n � 1 g :

For this, we de�ne W

m

:
= fw = (w

1

: � � � :w

m

) 2 IN

m

: w

1

= 1; w

n+1

� w

n

+ 1g , for

m � 1 . Note that w

k

� k , for 1 � k � m and w 2 W

m

: In the following the sets W

m

will serve as index sets.

To each w 2

S

m

W

m

we associate an element of Z

0

(cf. beginning of sect. III),

which will be denoted by hwi: Subsequently, for each m � 1 , fhwi : w 2 W

m

g will be

a covering of �

0

.

To start with, we de�ne

h1i
:
= [ j 0] :

Now, let m � 1 and w 2 W

m

; and assume that hwi is de�ned and of the form

[V jw

m

� 1] ; (1)

where V is a word of �nite length in symbols chosen from IN

0

: (In case m = 1 , we

allow V to be empty). For 1 � j � w

m

; we de�ne

hw:ji
:
= [V:w

m

:w

m

� 1: � � � :j j j � 1] ;

and also

hw:w

m

+ 1i
:
= [V jw

m

] :

Note that hw:ji is again in any case of the form (1), hence we can formally iterate the

procedure to de�ne hwi for any w 2

S

m

W

m

:

We aim to show that hwi may be written as a disjoint union of sets of this form and

a cylinder of the form [: : : :0] , i. e.

hwi = hw:w

m

+ 1i

_

[ � � �

_

[ hw:2i

_

[ hw:1i

_

[ [V:w

m

:w

m

� 1: � � � :1:0] : (2)

In order to prove (2), we remark that the `binary dividing mechanism', which we

used already before (cf. Fig. 3), gives that

hwi = [V jw

m

� 1] = [V jw

m

] [ [V:w

m

] = hw:w

m

+ 1i [ [V:w

m

] :

Next, we devide [V:w

m

] into two disjoint parts:

[V:w

m

] = [V:w

m

jw

m

� 1] [ [V:w

m

:w

m

� 1]

= hw:w

m

i [ [V:w

m

:w

m

� 1]:
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If we continue, always partitioning the `right' cylinder in this way, the �nal devision

will be

[V:w

m

:w

m

� 1: � � � :1] = [V:w

m

:w

m

� 1: � � � :1 j 0] [ [V:w

m

:w

m

� 1: � � � :1:0]

= hw:1i [ [V:w

m

:w

m

� 1: � � � :1:0] :

By putting this `telescope' together, we derive the decomposition (2).

We remark that at each step (from m to m+1 ), we `throw away' cylinders of the form

[� � � :0] , which clearly have empty intersection with �

0

: Hence, since �

0

� [ j 0] = h1i;

we have in particular that, for each m � 1 ,

�

0

�

[

w2W

m+1

hwi �

[

w2W

m

hwi : (3)

Also, the proof of (2) shows how to compute the ~�

q

-measure of a cylinder hw:ji ,

once the measure of hwi is known. Namely, for 0 < q < 1 , and if w 2 W

m

and

1 � j � w

m

+ 1 , we have that

~�

q

(hw:ji) = ~�

q

(hwi) q (1 � q)

w

m

+1�j

;

which recursively leads to

~�

q

(hw:ji) = ~�

q

(hw

1

i) q

m

(1 � q)

w

1

+m�j

:

Thus, since w

1

= 1 and ~�

q

(hw

1

i) = ~�

q

([ j 0]) = q; we see that, for any w 2 W

m

;

~�

q

(hwi) =

�

q(1� q)

�

m

�

1� q

�

�w

m

: (4)

Hence, we have in particular, since w

m

� m;

~�

q

(hwi) � q

m

;

which implies that

sup

w2W

m

~�

q

(hwi) ! 0 (m!1) : (5)

For estimating sums of the form

P

w2W

m

~�

q

(hwi)

s

, we require the following upper

bound for the number of w's in W

m

whose last coordinate w

m

is �xed.
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Lemma 4.

If m � 1 and 1 � j � m; then card fw 2 W

m

: w

m

= jg < 2

2m�j

:

Proof. The lemma is obviously true for m � 2: For m � 3 , we shall now �rst show by

induction that

c

m;j

�

�

2m� j � 2

m� 2

�

; (6)

where we have set c

m;j

:
= card fw 2 W

m

: w

m

= jg .

It is clear that (6) holds for m = 3 , since c

3;1

= 2 <

�

3

1

�

; c

3;2

= 2 =

�

2

1

�

; c

3;3

= 1 =

�

1

1

�

:

Hence, we may assume that m � 4; and that (6) is valid for m� 1: Then

c

m;j

= card fw 2 W

m�1

: w

m�1

� j � 1g

=

m�1

X

k=max(1;j�1)

c

m�1;k

�

m�1

X

k=j�1

�

2(m� 1)� k � 2

m� 3

�

:

Using

P

N

n=0

�

a+n

a

�

=

�

a+N+1

a+1

�

and setting n
:
=m� k � 1 , we derive (6), namely

c

m;j

�

m�j

X

n=0

�

m+ n� 3

m� 3

�

=

�

2m� j � 2

m� 2

�

:

Finally, from Stirling's formula, we have that

�

2n

n

�

< 2

2n

holds for each n 2 IN , which

then implies that (where [x] denotes max fn 2 Z : n � xg )

�

2m� j � 2

m� 2

�

�

�

2(m� [j=2]� 1)

m� 2

�

�

�

2(m� [j=2]� 1)

m� [j=2]� 1

�

< 2

2(m�[j=2]�1)

< 2

2m�j

:

2

For the following lemma, recall the de�nition of �(p; q) at the end of the proof of

Proposition 2.
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Lemma 5.

For 0 < q < 1=2 , there exists a constant C > 0 , which depends only on q , with the

following property. For each �(1=2; q) < s � 1 there exists 0 < � < 1 such that, for

m � 1 ,

X

w2W

m

~�

q

(hwi)

s

� C � �

m

:

Proof. We may assume that m � 3: Using (4), we get

X

w2W

m

~�

q

(hwi)

s

=

�

q(1� q)

�

sm

X

w2W

m

(1 � q)

�sw

m

=

�

q(1� q)

�

sm

m

X

j=1

c

m;j

(1� q)

�sj

<

�

q(1� q)

�

sm

2

2m

m

X

j=1

�

2

�1

(1 � q)

�s

�

j

:

From q < 1=2 and s � 1 it follows that 2

�1

(1 � q)

�s

� 1=(2(1 � q)) < 1 , which

implies that

P

m

j=1

�

2

�1

(1 � q)

�s

�

j

is bounded, independent of s and m: Also, from

s > �(1=2; q) = � log 4= log q(1 � q) we deduce that (q(1 � q))

s

< 1=4: Setting � :=

4(q(1� q))

s

, the lemma follows from these two latter observations.

2

Now, Lemma 5, combined with the facts in (3) and (5), has the following immediate

consequence.

Corollary 1.

If 0 < q < 1=2 and �(1=2; q) < s � 1 , then M

s

�

q

(��

0

) = 0:

Proof of Proposition 3.

For s > 0 and 0 < q < 1 , as before let ~�

q

:
= �

q

�

� . Then � is a measure theoretical

isomorphism between (X;�

q

) and (�; ~�

q

) . For

~

M

s

�

q

:
=M

s

�

q

�

� , we show �rst the more

general fact that

~

M

s

�

q

�

�

�1

�

is absolutely continuous with respect to

~

M

s

�

q

. For this it is

su�cient to consider a measurable set F of

~

M

s

�

q

-measure zero such that F � [k ] , for

some k � 0: For

~

Z
:
= f�

�1

v : v 2 Zg , if � > 0; " > 0 are �xed, then we may �nd a

set W �

~

Z of subsets of � , such that W is a covering of F with the property that

P

v2W

~�

q

(v)

s

< " and ~�

q

(v) < � , for all v 2 W: Furthermore, we may assume without

loss of generality that v � [k ] , for all v 2 W:

Using Lemma 3, it is easy to see that �

j

�

jk

� �

k

, for any j � 0 . Hence, we have, for

v 2 W ,

~�

q

([j] \ �

�1

�

v) � ~�

q

(v) < � :
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On the other hand, for v 2 W and 0 � j � k + 1 , it is clear that [j] \ �

�1

�

v 2

~

Z;

which gives that

�

�1

�

F �

k+1

[

j=0

[

v2W

[j] \ �

�1

�

v :

Combining the two latter observations, we obtain that

~

M

s

�

q

;�

(�

�1

�

F ) � (k + 2) "; and

hence, since � was arbitrary,

~

M

s

�

q

(�

�1

�

F ) = 0; which gives the announced absolute

continuity of

~

M

s

�

q

�

�

�1

�

with respect to

~

M

s

�

q

.

Now, let 0 < q < 1=2 and �(1=2; q) < s � 1 be �xed. Then, by the above and

Corollary 1, we get, for m � 1;

~

M

s

�

q

�

\

n�m

fy 2 � : y

n

> 0g

�

=

~

M

s

�

q

(�

�m+1

�

�

0

) =

~

M

s

�

q

(�

0

) = 0 ;

thus

~

M

s

�

q

(fy

n

!1g) �

~

M

s

�

q

�

lim inf

n

fy

n

> 0g

�

=

~

M

s

�

q

�

[

m�1

\

n�m

fy

n

> 0g

�

= 0 :

Hence, we have shown that dim

�

q

(�fy

n

! 1g) � s , for �(1=2; q) < s � 1 , which

proves the proposition (and hence Theorem 1).

2
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