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Abstract

Let (X, (Ti)
N
i=1) be an iterated function system, comprising N contracting

similitudes (Ti)
N
i=1 on k-dimensional Euclidean space, with compact invariant

set X. Assume that (X, (Ti)
N
i=1) satisfies the open set condition and that X

is connected. Let µ be a fully supported self-similar probability measure on
X. We give a necessary and sufficient condition for the existence of self-similar,
local regular Dirichlet forms on L2(X,µ), whose domains are Hölder continuous
functions. Further, we investigate their spectral properties. Our results solve
conjectures raised in [13] and [14].

0 Introduction

In this paper, we consider diffusion processes on self-similar fractal sets. Given a
finite family of contracting similitudes on IRk, there is a unique compact subset X of
IRk satisfying X =

⋃N
i=1 TiX. Such a set is called self-similar. We assume that X

is connected, as otherwise X is totally disconnected and there is no diffusion, with
continuous paths, on X. We also assume that the open set condition is satisfied, which
guarantees that the pairwise intersections of the sets (Ti(X))Ni=1 is small.

Let µ be a fully-supported self-similar probability measure on X. For α ∈ (0, 1),
let IHα denote the space of real-valued, α-Hölder continuous functions on X. Let (bi)

N
i=1

be positive real numbers, which we regard as weights associated to the sets (TiX)Ni=1.
A non-negative definite bilinear symmetric form E : Dom(E) × Dom(E) → IR with
domain Dom(E) ⊂ L2(X, ρ), is called self-similar with weights (bi)

N
i=1 if

E(f, g) =
N∑

i=1

1

bi
E(f ◦ Ti, g ◦ Ti)

for all f, g ∈ Dom(E). Further, E is called irreducible if for f ∈ Dom(E), E(f, f) = 0 if
and only if f is constant. Our main result can be expressed as follows.

Theorem For any positive real numbers (bi)
N
i=1, there exist λ > 0, α ∈ (0, 1) and a

non-negative bilinear real symmetric form (E ,Dom(E)) on L2(X,µ) such that
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(i) Dom(E) = IHα

(ii) E is self-similar with weights (bi/λ)
N
i=1.

If E is irreducible then E is a local regular Dirichlet form on L2(X,µ). Conversely, if
E is a self-similar Dirichlet form with Dom(E) = IHα, then E is irreducible.

This result is motivated by chapter six of [4]. There it is shown (in a more general
setting) that given a regular Dirichlet form on L2(X,µ), there is an (essentially unique)
µ-symmetric Hunt process on X whose associated Dirichlet form is E . Moreover, the
validity of the local property for E is equivalent to the sample continuity of the Hunt
process. (See Theorems 6.2.1 and 6.2.2 in [4].)

The theorem provides a solution to the conjectures raised in section four of [13],
and in [14] (see Remark 2.15(a) and Conjecture 3.37).

The theorem thus relates the existence of self-similar regular local Dirichlet forms
to the spectral properties of a certain linear operator on symmetric forms.

Dirichlet forms can also be viewed in terms of electrical circuit theory. In this
formalism, the fractal X is regarded as an electrical conductor. The value E(f, f),
for a function f ∈ Dom(E), represents the energy dissipated when a potential f is
maintained on X. The self-similarity of E can then be regarded as a natural physical
constraint as follows. Let (bi)

N
i=1 be weights associated to the sets (TiX)Ni=1 as above,

and let f ∈ Dom(E). The self-similarity of E ensures that if gi ∈ Dom(E) is defined by
gi|TiX = f ◦ T−1

i and gi is constant on TjX for all j 6= i, then E(f, f) = biE(gi, gi). In
other words, the energy dissipated for a potential f on X and the energy dissipated for
the same function defined on a rescaled copy of TiX ofX are equal, up to multiplication
by a constant factor.

Diffusion on fractals has been considered by many mathematicians in recent years,
motivated by some earlier papers of physicists (see [18]). These studies began with a
probabilistic treatment, involving the construction of Brownian motion (see [3], [16]).
An analytical approach, based on the use of Dirichlet forms was developed in [9]. (See
[1] for a survey and review of current literature.) These results have been mainly
restricted to a special class of fractals called post-critically finite, (which is usually
abreviated to p.c.f.). Essentially the same class of fractals is called finitely ramified
in the physics literature. In our setting, p.c.f. fractals are self-similar sets for which
the set

⋃
i 6=j TiX ∩ TjX is finite, which is a much more restrictive assumption than

the open set condition. In particular, an analogue of Weyl’s asymptotic formula for
the Laplacian was obtained in [11], and an analogue of the Selberg Trace Formula was
obtained in [21].

Very little is known about diffusion non-p.c.f. fractals. The paper of Kusuoka and
Yin [12] contains a construction of self-similar Dirichlet forms (with equal weights) on
certain non-p.c.f. fractals. Their results are restricted for contracting similitudes with
equal contraction. Further, many of the assumptions are very difficult to check. Our
method has the advantage of being much simpler and more direct.

An example of a non-p.c.f. self-similar set satisfying the hypotheses of Theorem 1
is the 2-dimensional Sierpinski carpet [2].

The Dirichlet forms we consider are defined on spaces of Hölder continuous func-
tions. The existence of a self-similar bilinear symmetric form (Proposition 1) is obtained
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by using fixed point theory for linear mappings. The key lemma is Lemma 5, which is
a type of Sobolev lemma, required to prove that self-similar forms are closed.

In section four, we study the spectral problem for self-similar Dirichlet forms. We
obtain a precise qualitative description of the spectrum, as well as a general asymptotic
growth estimate for the eigenvalues. (See Theorem 3.)

In section five, we consider post-critically finite fractals ([9]). We prove a more
general form of the asymptotic formula in [11]. In particular, our result holds without
assuming the ‘decimation invariance’ property (see [9]). This property is also known
as ‘harmonic structure’.

1 Preliminaries

1.1 Self-similar sets

For each i = 1, 2, . . . . , N (N ≥ 2), let Ti : IR
k → IRk be an affine map, and suppose

there exists ci ∈ (0, 1) such that for all x, y ∈ IRk,

‖Tix− Tiy‖ = ci‖x− y‖

where ‖.‖ denotes the Euclidean norm on IRk. By a result of Hutchinson [7], there
exists a non-empty compact set X ⊂ IRk, called a self-similar set, such that

N⋃

i=1

Ti(X) = X.

The pair (X, (Ti)
N
i=1) always denotes a self-similar set X, generated by contracting

similitudes (Ti)
N
i=1, and will be termed a self-similar structure. We will assume the

following well known property, which is a restriction on the size of the overlaps of the
sets Ti(X).

Definition 1 We say that (X, (Ti)
N
i=1) satisfies the open set condition if there exists a

bounded non-empty open set U (called a basic open set) such that Ti(U) ⊆ U and

Ti(U) ∩ Tj(U) = ∅ for all i 6= j.

Under the open set condition, the invariant set X is contained in U .
We now consider measures on X. A measure µ on X is called fully supported if

µ(V ) > 0 for all non-empty open sets V ⊆ X.

Definition 2 Let (a1, a2, . . . , aN) ∈ (0, 1)N satisfy
∑N

i=1 ai = 1. A probability measure
µ on X is called a self-similar measure if

µ =
N∑

i=1

aiµ ◦ Ti.

Given a self-similar measure µ on X, with weights (ai)
N
i=1, we set
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a = max{ai : 1 ≤ i ≤ N}.

There is a canonical geometric self-similar measure associated to X. Let dH =
dimH(X) denote the Hausdorff dimension of X, with respect to the Euclidean metric.
Then d = dH is the unique positive real solution of

∑N
j=1 c

d
j = 1. By applying Banach’s

contraction mapping theorem, it is possible to show there is a unique self-similar mea-
sure µ corresponding to the weights (ai)

N
i=1, where ai = cdi for i = 1, 2, . . . , N , and that

µ is supported on X.

1.2 Shift spaces

Let Σ = {1, 2, . . . , N}IN∪{0} be the space of one-sided infinite sequences of the symbols
{1, 2, . . . , N}. Let

β = max{c−1
i : 1 ≤ i ≤ N}.

Define a metric d on Σ by

d((xn), (yn)) =
∞∑

n=0

δ(xn, yn)

βn

where

δ(xn, yn) =

{
0 , if xn = yn
1 , otherwise.

The space (Σ, d) is then a complete metric space. The shift map σ : Σ → Σ given
by (σw)n = wn+1 is a continuous surjective N -to-1 map. The inverse branches of σ are
the maps σi : Σ → Σ for i = 1, 2, . . . , N given by σiw = iw.

For each m ≥ 1, let Σm = {1, 2, . . . , N}m be the collection of words of length m.
For w = w0w1 . . . wm−1 ∈ Σm, we define Tw : X → X by Tw = Tw0Tw1 . . . Twm−1 and
Xw = Tw(X). The set

Σ∗ =
∞⋃

m=1

Σm

denotes the set of all finite words with alphabet {1, 2, . . . , N}. For each w ∈ Σm, define
the m-cylinder set

[w] = {v ∈ Σm : vj = wj for 0 ≤ j ≤ m− 1}.

Given a finite set (bi)
N
i=1 of positive real numbers, and w ∈ Σm with w = w0w1 . . . wm−1,

we define

bw = bw0bw1 . . . bwm−1 .
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There is a well defined Lipschitz continuous surjective map π : Σ → X given by

π(w) =
∞⋂

n=0

Xw0w1...wn−1

which satisfies π ◦ σi = Ti ◦ π for i = 1, 2, . . . , N . Under the open set condition, the
map π is one-to-one except on a set Q ⊂ Σ which has measure zero with respect to
any fully supported probability measure on Σ.

1.3 Function spaces

Let C(X) denote the Banach space of real-valued continuous functions on X with the
uniform norm

‖f‖∞ = sup
x∈X

|f(x)|.

For a fixed α ∈ (0, 1), define the Hölder seminorm on C(X) by

|f |α = sup

{
f(x)− f(y)

‖x− y‖α
: x, y ∈ X, x 6= y

}
,

and define a norm ‖.‖α by

‖f‖α = ‖f‖∞ + |f |α.

Let IHα = {f ∈ C(X) : |f |α < ∞}, which is a Banach space with respect to the norm
‖.‖α.

For f ∈ IHα,

|f ◦ π(u)− f ◦ π(v)| ≤ |f |αd(u, v)
α,

that is f ◦ π is α-Hölder continuous with respect to the metric d.

1.4 Dirichlet forms

We now introduce the basic definitions of Dirichlet forms, which we will require in the
paper. A comprehensive treatment of these concepts can be found in [4].

Let Y be a compact separable Hausdorff metric space, and let ρ be a fully supported
Borel probability measure on Y . Then L2(Y, ρ) denotes the L2 space of real-valued
functions with inner product

(f, g)2 =
∫

Y
fgdρ.

We call E a symmetric form on L2(Y, ρ), if E is a real bilinear symmetric form
E : Dom(E) × Dom(E) → IR, whose domain Dom(E) is a dense linear subspace of
L2(Y, ρ). We call a symmetric form E non-negative if it is non-negative definite.

5



Let E be a non-negative symmetric form. For each θ > 0, define a symmetric form
Eθ on L2(Y, ρ) by

Dom(Eθ) = Dom(E)

Eθ(f, g) = E(f, g) + θ(f, g)2.

Then Dom(E) is a pre-Hilbert space with respect to the inner product Eθ. In fact,
the metrics on Dom(E) defined by Eθ and E are equivalent for all θ > 0. Define the
associated (semi-)norms on Dom(E) by

‖f‖2 =
(∫

f 2dρ
)1/2

|f |Eθ = |E(f, f)|1/2

and
‖f‖Eθ = ‖f‖2 + |f |Eθ .

A symmetric form E is called closed if (Dom(E), ‖.‖Eθ) is a complete metric space.
A non-negative symmetric form E is called Markov if for all f ∈ Dom(E), f ∈ Dom(E)
and

E(f, f) ≤ E(f, f)

where

f(x) =





f(x) if 0 < f(x) < 1
0 if f(x) ≤ 0
1 if f(x) ≥ 1.

(1.1)

Definition 3 A Dirichlet form E is a closed Markov non-negative symmetric form on
L2(Y, ρ).

We will also require the standard notions of regular and local Dirichlet forms, which
we describe in the following two definitions.

Definition 4 Let K = Dom(E) ∩ C(X). A Dirichlet form E is called regular if the
following two properties hold:

(i) K is a dense subset of Dom(E) with respect to the ‖.‖E -norm.

(ii) K is a dense subset of C(X) with respect to the ‖.‖∞-norm.

For f ∈ L2(Y, ρ), let suppρ[f ] denote the support of the measure fdρ.

Definition 5 A Dirichlet form (E ,Dom(E)) has the local property, if E(f, g) = 0
whenever f, g ∈ Dom(E) and

suppρ[f ] ∩ suppρ[g] = ∅.
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Let 1A denote the characteristic function of a Borel set A ⊂ X.

Definition 6 A symmetric form (E ,Dom(E)) is called irreducible if for f ∈ Dom(E),
E(f, f) = 0 if and only if f ∈ IR1Y .

The eigenvalue problem for Dirichlet forms can be formulated as follows.

Definition 7 Let (E ,Dom(E)) be a Dirichlet form on L2(Y, ρ). A real number θ is
called an eigenvalue of E with eigenfunction f ∈ Dom(E) if

E(f, g) = θ(f, g)2

for all g ∈ Dom(E).

2 Self-similar symmetric forms

Throughout the rest of the paper, we let (X, (Ti)
N
i=1) denote a self-similar structure

satisfying the open set condition, and assume that X is connected. Let µ be a fully
supported self-similar probability measure, with weights (ai)

N
i=1.

For α ∈ (0, 1), let IFα denote the set of real symmetric forms on L2(X,µ) with
Dom(E) = IHα and E(1X ,1X) = 0.

Formally, define a norm ‖.‖α on IFα by

‖E‖α = sup{|E(f, f)|1/2 : f ∈ IHα, ‖f‖α = 1}. (2.1)

Further, we let

IBα = {E ∈ IFα : ‖E‖α < ∞}

and
IPα = {E ∈ IBα : E is non-negative}.

Condition (ii) in the following lemma identifies precisely the set of irreducible forms
in IPα.

Lemma 1 (i) (IBα, ‖.‖α) is a convex Banach space.

(ii) int(IPα) = {E ∈ IPα : E(f, f) = 0 if and only if f ∈ IR1X}.

Proof. (i) Let (En)
∞
n=1 be a Cauchy sequence in the normed vector space (IBα, ‖.‖α).

Then for all f ∈ IHα, (En(f, f))
∞
n=1 is a Cauchy sequence in IR, and hence we may define

E by

E(f, f) = lim
n→∞

En(f, f).

It is simple to check that E is bilinear and that if C = limn→∞ ‖En‖α then ‖E‖α ≤ C.
Finally it follows that En → E as n → ∞ as required.

(ii) This follows directly from the definition of IPα. ⊲⊳
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Let (bi)
N
i=1 be positive real numbers with B =

∑N
i=1 b

−1
i . Define a map Φ : IBα → IFα

by

(ΦE)(f, g) =
N∑

i=1

b−1
i E(f ◦ Ti, g ◦ Ti). (2.2)

Lemma 2 (i) Φ(IBα) ⊆ IBα and Φ : (IBα, ‖.‖α) → (IBα, ‖.‖α).

(ii) Φ(IPα) ⊆ IPα and Φ(int IPα) ⊆ int IPα.

Proof. (i) Let E ∈ IBα be given. First note that if f ∈ IHα then f ◦ Ti ∈ IHα for
i = 1, 2, . . . , N , and moreover, ‖f ◦Ti‖∞ ≤ ‖f‖∞, |f ◦Ti|α ≤ |f |α and hence ‖f ◦Ti‖α ≤
‖f‖α. Assume that ‖f‖α = 1 and let pi = ‖f ◦ Ti‖α, so that 0 < pi ≤ 1. Then

∣∣∣∣∣

N∑

i=1

b−1
i E(f ◦ Ti, f ◦ Ti)

∣∣∣∣∣ ≤
N∑

i=1

b−1
i |E(f ◦ Ti, f ◦ Ti)|

=
N∑

i=1

b−1
i p2i

∣∣∣∣∣E
(
f ◦ Ti

pi
,
f ◦ Ti

pi

)∣∣∣∣∣

≤

(
N∑

i=1

b−1
i p2i

)
‖E‖2α

≤ B‖E‖2α.

Thus ΦE ∈ IBα and moreover ‖ΦE‖α ≤ B‖E‖α, which implies that Φ is continuous.

(ii) The first statement is obvious. Suppose now that E ∈ int(IPα), and assume that
(ΦE)(f, f) = 0. Then since E is non-negative and the bi’s are positive, E(f ◦Ti, f ◦Ti) =
0 for i = 1, 2, . . . , N . Since E ∈ int(IPα), it follows that f ◦Ti ∈ IR1X for i = 1, 2, . . . , N ,
or in other words, f is constant on each Xi. Since X is connected, we conclude that
f ∈ IR1X as required. ⊲⊳

Define the uniform norm on IBα by

‖E‖∞ = sup{|E(f, f)|1/2 : f ∈ IHα, ‖f‖∞ = 1}.

Lemma 3 The closed unit ball B = {E : ‖E‖α ≤ 1} in the space (IBα, ‖.‖α) is ‖.‖∞-
compact.

Proof. It suffices to show that B is sequentially compact with respect to the ‖.‖∞-norm.
By the Arzela-Ascoli Theorem, the set

A = {f ∈ IHα : ‖f‖α ≤ 1}

is ‖.‖∞ -compact. By definition,

B = {E ∈ IBα : |E(f, f)| ≤ 1 for all f ∈ IHα such that ‖f‖α = 1.}
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Let (En) be a sequence inB, (which is necessarily ‖.‖∞-bounded). Since En is continuous
and A is ‖.‖∞-compact, the set En(Ã) is a compact subset of [0, 1], where Ã = {(f, f) :
f ∈ A}. So for all f ∈ A, (En(f, f))

∞
n=1 has a convergent subsequence (Enk

(f, f))∞k=1.
Define a symmetric form E by

E(f, f) = lim
k→∞

Enk
(f, f).

Then E extends to an element of IBα with ‖E‖α ≤ 1. So (En)
∞
n=1 has a ‖.‖∞-convergent

subsequence. ⊲⊳

We now apply fixed point theory to deduce the existence of an eigenform E of Φ.

Proposition 1 There exist λ > 0 and E ∈ IPα such that ΦE = λE .

Proof. By Lemma 3, the closed unit ball

B = {E ∈ IBα : ‖E‖α ≤ 1}

is compact in the ‖.‖∞-topology. The set B ∩ IPα is ‖.‖∞-compact and convex, since IPα

is ‖.‖∞-closed and convex. Define

λ = sup{‖ΦE‖∞ : E ∈ B ∩ IPα}.

Since Φ : (IBα, ‖.‖α) → (IBα, ‖.‖α), it follows that λ < ∞. From the fact that Φ(int IPα) ⊆
int IPα, we have λ > 0. Now by the linearity of Φ and Lemma 2(ii), we have

1

λ
Φ(B ∩ IPα) ⊆ B ∩ IPα.

Thus we can apply the Markov-Kakutani Theorem to deduce that 1
λ
Φ has a fixed point

in B ∩ IPα. ⊲⊳

Now we derive a restriction on the value of λ in Proposition 1. First we require the
following modified version of Urysohn’s Lemma.

Lemma 4 Let (Y, d) be a compact Hausdorff metric space. Given a non-empty open
set V ⊂ Y , there exists an α-Hölder continuous function g : Y → IR such that

(i) 0 ≤ g(x) ≤ 1 for all x ∈ Y .

(ii) g(y) = 1 for some y ∈ V .

(iii) g(x) = 0 for all x ∈ Y \ V .

Proof. The proof is a straightforward exercise in metric space theory, based on the
proof of Urysohn’s Lemma (see [20]). ⊲⊳

Proposition 2 Let (bi)
N
i=1 be the arbitrary positive weights and suppose that E ∈

int(IPα) and λ > 0 satisfy ΦE = λE . Then bi < λ for i = 1, 2, . . . , N .
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Proof. Suppose first that bi > λ for some 1 ≤ i ≤ N . Let U be a basic open set, and
choose an open set V ⊂ X with V ⊂ U . For each m ≥ 1, let w(m) = iii . . . i ∈ Σm. By
the open set condition,

Tw(m)(V ) ∩Xv = ∅

for all v ∈ Σm with v 6= w(m).
By Lemma 4, we may choose f ∈ IHα such that ‖f‖∞ = 1, supp(f) ⊆ V and

0 ≤ f ≤ 1. Since f is non-constant, it follows that |f |α 6= 0. Define fm : X → IR by

fm(x) =

{
f ◦ T−1

w(m)(x) , if x ∈ Xw(m)

0 , otherwise.

Then ‖f‖∞ = 1, supp(f) ⊂ Tw(m)(V ), fm ∈ IHα and

|fm|α ≥ βmα|f |α → ∞

as m → ∞. Using the fact that ΦE = λE , we obtain

E(f, f) = E(fm ◦ Tw(m) , fm ◦ Tw(m)) =

(
λ

bi

)m

E(fm, fm). (2.3)

Since f is non-constant and E ∈ int(IPα), E(f, f) > 0. By using the hypothesis and
equation (2.3), E(fm, fm) → 0 as m → ∞. But again since E ∈ int(IPα), this implies
that |fm|α → 0 as m → ∞, which gives a contradiction.

Now suppose that bi = λ for some 1 ≤ i ≤ N . Then

E(fm, fm) = E(f, f) > 0

as above. Define gm ∈ IHα by gm = fm/β
m, so that |gm|α ≥ |f |α > 0. But E(gm, gm) → 0

and so by the irreducibility of E , we have that gm tends to a constant function in IHα

as m → ∞, giving a contradiction. ⊲⊳

Remark 1

(i) An example of a self-similar fractal with no irreducible eigenform appears in [8].

(ii) By a simple adaptation of the ideas in [17], it is possible to prove further results
concerning the non-existence of irreducible eigenforms. (See Proposition 4.6 and
Corollary 4.7.)

3 Construction of Dirichlet forms

Motivated by Propositions 1 and 2, we make the following definition.

Definition 8 A symmetric form E ∈ IPα is called self-similar if there exist positive
real numbers (bi)

N
i=1 such that for all f, g ∈ IHα,
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E(f, g) =
N∑

n=1

b−1
i E(f ◦ Ti, g ◦ Ti).

Let E ∈ IPα be irreducible and self-similar, with positive weights (bi)
N
i=1.

The following lemma plays a crucial role in our results. Part (i) is a form Sobolev
Lemma. Part (ii) has been obtained for p.c.f. fractals in [11], but using different
techniques.

Lemma 5 There exist positive constants C1 and C2 such that the following inequalities
hold for all f ∈ IHα:

(i) |f |α ≤ C1|f |E ,

(ii) ‖f‖∞ ≤ C2‖f‖E .

Proof. (i) Firstly, we may assume that f ∈ IHα satisfies |f |α 6= 0. For any t > 0, define
a subset Bt of IHα by

Bt = {g ∈ IHα : ‖g‖∞ ≤ t, |g|α = 1}.

The set Bt is uniformly bounded and equicontinuous, and thus by the Arzela-Ascoli
Theorem, it is ‖.‖∞-compact. Since E is continuous, E(B̃t) is a compact subset of
[0,∞), where

B̃t = {(g, g) : g ∈ Bt}.

Now let γ = (diam(X))α and fix x0 ∈ X. Note that the function

g =
f − f(x0)

|f |α

satisfies |g|α = 1 and

|g(x)| =
|f(x)− f(x0)|

|f |α
≤ |x− x0|

α ≤ γ

for all x ∈ X, and hence ‖g‖∞ ≤ γ. It then follows that g ∈ Bγ . Since E is irreducible
and Bγ contains no constant functions, there exists a constant C1 > 0 such that for all
h ∈ Bγ ,

E(h, h) ≥ C1.

Using the bilinearity of E and the fact that E(1X ,1X) = 0, we have

E(f, f) = E(g, g)|f |2α ≥ C1|f |
2
α
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which completes the proof of part (i) of the lemma.

(ii) Let f ∈ IHα be given. We may suppose that ‖f‖∞ 6= 0 and |f |α 6= 0. Otherwise if
|f |α = 0, then f is constant and so |f |E = 0 and ‖f‖∞ = ‖f‖2 = ‖f‖E . Then (ii) holds
with C2 = 1.

Choose x ∈ X such that |f(x)| = ‖f‖∞. By the α-Hölder continuity of f ,

|f(y)| ≥ ‖f‖∞ − |f |α|x− y|α (3.1)

for all y ∈ X. Define a subset A of X by

A =

{
y ∈ X : |f(y)| ≥

‖f‖∞
2

}
.

Let m ≥ 0 be given by

m = max

{[
1 +

log (2 diam(X)α|f |α)− log ‖f‖∞
α log β

]
, 0

}
(3.2)

where [x] denotes the largest integer less than or equal to x ∈ IR. Our choice of m in
(3.2) implies that

1

βmα
≤

‖f‖∞
2 diam(X)α|f |α

.

Choose w ∈ Σm such that x ∈ Xw. We remark that if y1, y2 ∈ Xm then

|y1 − y2| ≤
diam(X)

βm
.

Using (3.1) and (3.2), we have that

A ⊇

{
y ∈ X : |f |α|x− y|α ≤

‖f‖∞
2

}
⊇ Xw.

There are now two cases to consider. First assume that

‖f‖∞
2 diam(X)α|f |α

≥ 1.

Then m = 0, X = A and hence

µ(A) = 1 ≥ 1−
2 diam(X)α|f |α

‖f‖∞
. (3.3)

Secondly, assume that

‖f‖∞
2 diam(X)α|f |α

< 1,

in which case
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µ(X \ A) ≤ 1 <
2 diam(X)α|f |α

‖f‖∞
.

Thus the inequality (3.3) holds in this case as well.
We can now use the estimate (3.3) to bound the L2-norm of f from below

‖f‖2 ≥
(∫

A
|f |2dµ

)1/2

≥
‖f‖∞
2

√
µ(A)

≥
‖f‖∞
2

µ(A)

≥
‖f‖∞
2

(
1− C3

|f |α
‖f‖∞

)

where C3 = 2 diam(X)α. By part (i) of the lemma,

‖f‖∞ ≤ 2‖f‖2 + C3|f |α

≤ 2‖f‖2 + (C1 + C3)|f |E

≤ C2‖f‖E

where C2 = max{2, C1 + C3}. ⊲⊳

Proposition 3 E is a Dirichlet form on L2(X,µ).

Proof. (i) Completeness. Let (fn)
∞
n=1 be a Cauchy sequence in IHα, with respect to the

‖.‖E -norm. By Lemma 5, (fn)
∞
n=1 is Cauchy with respect to the ‖.‖α-norm. Since IHα is

complete, (fn)
∞
n=1 converges to an element of f ∈ IHα in the ‖.‖α-norm. For all g ∈ IHα,

|g|2E = |E(g, g)| ≤ ‖g‖2α‖E‖α,

and ‖g‖2 ≤ ‖g‖∞ since µ is a probability measure. Thus fn → f as n → ∞ in the
‖.‖E -norm.

(ii) Markov property. Let f ∈ IHα and let f be defined by (1.1). Then f ∈ IHα, and for
all x, y ∈ X. Further, define g ∈ IHα by

g(x) =





f(x) if f(x) < 0
0 if 0 ≤ f(x) ≤ 1

f(x)− 1 if f(x) > 1.

so that f = f + g. It follows by definition that

suppµ(g) ∩ suppµ(f) = ∅

and hence E(f, g) = 0. Thus

E(f, f) = E(f, f) + 2E(f, g) + E(g, g) ≥ E(f f)

as required. ⊲⊳
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Proposition 4 E is regular.

Proof. It suffices to check that IHα is a dense subset of C(X) in the ‖.‖∞-norm. This is
a standard result, which holds in any compact Hausdorff metric space. ⊲⊳

Next we consider the local property. First we introduce the notion of a partition of
Σ into cylinder sets.

Definition 9 A finite set P ⊂ Σ∗ is called a partition if
⋃

w∈P [w] = Σ and [u]∩ [v] = ∅
if u, v ∈ P and u 6= v.

The following lemma appears in [10].

Lemma 6 ([10], Lemma 3.7) Let P be a partition. Then for all f, g ∈ IHα,

E(f, g) =
∑

w∈P

b−1
w E(f ◦ Tw, g ◦ Tw).

Lemma 6 is proved by induction on the number of elements in the partition P .

Proposition 5 E satisfies the local property.

Proof. Suppose that f, g ∈ IHα and

suppµ[f ] ∩ suppµ[g] = ∅. (3.4)

We first assume that

suppµ[f ] =
⋃

w∈P1

Xw

suppµ[g] =
⋃

w∈P2

Xw

where P1, P2 are finite subsets of Σ, and R is a finite subset of Σ chosen so that
P = P1 ∪ P2 ∪ R is a partition. By Lemma 6 and the bilinearity and self-similarity of
E ,

E(f, g) =
∑

w∈P1

b−1
w E(f ◦ Tw, g ◦ Tw) +

∑

w∈P2

b−1
w E(f ◦ Tw, g ◦ Tw)

+
∑

w∈R

b−1
w E(f ◦ Tw, g ◦ Tw) (3.5)

In each of the Dirichlet forms occuring in the summations on the right hand side of
(3.5), one of the functions is identically zero. Since E is bilinear, E(f, g) = 0.

Now let f, g ∈ IHα be arbitrary functions satisfying condition (3.4). Then using
standard metric space theory, for n ≥ 1, there exist finite sets Pn ⊂ Σ∗ such that
Pn ∩ suppµ[g] = ∅ and functions fn ∈ IHα with
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suppµ[fn] =
⋃

w∈Pn

Xw

such that ‖f − fn‖∞ → ∞ as n → ∞. Then we may write

E(f, g) = E(fn, g) + E(f − fn). (3.6)

For each n, we may find a finite set Qn such that Pn ∪Qn is a partition. Thus

suppµ[g] ⊆ Qn

and hence E(fn, g) = 0 as before. For the second term in (3.6), we use the fact that
E ∈ IPα to deduce that

|E(f − fn, g)| ≤ ‖E‖α‖f − fn‖α‖g‖α −→ 0 as n → ∞.

This shows that E(f, g) = 0. ⊲⊳

We summarise the the results of Propositions 2, 3, 4 and 5 in the following theorem.

Theorem 1 Let E ∈ IPα be irreducible and self-similar, with weights (bi)
N
i=1. Then E

is a local regular Dirichlet form on L2(X,µ).

Let M = (Ω,M,Y⊔,P§) denote a Hunt process on X. (See chapter four of [4].) In
particular, (Ω,M,P) is a probability space, and Yt : Ω → X is measurable for each
t ∈ [0,∞). Let ζ denote the lifetime of M. The following corollary follows directly
from Theorem 1 and Theorems 6.2.1 and 6.2.2. in [4].

Corollary 1 Let E ∈ IPα be irreducible and self-similar with weights (bi)
N
i=1. Then there

exists a µ-symmetric Hunt process M on X whose Dirichlet form is (E , IHα). Moreover,
for all x ∈ X,

Px{Yt is continuous in t ∈ [0, ζ)} = 1.

Thus the Hunt process M is a diffusion (see [4], page 94).

We now prove the reverse assertion in the theorem stated in the introduction.

Theorem 2 Let (E ,Dom(E)) be a self-similar Dirichlet form with Dom(E) = IHα. Then
E is irreducible.

Proof. Suppose that E is not irreducible. Then there exists f ∈ IHα with f /∈ IR1X

such that E(f, f) = 0. Let U be a basic open set. Let g ∈ IHα be a function satisfying
the properties (i)-(iii) of Lemma 3 for the open set U . By choosing U sufficiently large
and by choosing the point y ∈ U so that f is non-constant in an open neighbourhood
of y, we may suppose that fg /∈ IR1X . From the Markov property of E , it follows that
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E(fg, fg) ≤ E(f, f)

and hence E(fg, fg) = 0.
For a fixed n with 1 ≤ n ≤ N , define a sequence (hm)

∞
m=1 of functions in IHα

inductively by letting h1(x) = f(x)g(x), and

hm+1(x) =

{
hm(Tn(x)) if x ∈ Xn

0 if x /∈ Xn,

for each m > 1. Then by the self-similarity of E , E(hm, hm) = 0 for all m ≥ 1. Further,
this implies that

E(hk − hm, hk − hm) = 0

for all k,m ≥ 1. Since ‖h‖2 → 0 asm → ∞, we conclude that (hm)
∞
m=1 is a ‖.‖E -Cauchy

sequence.
On the other hand, |h|α 6= 0 as h is non-constant, and so

|hm|α ≥ βm|h|α −→ ∞ as m → ∞.

Thus the sequence (hm)
∞
m=1 cannot converge to an element of IHα, and hence E is not

closed, giving the required contradiction. ⊲⊳

4 Spectral properties

In this section, we prove some estimates on the spectrum of the self-similar Dirichlet
form E constructed in Theorem 1. We continue in the setting of section three. Let
E ∈ IPα be irreducible and self-similar with weights (bi)

N
i=1.

The following lemma generalizes Lemma 5.4 in [11], which only applied to p.c.f.
fractals.

Lemma 7 The natural inclusion operator IHα →֒ L2(X,µ) is compact.

Proof. Let U be a bounded subset of IHα with respect to the ‖.‖E -norm. By Lemma
5(ii), U is ‖.‖∞-bounded, and by Lemma 5(i), U is equicontinuous. Thus by the Ascoli-
Arzela Theorem, U is a relatively compact subset of C(X), and hence also a relatively
compact subset of L2(X,µ). ⊲⊳

As a consequence of Lemma 7 and Theorem XIII.4 in [19], we obtain the following
characterization of the spectrum of E .

Proposition 6 The eigenvalues (θn)
∞
n=1 of E are countable, non-negative and have fi-

nite multiplicity. The sequence (θn)
∞
n=1 has a single accumulation point at +∞. More-

over, if (φn)
∞
n=1 denote the corresponding eigenfunctions, then (φn)

∞
n=1 is a complete

orthonormal eigenbasis of IHα.

16



Using Proposition 6, we may define the eigenvalue counting function ρ : IR →
IN ∪ {0} by

ρ(t) = ♯{n : θn ≤ t}.

Now we introduce a new symmetric form Ẽ . Let
⊔N

i=1 Ti(X) denote the disjoint
union of the sets (Ti(X))Ni=1. Define a space of α-Hölder continuous functions ĨHα by

ĨHα =

{
f :

N⊔

i=1

Ti(X) → IR : f ◦ Ti ∈ IHα for i = 1, 2, . . . , N

}
.

The space (ĨHα, ‖.‖α) is a Banach space with respect to the norm ‖.‖α = ‖.‖∞ + |.|α,
where

‖f‖∞ = sup{‖f ◦ Ti‖∞ : 1 ≤ i ≤ N}

and
|f |α = sup{|f ◦ Ti|α : 1 ≤ i ≤ N}.

By Corollary 3.2 in [15], there exists a basic open set U with µ(U) = 1, and hence

µ



⋃

i 6=j

Ti(X) ∩ Tj(X)


 = 0.

Thus there is a well defined inclusion map ĨHα →֒ L2(X,µ). Define a non-negative
symmetric form Ẽ on ĨHα by

Ẽ(f, g) =
N∑

i=1

b−1
i E(f ◦ Ti, g ◦ Ti). (4.1)

There is a natural inclusion map IHα →֒ ĨHα and E(f, g) = Ẽ(f, g) for all f, g ∈ IHα.

Lemma 8 (i) (Ẽ , ĨHα) is a local regular Dirichlet form on L2(X,µ).

(ii) The natural inclusion operator ĨHα →֒ L2(X,µ) is compact.

Proof. (i) This follows immediately from the definition of (Ẽ , ĨHα) and the self similarity
of E .

(ii) Let U ⊂ ĨHα be ‖.‖Ẽ -bounded. Then Ui = {f ◦Ti : f ∈ U} is a ‖.‖E -bounded subset
of IHα, for i = 1, 2, . . . , N , and is therefore relatively compact in L2(X,µ). Hence U is
relatively compact in L2(X,µ). ⊲⊳

By Lemma 8(ii), we may conclude that the eigenvalues (θ̃n)
∞
n=1 of Ẽ are count-

able, non-negative and of finite multiplicity. Again, we may define the corresponding
eigenvalue counting function by

ρ̃(t) = ♯{n : θ̃n ≤ t}.

The following proposition can be proved in the same way as Proposition 3 in [21] (see
also Proposition 6.2 of [11]).
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Proposition 7 (i) f is an eigenfunction of E with eigenvalue θ if and only if for each
i = 1, 2, . . . N , the function gi ∈ ĨHα defined by

gi(x) =

{
f ◦ T−1

i (x) , if x ∈ Xi

0 , if x ∈ X \Xi

is an eigenfunction of Ẽ with eigenvalue θ
aibi

.

(ii) ρ̃(t) =
∑N

i=1 ρ(aibit).

By Theorem 4.5 in [11], ρ(t) ≤ ρ̃(t) for all t ∈ IR, and so by Proposition 7(ii), we
obtain the following proposition.

Proposition 8 For all t ∈ IR,

ρ(t) ≤
N∑

i=1

ρ (aibit) .

We now introduce a notion of dimension associated to the spectrum of E .

Definition 10 The unique positive real solution d = d(E , µ) of the equation

N∑

i=1

(aibi)
d/2 = 1

is called the spectral dimension of E (with respect to µ).

By our assumption on the (bi)
N
i=1, we have aibi ∈ (0, 1) for all i = 1, 2, . . . , N , and

hence the number d in Definition 4 is well defined.
Proposition 8 allows us to deduce the following result on the asymptotic behaviour

of the eigenvalue counting function ρ.

Theorem 3

lim sup
t→∞

ρ(t)

td/2
< ∞.

Proof. The proof is a simple adaptation of the argument given on pages 107-108 of
[11]. ⊲⊳

Define the spectral zeta function ζ(s) for E formally by

ζ(s) =
∞∑

n=1

θ−sd/2
n .

This function is the analogue of the Minakshisundaram-Pleijel zeta function for the
Laplacian on Riemannian surfaces of constant negative curvature. The following corol-
lary follows directly from Theorem 3.

Corollary 2 The spectral zeta function ζ(s) is analytic and non-zero for Re(s) > 1.
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Proof. We need only check analycity. Integration by parts yields
∫ ∞

ε
t−sd/2dρ(t) =

[
t−sd/2ρ(t)

]∞
ε
+ s

∫ ∞

ε
t−sd/2−1ρ(t)dt

where ε ∈ (0, θ1), and Theorem 3 ensures that

[
t−sd/2ρ(t)

]∞
ε

= 0

for Re(s) > 1. But by Theorem 3,
∫ ∞

ε
t−sd/2−1ρ(t)dt

converges for Re(s) > 1, which completes the proof. ⊲⊳

Remark 2 If E is an irreducible self-similar Dirichlet form with weights (bi)
N
i=1, then

there exists a unique positive real number dE satisfying

N∑

i=1

bdEi = 1.

The number dE is called the similarity dimension of E with respect to µ. By a simple
use of Lagrange multipliers, we obtain the following relation between the similarity
dimension dE of E and the spectral dimension d(E , µ)

max{d(E , µ) : µ is a Bernoulli probability measure on X } = 2
dE

dE + 1
.

The maximum is attained by the Bernoulli measure with weights ai = b−dE
i for i =

1, 2, . . . , N . This answers a question raised in Remark 2 of the Appendix of [11].

5 Post-critically finite fractals

In this section, we present a version of the asymptotic formula proved in [11] for
eigenvalues of self-similar Dirichlet forms. We do not assume any type of ‘decimation
invariance’. (In the terminology of [11], this is equivalent to the existence of a harmonic
structure.) For example, our result applies to the N -dimensional Sierpinski gasket in
the case the (bi)

N
i=1 are not all equal, to which the formulae in [11] do not apply.

Definition 11 Let (X, (Ti)
N
i=1) be a self-similar structure and suppose that X is

connected. Define subsets C ⊂ Σ and P ⊂ Σ by

C = π−1



⋃

i 6=j

Ti(X) ∩ Tj(X)




and

P =
⋃

n≥1

σn(C).
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The pair (X, (Ti)
N
i=1) is called post-critically finite (abbreviated to p.c.f.) if |P| < ∞.

Let (X, (Ti)
N
i=1) be p.c.f.. Then the open set condition is satisfied. Further, dim(ĨHα/IHα)

is finite and hence by Corollary 4.7 in [11],

ρ̃(t) ≤ ρ(t) + dim(ĨHα/IHα)

and hence

N∑

i=1

ρ(aibit) ≤ ρ(t) + dim(ĨHα/IHα).

Define a function R : IR → IR by

R(t) = ρ(t)−
N∑

i=1

ρ(aibit).

For i = 1, 2, . . . , N , let γi = (aibi)
1/2, so that

∑N
i=1 γ

d
i = 1, where d denotes the spectral

dimension of (E , µ).
By applying the methods in [11], we obtain the following theorem.

Theorem 4 The function R is bounded and continuous from the right. Further, the
following statements hold:

(i) If the additive group
∑N

i=1 ZZ log γi is a dense subgroup of IR then

ρ(t) ∼

∫∞
−∞ e−dtR(e2t)dt

−
∑N

i=1 γ
d
i log γi

td/2 as t → ∞.

(ii) If
∑N

i=1 ZZ log γi is a discete subgroup of IR with least positive generator T then

ρ(t) =

(
G

(
log t

2

)
+ o(1)

)
td/2 as t → ∞

where G is a periodic function with period T , given by

G(t) = T

∑∞
j=−∞ e−d(t+jT )R(e2(t+jT ))

−
∑N

i=1 γ
d
i log γi

.

Moreover, G is continuous from the right and bounded away from zero and infin-
ity.

Remark 3

(i) In the statement of the theorem, we have used the notation f(t) ∼ g(t) to mean
f(t)/g(t) → 1 as t → ∞, and f(t) = o(1) to mean f(t) → 0 as t → ∞.

(ii) The fact that R is bounded and continuous from the right ensures that the infinite
integral and summation converge.
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