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Abstract

We study the spectral zeta function for the Laplacian, with Dirichlet bound-
ary conditions, on p.c.f self similar fractals. We use this zeta function to give
an alternative proof of an analogue of Weyl’s formula, obtained by Kigami and
Lapidus [6], and additionally obtain precise error terms. Further, we derive an
analogue of the Selberg Trace Formula, relating the eigenvalues of the Laplacian
to lengths of closed orbits of a semiflow whose cross section is the fractal set.

The main results of this paper provide solutions to conjectures in [7] and [8].

0 Introduction

During the past several years, there has been increasing interest in studying analysis
on fractal sets. Diffusion processes were first constructed on certain fractals as limits of
random walks on finite graphs, approximating the fractal [2], [9]. This approach leads
to a natural definition of the Laplacian as the infinitessimal generator of Brownian
motion.

Later, Kigami [5] introduced an “analytical” approach, defining the Laplacian as
a limit of a sequence of finite difference operators. This allowed the development
of a general theory of harmonic analysis, modelled on classical harmonic analysis on
Euclidean spaces. In particular, a version of the Dirichlet problem can be formulated
and solved, and there are also analogues of Green’s functions and harmonic functions.
So far this theory has been restricted to a special class of fractals, termed “post critically
finite”. The canonical example in this class is the Sierpinski gasket.

One particularly interesting result is an analogue of Weyl’s asymptotic formula for
the growth rate of the eigenvalues of the Laplacian, which was proved in [6]. The proof is
based on an application of the Renewal Theorem from probability theory. In this paper,
we adopt a more classical approach. We define an analogue of the Minakshisundaram-
Pleijel zeta function for compact Riemannian surfaces [12]. An analysis of the analytic
behaviour of this zeta function near its critical line of convergence yields the analogue

1



of Weyl’s formula, together with explicit error terms. These error terms cannot easily
be obtained using the original method.

Further, we prove an analogue of Weyl’s asymptotic estimate [11], and a result con-
cerning the distribution of eigenvalues in remote intervals. Finally, we compute an ex-
plicit expression for the heat kernel of the Laplacian, as well as a general trace formula.
This result can be regarded as an analogue of Selberg’s Trace Formula, which relates
the eigenvalues of the Laplacian on a compact Riemannian surface to the geodesic flow
on the unit tangent bundle of the manifold. Our formula relates the spectrum of the
Laplacian to the lengths of closed orbits of a semiflow, whose cross section is the fractal
set. The semiflow itself depends on the harmonic structure we define on the fractal.

The main results of this paper provide solutions to the conjectures proposed in
section six of [7], as well as conjecture Q6 in [8].

1 The Laplacian on p.c.f. fractals

In this section, we give some background definitions and results which will be used
later in the paper. For a more detailed expositions, together with proofs, see [5].

Let K be a compact, metrizable topological space and let Ti : K → K for i =
1, 2, . . . , N be continuous mappings, for some N ≥ 2.

Let Σ = {1, 2, . . . , N}IN∪{0} be a space of one-sided infinite sequences of the symbols
{1, 2, . . . , N}. The space Σ is a metric space, when endowed with the metric d, given
by

d((xn), (yn)) =
∞
∑

n=0

δ(xn, yn)

2n

where

δ(xn, yn) =

{

0 , if xn = yn
1 , otherwise.

The shift map σ : Σ → Σ given by (σx)n = xn+1 is a continuous surjective N -to-1
map. The inverse branches of σ are the maps σi : Σ → Σ for i = 1, 2, . . . , N given by
σix = ix. For each m ≥ 1, let Σm = {1, 2, . . . , N}m be the collection of words of length
m. For w = w0w1 . . . wm−1 ∈ Σm, we define Tw : K → K by Tw = Tw0 ◦Tw1 ◦ · · ·◦Twm−1

and Kw = Tw(K).

Definition 1 The pair (K, (Ti)
N
i=1) is called a self-similar structure if the following

two conditions hold:

(i) Each map Ti : K → K for i = 1, 2, . . . , N is injective.

(ii) There exists a continuous surjective map π : Σ → K such that π ◦ σi = Ti ◦ π for
i = 1, 2, . . . , N .

For a self-similar structure (K, (Ti)
N
i=1), define subsets of Σ, called the critical set C

and the post-critical set P , by
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C = π−1
(

∪i 6=j Ti(K) ∩ Tj(K)
)

and

P = ∪n≥1σ
n(C)

respectively.

Definition 2 A self-similar structure (K, (Ti)
N
i=1) is called post critically finite (p.c.f)

if |P| <∞.

We now define a sequence of finite sets approximating K. Let V0 = π(P), and for
each m ≥ 1, define

Vm = ∪w∈ΣmTw(V0)

and also let V∗ = ∪m≥0Vm. It is easy to see that Vm ⊂ Vm+1 for all m ≥ 0 and V∗ = K.
The set V0 plays the role of the potential-theoretic boundary of K, and will be denoted
by ∂K. In the same spirit, we also define V 0

m = Vm \ V0 and K0 = K \ ∂K.
We now introduce two items of notation. Let U, V be sets.

(i) Let l(V ) = {f : V → IR} and let L(U, V ) denote the space of all linear operators
l(U) → l(V ). In the case U = V , we denote L(U,U) by L(U).

(ii) Let C(K) = {f ∈ l(K) : f is continuous on K}, and endow the space with the
supremum norm ‖.‖∞. Note that C(K) can be viewed as a subspace of l(V∗).

Next we define finite difference operators on V0.

Definition 3 We say that D ∈ H(V0) if D ∈ L(V0) and D satisfies the following
properties:

(i) Dt = D

(ii) D is irreducible (i.e. for all (p, q) ∈ V0 × V0, there exists (pn)
k
n=1 with pn ∈ V0

for n = 1, 2, . . . , k and p1 = p, pk = q such that D(pn, pn+1) 6= 0 for all n =
1, 2, . . . , k − 1.)

(ii) D(p, p) < 0 and
∑

q∈V0 D(p, q) = 0 for all p ∈ V0.

(iii) D(p, q) ≥ 0 for all p 6= q.

The operators in H(V0) induce finite difference operators Hm ∈ L(Vm) as follows.
Let r = (r1, r2, . . . , rN ) ∈ (0,∞)N and define a linear operator Hm ∈ L(Vm), for each
m ≥ 1, by

Hm =
∑

w∈Σm

1

rw
Rt
wDRw
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where Rw ∈ L(Vm, V0) is defined by Rw = f ◦ Tw, and rw = rw0rw1 . . . rwm−1 for
w = w0w1 . . . wm−1 ∈ Σm.

Definition 4 A function f ∈ C(K) is called harmonic if (Hmf)(p) = 0 for all p ∈ V 0
m

and m ≥ 1.

Thus harmonic functions are continuous functions which satisfy a mean value prop-
erty. In order to guarentee the existence of non-constant harmonic functions, we require
a further restriction on the pair (D, r), which we will describe in Definition 1. Since
H1 is a symmetric matrix, we may write

H1 =

(

T J t

J X

)

(1.1)

where T ∈ L(V0), J ∈ L(V0, V
0
1 ) and X ∈ L(V 0

1 ). It is also possible to show that the
matrix X is invertible (see [5], Lemma 2.7).

Definition 5 The pair (D, r) ∈ H(V0)× (0,∞) is called a harmonic structure if there
exists λ > 0 such that

D = λ(T − J tX−1J).

Further, a harmonic structure is called regular if ri < λ for all i = 1, 2, . . . , N .

Henceforth, we shall assume that (D, r) is a regular harmonic structure. The natural
discrete Dirichlet form associated to Hm is given by

E (m)(f, g) = λmf tHmg

for f, g ∈ l(Vm).
By Corollary 6.14 in [5], for each f ∈ l(V∗), the sequence (E (m)(f |Vm , f |Vm))∞m=1 is

monotonic non-decreasing. Thus limm→∞ E (m)(f |Vm , f |Vm) exists provided we allow the
value of the limit to be infinity.

Definition 6 A subspace F ⊂ l(V∗) is defined by

F = {f ∈ l(V∗) : lim
m→∞

E (m)(f |Vm , f |Vm) <∞}
and a symmetric form E on F is given by

E(f, g) = E (m)(f |Vm , g|Vm).
For k ≥ 0, let Fk be the subspace of F given by

Fk = {f ∈ F : f |Vk = 0}.
Let Ek = E|F×F denote the restriction of the symmetric form E to Fk×Fk. (Frequently,
we shall also refer to the restricted Dirichlet form as E .)

Now we introduce the class of Bernoulli probability measures onK. Let (µ1, µ2, . . . , µN) ∈
(0, 1)N satisfy

∑N
i=1 µi = 1, and define a Borel probability measure µ on K by

µ(Kw) = µw0µw1 . . . µwm−1

for each w = w0w1 . . . wm−1 ∈ Σm and m ≥ 1. (In fact it is possible to consider a more
general class of measures [6].)
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Proposition 1 The bilinear symmetric forms (E ,F) and (Ek,Fk), for k ≥ 0 are local
regular Dirichlet forms on L2(K,µ). In particular, Fk ⊂ C(K) for all k ≥ 0.

Associated to the Dirichlet form E0 is a self adjoint operator called the Laplacian.
In particular, there is a dense linear subspace Dµ of C(K) and an operator ∆µ : Dµ →
C(K) satisfying

E0(f, g) = −
∫

f∆gdµ

for all f ∈ F0. It is important to note that the definition of the Laplacian depends on
µ, whereas the definition of E does not.

A function h ∈ Fk is called an eigenfunction of Ek with eigenvalue θ ∈ IR if

Ek(h, g) = −
∫

hgdµ

for all g ∈ Fk. Furthermore, h ∈ Fk is an eigenvalue of Ek with eigenvalue θ if and
only if h ∈ Dµ, h|Vk = 0 and h is an eigenfunction of −∆ with eigenvalue θ, (see [6]
Proposition 5.2.)

By remarking that for each k ≥ 0, the natural inclusion map ik : Fk → L2(K,µ) is
a compact operator (see [6], Lemma 5.4), it follows from Theorem 6.2 in [15] that the
eigenvalues of Ek are countable, non-negative and of finite multiplicity. Further, there
is a single accumulation point at infinity.

Let (θ(k)n )∞n=1 denote the eigenvalues of (Ek, Fk) ordered so that

0 ≤ θ
(k)
1 ≤ θ

(k)
2 ≤ · · · ↑ ∞

for all k ≥ 0. Define the eigenvalue counting function ρk for Ek, for each k ≥ 0, by

ρk(t) = ♯{n : θ(k)n ≤ t}

for any t ∈ IR.
The following lemma follows by applying of Corollary 4.7 in [6].

Lemma 1 For any k ≥ 0 and t ∈ IR,

ρk+1(t) ≤ ρk(t) ≤ ρk+1(t) + ♯(V0).

Now define numbers γi ∈ (0, 1) for i = 1, 2, . . . , N by

γi =

(

riµi
λ

)
1
2

where r = (r1, r2, . . . , rN ), λ > 0 are given by the harmonic structure and the µi are
the weights associated to the measure µ.

The unique positive real number d, called the spectral dimension is defined by
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N
∑

j=1

γdj = 1.

Define a function R : IR → IR by

R(t) = ρ0(t)−
N
∑

j=1

ρ0(γ
2
j t). (1.2)

We recall that any discrete subgroup of IR can be written in the form TZZ, where T > 0
is the least positive element, and is called the generator.

The following analogue of Weyl’s asymptotic formula for the eigenvalues of the
Laplacian was derived in [6] (Theorem 2.4).

Theorem 1 [6] The function R is bounded and continuous from the right. Further,
the following statements hold.

(i) If the additive group
∑N
j=1 ZZ log γj is a dense subgroup of IR then

ρ0(t) ∼
∫∞
−∞ e−dtR(e2t)dt

−∑N
j=1 γ

d
j log γj

td/2 as t→ ∞.

(ii) If
∑N
j=1 ZZ log γj is a discrete subgroup of IR with least positive generator T , then

ρ0(t) =

(

G

(

log t

2

)

+ o(1)

)

td/2

where G is a periodic function with period T , given by

G(t) = T

∑∞
j=−∞ e−d(t+jT )R(e2(t+jT ))

−∑N
j=1 γ

d
j log γj

.

Moreover, G is continuous from the right and bounded away from zero and infin-
ity.

Remark 1

(i) In the statement of the theorem, we have used two standard pieces of notation.

Firstly f(t) ∼ g(t) means that f(t)
g(t)

→ 1 as t → ∞, and secondly f(t) = o(t)

means f(t) → 0 as t→ ∞.

(ii) The fact that the function R is bounded and continuous from the right, which
ensures that the infinite integral and summation converge.
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(iii) One can also the eigenvalue problem with an analogue of the Von Neumann
boundary conditions. In this case, identical asymptotic formulae for the eigen-
value counting function can be obtained.

(iv) In [8], a “volume” measure v on K was introduced. In particular, v is a well-
defined, positive Radon measure. In case (i),

v(K) =

∫∞
−∞ e−dtR(e2t)dt

−∑N
j=1 γ

d
j log γj

and in case (ii),

v(K) =
1

T

∫ T

0
G(t)dt.

Of course, v depends on the associated harmonic structure and the measure µ.

2 Dynamical zeta functions

Let (K, (Ti)
N
i=1) be a self-similar structure, and let 0 < γi < 1 for i = 1, 2, . . . , N be

fixed and satisfy
∑N
j=1 γ

d
j = 1. Define a function φ : Σ → IR by

φ(w) = (γw0)
2 if w = w0w1 . . . ∈ Σ.

Then define a function ψ : K → IR by ψ(x) = φ(l(x)) where

l(x) = max{v ∈ Σ : v ∈ π−1(x)}
and the maximum is with respect to the natural lexicographical ordering of words in
Σ. (The ambiguity in the definition occurs at the points of the finite set π(C). Our
choice definition of ψ on π(C) is purely arbitrary.)

Now define a space Kψ by

Kψ = {(x, t) ∈ K × IR : 0 ≤ t ≤ ψ(x)}/ ∼
where the equivalence relation ∼ identifies the points (x, ψ(x)) and (T−1

j x, 0), where j
is chosen so that j = max{k : x ∈ Kk}.

Define a semiflow Φ : X → X for t ≥ 0 locally by

Φt(x, s) = (x, s+ t),

respecting the above identification. The semiflow Φ is called (topologically) weak mixing
if whenever there exist F ∈ C(Kψ,C|| ) and a ∈ IR such that

F ◦ Φt = eiatF

for all t ≥ 0, then a = 0 and F is identically constant. The following elementary lemma
lists some equivalent criteria.

7



Lemma 2 The following statements are equivalent:

(i) Φ is not topologically weak mixing.

(ii) The group
∑N
j=1 ZZ log γj is a discrete subgroup of IR.

(iii) The least periods of periodic orbits of Φ lie in a discrete subgroup of IR.

Let τ denote a generic closed orbit of Φ and let λ(τ) denote its least period. Since
the set π(C) is finite, the set of periodic orbits of Φ which intersect π(C) is also finite.
Let p(τ) denote the number of times the orbit τ intersects K × {0}.

Define formally a zeta function Z(s, z) of two coordinates by

Z(s, z) =
∏

τ
τ∩π(C)=∅

(1− e−(sd/2)λ(τ)+zp(τ))−1

where the symbol τ denotes a generic closed orbit of Φ. Formally, we have the identity

Z(s, z) = exp
∑

τprime
τ∩π(C)=∅

∞
∑

k=1

1

k
e−s(d/2)kλ(τ)+kzp(τ)

where the summation is restricted to “prime” closed orbits. (A closed orbit τ is called
prime if τ 6= γk for any closed orbit γ and any k > 1.) Using our symbolic representation
of K, we may write

Z(s, z) = exp
∞
∑

n=1

1

n

∑

w∈Σn
τπ(w)∩π(C)=∅

e−s(d/2)φ
n(w)+nz

where w = www . . . ∈ Σ is the periodic extension of the finite word w ∈ Σn. Further,

φn(v) =
n−1
∑

j=0

φ(σjv)

for each n ≥ 1 and v ∈ Σ, and τx denotes the set

τx = {x, Twn−1x, Twn−2wn−1x, . . . , Tw0w1...wn−1x}

assuming that Tw0w1...wn−1x = x, and Tw0w1...wj
x 6= x for all 0 ≤ j < n− 1.

We may also define a function

Y (s, z) = exp
∞
∑

n=1

1

n

∑

w∈Σn

e−s(d/2)φ
n(w)+nz.

The functions Y and Z do not coincide, due to the ambiguity at points of π(C).
However, we may write

Y (s, z) = Z(s, z)E(s, z) (2.1)
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where

E(s, z) = exp
∞
∑

n=1

1

n

∑

w∈Σn
τπ(w)∩π(C) 6=∅

e−s(d/2)φ
n(w)+nz.

In order to interpret E(s, z) as an Euler product, we need to introduce some extra
“fictitious” orbits of Φ. By the semiconjugacy relation, we know that if x ∈ π(C) is
periodic (i.e. Twx = x for some w ∈ Σn and n ≥ 1) then each preimage w of x under
π is periodic under σ. Thus τ = τx lifts to finitely many periodic orbits of σ. Let I(τ)
denote this set. For β ∈ I(τ) and w ∈ β, define λ(β) = φn(v), where σnv = v, and n
is chosen so that σjv 6= v for 0 ≤ j < n. Then we may write

E(s, z) =
∏

τ
τ∩π(C) 6=∅

∏

β∈I(τ)

(1− e−s(d/2)λ(β)+zp(β))−1

where both products are finite.
Let As,z denote the N ×N matrix with elements

As,z(i, j) = γdsj e
z

for s, z ∈ C|| . Formally, we may write

Y (s, z) = exp
∞
∑

n=1

1

n

∑

w0w1...wn−1∈Σn

As,z(w0, w1)As,z(w1, w2) . . . As,z(wn−1, w0)

= exp
∞
∑

n=1

1

n
tr(As,z)

n

=
1

1− ez
∑N
j=1 γ

ds
j

.

In particular, Y (s, z) is a nowhere vanishing analytic function for Re(s) > 1 and z
in a neighbourhood of 0 (depending on s). By using the Perron-Frobenius Theorem
for matrices and standard perturbation theory for linear operators, (see [13]), we may
analyse the behaviour of Y (s, z) on the critical line Re(s) = 1.

Lemma 3 (i) If Φ is topologically weak mixing, Y (s, z) has a nowhere zero analytic
extension to U \ {1}, where U is an open neighbourhood of {s : Re(s) ≥ 1}.
Further,

H(s, z) = Y (s, z)

(

1− ez
N
∑

j=1

γdsj

)

has a nowhere zero analytic extension to s = 1, for |z| sufficiently small, depend-
ing on s.
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(ii) If Φ is not topologically weak mixing, then Y (s, z) has a nowhere zero analytic
extension to U \ {1 + 2πki

dT
: k ∈ ZZ} for |z| sufficiently small (depending on s but

not on k). Further, H(s, z) has a nowhere zero analytic extension to the points
{1 + 2πki

dT
: k ∈ ZZ}, for |z| small depending on s.

Logarithmic differentiation of Y (s, z) at z = 0 gives

η(s) =
Y ′(s, 0)

Y (s, 0)
=

∑N
j=1 γ

ds
j

1−∑N
j=1 γ

ds
j

.

So we have

lim
s→1

(s− 1)η(s) = lim
s→1

s− 1

1−∑N
j=1 γ

ds
j

=
1

−d∑N
j=1 γ

d
j log γj

.

In the case that Φ is not topologically weak mixing, η(s) is simply periodic with period
2πi
dT

, that is formally,

η
(

s+
2πki

dT

)

= η(s)

for all k ∈ ZZ.
We summarise these results in the following proposition.

Proposition 2 The function η(s) is analytic for Re(s) > 1, and

(i) if Φ is topologically weak mixing, then η(s) has an analytic extension to a neigh-
bourhood of Re(s) > 1, except for a simple pole at s = 1, with residue

Res(η, 1) =
1

−d∑N
j=1 γ

d
j log γj

,

(ii) if Φ is not topologically weak mixing, then η is simply periodic with period 2πi
Td

,
and η is analytic for Re(s) > 1− ε for some ε > 0, except for simple poles at the
points 1 + 2kπi

dT
for k ∈ ZZ, with residue

−
(

d
N
∑

j=1

γdj log γj
)−1

.

By logarithmic differentiation of (2.1), we obtain the identity

η(s) =
∑

τprime
τ∩π(C)=∅

∞
∑

k=1

p(τ)e−s(d/2)kλ(τ) + E(s), (2.2)

where

E(s) =
∂

∂z
logE(s, z)|z=0

is an entire function.
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3 Self-similarity of Dirichlet forms

In this section, we give a modified version of Proposition 6.2 in [6], overcoming a
difficulty in the proof. (In [6], it is claimed that if f is an eigenfunction of (E ,F1) with
eigenvalue θ, then f ◦ Ti is an eigenvalue of (E , F0) with eigenvalue ( riµi

λ
)θ. However,

it is not shown that f ◦ Ti is not identically zero.)
The proof of Proposition 3 is based on the following simple lemma.

Lemma 4 ([6],Lemma 6.1) For f, g ∈ F ,

E(f, g) = λ
N
∑

i=1

1

ri
E(f ◦ Ti, g ◦ Ti).

Proof. This follows by a simple calculation. ⊲⊳

Proposition 3 (i) f is an eigenfunction of (E ,F0) with eigenvalue θ if and only if
for each i = 1, 2, . . . N , the function gi ∈ F1 defined by

gi(x) =

{

f ◦ T−1
i (x) , if x ∈ Ki

0 , if x /∈ Ki
(3.1)

is an eigenfunction of (E ,F1) with eigenvalue
(

λ
riµi

)

θ.

(ii) Any eigenfunction g of (E ,F1) is expressable as a linear combination of the func-
tions gi.

(iii) ρ1(t) =
∑N
i=1 ρ0

(

riλi
λ
t
)

.

Proof. (i) Let f be an eigenfunction of (E ,F0) with eigenvalue θ ∈ IR and let gi ∈ F1

for i = 1, 2, . . . , N be as in (3.1). By definition,

E(f, g) = θ
∫

fhdµ

for all f ∈ F0. By Lemma 4, for all k ∈ F1, we have that

E(gi, k) = λ
N
∑

j=1

1

rj
E(gi ◦ Tj, k ◦ Tj)

=
λ

ri
E(f, k ◦ Ti)

=
λ

ri
θ
∫

f.k ◦ Tidµ

=

(

λ

riµi

)

θ
N
∑

j=1

µj

∫

gi ◦ Tj.k ◦ Tjdµ

=

(

λ

riµi

)

θ
∫

gikdµ
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and thus

E(gi, k) =
(

λ

riµi

)

θ
∫

gikdµ

for all k ∈ F1. The converse argument is obvious.

(ii) It suffices to check that every eigenfunction g of (E ,F1) is expressable as a linear
combination of functions of the form (3.1). So let g ∈ F1 be an eigenfunction of (E ,F1)
with eigenvalue θ ∈ IR. Then

E(g, k) = θ
∫

gkdµ (3.2)

for all k ∈ F1. Define

hi(x) =

{

g(x) , if x ∈ Ki

0 , if x /∈ Ki

for each i = 1, 2, . . . , N , and note that hi 6≡ 0 for at least one such i. Fix such an i,
and let

H =
N
∑

j=1
j 6=i

hj.

Further, for any k ∈ F1 define ki ∈ F1 by

ki(x) =

{

k(x) , if x ∈ Ki

0 , if x /∈ Ki

Then by (3.2),

E(hi +H, ki) = θ
∫

(hi +H)kidµ

By the local property of the Dirichlet form, (in particular, since the supports of H and
ki have disjoint interiors), E(H, ki) = 0, and thus

E(hi, ki) = θ
∫

hikidµ.

Applying the local property again to show that

E(hi, (k − ki)) = 0

we have

E(hi, k) = θ
∫

hikdµ

for all k ∈ F1. Defining f ∈ F0 by f = g ◦ Ti completes the proof of (ii).

(iii) This follows immediately from parts (i) and (ii). ⊲⊳

Proposition 4 For all t ∈ IR,

N
∑

i=1

ρ0

(

riµi
λ
t
)

≤ ρ0(t) ≤
N
∑

i=1

ρ0

(

riµi
λ
t
)

+ ♯(V0).

Proof. The proposition follows by combining Lemma 1 and Proposition 3(iii). ⊲⊳

12



4 The spectral zeta function

Let θ1, θ2, θ3,. . . denote the eigenvalues of −∆|Dµ (or equivalently the eigenvalues of
(E0,F0)), arranged in increasing order and counted according to multiplicity. We also
define θ0 = 0.

Definition 7 The spectral zeta function ζ(s) is defined formally by

ζ(s) =
∞
∑

n=1

θ−sd/2n .

The function ζ(s) is the analogue of the Minakshisundaram-Pleijel zeta function
for the Laplacian on surfaces on constant negative curvature [12]. The zeta function is
normalized so that its critical line of convergence is {s : Re(s) = 1}.

By Proposition 4, the function R defined in section one is bounded. Since the
spectrum of −∆ is discrete and countable, R is also continuous from the right.

Lemma 5 Formally, the following identity holds:

ζ(s) =

(

∞
∑

n=0

(R(θn+1)−R(θn))θ
−sd/2
n+1

)

(1 + η(s)).

where η(s) is given by (2.2).

Proof. First of all, note that

R(t) = ρ0(t)− ρ1(t)

= ♯{n ≥ 1 : θn ≤ t, θn is not an eigenvalue of (E ,F1)}.

Thus in particular, R is a monotonic non-decreasing function. Let b = supt∈RR(t) and
let β1, β2, . . . , βb be all eigenvalues of (E ,F0) which are not eigenvalues of (E ,F1). By
Proposition 3, the set of eigenvalues of (E ,F0) is equal to the set

b
⋃

j=1

(

{βj} ∪
⋃

m≥1

{

βj
γ2w

: w ∈ Σm

})

where

γw = γw0γw1 . . . γwm−1

for w = w0w1 . . . wm−1 ∈ Σm. Thus we obtain the following expression for ζ(s)

ζ(s) =
b
∑

j=1

β
−sd/2
j

(

1 +
∞
∑

m=1

∑

w∈Σm

γsdw

)

=

(

∞
∑

n=0

(R(θn+1)−R(θn))θ
−sd/2
n+1

)

(1 + η(s))

13



as required. ⊲⊳

Proof of Theorem 1(i) By Proposition 2 and Lemma 5, we have

ζ(s) =





∑∞
n=0 (R(θn+1)−R(θn))θ

−d/2
n+1

−d∑N
j=1 γ

d
j log γj





1

s− 1
+ J1(s)

for Re(s) > 1, where J1(s) has an analytic extension to an open neighbourhood of
{s : Re(s) ≥ 1}. We now require the following well known Tauberian theorem of
Wiener and Ikehara [16].

Proposition 5 Let α(t) be a monotonic non-decreasing function which is continuous
from the right and satisfies α(0) = 0. Assume that for some A 6= 0,

∫ ∞

1
t−sdα(t) =

A

s− 1
+ J2(s)

for all Re(s) > 1, where J2(s) is analytic in an open neighbourhood of {s : Re(s) ≥ 1}.
Then

α(t) ∼ At as t→ ∞.

By writing

ζ(s) =
∫ ∞

1
t−sd/2dρ0(t)

we may apply Proposition 5 to deduce that

ρ0(t) ∼




∑∞
n=0 (R(θn+1)−R(θn))θ

−d/2
n+1

−d∑N
j=1 γ

d
j log γj



 td/2 as t→ ∞.

Finally,

1

d

∞
∑

n=0

(R(θn+1)−R(θn))θ
−d/2
n+1 =

1

d

∞
∑

n=1

R(θn)(θ
−d/2
n − θ

−d/2
n+1 )

=
1

2

∞
∑

n=1

R(θn)
∫ θn+1

θn
u−1− d

2du

=
1

2

∫ ∞

0
u−1− d

2R(u)du

since R(u) = 0 for u ∈ [0, θ1)

=
∫ ∞

−∞
e−dtR(e2t)dt

after the change of variables u = e2t. This completes the proof the Theorem 1(i). ⊲⊳

Proof of Theorem 1(ii) First of all, let
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Q = −
(

d
N
∑

j=1

γdj log γj
)−1

.

Then since η(s) is simply periodic with period 2πi
dT

and has simple poles at the points
s = 1 + 2πi

dT
k for k ∈ ZZ, with residue Q, we may express η(s) as

η(s) =
dTQ

1− e−dT (s−1)
+ J3(s)

where J3(s) is analytic for Re(s) > 1− ε, for some ε > 0. Thus we may write

ζ(s) =
∞
∑

k=1

(R(θk+1)−R(θk))θ
−sd/2
k+1

(

1 + dTQ
∞
∑

n=0

e−dTnseTdn
)

+ J4(s)

By carrying out a similar rearrangement as in part (i),

ζ(s) = dTQ
∞
∑

k=0

(R(θk+1)−R(θk))θ
−sd/2
k+1

∞
∑

n=1

e−dTnseTdn + J5(s)

= dTQ
∞
∑

n=1

eTdn
∞
∑

k=0

(R(θk+1)−R(θk))(e
2Tnθk+1)

−sd/2 + J5(s)

= dTQ
∫ ∞

1
t−sd/2dξ(t) + J5(s)

where

ξ(t) =
∞
∑

k=0

(R(θk+1)−R(θk))
∑

{n:e2TNθk+1≤t}

eTdn

which is monotonic increasing, continuous from the right and satisfies ξ(0) = 0. So we
have

∫ ∞

1
t−sd/2dρ0(t) = TQd

∫ ∞

1
t−sd/2dξ(t) + J5(s)

where J5(s) is analytic for Re(s) > 1− ε, for some ε > 0. We conclude that

ρ0(t)

td/2
= TQd

∞
∑

k=0

(R(θk+1)−R(θk))
∑

{n:e2Tnθk+1≤t}

eTdn +O(t−ε)

= TQd
∞
∑

k=1

R(θk)
∑

{n: t
θk+1

<e2Tn≤ t
θk
}
eTdn +O(t−ε)

= TQd
∞
∑

k=1

R(θk)
∑

{n:θk≤te−2Tn<θk+1}

eTdn +O(t−ε)
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= TQd
∞
∑

k=1

eTdkR(te−2kT ) +O(t−ε)

= TQd
∞
∑

k=−∞

eTdkR(te−2kT ) +O(t−ε)

= TQd
∞
∑

k=−∞

e−TdkR(te2kT ) +O(t−ε)

from which the result follows by a simple rearrangement. ⊲⊳

We now derive an analogue of Weyl’s asymptotic estimate for the heat kernel (see
[11], page 234). This result will be required in section six. Let Γ(s) denote the Gamma
function.

Corollary 1 (i) If the additive group
∑N
j=1 ZZ log γj is a dense subgroup of IR then

lim
t→0+

td/2
(

∞
∑

n=1

e−θnt
)

= Γ

(

d

2
+ 1

)

v(K).

(ii) If the additive group
∑N
j=1 ZZ log γj is a discrete subgroup of IR, with generator T ,

then

td/2
(

∞
∑

n=1

e−θnt
)

= Γ

(

d

2
+ 1

)(

G
( log t

2

)

+ o(1)

)

as t→ 0+.

Proof. (i) For all t > 0, define

ϑ(t) =
∞
∑

n=1

e−tθn .

Applying the Mellin transform to ϑ gives formally

∫ ∞

0
ts−1ϑ(t)dt =

∞
∑

n=1

(

∫ ∞

0
ts−1e−tθndt

)

=

(

∫ ∞

0
us−1e−udu

)

∞
∑

n=1

θ−sn

= Γ(s)ζ
(2s

d

)

.

But

Γ(s)ζ
(2s

d

)

=
Γ(d

2
)v(K)

s− d
2

+ ψ1(s)

where ψ1 is analytic in an open neighbourhood of {s : Re(s) ≥ d
2
}. Further,
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s
∫ ∞

0
ts−1ϑ(t)dt = s

∫ 1

0
ts−1ϑ(t)dt+ ψ2(s)

=
∫ ∞

1
u−sdϑ

(1

u

)

+ ψ2(s)

where ψ2(s) is analytic for Re(s) > 0. Thus

∫ ∞

1
u−sdϑ

(1

u

)

=
Γ(d

2
+ 1)v(K)

s− d
2

+ ψ3(s)

where ψ3(s) is analytic in an open neighbourhood of {s : Re(s) ≥ d
2
}. Since u 7→ ϑ( 1

u
)

is monotonic increasing and continuous, and

lim
u→0+

ϑ
(1

u

)

= 0,

we can apply the Wiener-Ikehara Tauberian Theorem again to deduce the result.

(ii) By duplicating the argument for part (i), we have

∫ ∞

1
u−sdϑ

(1

u

)

= Γ
(d

2
+ 1

)

∞
∑

k=1

(R(θk+1)−R(θk))θ
−s
k+1

(

1 + dTQ
∞
∑

n=0

e−2TnseTdn
)

+ ψ5(s)

where ψ5(s) is analytic in an open neighbourhood of {s : Re(s) ≥ d
2
}. The result then

follows by the argument above for Theorem 1(ii). ⊲⊳

We now derive a result which describes the distribution of the eigenvalues of −∆ in
remote intervals. The proof is a simple adaptation of the argument in pages 110-111
of [13].

Corollary 2 Suppose that
∑N
j=1 ZZ log γj is not a discrete subgroup of IR. The as k →

∞, {θn : k < θn ≤ k + 1} is distributed according to the probability density dedt/2

2(ed/2−1)
.

Proof. Using Theorem 1(i), we have

∑

θn≤t

θian =
∫ t

1
uiadρ0(u)

and hence

∑

θn≤t

θian ∼ dtia

d+ 2ia
ρ0(t).

Thus
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∑

t<log θn≤t+1

θian ∼ v(K)et(
d
2
+ia)d

(

e
d
2
+ia − 1

d+ 2ia

)

and

∑

t<log θn≤t+1

1 ∼ v(K)etd/2(ed/2 − 1)

as n→ ∞. Thus

∑

t<log θn≤t+1 θ
ia
n

∑

t<log θn≤t+1 1
∼ etiad(e

d
2
+ia − 1)

(e
d
2 − 1)(d+ 2ia)

.

Choose a = 2πk for k ∈ ZZ, so that

∑

t<log θn≤t+1 θ
2πki
n

∑

t<log θn≤t+1 1
∼ de2πikt

d+ 4πik

or equivalently

∑

t<θn≤t+1 θ
2πki
n

∑

t<θn≤t+1 1
∼ dt2πik

d+ 4πik

as n → ∞. In particular, the latter is the Fourier transform of dedt/2

2(ed/2−1)
translated

through an angle 2π log t. ⊲⊳

5 Error terms in Weyl’s formula

In this section, we will prove the following estimate on the rate of convergence in
Theorem 1.

Theorem 2 (i) Suppose that for some 1 ≤ j ≤ N , the numbers {log γi/ log γj : i 6=
j} are rationally independent algebraic integers. Then there exists a real number
α > 0 such that

ρ0(t) = v(K)td/2
(

1 +O

(

1

(log t)α

))

as t→ ∞.

(ii) Suppose that
∑N
j=1 ZZ log γj is a discrete subgroup of IR. Then there exists β > 0

such that

ρ0(t) = td/2
(

G

(

log t

2

)

+O(t−β)

)

as t→ ∞.
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Part (ii) of Theorem 2 follows immediately from the calculation in section four, so
it only remains to prove part (i).

Proof of Theorem 1(i). We first introduce the standard unweighted dynamical zeta
function for the semiflow Φ, namely

χ(s) = Z(s, 0) =
∏

τ

(1− e−sdλ(τ)/2)−1

normalised so that χ(s) has {s : Re(s) = 1} as its critical line of convergence. We may
rewrite χ(s) as

χ(s) =
1

1−∑N
j=1 γ

ds
j

by using the arguments of section two. It then follows that

η(s) =
χ′(s)

χ(s)
β(s) (5.1)

where

β(s) =

∑N
j=1 γ

ds
j

−d∑N
j=1(log γj)γ

ds
j

. (5.2)

Under the hypotheses of the theorem, it is shown in [14] that χ′(s)/χ(s) has a pole free
region of the form

{

s : Re(s) ≥ 1− 1

(1 + Im(s))α
, s 6= 1

}

. (5.3)

Further, this then implies that

A(t) = td/2
(

1 +O

(

1

(log t)β)

))

(5.4)

for some β > 0, where

χ′(s)

χ(s)
=
∫ ∞

1
t−sd/2dA(t).

By (5.1) and (5.2), the poles of β(s) occur precisely at the zeros of χ′(s). Thus η(s)
has a pole-free region of the form (5.3). Finally, by Lemma 5, we also deduce that ζ(s)
has a pole-free region of the form (5.3). Thus we may replace χ′(s)/χ(s) by ζ(s)/v(K)
in the argument in [14] to deduce that

ρ(t) = v(K)td/2
(

1 +O

(

1

(log t)β)

))

as required. ⊲⊳
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6 A trace formula for the Laplacian

In this section, we prove a trace formula for the heat kernel of the Laplacian (Theorem
3) and deduce a more general trace formula (Theorem 4). These formulae relate the
eigenvalues of the Laplacian to the closed orbits of the semiflow Φ, introduced in section
two.

Given a function f : IR → IR, we define formally the Fourier transform f̂ : IR → IR
by

f̂(u) =
∫ ∞

−∞
f(t)e−itudt.

In accordance with common practice, given a periodic orbit τ we define N(τ) = eλ(τ).
Define a set P by

P = {τ : τ ∩ π(C) = ∅} ∪
⋃

τprime
τ∩π(C) 6=∅

I(τ).

So P is the set of all true and fictitious prime periodic orbits of Φ. The function
R : IR → IR is defined in equation (1.2).

Theorem 3 For all t > 0,

∞
∑

n=1

e−θnt = t

(

R̂(−it) +
∞
∑

n=1

∑

τ∈P

p(τ)N(τ)−2nR̂(− itN(τ)−2n)

)

Proof. Using the argument in the proof Lemma 5,

∞
∑

n=1

e−θnt

=
∞
∑

k=0

(R(θk+1)−R(θk))

(

e−tθk+1 +
∞
∑

n=1

∑

w0w1...wn−1∈Σn

exp { − tθk+1(γw0γw1 . . . γwn−1)
2}
)

=
∞
∑

k=0

(R(θk+1)−R(θk))

(

e−tθk+1 +
∞
∑

n=1

∑

τ
τ∩π(C)=∅

p(τ) exp { − tθk+1e
−2nλ(τ)}

+
∞
∑

n=1

∑

τ
τ∩π(C) 6=∅

∑

β∈I(τ)

p(β) exp { − tθk+1e
−2nλ(β)}

)

=
∞
∑

k=0

(R(θk+1)−R(θk))

(

e−tθk+1 +
∞
∑

n=1

∑

τ∈P

p(τ) exp { − tθk+1N(τ)−2N}
)

(6.1)

We shall analyse the two terms in (6.1) separately. Firstly,
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∞
∑

k=0

(R(θk+1)−R(θk))e
−tθk+1 =

∞
∑

k=1

R(θk)(e
−tθk − e−tθk+1)

=
∞
∑

k=1

R(θk)

(

∫ θk+1

θk

te−tudu

)

=
∫ ∞

0
R(u)te−tudu

= t
∫ ∞

−∞
R(u)e−tudu

since R(u) = 0 for u ≤ 0,
= tR̂(−it).

Similarly, for the second term in (6.1), we have

∞
∑

k=0

(R(θk+1)−R(θk))
∞
∑

n=1

∑

τ∈P

p(τ) exp { − tθk+1N(τ)−2n}

=
∞
∑

n=1

∑

τ∈P

p(τ)
∞
∑

k=1

R(θk)
(

exp { − tθkN(τ)−2n} − exp { − tθk+1N(τ)−2n}
)

=
∞
∑

n=1

∑

τ∈P

p(τ)
∞
∑

k=1

R(θk)

(

∫ θk+1

θk

exp { − tuN(τ)−2n}du
)

tN(τ)−2n

= t
∞
∑

n=1

∑

τ∈P

p(τ)N(τ)−2n

(

∫ ∞

0
R(u) exp { − tuN(τ)−2n}du

)

= t
∞
∑

n=1

∑

τ∈P

p(τ)N(τ)−2n

(

∫ ∞

−∞
R(u) exp { − tuN(τ)−2n}du

)

= t
∞
∑

n=1

∑

τ∈P

p(τ)N(τ)−2nR̂
(

− itN(τ)−2n
)

which completes the proof of Theorem 1. ⊲⊳

Let β > 1 and δ > d
2
+ 1, and define a special class of C∞ functions on [0,∞) by

∆β,δ =
{

h ∈ C∞([0,∞)) : sup
t∈[1,∞)

tβ|h(t)| <∞, sup
t∈(0,1)

|h(t)|
tδ

<∞
}

.

Introduce the Laplace transform Lh of h ∈ ∆β,δ by

(Lh)(u) =
∫ ∞

0
h(t)e−utdt.

Then Lh is well defined and lies in C1([0,∞)).

Theorem 4 Let h ∈ ∆β,δ and g = Lh. Then

∞
∑

n=1

g(θn) = −
∫ ∞

−∞
R(t)g′(t)dt−

∞
∑

n=1

∑

τ∈P

N(τ)−2n
∫ ∞

−∞
R(u)g′(uN(τ)−2n)dt.
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Proof. By our assumption on h ∈ ∆β,δ and Corollary 1, we may write

∞
∑

n=1

g(θn) =
∫ ∞

0
h(t)

(

∞
∑

n=1

e−θnt
)

dt (6.2)

where both sides converge uniformly. By applying Theorem 3, we obtain

∞
∑

n=1

g(θn) =
∫ ∞

−∞
R(u)

(

∫ ∞

0
th(t)e−tudt

)

du

+
∞
∑

n=1

∑

τ∈P

p(τ)N(τ)−2n
∫ ∞

−∞
R(u)

(

∫ ∞

0
th(t) exp { − tuN(τ)−2n}dt

)

du

= −
∫ ∞

−∞
R(u)g′(u)du−

∞
∑

n=1

∑

τ∈P

p(τ)N(τ)−2n

(

∫ ∞

−∞
R(u)g′(uN(τ)−2n)du.

)

As R has compact support, both integrals converge absolutely. ⊲⊳

Finally, we can interpret the summation
∑∞
n=1 g(θn) as a trace in the following.

Let H be a Hilbert space and let K be the ideal of compact linear operators on H.
Given B ∈ K, let χn = χn(B) denote the characteristic values of

√
B∗B, written in

non-increasing order, and according to multiplicity.
Consider the ideal I defined by

I =
{

B ∈ K :
∞
∑

n=1

χn(B) <∞
}

.

which is just the ideal of trace class operators on H. Let

−∆ =
∫

θdEθ

denote the spectral decomposition of −∆. Then we may define an operator g(−∆) by

g(−∆) =
∫

g(θ)dEθ.

By (6.2) and our assumptions on g,

∣

∣

∣

∣

∣

∞
∑

n=1

g(θn)

∣

∣

∣

∣

∣

<∞

so we have that g(−∆) ∈ I.
We summarise this discussion in the following proposition.

Proposition 6 For g ∈ L(∆β,δ), tr g(−∆) is well defined, and

tr g(−∆) =
∞
∑

n=1

g(θn).
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