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Abstract. We construct Quillen type spectral sequences

in homology and rational homotopy for co�bration se-

quences which are Eckmann-Hilton dual to analogous ones

for �bration sequences. These spectral sequences are con-

structed by direct �ltrations of the Adams cobar construc-

tion. We also prove various collapsing theorems general-

izing results of Clark and Smith in the case of a wedge of

1-connected nicely pointed spaces.

1. Introduction

The purpose of this paper is to study the relation between the ra-

tional homotopy groups of topological spaces in co�bration sequences.

In his pathbreaking paper on rational homotopy theory Quillen de-

rives a Lie algebra spectral sequence relating the rational homotopy

Lie algbras of spaces in a co�bration. This spectral sequence is a per-

fect Eckmann-Hilton dual to the coalgebra spectral sequence of Serre

relating the rational homology coalgebras of spaces in a �bration. [13]

Quillens approach is via homotopical algebra viewing rational ho-

motopy theory in terms of both equivalent homotopy theories of the

closed model categories of di�erential graded Lie algebras and di�er-

ential graded coalgebras.

Instead of using models we construct the Quillen spectral sequence

by de�ning an appropriate �ltration of the cobar construction functor

and use a theorem of Adams, which gives an isomorphism between

the homology of the loops of a space and the homology of the cobar

construction applied to the normalized chain complex on the space,

explicitely we have an isomorphism of graded connected k-algebras [1]

H

�

(
X; k)

�

=

H

�

(F(C

�

(X)); k)

Drachman showed that this is even an isomorphism of homology k-Hopf

algebras, i.e connected graded k-Hopf algebras with cocommutative

comultiplication [6]. We will in this paper always deal with nicely

pointed spaces, i.e. topological spaces which are pathwise and simply

connected with nondegenerate basepoints.

1



2 FRANK NEUMANN

Our �rst main theorem relates the homology algebras of the loop

spaces of the spaces in the co�bration.

Theorem Suppose we have a co�bration sequence

A �! X �! C

where A;X;C are nicely pointed spaces. Let k be a �eld. There is a

natural 1

st

quadrant spectral sequence fE

r

��

; d

r

g of algebras over k with

E

2

��

�

=

H

�

(
A; k)

a

H

�

(
C; k)

E

r

��

) H

�

(
X; k)

where

`

denotes the coproduct in the category of algebras AL/k.

Using the results of Drachman we can even get a spectral sequence

of homology k-Hopf algebras. We then enter the �eld of rational ho-

motopy theory by using the Cartan-Serre isomorphism of Lie algebras

over Q induced by the rational Hurewicz morphism

L

�

(X)

�

=

PH

�

(
X;Q)

where L

�

(X) = �

�

(
X) 


Z

Q is the rational homotopy Lie algebra

equipped with the Samelson product and PH

�

(
X;Q) is the sub Lie

algebra of the associated Lie algebra for theQ-Hopf algebra H

�

(
X;Q)

given by their primitive elements and equipped with the Pontrjagin

product [11].

By applying the primitive Lie algebra functor to the homology spec-

tral sequence and using the Cartan-Serre isomorphisms we can derive

directly Quillens rational Lie algebra spectral sequence

Theorem Suppose we have a co�bration sequence

A �! X �! C

where A;X;C are nicely pointed spaces. There is a natural 1

st

quadrant

spectral sequence fE

r

��

; d

r

g of Lie algebras over Q with

E

2

��

�

=

L

�

(A)

a

L

�

(C)

E

r

��

) L

�

(X)

where

`

denotes the coproduct in the category of connected graded Q-

Lie algebras L/Q.

We will proof also various collapsing theorems for both spectral se-

quences generalizing results of Clark and Smith in the case of a wedge

of 1-connected nicely pointed spaces.

We will give complete proofs of results and assertions of Clark and

Smith as stated in [14].

In a future paper we like to apply this direct approach of �ltering

the cobar construction functor to derive analogous spectral sequences in
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Hochschild and cyclic homology of co�bration sequences to get various

applications to the homology of the free loop space or to the reduced

rational algebraic K-theory of spaces of a wedge of 1-connected nicely

pointed spaces.

Notations and Terminology. We will make use of the following no-

tations of categories we will have to deal with. Let k denote a �eld.

M/k : the category of connected graded k-modules (i.e. vector spaces)

AL/k : the category of connected graded k-algebras

H

�

AL/k : the category of cohomology k-algebras (i.e. the subcategory

of AL/k of objects with commutative multiplication)

CO/k : the category of connected graded k-coalgebras

H

�

CO/k : the category of homology k-coalgebras (i.e. the subcategory

of CO/k of objects with cocommutative comultiplication)

H/k : the category of connected graded k-Hopf algebras

H

�

H/k : the category of homology k-Hopf algebras (i.e. the subcate-

gory of H/k of objects with cocommutative comultiplication)

L/Q : the category of connected graded Q-Lie algebras

We will write D in front of the category symbol for the subcategory

of di�erential objects, and C

1

for the subcategory of 1-connected ob-

jects, e.g. C

1

DCO/k denotes the category of 1-connected di�erential

connected graded k-coalgebras.

For us, an H-space is a topological space with homotopy unit and

homotopy associative multiplication.

Acknowledgements. We would like to express our gratitude to Larry

Smith for various discussions and suggestions. Parts of this paper are

worked out earlier as part of the authors diplomathesis written un-

der his guidance. We would also take the opportunity to thank the

Studienstiftung des Deutschen Volkes for �nancial support.

2. The Cobar Construction and the Theorem of Adams

We give a brief description of the cobar construction as originally

introduced by Adams [1]. We will follow the lines of Moore and Smith

[12] [14] with the extensions of Drachman [7]. In this section k always

denotes a �xed �eld.

We �rst introduduce the r-fold suspension functor s

r

.

De�nition 2.1. If M is a graded k-module and r 2Z, the r-fold sus-

pension ofM is the graded k-module s

r

(M) where s

r

(M)

n

=M

n�r

; n 2

Z. If f : M

0

! M

00

is a morphism of graded k-modules s

r

(f) :

s

r

(M

0

) ! s

r

(M

00

) is the morphism determined by s

r

(f)

n

= f

n�r

. If
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r < 0 the functor s

r

is called desuspension functor. We write [x] for

the element of s

�1

(M) corresponding to x 2M .

The case r = �1 of the desuspension is for us important. Direct

from the de�nition we get

Lemma 2.2. If M is a graded k-module and r 2 Z; n 2 N, there is a

natural isomorphism s

r

(M)


n

�

=

s

rn

(M


n

) �.

Now we can introduce the cobar construction functor F .

De�nition 2.3. Let C 2 C

1

DCO/k. The (reduced) cobar construction

of C, denoted by F(C), is the object of DAL/k de�ned as follows:

(1) As an algebra F(C) is the tensor algebra (i.e. free associative

algebra) generated by s

�1

(J(C)) with J(C) = Cokerf� : k ! Cg

where � : k ! C is the counit of C.

(2) Being generated by s

�1

(J(C)) the cobar construction F(C) has a

bigrading given by

bideg([c

1

j : : : jc

n

]) = (

X

i

deg(c

i

);�n)

and the total grading of F(C) is given by

deg([c

1

j : : : jc

n

]) = (

X

i

deg(c

i

))� n

for a typical element of F(C).

(3) We de�ne di�erentials d

I

and d

E

of F(C) with bidegrees (�1; 0)

and (0;�1) respectively on elements of bidegree (�;�1) by

d

I

([c]) = �[dc];

d

E

([c]) =

X

i

(�1)

degc

0

i

[c

0

i

jc

00

i

]

where d : C ! C is the di�erential and � : C ! C 
 C is the

comultiplication of C with

�(c) = 1
 c+ c
 1 +

X

i

c

0

i


 c

00

i

The total di�erential of F(C) is de�ned on elements of bidegree (�;�1)

by d

T

= d

I

+ d

E

The di�erential is extended to all elements of F(C)

by requiring that d

T

is a derivation of the algebra structure.

We have denoted a typical element [c

1

] 
 : : : 
 [c

n

] of F(C) by

[c

1

j : : : jc

n

]. The cobar construction F(C) of Adams [1] is of course



QUILLEN SPECTRAL SEQUENCES OF COFIBRATIONS 5

a formal dual of the (reduced) bar construction as introduced by Eilen-

berg and MacLane [10].

De�nition 2.4. Let C 2 C

1

DCO/k. The total cobar construction of

C, denoted by

�

F(C), is de�ned by

�

F(C) = C 


k

F(C) We de�ne dif-

ferentials

�

d

I

and

�

d

E

for

�

F(C) by requiring that the following diagrams

are commutative:

C

C 


k

F(C)

C 


k

F(C)

C

-

-

? ?

d

�

d

I

1
 �

C

C 


k

F(C)

C 


k

F(C)

C

-

-

? ?

�

�

d

E

1
 �

where � : C ! F(C) is the natural k-morphism given by

C ! J(C)

�

=

s

�1

(J(C)) � F(C)

and the total di�erential of

�

F(C) is de�ned by

�

d

T

=

�

d

I

+

�

d

E

.

We have the following facts concerning the total cobar construction:

(1)

�

F(C) is a di�erential C-comodule with coaction

 

�

F(C)

:

�

F(C)! C 


�

F(C)

given by

 

�

F(C)

(c
 z) = �(c)
 z

(2)

�

F(C) is also a di�erential F(C)-module with action

�

F(C)
F(C)!

�

F(C)

given by

(c
 [c

1

j : : : jc

n

]) � ([b

1

j : : : jb

m

]) = c
 [c

1

j : : : jc

n

jb

1

j : : : jb

m

]

(3) the cobar construction F is a functor F : C

1

DCO/k !DAL/k
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Proposition 2.5. Let C 2 C

1

DCO/k. Then the total cobar construc-

tion (

�

F(C);

�

d

T

) is acyclic.

Proof. The map

s :

�

F(C)!

�

F(C)

s(c[c

1

j : : : jc

n

]) = �(c)c

1

[c

2

j : : : jc

n

]

is a contracting homotopy where � : C ! k is the augmentation mor-

phism of C.

If C 2 C

1

DH

�

CO/k, i.e. the comultiplication � : C ! C 
 C is co-

commutative, then � is a morphism of di�erential graded k-coalgebras,

i.e. we have the commutative diagram

C 
 C C 
 C 
 C 
 C

C 
 C

C

-

-

? ?

� �
�

�

C
C

�

Applying the cobar construction functor F and using the Eilenberg-

Zilber equivalence [7] F(C 
C)

'

�! F(C)
F(C) for C 2 C

1

DCO/k,

we get the commutative diagram

F(C)
F(C) F(C)
F(C)
F(C)
F(C)

F(C)
F(C)F(C)

-

-

? ?

F(�) F(�)
F(�)

F(�

C
C

)

F(�)

So � : C ! C
C induces a comultiplication for the cobar construc-

tion F(C) given by

�

F(C)

: F(C)

F(�)

�! F(C 
 C)

'

�! F(C)
F(C)

The commutative diagram shows that �

F(C)

is also a morphism of dif-

ferential graded k-coalgebras, so the comultiplication �

F(C)

is commu-

tative. Because the cobar construction is a functor F : C

1

DCO/k !

DAL/k, the diagonal �

F(C)

is a morphism of di�erential graded k-

algebras, and �nally F(C) is a di�erential homology k-Hopf algebra.
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The diagonal �

F(C)

of F(C) is therefore uniquely determined by the

requirement that

s

�1

(J(C)) � P (F(C))

In other words, the comultiplication �

F(C)

of F(C) is de�ned by the

condition that for c 2 s

�1

(J(C)

�

F(C)

(c) = 1 
 c+ c
 1

and we extend �

F(C)

to all elements of F(C) by requiring that �

F(C)

is a morphism in DAL/k.

In general, if C 2 C

1

DCO/k and the comultiplication � : C !

C 
 C is not cocommutative, then this functorial way of de�ning a

k-Hopf algebra structure on F(C) fails. For example, the singular

chain complex S

�

(X; k) of a space X does not admit a cocommutative

diagonal in general. If one can, however, form a strongly homotopy

comultiplicative map (SHCM)

H = fh

1

; h

2

; : : :g

from C to C 
 C, where the initial mapping h

1

= � : C ! C 
 C

is the comultiplication of C, then we get, as Drachman showed [6],[7],

that

�

F(C)

: F(C)

F(H)

�! F(C 
 C)

'

�! F(C)
F(C)

is a morphism of di�erential graded k-algebras, so that F(C) becomes

a di�erential graded k-Hopf algebra. These algebraic constructions

are dual to similiar constructions of Clark [4], who considered strongly

homotopy multiplicative maps (SHMM) for de�ning a multiplication on

the bar construction. Summing up we get

Proposition 2.6. The cobar construction F is a covariant functor

F : C

1

DCO=k !DAL=k

or

F : C

1

DH

�

CO=k ! DH

�

H=k

respectively �

We now introduce the normalized chain complex functor C for nicely

pointed spaces.

De�nition 2.7. A topological spaceX is a nicely pointed space ifX is

pathwise connected and simply connected with basepoint x

0

, which is a

neighbourhood deformation retract in X; x

0

is called a nondegenerate

basepoint. We denote by T

1

�

the category of nicely pointed spaces.
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De�nition 2.8. Let X 2 T

1

�

. Let C

�

(X) = C

�

(X;x

0

; k) denote the

normalized singular chain complex of X with all 1-simplices (edges) at

the basepoint x

0

and coe�cients in the �eld k.

ForX 2 T

1

�

, the normalized chain complexC

�

(X) is chain homotopy

equivalent to the ordinary singular chain complex S

�

(X) [15].

Let X 2 T

1

�

. The diagonal mapping r : X ! X � X induces via

the Alexander-Whitney chain homotopy equivalence

� : C

�

(X �X; k) ! C

�

(X; k)
 C

�

(X; k)

of the Eilenberg-Zilber theorem a comultiplication

� = � � r

�

: C

�

(X; k)! C

�

(X; k) 
 C

�

(X; k)

which is a chain map, so C

�

(X) 2 C

1

DCO/k, but the comultiplication

need not to be cocommutative, i.e. need not to satisfy T � � = �.

However, T �� and � are chain homotopic; more precisely, there is a

sequence of chain maps

H = fh

1

; h

2

; : : :g

where

h

1

= � : C

�

(X)! C

�

(X)
 C

�

(X)

and

h

j+1

: h

j

' T � h

j

is a chain homotopy of degree j; j � 1. This is proved by the method

of acyclic models [15].

The sequence H = fh

1

; h

2

; : : : g is then a SHCM and so F(C

�

(X))

is an object of DH/k, but the induced comultiplication

�

F

: F(C

�

(X))! F(C

�

(X))
F(C

�

(X))

need not to be cocommutative. However it is for the same reasons as

before cocommutative up to a chain homotopy induced by H. This

leads to a procedure of iterating the cobar construction [6]. We will

bear in mind

Proposition 2.9. The normalized chain complex functor is a covari-

ant functor C : T

1

�

! C

1

DCO=k �

As Adams [1] originally pointed out, the construction

F(C)! C 


k

F(C)! C
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for C 2 C

1

DCO/k is analogous to a �bration with acyclic total space.

More precisely, in the terms of [7]

F(C)! C 


k

F(C)! C

is a principal construction. IfX 2 T

1

�

, the cobar constructionF(C

�

(X))

is a model for the chains of C

�

(
(X)). One veri�es for C 2 C

1

DCO/k

that

k ! C = (C 


k

F(C))

�;0

! (C 


k

F(C))

�;�1

! : : :

is an exact sequence of C-comodules. Since

F(C) = (C 


k

F(C))�

C

k

we have (see [12])

H

�

(F(C); k) = Cotor

C

��

(k; k)

Combining the work of Eilenberg and Moore [8] and Drachman [6],

[7] we get a stronger version of the classical theorem of Adams [14]

Theorem 2.10 (Adams). Let X 2 T

1

�

. Then the spectral sequence

obtained by �ltering (

�

F(C

�

(X));

�

d

T

) by the �rst degree coincides with

the Leray- Serre spectral sequence of the path space �bration


X ! PX ! X

Hence there is a natural isomorphism in H

�

H/k

H

�

(
X; k)

�

=

H

�

(F(C

�

(X)); k) �

3. Categories with Coproducts and Coproduct

Preserving Functors

In this section we give a summary of necessary de�nitions, construc-

tions and examples following the lines of [5]. Let k be again a �xed

ground �eld.

De�nition 3.1. Let C be a category and A;B 2 C. A coproduct of A

and B in C of a diagram in C

A

i

A

�! A

a

B

i

B

 � B

such that for any pair of morphisms f : A! C, g : B ! C in C there

is a unique morphism

f

a

g : A

a

B ! C

such that the following diagram in the category C
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A

A

`

B

B

C

?

- �

Q

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�

�+

i

A

i

B

f g

f

`

g

is commutative. A category C is a category with coproducts, if each pair

of objects in C has a coproduct.

From the universal property of the de�nition we get that if a co-

product of A and B in C exists, it is unique up to a natural isomor-

phism. Furthermore if the category C is a category with coproducts

there are natural C-isomorphisms A

`

B

�

=

B

`

A and A

`

(B

`

C)

�

=

(A

`

B)

`

C for all A;B;C 2 C.

Example 1 In the category T

�

of pointed topological spaces we de-

�ne a coproduct by the wedge X

`

Y = X _ Y .

Example 2 In the category M/k of connected graded k-modules

we have A

0

�

=

k for each object A of M/k and we de�ne a coprod-

uct by the direct sum (A

`

B)

n

= A

n

�B

n

for n � 0 and (A

`

B)

0

= k.

Example 3 Consider the category AL/k of connected graded k-

algebras. For A 2 C let

�

A be the reduced k- module. Then the tensor

algebra of

�

A given by T (

�

A) = k �

P

1

n=1

�

A


n

is an object of C, and

there is in C a canonical morphism p : T (

�

A) ! A. Let I(A) = Ker p.

Then I(A) � T (

�

A) is an ideal and T (

�

A)=I(A) 2 C. If A;B 2 C, their

coproduct in C is de�ned by A

`

B = T (

�

A �

�

B)=(I(A); I(B)) (where

(I(A); I(B)) denotes the ideal of T (

�

A �

�

B) generated by I(A) and

I(B)), together with the obvious morphisms

A �! T (

�

A�

�

B)=(I(A); I(B)) � B

We have the additive isomorphism

A

a

B = k�(

�

A�

�

B)�((

�

A


�

B)�(

�

B


�

A))�((

�

A


�

B


�

A)�(

�

B


�

A


�

B))�:::

From the universal properties of the coproduct and the tensor algebra

we get by a simple diagram chase

Proposition 3.2. Let A;B 2 M/k. Then we have in AL/k

T (

�

A)

a

T (

�

B)

�

=

T (

�

A�

�

B) �
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Example 4 In the category DAL/k of connected di�erential graded

k-algebras the coproduct is de�ned as in Example 3 and the di�erentials

extend naturally by the diagram

A

A

`

B

B

A

`

B

BA

- �

? ? ?

- �

d

A

d

A

`

B

d

B

Example 5 In the category H/k of of connected graded k-Hopf

algebras we form the coproduct as in Example 3 regarding them as

objects in AL/k. In AL/k we can construct the diagram

A


k

A B 


k

B(A

`

B)


k

(A

`

B)

A

A

`

B

B

? ? ?

- �

- �

�

A

�

A

`

B

�

B

de�ning the morphism �

A

`

B

by the universal property of the coprod-

uct in AL/k and imposing a k-Hopf algebra structure on A

`

B.

In the same way we can construct a coproduct in the categories

DH/k of connected di�erential graded k-Hopf algebras, H

�

H/k of ho-

mology k-Hopf algebras and DH

�

H/k of di�erential homology k-Hopf

algebras.

Example 6 In the category CO/k of connected graded k-coalgebras

we de�ne a coproduct as in Example 2 and the comultiplication extends

naturally.

In the same way we can construct a coproduct in the categories

DCO/k of connected di�erential graded k-coalgebras, H

�

CO/k of ho-

mology k-coalgebras and in the category DH

�

CO/k of di�erential ho-

mology k-coalgebras.

Example 7 Let us consider the category L/Q of connected graded

Q-Lie algebras. Each A 2L/Q is a graded Q-module with A

0

�

=

Q.

Let U(A) be the universal envelopping algebra of A given by U(A) =

T (A)=J , where J is the ideal generated by all elements x
y�(�1)

pq

y


x�[x; y] with x 2 A

p

and y 2 A

q

. Then U(A) 2 AL/Q with a canonical

morphism j

A

: A ! U(A) such that if C 2 AL/Q and f : A ! C is
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a morphism of Q- Lie algebras, i. e. f [x; y] = [fx; fy], then there is a

unique morphism in AL/Q, namely U(f) : U(A) ! C, such that the

following diagram is commutative

A

C

U(A)

Q

Q

Q

Q

Q

Q

Q

Qs

-

?

U(f)

f

j

A

First we construct the coproduct in L/Q by forming the coproduct

U(A)

`

U(B) in AL/Q as in Example 3. We now de�ne A

`

B to be

the sub Lie algebra of (the associated Lie algebra of) U(A)

`

U(B) gen-

erated by the images of A and B. We have the commutative diagram

A

A

`

B

B

U(A) U(B)U(A)

`

U(B)

? ? ?

- �

- �

j

A

j

A

`

B

j

B

It is easy to check the universal property of A

`

B. From the unique-

ness of the constructions we get immediately

Proposition 3.3. Let A;B 2 L/k. Then we have in AL/k

U(A)

a

U(B)

�

=

U(A

a

B) �

In their paper [5] Clark and Smith give a list of functors which pre-

serves coproducts for the various categories we are dealing with.

I. the normalized chain complex functor C : T

�

1

! C

1

DCO/k

II. the homology functor H

�

: DAL/k !AL/k

III. the cobar construction functor F : C

1

DCO/k ! DAL/k

IV. the universal envelopping functor U : L/Q! H

�

H/Q

V. the primitive Lie algebra functor P : H

�

H/Q! L/Q

We have the following theorem concerning the presevertation of co-

products, where the last statement follows directly from the fact that

the functors P and U constitute a pair of adjoint functors (over Q).
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Proposition 3.4 (Clark-Smith). Let k be a �xed ground �eld.

(1) Let X;Y 2 T

�

1

. Then we have H

�

(C(X _ Y ))

�

=

H

�

(CX

`

CY ) in

the category C

1

CO/k.

(2) Let A;B 2 DAL/k. Then we have H

�

(A

`

B)

�

=

H

�

(A)

`

H

�

(B)

in the category AL/k.

(3) Let C;D 2 C

1

DCO/k. Then we have F(C

`

D)

�

=

F(C)

`

F(D)

in the category DAL/k.

(4) Let A;B 2 L/Q. Then we have U(A

`

B)

�

=

U(A)

`

U(B) in the

category H

�

H/Q.

(5) Let A;B 2 H

�

H/Q. Then we have P(A

`

B)

�

=

P(A)

`

P(B) in

the category L/Q �

4. The Homology Spectral Sequence of a Cofibration

We will now prove the �rst main theorem and give the explicit con-

struction of the desired homology spectral sequence. First we have to

de�ne an appropriate �ltration of the tensor algebra functor.

Let k denote a �xed �eld and consider the short exact sequence

0 �! V

0

�

0

�! V

�

00

�! V

00

�! 0

of simply connected graded k-modules. The sequence splits and we

have V

�

=

V

0

� V

00

. Denote by T the tensor algebra functor, so

T (V

0

); T (V ) and T (V

00

) are bigraded free algebras. We have in AL/k

T (V )

�

=

T (V

0

� V

00

)

�

=

T (V

0

)

a

T (V

00

)

The tensor algebra T (V ) is bigraded by

bideg(v

1


 : : :
 v

n

) = (

X

i

deg(v

i

);�n)

and has a total degree given by

deg(v

1


 : : :
 v

n

) = (

X

i

deg(v

i

))� n

We regard T (V ) as singly graded using the total degree. We consider

V

0

as a subspace of V . Fix a basis B for V extending a basis B

0

for V

0

.

We note that �

00

projects B � B

0

to a basis B

00

for V

00

.

De�nition 4.1. If v

1

; : : : ; v

r

2 B then the elementw = v

1


 : : :
v

r

2

T (V ) is called a word (in the basis B) and v

1

; : : : ; v

r

are called the

letters of the word w.

We note that the spelling of a word is unique (although it depends

on the basis B).
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De�nition 4.2. If w 2 T (V ) is a word, its �-weight, denoted by

wt

�

(w), is de�ned by

wt

�

(w) =

X

v

i

62B

0

(deg(v

i

)� 1)

Since the spelling of a word is unique, this is certainly well de�ned.

Immediately we get

Lemma 4.3. If w 2 T (V ) is a word, then wt

�

(w) � deg(w) �

Every element x 2 T (V ) can be written in a unique way as a linear

combination of words w

i

2 T (V )

x =

X

i

�

i

w

i

; �

i

2 k; �

i

6= 0

We now de�ne a �ltration of the tensor algebra T (V ), the �-weight

�ltration fF

n

T (V )g by setting

F

n

T (V ) := fx 2 T (V )j maxfwt

�

(w

i

)jw

i

2 xg � ng

for n � 0 and

F

n

T (V ) := f0g

for n < 0 where the notation w 2 x means that the word w occurs

with a nonzero coe�cient in the representation of x 2 T (V ) as a linear

combination of words.

Lemma 4.4. The �ltration fF

n

T (V )g on T (V ) is complete. In par-

ticular, the �ltration is canonically bounded, i.e. is �nite in each degree

n.

Proof. At �rst we have (F

�1

T (V ))

n

= f0g per de�nitionem. Now let

x 2 T (V ) with total degree deg(x) = n, then we have a unique repre-

sentation

x =

X

i

�

i

w

i

; �

i

2 k; �

i

6= 0

with w

i

2 T (V ) a word and deg(w

i

) = n. Hence it follows by the

previous Lemma

maxfwt

�

(w

i

)jw

i

2 xg � n

and so x 2 F

n

T (V ). We get (F

n

T (V ))

n

= T

n

(V )
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In each total degree n the �- weight �ltration fF

n

T (V )g looks as

follows

f0g = (F

�1

T (V ))

n

� : : : � (F

n�1

T (V ))

n

� (F

n

T (V ))

n

= T

n

(V )

If we identify T (V

0

) with a subalgebra of T (V ), then the following is

clear.

Lemma 4.5. F

0

T (V )

�

=

T (V

0

) �

Lemma 4.6. If w 2 T (V ) and deg(w) = wt

�

(w), then the spelling of

w contains no letters from B

0

. Therefore, for n 2 N there is a bijective

correspondence

(F

n

T (V )=F

n�1

T (V ))

n

�

=

T

n

(V

00

).

Proof. The �rst assertion is clear from the de�nitions. We know that �

00

projects B�B

0

to the basis B

00

of V

00

. We now set up a correspondence

' : (F

n

T (V )=F

n�1

T (V ))

n

�

=

T

n

(V

00

)

as follows:

For x 2 F

n

T (V ) of total degree n write

x =

X

wt

�

(w

00

i

)=n;�

i

6=0

�

i

w

00

i

+

X

wt

�

(w

0

j

)<n;�

j

6=0

�

j

w

0

j

This representation is unique. The words fw

00

i

g are all spelled with

letters from B �B

0

and each of these words satis�es

wt

�

(w

00

i

) = n = deg(w

00

i

)

and hence identifying B � B

0

with the basis B

00

for V

00

via �

00

we see

that

P

i

�

i

w

00

i

2 T

n

(V ). So we get a map

~' : (F

n

T (V ))

n

! T

n

(V

00

)

x 7!

P

i

�

i

w

00

i

By construction ~' is a linear map with kernel ker ~' = (F

n�1

T (V ))

n

.

By de�nition of B

00

any elementx

00

2 T

n

(V

00

) may be written uniquely

as a linear combination of words spelled with letters of B

00

. By the

identi�cation of B

00

with B � B

0

such a word may be identi�ed with

a word of T (V ), and by linearity x

00

2 T

n

(V

00

) determines an element

x 2 T (V ) of �ltration degree n, so ~' is an epimorphism and we get the

isomorphism

' : (F

n

T (V )=F

n�1

T (V ))

n

�

=

T

n

(V

00

)
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We denote by E

0

��

T (V ) the associated bigraded k-module of T (V )

with respect to the �-weight �ltration fF

n

T (V )g of T (V ). From the

previous lemmas we derive directly the natural isomorphisms

E

0

0;�

T (V )

�

=

T (V

0

) (�)

E

0

�;0

T (V )

�

=

T (V

00

) (��)

Because the �ltration fF

n

T (V )g respects the algebra structure of T (V ) 2

AL/k, we get that E

0

��

T (V ) is a connected bigraded k-algebra and so

(�) and (��) are isomorphisms of connected graded k-algebras. So we

obtain the diagram

T (V

0

)

�

=

E

0

0;�

�! E

0

��

T (V ) � E

0

�;0

�

=

T (V

00

)

and by the universal property of coproducts we get a morphism of

connected bigraded k-algebras

� : T (V

0

)

a

T (V

00

) �! E

0

��

T (V )

by the diagram

T (V

0

)

�

=

E

0

0;�

T (V

0

)

`

T (V

00

)

E

0

�;0

�

=

T (V

00

)

E

0

��

T (V )

?

- �

Q

Q

Q

Q

Q

Q

Qs

�

�

�

�

�

�

�+

�

We note that for the modules of indecomposable elements of E

0

��

T (V )

and T (V

0

)

`

T (V

00

) we have

Q(E

0

��

T (V ))

�

=

V

Q(T (V

0

)

a

T (V

00

))

�

=

Q(T (V

0

� V

00

))

�

=

V

0

� V

00

With respect to the identi�cation V

0

� V

00

�

=

V the map � is induced

by the identi�cation of B�B

0

with the basis B

00

of V

00

. Therefore, � is

an isomorphisms of the modules of indecomposable elements. Hence, it

follows that � is an epimorphisms in AL/k [11]. Because V is a vector

space and since T (V )

�

=

T (V

0

)

`

T (V

00

), we have inM/k

E

0

��

T (V )

�

=

T (V

0

)

a

T (V

00

)

Hence, both sides are isomorphic as graded vector spaces over k, and

so � is an isomorphism in AL/k. Finally we get therefore

Proposition 4.7. There is an isomorphism of bigraded k-algebras

E

0

��

T (V )

�

=

T (V

0

)

a

T (V

00

)
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where the bigrading is determined by the bigrading of the coproduct and

the isomorphisms E

0

0;�

T (V )

�

=

T (V

0

) and E

0

�;0

T (V )

�

=

T (V

00

) �

We now construct the homology spectral sequence for a co�bration

sequence of nicely pointed spaces

A �! X �! C

This spectral sequence comes into the world as the associated spectral

sequence of the �-weight �ltration applied to the cobar construction.

Theorem 4.8. Suppose we have a co�bration sequence

A �! X �! C

where A;X;C are nicely pointed spaces. Let k be a �eld. There is a

natural 1

st

quadrant spectral sequence fE

r

��

; d

r

g of algebras over k with

E

2

��

�

=

H

�

(
A; k)

a

H

�

(
C; k)

E

r

��

) H

�

(
X; k)

where

`

denotes the coproduct in the category of algebras AL/k.

Proof. Suppose that we have a co�bration sequence

A �! X �! C

of nicely pointed spaces A;X;C. We may realize this co�bration se-

quence as a short exact sequence in C

1

DCO/k of simply connected

normalized chain complexes

0 �! C

�

(A) �! C

�

(X) �! C

�

(C) �! 0

with C

�

(A); C

�

(X); C

�

(C) 2 C

1

DCO/k, chain homotopy equivalent to

the singular chain complexes S

�

(A),S

�

(X) and S

�

(C) respectively.

Applying the cobar construction functor F leads to a sequence in

DAL/k

FC

�

(A) �! FC

�

(X) �! FC

�

(C)

We denote by d

A

; d

X

and d

C

the total di�erentials of FC

�

(A), FC

�

(X)

and FC

�

(C) respectively. As an algebra, the cobar construction F is

nothing but the tensor algebra T . Therefore, we can de�ne a �ltration

on FC

�

(X) by taking the �-weight �ltration on FC

�

(X) as de�ned

above for n � 0

F

n

FC

�

(X) = fx 2 FC

�

(X)j maxfwt

�

(w

i

)jw

i

2 xg � ng

and for n < 0 we set

F

n

FC

�

(X) = f0g
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for a �xed basis B of C

�

(X) which extends a basis B

0

of C

�

(A). This

�ltration fF

n

FC

�

(X)g preserves the algebra structure of FC

�

(X), i.e.

F

p

FC

�

(X) � F

q

FC

�

(X) � F

p+q

FC

�

(X) and further d

X

F

p

FC

�

(X) lies

in F

p

FC

�

(X). So the spectral sequence fE

r

��

; d

r

g associated to this

�ltration is a spectral sequence of algebras over k.

By Proposition 4.7 we get the isomorphism in AL/k

� : FC

�

(A)

a

FC

�

(C)

�

=

�! E

0

��

FC

�

(X)

The di�erentials of the spectral sequence fE

r

��

; d

r

g are di�erentials

of the algebra structure. It su�ces to describe the di�erentials on the

factors of the coproduct. By Proposition 4.7 we have in AL/k

E

0

��

�

=

FC

�

(A)

a

FC

�

(C)

with E

0

0;�

�

=

FC

�

(A) and E

0

�;0

�

=

FC

�

(C). We get d

0

jE

0

�;0

= 0 and

d

0

jE

0

0;�

= d

A

, so �nally the di�erential d

0

is given by

d

0

= d

A

a

0

so we have in DAL/k

E

0

��

FC

�

(X)

�

=

(FC

�

(A)

a

FC

�

(C); d

A

a

0)

It follows by the explicit construction of the coproduct and the classical

K�unneth Theorem in AL/k

E

1

��

�

=

H

�

(FC

�

(A))

a

FC

�

(C)

with E

1

0;�

�

=

H

�

(FC

�

(A)) and E

1

�;0

�

=

FC

�

(C). We get now d

1

jE

1

�;0

= d

C

and d

1

jE

1

0;�

= 0, so �nally the di�erential d

1

is given by

d

1

= 0

a

d

C

so we have in DAL/k

E

1

��

�

=

(H

�

(FC

�

(A))

a

FC

�

(C); 0

a

d

C

)

Thus applying the K�unneth Theorem again we get in AL/k

E

2

��

�

=

H

�

(FC

�

(A))

a

H

�

(FC

�

(C))

with E

2

0;�

�

=

H

�

(FC

�

(A)) and E

2

�;0

�

=

H

�

(FC

�

(C)).

From Lemma 3.2 we see that the �ltration is complete and the spec-

tral sequence fE

r

��

; d

r

g lies in the 1

st

quadrant, and so we �nd that

E

r

��

) H

�

(FC

�

(X))

E

1

��

�

=

E

0

��

H

�

(FC

�

(X))
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From the Theorem of Adams we �nally get the identi�cations

E

2

��

�

=

H

�

(
A; k)

a

H

�

(
C; k)

with E

2

0;�

�

=

H

�

(
A; k) and E

2

�;0

�

=

H

�

(
C; k), where

`

is the coproduct

in the category of k-algebras AL/k. For the convergence, we have, in

the strong sense

E

r

��

) H

�

(
X; k)

as desired. The spectral sequence fE

r

��

; d

r

g is natural with respect to

maps between co�brations.

If we suppose that the normalized chain complexes of A;X;C are co-

commutative, i.e. C

�

(A); C

�

(X); C

�

(C) 2 C

1

DH

�

CO/k, then FC

�

(A),

FC

�

(X), FC

�

(C) 2 C

1

DH

�

H/k with cocommutative diagonals given

as described in chapter 2 by the requirement that they are primitive on

the generating vector spaces and morphisms of the algebra structures.

Therefore, the �ltration fF

n

FC

�

(X)g preserves also the coalgebra

structure of FC

�

(X), i.e. �F

p

FC

�

(X) �

L

s

F

s

FC

�

(X)
F

p�s

FC

�

(X),

and so the spectral sequence is a spectral sequence of homology k-Hopf

algebras. The morphisms contained in the previous proof turn out to

extend to the categories DH

�

H/k or H

�

H/k respectively. With this

input, thinking through the proof the second time we get

Theorem 4.9. Suppose we have a co�bration sequence

A �! X �! C

where A;X;C are nicely pointed spaces with cocommutative normalized

chain complexes. Let k be a �eld. There is a natural 1

st

quadrant

spectral sequence fE

r

��

; d

r

g of homology Hopf algebras over k with

E

2

��

�

=

H

�

(
A; k)

a

H

�

(
C; k)

E

r

��

) H

�

(
X; k)

where

`

denotes the coproduct in the category of homology k-Hopf al-

gebras H

�

H/k �

The question now is, under which conditions the homology spectral

sequence collapses and could be replaced by an isomorphism theorem.

Because the �-weight �ltration fF

p

FC

�

(X)g on FC

�

(X) is canoni-

cally bounded, we get that the induced �ltration fF

p

H

�

(FC

�

(X))g of

H

�

(FC

�

(X)) given by

F

p

H

�

(FC

�

(X)) = Im(H

�

(F

p

FC

�

(X))! H

�

(FC

�

(X)))

is �nite, of the form (see [10],XI)
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f0g = F

�1

H

n

(FC

�

(X)) � F

0

H

n

(FC

�

(X)) � : : :

: : : � F

n�1

H

n

(FC

�

(X)) � F

n

H

n

(FC

�

(X)) = H

n

(FC

�

(X))

By the theorem of Adams this is an induced �ltration on the homol-

ogy of the loop space H

�

(
X; k)

�

=

H

�

(FC

�

(X)) of the form

f0g = F

�1

H

n

(
X) � F

0

H

n

(
X) � : : :

: : : � F

n�1

H

n

(
X) � F

n

H

n

(
X) = H

n

(
X)

so we get E

1

��

�

=

E

0

��

H

�

(
X) with the sucessive quotients E

1

p;n�p

�

=

F

p

H

n

(
X)=F

p�1

H

n

(
X) The spectral sequence fE

r

��

; d

r

g lies in the

1

st

quadrant, and so we get the edge homomorphisms

H

q

(
A)

�

=

E

2

0;q

f

! E

3

0;q

f

! � � �

f

! E

q+2

0;q

�

=

E

1

0;q

a

! H

q

(
X) (�)

H

p

(
X)

b

! E

1

p;0

�

=

E

p+1

p;0

e

! � � �

e

! E

3

p;0

e

! E

2

p;0

�

=

H

p

(
C) (��)

where a is a mononmorphism and b an epimorphism. While the e's

build up a chain of monomorphisms, the f 's give a chain of epimor-

phisms. These edge homomorphisms are induced by the natural mor-

phisms

i

�

: H

�

(
A; k) �! H

�

(
X; k)

p

�

: H

�

(
X; k) �! H

�

(
C; k)

This follows from the naturality of the spectral sequence for maps of

co�bration. Let us consider the following diagram of co�brations and

maps between co�brations

�

C C

A X C

A A

�

- -

- -

- -

?

?

?

?

?

?

id

id

id

id

i

i

p

p

By the naturality we get induced morphisms of spectral sequences

for these co�brations

E

r

(A;A; �)

i

�

�! E

r

(A;X;C)

p

�

�! E

r

(�; C;C)
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The spectral sequence E

r

(A;A; �) is trivial and consists of the single

column E

2

0;�

�

=

H

�

(
A), and so collapses at E

2

. By passing from E

2

to

E

3

and so on, E

r

0;�

(A;A; �) unaltered, while E

r

0;�

(A;X;C) starts going

through the factorization process as given by the f 's in (�) above.

H

q

(
A) H

q

(
X)

H

q

(
A)

H

q

(
A)

H

q

(
A)

E

q+2

0;q

E

3

0;q

H

q

(
A)

-

-

?

?

?

?

?

?

? ?

:

:

:

:

: :

�

=

�

=

�

=

�

=

i

�

�

=

f

f

f

f

Once this process is �nished, we get in the left column identical copies

of H

q

(
A), while in the right column the result is the chain of maps in

(�). We notice that at the E

2

- stage we have an isomorphism

E

2

0;�

(A;A; �)

�

=

E

2

0;�

(A;X;C)

and that the diagram above is commutative. Then in the resulting

square we have isomorphisms on the upper and on the left side, so the

edge homomorphism (�) is induced by the morphism i

�

.

The spectral sequence E

r

(�; C;C) collapses also at E

2

and consists

of the single column E

2

�;0

�

=

H

�

(
C) which will not be changed by going

from E

2

to E

3

and so on, while the transition from E

2

�;0

(A;X;C) to

E

3

�;0

(A;X;C) etc. starts the process of realizing the chain of maps in

(��). Because we have an isomorphism at the E

2

- stage

E

2

�;0

(A;X;C)

�

=

E

2

�;0

(�; C;C)

the edge homomorphism (��) is induced by the morphism p

�

. The

proof is word by word the same as above, considering the following

commutative diagram
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H

p

(
X) H

p

(
C)

E

p+1

p;0

E

3

p;0

H

p

(
C)

H

p

(
C)

H

p

(
C)

H

p

(
C)

-

-

6

6

6

6

6

6

6 6

:

:

:

:

: :

e

e

e

e

p

�

�

=

�

=

�

=

�

=

�

=

We are now prepared to prove a �rst collapse theorem for our homol-

ogy spectral sequence. We get a general algebraic condition for the

collapsing of the spectral sequence, which has a natural geometric in-

terpretation.

Theorem 4.10 (Big Collapse Theorem). Suppose we have a co�-

bration sequence

A

i

�! X

p

�! C

where A;X;C are nicely pointed spaces. Let k be a �eld. The natural

1

st

quadrant spectral sequence E

r

(A;X;C) collapses at E

2

if and only if

the induced morphism p

�

: H

�

(
X; k)! H

�

(
C; k) is an epimorphism.

Then we have in AL/k

H

�

(
X; k)

�

=

H

�

(
A; k)

a

H

�

(
C; k)

Proof. If the spectral sequence collapses at E

2

the morphism p

�

must be

an epimorphism, because all the e's in the chain (��) are isomorphisms.

If the morphism p

�

is an epimorphism, then all the monomorphisms

e in (��) must be isomorphisms E

1

�;0

�

=

E

2

�;0

and so we have d

r

jE

r

�;0

= 0

for r � 2. At E

2

however we have the coproduct representation E

2

��

�

=

E

2

�;0

`

E

2

0;�

or, more constructive, the additive isomorphism

E

2

��

= k � (

�

E

2

�;0

�

�

E

2

0;�

)� ((

�

E

2

�;0




�

E

2

0;�

)� (

�

E

2

0;�




�

E

2

�;0

))�

�((

�

E

2

�;0




�

E

2

0;�




�

E

2

�;0

)�(

�

E

2

0;�




�

E

2

�;0




�

E

2

0;�

))�:::

where d

2

on E

2

�;0

is already 0.
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Because the spectral sequence E

r

(A;X;C) is a 1

st

quadrant spec-

tral sequence, we have further, by looking at the "di�erential arrow",

d

2

jE

2

0;�

= 0. Since d

2

is a di�erential with respect to the coproduct

representation, it follows that d

2

= 0, and so we get E

3

��

�

=

E

2

��

. The

same argument now applies to d

3

for E

3

�

, and continuing in this fashion

we establish that the spectral sequence collapses at E

2

with the desired

isomorphism.

We consider now a special situation, which allows us to derive a more

geometrical collapse theorem for our homology spectral sequence.

Let A;X;C 2 T

1

�

and assume that the co�bration sequence

A

i

�! X

p

�! C

admits a cocross section s : C ! X (which satis�es p � s = 1

C

). We

get the natural morphism in H

�

H/k

i

�

a

s

�

: H

�

(
A; k)

a

H

�

(
C; k)! H

�

(
X; k)

By the properties of the loop space functor 
 and the homology functor

H

�

we obtain directly from the Big Collapse Theorem

Corollary 4.11 (Little Collapse Theorem). Suppose we have a co�-

bration sequence

A

i

�! X

p

�! C

where A;X;C are nicely pointed spaces and which admits a cocross

section s : C ! X. Let k be a �eld. Then the spectral sequence

E

r

(A;X;C) collapses at E

2

and we have the isomorphism in H

�

H/k

i

�

a

s

�

: H

�

(
A; k)

a

H

�

(
C; k)

�

=

H

�

(
X; k) �

Let A;C 2 T

1

�

. We regard the wedge co�bration sequence

A �! A _ C �! C

Because 
(A _ C) contains 
C as a retract, we get

Corollary 4.12 (Berstein, Clark-Smith). Let A;C 2 T

1

�

and k be

a �eld. Then there is a natural isomorphism in H

�

H/k

H

�

(
(A _ C); k)

�

=

H

�

(
A; k)

a

H

�

(
C; k) �

This result is due to Berstein [2], Clark and Smith [5] and others. In

[5] this isomorphism is proved directly by using the coproduct preserv-

ing properties of our functors C;F ;H

�

(see section 3).
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We can iterate this result to a �nite wedge X

1

_ : : : _ X

s

of spaces

X

1

; : : : ;X

s

2 T

1

�

Corollary 4.13. Let X

1

; : : : ;X

s

2 T

1

�

and k be a �eld. Then there is

a natural isomorphism in H

�

H/k

H

�

(
(X

1

_ : : : _X

s

); k)

�

=

H

�

(
X

1

; k)

a

: : :

a

H

�

(
X

s

; k) �

We can also calculate the Poincar�e series of coproducts giving results

about the Euler chartacteristic for the loop space of a wedge of nicely

pointed spaces.

De�nition 4.14. Let k be a �eld and A a graded k-module of �nite

type. The Poincar�e series of A is the formal power series de�ned by

P (A; k) =

1

X

n=0

dim

k

(A

n

)t

n

For a connected graded k-module A set

~

P (A; k) = P (A; k)� 1

De�nition 4.15. Let k be a �eld. For any topological space X with

H

�

(X; k) of �nite type we let

P (X; k) =

1

X

n=0

dim

k

(H

n

(X; k))t

n

the Poincar�e series of the modulo k homology of the space X, so that

P (X; k)(�1) = �(X)

is the Euler characteristic modulo k of X, whenever this expression

makes sense. For a connected space X set

~

P (X; k) = P (X; k)� 1

Immediately we have the following properties of the Poincar�e series

Lemma 4.16. If A;B are graded k-modules of �nite type we get

(1)P (A�B; k) = P (A; k) + P (B; k)

(2)P (A
B; k) = P (A; k) � P (B; k) where � is the Cauchy Product

(3)

~

P (A; k) = P (

�

A; k) when A is connected and

�

A is reduced �

We now calculate the Poincar�e series of the coproduct in AL/k

Proposition 4.17. Let k be a �eld. For A;B 2 AL/k of �nite type

we have

~

P (A

a

B; k) =

~

P (A; k)

1�

~

P (A; k) �

~

P (B; k)

+

~

P (B; k)

1 �

~

P (A; k) �

~

P (B; k)
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Proof. By the previous lemma and the explicit construction of the co-

product (additive isomorphism) in AL/k we get

P (A

a

B; k)[1�P (

�

A; k)�P (

�

B; k)] = 1+P (

�

A; k)+P (

�

B; k)�P (

�

A; k)�P (

�

B; k)

so that

P (A

a

B; k) =

P (

�

A; k) + P (

�

B; k)

1 � P (

�

A; k) � P (

�

B; k)

+ 1

from which follows the desired result.

Corollary 4.18. For any pairX;Y 2 T

1

�

with H

�

(
X; k) and H

�

(
Y ; k)

of �nite type we have

~

P (
(X_Y ); k) =

~

P (
X; k)

1 �

~

P (
X; k) �

~

P (
Y; k)

+

~

P (
Y; k)

1�

~

P (
X; k) �

~

P (
Y; k)

�

ExampleWe consider the wedge co�bration sequence for m;n � 2

S

m

�! S

m

_ S

n

�! S

n

From a Leray-Serre spectral sequence argument applying to the path

space �bration


S

l

�! PS

l

�! S

l

for l � 2 we get the classical result (see [10],XI.2)

H

n

(
S

l

; k) =

(

k : n � 0(mod l � 1)

0 : n 6� 0(mod l � 1)

Therefore, we get the Poincar�e series for l � 2

P (
S

l

; k) = 1 + t

l�1

+ t

2l�2

+ t

3l�3

+ : : : =

1

1 � t

l�1

Hence, we have the expression for the loop space of a sphere

~

P (
S

l

; k) = P (
S

l

; k)� 1 =

t

l�1

1� t

l�1

For the wedge S

m

_ S

n

we calculate, therefore,

~

P (
(S

m

_ S

n

); k) =

t

m�1

� 2t

m+n�2

+ t

n�1

1� t

m�1

� t

n�1

and �nally we get as the Poincar�e series the symmetric expression

P (
(S

m

_ S

n

); k) =

1� 2t

m+n�2

1� t

m�1

� t

n�1
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For the Euler characteristic of 
(S

m

_ S

n

) we have the three cases

�(
(S

m

_ S

n

)) =

8

>

<

>

:

�

1

3

: m;n � 0(2)

1 : m;n � 1(2)

3 : m+ n � 1(2)

5. The Rational Homotopy Spectral Sequence of a

Cofibration

We construct now the Quillen Lie algebra spectral sequence in ra-

tional homotopy by applying the primitive Lie algebra functor to our

homology spectral sequence of the last section. We will �rst show the

homology invariance of the primitive Lie algebra functor.

Proposition 5.1. Let A 2 DH

�

H/Q. Then we have in L/Q

H

�

(PA;Q)

�

=

PH

�

(A;Q)

Proof. Let A 2 DH

�

H/Q. We have in H

�

H/Q by using the homology

invariance of the universal envelopping functor U (see [13], App. B)

H

�

(U(PA;Q)

�

=

UH

�

(PA;Q)

Because U and P give an adjoint pair of functors, the result follows

immediately by applying the functor P.

Suppose that X is a connected H-space. Then the rational ho-

mology H

�

(X;Q) is a connected graded Q-Hopf algebra and we have

H

�

(X;Q) 2 H

�

H/Q. So we get an associated Q-Lie algebra structure

from the Pontrjagin product on H

�

(X;Q); so H

�

(X;Q) 2 L/Q.

Let �

�

(X; �) be the graded homotopy group of X. The Samelson

product de�nes a bilinear pairing [16]

< ; > : �

p

(X)
 �

q

(X)! �

p+q

(X)

with the following properties:

(1) (Antisymmetry)

if � 2 �

p

(X),� 2 �

q

(X), then

< �; � >= (�1)

pq+1

< �;� >

(2) (Jacobi Identity)

if � 2 �

p

(X),� 2 �

q

(X), 
 2 �

r

(X), then

(�1)

pr

< �;< �; 
 >> +(�1)

pq

< �;< 
; � >> +

+(�1)

qr

< 
;< �; � >>= 0

(3) if � 2 �

p

(X),� 2 �

q

(X), and

'

�

: �

�

(X)! H

�

(X;Z)
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is the Hurewicz morphism, then

'

p+q

< �; � >= '

p

(�) � '

q

(�) + (�1)

pq+1

'

q

(�) � '

p

(�)

where � denotes the Pontrjagin product.

Now let �

Q

�

(X) = �

�

(X) 


Z

Q be the graded rational homotopy

Q-module. Then �

Q

�

(X) 2 L/Q, and the induced Hurewicz morphism

'

�

: �

�

(X)


Z

Q! H

�

(X;Q)

is a morphism in L/Q. We get immediately that Im '

�

� PH

�

(X;Q),

so we have a morphism in the category L/Q

'

�

: �

�

(X)


Z

Q! PH

�

(X;Q)

We have a fundamental condition under which '

�

is an isomorphism

Theorem 5.2 (Cartan-Serre). Let X be a connected H-space. Then

we have in L/Q

'

�

: �

�

(X) 


Z

Q

�

=

PH

�

(X;Q)

where '

�

is the rational Hurewicz homomorphism.

Proof. A statement of Moore says (see [11],App.) that we have in

H

�

H/Q

U(�

Q

�

(X))

�

=

H

�

(X;Q)

and so by applying the primitive Lie algebra functor (over Q) we get

in L/Q

�

�

(X)


Z

Q

�

=

PH

�

(X;Q)

Now let X 2 T

1

�

. Then the loop space 
X is a connected H-space,

and we de�ne the rational homotopy Q-Lie algebra of X.

De�nition 5.3. Let X 2 T

1

�

. The rational homotopy of X is the

connected graded Q-Lie algebra L

�

(X) de�ned by

L

�

(X) = �

�

(
X) 


Z

Q

with Lie product induced by the Samelson product.

From the theorem of Cartan-Serre we get directly the following con-

sequence

Corollary 5.4. Let X 2 T

1

�

. Then we have in L/Q

L

�

(X)

�

=

PH

�

(
X;Q) �
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Due to this isomorphism and the theorem of Adams, we may view

L

�

as a functor (over Q) L

�

: T

1

�

! L=Q as the composition of the four

functors of the second chapter L

�

= PH

�

FC. For X 2 T

1

�

, the loop

space is a connected H-space and the path space �bration


X �! PX �! X

gives rise to the long exact homotopy sequence

� � � �! �

q+1

(X)

@

�

�! �

q

(
X) �! �

q

(PX) �! �

q

(X) �! � � �

Because PX is a contractible space, we get an isomorphism induced

by the boundary operator

@

�

: �

q+1

(X)

�

=

�

q

(
X)

On the left side we have the bilinear pairing given by the Whitehead

product

[ ; ] : �

p+1

(X)
 �

q+1

(X)! �

p+q+1

(X)

and on the right side we have the bilinear pairing given by the Samelson

product

< ; > : �

p

(
X) 
 �

q

(
X) ! �

p+q

(
X)

Samelson has proved [16] that if � 2 �

p+1

(X); � 2 �

q+1

(X), then

@

�

[�; �] = (�1)

p

< @

�

�; @

�

� >

So we get for L

�

(X) the isomorphism L

n

(X) = �

Q

n

(
X)

�

=

�

Q

n+1

(X)

and we could have de�ned the Lie product on L

�

(X) by the Whitehead

product on �

Q

�

(X). Let X 2 T

1

�

. In general, the rational Hurewicz

morphism

'

�

: �

�

(X)


Z

Q! H

�

(X;Q)

induces a rational homomorphism inM/k of degree +1

�

�

: L

�

(X)! PH

�

(X;Q)

If X is an H-space, then we know already from the theorem of Cartan-

Serre that �

�

is an isomorphism. As a more general result we get a

Cartan-Serre spectral sequence

Theorem 5.5. Let X be a nicely pointed space. There is a natural

2

nd

quadrant homology spectral sequence fE

r

��

; d

r

g of modules over Q

with

E

1

0;�

�

=

PH

�

(X;Q)

E

r

��

) L

�

(X)

The edge map

L

�

(X)! E

1

0;�

�! E

1

0;�

�

=

PH

�

(X;Q)
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is induced by the rational Hurewicz homomorphism.

Proof. We de�ne an increasing �ltration on the cobar construction

FC

�

(X) by setting

F

�p

FC

�

(X) =

M

s�p

C

�

(X)


s

where C

�

(X) = Cokerf� : k ! C

�

(X)g This �ltration on FC

�

(X) is

complete, because (F

0

FC

�

(X))

n

= FC

�

(X) and (F

�n�1

FC

�

(X))

n

=

f0g with the cobar construction graded by total degree (see chapter 2).

The �rst is clear by de�nition of fF

p

FC

�

(X)g and for the second

statement, let c 2 F

�n�1

FC

�

(X) and c 6= 0, so c has at least total

degree n + 1, because C

�

(X) is 1-connected and therefore we have

(F

�n�1

FC

�

(X))

n

= f0g

Let fC

r

��

; @

r

g be the resulting spectral sequence of this increasing

�ltration. Then fC

r

��

; @

r

g lies in the 2

nd

quadrant with target

C

r

��

) H

�

(FC

�

(X));Q)

�

=

H

�

(
X;Q)

Further we get

C

0

�p;�

= F

�p

=F

�p�1

�

=

C

�

(X)


p

so @

0

= d

I

, because d

E

maps an element of F

�p

to one of F

�p�1

, and

the formation of the quotient F

�p

=F

�p�1

drops all the d

E

- terms from

the total di�erential, so only the internal di�erential d

I

survives and

we get therefore

C

0

��

�

=

(FC

�

(X); d

I

)

Because the di�erential d

E

is dropped in building the associated graded

algebra C

0

��

, we get that C

0

��

is nothing else than the di�erential free

algebra (T (C

�

(X)); d

I

) and therefore an object in DH

�

H/Q, de�ning

the diagonal by requiring that � is primitive on C

�

(X) and is extended

multiplicative (see chapter 2). By the K�unneth theorem we get the

isomorphism in H

�

H/Q

C

1

��

�

=

TH

�

(X;Q)

Thus, fC

r

��

; @

r

g is a spectral sequence of homology Q-Hopf algebras.

We de�ne now a new spectral sequence fD

r

��

; �

r

g by applying the

primitive Lie algebra functor P

D

r

��

= PC

r

��

; �

r

= P@

r

= @

r

jPC

r

��

Then, fD

r

��

; �

r

g is a spectral sequence, because C

r

��

is a homology Q-

Hopf algebra for r � 0, and the functor P commutes with the homology
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functor H

�

. From the theorem of Cartan-Serre we know that the mor-

phism

L

�

(X) = �

�

(
X)


Z

Q

�

=

�! PH

�

(
X;Q)

is an isomorphism in L/Q.

The isomorphism of Adams induces therefore a �ltration on L

�

(X)

by the induced �ltration in homology of H

�

(FC

�

(X);Q). We get di-

rectly

E

0

��

L

�

(X)

�

=

PC

1

��

= D

1

��

Reindexing in the fashion

E

r

p;q

= D

r

p�1;q+1

; d

r

= �

r

gives a new spectral sequence fE

r

��

; d

r

g with target

E

r

��

) L

�

(X)

Further we get for the �rst term of the spectral sequence

E

1

��

= D

1

��

= PC

1

��

�

=

PT (H

�

(X;Q))

�

=

H

�

(X;Q)

because the primitives of the free Hopf algebra T (H

�

(X;Q)) are the

generating vector space over Q. In particular, we get for E

1

0;�

the

identi�cation

E

1

0;�

= D

1

�1;�

= PC

1

�1;�

�

=

PH

�

(X;Q)

The construction of the spectral sequence fE

r

��

; d

r

g is functorial, and

so the edge map

L

�

(X)! E

1

0;�

�! E

1

0;�

�

=

PH

�

(X;Q)

is induced by the rational Hurewicz homomorphism.

If X 2 T

1

�

is an H-space, then the spectral sequence fE

r

��

; d

r

g collapses

and we get the isomorphism of degree +1

�

�

: L

�

(X)

�

=

�! PH

�

(X;Q)

Theorem 5.6. Suppose we have a co�bration sequence

A �! X �! C

where A;X;C are nicely pointed spaces. There is a natural 1

st

quadrant

spectral sequence fE

r

��

; d

r

g of Lie algebras over Q with

E

2

��

�

=

L

�

(A)

a

L

�

(C)

E

r

��

) L

�

(X)

where

`

denotes the coproduct in the category of connected graded Q-

Lie algebras L/Q.
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Proof. Suppose that we have a co�bration sequence

A �! X �! C

of nicely pointed spaces A;X;C. Over the rational number �eld Q,

we may realize this co�bration sequence as a short exact sequence in

C

1

DH

�

CO/Q of simply connected cocommutative chain complexes

0 �! A

�

(A) �! A

�

(X) �! A

�

(C) �! 0

with A

�

(A); A

�

(X); A

�

(C) 2 C

1

DH

�

CO/Q, having the same rational

homology as the normalized chain complexes C

�

(A),C

�

(X) and C

�

(C)

respectively. This follows from the work of D.Quillen [13] and Sul-

livan as a dual statement to the work of Bous�eld and Guggenheim

(see [3] and [9]) who showed that over Q, there is for X 2 T

1

�

a sim-

ply connected commutative cochain complex A

�

(X) 2 C

1

DH

�

AL/Q,

the Sullivan-De Rham complex, whose cohomology is just H

�

(X;Q).

Therefore, there is a natural 1

st

quadrant homology spectral sequence

fD

r

��

; @

r

g of homologyQ-Hopf algebras with the isomorphism inH

�

H/Q

D

2

��

�

=

H

�

(FA

�

(A);Q)

a

H

�

(FA

�

(C);Q)

where D

2

0;�

�

=

H

�

(FA

�

(A);Q) and D

2

�;0

�

=

H

�

(FA

�

(C);Q) and

`

de-

notes the coproduct in the category H

�

H/Q. For the convergence we

have in the strong sense

D

r

��

) H

�

(FA

�

(X);Q)

The isomorphism of Adams and the special equivalences allow us to

reidentify in H

�

H/Q

D

2

��

�

=

H

�

(
A;Q)

a

H

�

(
C;Q)

where D

2

0;�

�

=

H

�

(
A;Q) and D

2

�;0

�

=

H

�

(
C;Q). For the convergence

we get therefore in the strong sense

D

r

��

) H

�

(
X;Q)

Applying the primitive Lie algebra functor (over Q)

P : H

�

H=Q! L=Q

we de�ne a new spectral sequence fE

r

��

; d

r

g by setting

E

r

��

= PD

r

��

d

r

= P@

r

= @

r

jPD

r

��

It follows from the homology invariance of the primitive Lie algebra

functor that fE

r

��

; d

r

g is a spectral sequence of Q-Lie algebras.
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Because the primitive Lie algebra functor preserves coproducts, we

get

E

2

��

�

=

PH

�

(
A;Q)

a

PH

�

(
C;Q)

with E

2

0;�

�

=

PH

�

(
A;Q) and E

2

�;0

�

=

PH

�

(
C;Q). We have conver-

gence in the strong sense

E

r

��

) PH

�

(
X;Q)

By the Theorem of Cartan-Serre we now get

E

2

��

�

=

�

�

(
A)


Z

Q

a

�

�

(
C)


Z

Q

with E

2

0;�

�

=

�

�

(
A)


Z

Q and E

2

�;0

�

=

�

�

(
C)


Z

Q. For the convergence

we have in the strong sense

E

r

��

) �

�

(
X) 


Z

Q

By the de�nition of the rational homotopy functor L

�

, we get the �nal

identi�cation

E

2

��

�

=

L

�

(A)

a

L

�

(C)

with E

2

0;�

�

=

L

�

(A) and E

2

�;0

�

=

L

�

(C). The coproduct

`

is the coprod-

uct in the category of connected graded Q-Lie algebras L/Q. For the

convergence we have in the strong sense

E

r

��

) L

�

(X)

The spectral sequence fE

r

��

; d

r

g is again natural with respect to maps

between co�brations.

As for the homology spectral sequence, we can derive certain collapse

theorems for the rational homotopy spectral sequence by applying the

primitive Lie algebra functor to the homology spectral sequence over

Q. As a special case we get the main theorem of Clark and Smith [5]

concerning the rational homotopy of a wedge in the category T

1

�

.

Corollary 5.7 (Big Collapse Theorem). Suppose we have a co�-

bration sequence

A

i

�! X

p

�! C

where A;X;C are nicely pointed spaces. The natural 1

st

quadrant ra-

tional homotopy spectral sequence E

r

(A;X;C) collapses at E

2

if and

only if the induced morphism p

�

: H

�

(
X;Q) ! H

�

(
C;Q) is an epi-

morphism. Then we have in L/Q

L

�

(X)

�

=

L

�

(A)

a

L

�

(C) �
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Corollary 5.8 (Little Collapse Theorem). Suppose we have a co�-

bration sequence

A

i

�! X

p

�! C

where A;X;C are nicely pointed spaces and which admits a cocross

section s : C ! X. Then the rational homotopy spectral sequence

E

r

(A;X;C) collapses at E

2

and we have the isomorphism in L/Q

L

�

(X)

�

=

L

�

(A)

a

L

�

(C) �

Corollary 5.9 (Clark-Smith). Let A;C 2 T

1

�

. Then there is a nat-

ural isomorphism in L/Q

L

�

(A _ C)

�

=

L

�

(A)

a

L

�

(C) �

If we rewrite this result in terms of rational homotopy groups

�

Q

�

(
(A _ C))

�

=

�

Q

�

(
A)

a

�

Q

�

(
C)

this shows that the Hilton-Milnor formula holds also for rational homo-

topy groups [16]. We can iterate this result to a �nite wedgeX

1

_: : :_X

s

of spaces X

1

; : : : ;X

s

2 T

1

�

.

Corollary 5.10. Let X

1

; : : : ;X

s

2 T

1

�

and k be a �eld. Then there is

a natural isomorphism in L/Q

L

�

(X

1

_ : : : _ X

s

)

�

=

L

�

(X

1

)

a

: : :

a

L

�

(X

s

) �

We can rewrite this isomorphism in the form

�

Q

�

(
(X

1

_ : : : _X

s

))

�

=

�

Q

�

(
X

1

)

a

: : :

a

�

Q

�

(
X

s

)

Especially for spheres S

p

1

; : : : ; S

p

s

we get therefore in L/Q

�

Q

�

(
(S

p

1

_ : : : _ S

p

s

))

�

=

�

Q

�

(
S

p

1

)

a

: : :

a

�

Q

�

(
S

p

s

)
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