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ARE THE p–ADIC POLYNOMIAL INVARIANTS
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Abstract. Let W be a finite group acting on lattice L over the p–adic integers

Z
∧

p . The analysis of the ring of invariants of the associated W–action on the algebra

Z
∧

p [L] of polynomial functions on L is a classical question of invariant theory. If p is
coprime to the order of W , classical results show that W is a pseudo reflection group,

if and only if the ring of invariants is again polynomial. We analysis the situation for
those odd primes dividing the order of W and, in particular, determine those pseudo
reflection groups for which the ring of invariants Z

∧

p [L]
W is a polynomial algebra.

1. Introduction.

Let L be a p–adic lattice, i.e. a torsion free finitely generated Z∧

p –module, and
let Z∧

p [L] be the graded polynomial algebra of polynomial functions on L. Following

the conventions of topology we give the elements of the dual L♯ := HomZ∧

p
(L,Z∧

p ) ⊂

Z∧

p [L] the degree 2. Every (faithful) representation W −→ Gl(L) of a finite group
W establishes an W–action on Z∧

p [L]. The analysis of the ring of invariants is a

classical question of invariant theory. In particular, one might ask, whether Z∧

p [L]
W

is again a polynomial algebra. If this is the case, we call the lattice L polynomial
(with respect to the W–action).

If we work over a field of characteristic coprime to the order |W | of the group W ,
the Shepard–Todd–Chevalley–Theorem [11] [4] says that, if W is a pseudo reflection
group, then the invariants are again a polynomial algebra. And the converse is also
true (e.g. see [12; Theorem 7.4.1].

For a vector space V , a representation W −→ Gl(V ) of a finite group is called
a pseudo reflection group if it is faithful and if the image is generated by pseudo
reflection; i.e. by elements of finite order which fix a hyperlane of V of codimension
1. For actions on p–adic lattices the same definition works. If we say that W
is a pseudo reflection group, then we always have a particular representation in
mind. Examples of p–adic pseudo reflection groups are given by the action of the
Weyl group WG of a connected compact Lie group G on a maximal torus TG of G,
actually on the p–adic lattice LG := H2(BTG;Z

∧

p ).

If p does not divide |W |, then, as an easy consequence, the Shepard–Todd–
Chevalley Theorem as well as it’s converse also holds for p–adic integral represen-
tations; i.e. a representation W −→ Gl(L) is a pseudo reflection group if and only
if the lattice L is polynomial (see Corollary 3.6 and Proposition 3.7).
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In the modular case, that is p divides |W |, only the converse is true: if Z∧

p [L]
W is

a polynomial algebra, then W −→ Gl(L) is a pseudo reflection group(see Proposition
3.7).

In this work, we are mainly interested in the question, for which p–adic pseudo re-
flection groups the Shepard-Todd–Chevalley–Theorem holds; i.e. for which pseudo
reflection groups W −→ Gl(L) the W–lattice L is polynomial. For odd primes, we
will give a complete answer to this question, in particular in the modular case.

Before we can state our results explicitely we first have to make some definitions
and to fix notation.

1.1 Definitions and remarks.

1.1.1 Let L be a torsionfree Z∧

p –module. Every p–adic representation W −→ Gl(L)
gives rise to an representation W −→ Gl(LQ) over Q

∧

p , where LQ := L⊗Z∧

p
Q. This

p-adic rational representation might contain several W–lattices. From this point of
view that are lattices of LQ which are stable under the action of W .

Several notions of LQ are inherited to L; e.g. the represetation W −→ Gl(L) is
called irreducible if W −→ Gl(LQ) is irreducible.

Two W–lattices L1 and L2 are called isomorphic if L1 and L2 are isomorphic
as modules over the group ring Z∧

p [W ]. They are called weakly isomorphic if there
exists an automorphims α : W −→ W such that L1 and Lα

2 are isomorphic. Here,
the action of W on Lα

2 is given by the composition of ρ2 and α.
1.1.2 Let L be p–adic lattice and let W −→ Gl(L) be a pseudo reflection group.
The covariants LW := L/SL are defined as the quotient of L by SL, where SL ⊂ L
is sublattice generated by all elements of the form l − w(l) with l ∈ L and w ∈ W .
The lattice L is called simply connected if LW = 0. If p is odd, the lattice SL is
always simply connected. [8; 3.2].
1.1.3 For every W–lattice L, there exists a short exact sequence

0 −→ L −→ LQ −→ L∞ := LQ/L −→ 0

of W–modules. The quotient L∞
∼= (Z/p∞)n ⊂ (S1)n is called a p–discrete torus

and can be considered as a subgroup of a torus whose dimension equals the rank
of L.

For a p–discrete torus L∞ with an action of W , we get an W–lattice by setting
L := Hom(Z/p∞, L∞). Infact, L is a lattice because Z∧

p
∼= Hom(Z/p∞,Z/p∞).

For every W–lattice L, we always have L ∼= Hom(Z/p∞, L∞).
1.1.4 Given a short exact sequence L −→ M −→ K of W–modules, such that L and
M are lattices and such that K is finite, the two reperesentation LQ and MQ of
W are isomorphic. Thus, the above short exact sequence of 1.1.2 and the serpent
lemma establish a short exact sequence K −→ L∞ −→ M∞.

In [8] the following structure theorem is proved:

1.2 Theorem. Let p be an odd prime. Let L be a p–adic lattice and let W −→ Gl(L)
be a pseudo reflection group.
i) The W–lattice L fits into two short exact sequences of W–modules, namely

SL −→ L −→ LW



3

and
SL⊕ LW −→ L −→ K ,

where SL is simply connected and where W acts trivially on on the finite W–module
K ∼= (L/LW )W ∼= LW /LW .
ii) Let S be a simply connected W–lattice. Then, there exist splittings W =

∏

i Wi

and S ∼=
⊕

i Si in such a way that Wj acts trivially on Si if i 6= j and Si is a simply
connected irreducible Wi lattice.
iii) If, in addition, L is an irreducible W–lattice, then, up to weak isomorphism,
there exists a unique simply connected W–lattice S ⊂ LQ, given by the SL.

Proof. This follows from [8; theorems 1.2, 1.3, 1.4]. The small differences in the
statements come from the slightly different definition of W–lattices. �

We can now state our main results.

1.3 Theorem. Let p be an odd prime. A W–lattice L is polynomial if and only if
SL is polynomial and LW is torsion free if and only if SL is polynomial and the
composition K −→ SL∞ ⊕ (LW )∞ −→ (LW )∞ is a monomorphism.

This result and the second part of Proposition 1.2 reduces the question of poly-
nomial W–lattices to one about simply connected irreducible W–lattices.

1.4 Theorem. Let p be an odd prime. Let W −→ Gl(U) be an irreducible pseudo
reflection group over Q∧

p . Let S ⊂ U be a simply connected W–lattice of U . Then,
S is polynomial if and only if the pair (W, p) does not belong to one of the pairs
(WF4

, 3), WE6
, 3), WE7

, 3), (WE8
, 3) and (WE8

, 5).

The pairs excluded by the theorem are all given by the Weyl group action of
exceptional connected compact Lie groups G on LG at those odd primes which
appear as torsion primes in the cohomology of G.

In [5] is given a complete list of all irreducible p–adic rational pseudo reflection
groups. In particular, Theorem 1.4 says that for all other cases the simply connected
W–lattices are polynomial.

Starting from a simply connected polynomial W–lattice S, we can construct a
polynomial lattice in the following way: We choose a lattice Z with trivial W–
action, a finite subgroup K ⊂ (S∞)W and a monomorphism K −→ Z∞. Then we
define L∞ := (S∞ ⊕ Z∞)/K and L := Hom(Z/p∞, L∞). By construction and
because Ext(Z/p∞,K) ∼= K, we get a short exact sequence S ⊕ Z −→ L −→ K of
W–modules. Moreover, one can show that Z ∼= LW (see Lemma 2.2). By Theorem
1.3, the lattice L is polynomial and every polynomial lattice can be constructed
this way.

The proof of Theorem 1.4 is very much based on the classifictaion of W–lattices
which is only known for odd primes [8]. It also uses the classification of irreducible
p-adic rational pseudo reflection groups [5] and is done by ckecking case by case.
For the proof of Theorem 1.3 we use a functorial classifying space construction to
produce a fibration B2SL −→ BL −→ B2(LW ) which W acts on. The associated
Serre spectral sequence carries an W–action and turns out to be compatible with
taking fixed–points. This is the key of the proof. At one place we also need that,
for odd primes, the kernel of Gl(n;Z∧

p ) −→ Gl(n;Fp) is torsionfree. That is, where
the restriction to odd primes comes from.
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The paper is organized as follows. In Section 2 we recall some material about
W–lattices from [nolattice] and in Section 3 we discuss sufficient conditions for
a W–lattice being polynomial. The last two section are devoted to the proof of
Theorem 1.3 and Theorem 1.4.

Beside the algebraic motivation there is one reason why algebraic topologists
might be interested in questions of this type. A classical question of Steenrod [13]
asks for polynomial algebras over the field Fp which can be realized as the mod–p
cohomology of a space. Work of Adams and Wilkerson [1] and Dwyer, Miller and
Wilkerson [6] show that, at least for odd primes, all those algebras are isomorphic to
Z∧

p [L]
W ⊗Fp for a polynomial lattice L of a pseudo reflection group W −→ Gl(LQ).

Based on these results, for odd primes, we will give a complete answer to Steenrod’s
question in a further paper [9].

2. Lattices of pseudo reflection groups.

In this section we recall some further material from [8] about p–adic representa-
tions of pseudo reflection groups. We always assume that p is an odd prime.

Let U be a finite dimensional vector space over Q∧

p . Let W −→ Gl(U) be pseudo
reflection group.

2.1 Definitions and remarks.

2.1.1 In 1.1.3 we desribed an algebraic way of constructing a lattice from a
p–discrete torus. There is another, a topological way to do this. Let L∞ be a
p–discrete torus with an action of a finite group W . Then, using a functorial
classifying space construction, we can construct a W–lattice by L := H2(BL∞;Z∧

p ).
If we start with an W–lattice L, then we have equivalences L ∼= H2(BL∞;Z∧

p ),

L ∼= H2(B
2L;Z∧

p ) and Z∧

p [L]
∼= H∗(B2L;Z∧

p ) (see [8; 1.1]).
Moreover, every short exact sequenz L −→ M −→ N of W–lattices establishes an

fibration B2L −→ B2M −→ B2N of W–equivariant spaces.
2.1.2 For abbreviation we set L/p := L ⊗ Fp. Analogously as above we have

Fp[L/p] ∼= H∗(B2L;Fp) ∼= Z∧

p [L]⊗ Fp. The last isomorphism is obvious.
2.1.3 A monomorphism L −→ M of W–lattices is called a W–trivial restriction or

W–trivial extension if W acts trivially on the quotient M/L and if M/L is finite.

2.2 Lemma. Let S⊕Z −→ L −→ K be a W–tivial restriction of a pseudo reflection
group W −→ Gl(L). If S is simply connected and W acts trivial on Z, then Z ∼= LW .

Proof. The quotient L/Z is rationally isomorphic to S and therefore fixed–point
free. Taking fixed points gives an exact sequence 0 −→ Z −→ LW −→ (L/Z)W =
0. �

3. Invariant theory for p–adic pseudo reflection groups.

In this section we discuss sufficent conditions, that, for a given pseudo reflection
group W −→ Gl(L), the W–lattice L or the vector space L/p are polynomial.

The following well known result might be found in [12; 5.5.5].

3.1 Proposition. Let V be an n–dimensional vector space over a field F. Let
W −→ Gl(V ) be a faithful representation of a finite group. For i = 1, ..., n, let gi ∈
F[V ]W . Then the quotient F[V ]/(g1, ...gn) is a finite dimensional vector space over
F and

∏

i deg(gi)/2 = |W | if and only if F[V ]W is a polynomial algebra generated
by g1, ...., gn.
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We also need a p–adic version of this statement for lattices.

3.2 Corollary. Let p be an odd prime. Let L ∼= Z∧

p
n be a p–adic lattice carrying

a faithful action of a finite group W . For i = 1, ..., n, let gi ∈ Z∧

p [L]
W . Then

∏

i deg(gi)/2 = |W | and the quotient Z∧

p [L]/(g1, ...gn) is a finitely generated module

over Z∧

p if and only if Z∧

p [L]
W is a polynomial algebra generated by g1, ...., gn.

Proof. Let A := Z∧

p [L]. Let : A −→ A/p ∼= Fp[L/p] denote the reduction mod p.
Since p is odd and since W is a finite group the representation W −→ Gl(L/p) is
faithful and we can apply Proposition 3.1 for the W–action on L/p.

If A/(g1, ..., gn) is a finitely generated Z∧

p –module, the quotient (A/p)/(g1, ..., gn)
is finite dimesional Fp–vector space. Since the degree equation is independent of the
basic ring, this shows that A/pW ∼= Fp[g1, ..., gn]

∼= AW /p is a polynomial algebra
generated by the elements gi (Proposition 3.1), and, by the Nakayama lemma, that
AW is also a polynomial algebra generated by the elements gi for i = 1, ...n.

If AW ∼= Z∧

p [g1, ..., gn] then A/(g1, ...gn) is a lattice in the finite dimensional
Q∧

p –vector space A ⊗ Q/(g1, ..., gn) and therefore a finitely generated Z∧

p –module.
The degree equation also follows from Proposition 3.1 for F = Q∧

p . �

3.3 Lemma. Let p be an odd prime. Let L be a W–lattice. Then the following
holds:
i) If L is polynomial, the map Z∧

p [L]
W −→ Fp[L/p]

W is an epimorphism and Fp[L/p]
W

is a polynomial algebra.
ii) If Fp[L/p]

W is polynomial and Z∧

p [L]
W −→ Fp[L/p]

W is an epimorphism, then
L is polynomial.

Proof. Let A := Z∧

p [L]. Let g1, ..., gn be polynomial generators of AW . Then we
have

∏

i deg(gi)/2 = |W | (Corollary 3.2).
The sequence AW −→ A −→ A/AW is short exact and splits, since A/AW is

torsionfree, and A/AW is a finitely generaterd Z∧

p –module (Corollary 3.2). Re-

ducing mod p establishes a short exact sequence AW /p −→ A/p ∼= Fp[L/p] −→
(A/AW )/p ∼= (A/p)/(AW /p). The third term is a finite dimensional Fp–vector
space. Let gi be the image of gi under the reduction. Then the elements gi ∈ A/p
are invariants and generate AW /p. Therefore, (A/p)/(g1, ..., gn)

∼= (A/p)/(AW /p)
is finite dimensional. As in the proof of Corollary 3.2 we can apply Proposition
3.1. Hence, because

∏

i deg(gi)/2 =
∏

i deg(gi)/2 = |W |, the ring (A/p)W of in-
variants is a polynomial algebra generated by g1, ..., gn (Proposition 3.1) and the
map Z∧

p [L]
W −→ Fp[L/p]

W is an epimorphism. This proves the first part.

Let Fp[L/p]
W ∼= Fp[g1, ..., gn] be a polynomial algebra. Let gi ∈ Z∧

p [l]
W be a lift

of gi. Then, by the Nakayama lemma, the elements gi generate A
W as a polynomial

algebra. �

3.4 Remark. If, for a W–lattice L, the reduction L/p is polynomial, it does not
follow that L itself is polynomial. The following example, demonstrating this fact,
was pointed to us by A. Viruel.

Let p = 3 and G = SU(3)/Z/3. Then, the action of WG on LG := H2(BTG;Z
∧

p )

makes LG/p polynomial. The ring of invariants Fp[LG/p]
WG is generated by two

elements of degree 2 and 12 [3]. Since rationally there is no differenz between
G = SU(3)/Z/3 and SU(3), the polynomial algebra (Z∧

p [LG]⊗Q)WG is generated
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by two elements of degree 4 and 6. Thus LG can’t be polynomial, since otherwise
reduction mod p would establish an epimorphisms between the invariants (Lemma
3.3).

The following statement is a relative version of the theorem of Shepard and Todd
[11] respectively of Chevalley [4].

3.5 Proposition. Let V be vector space over a field F. Let W −→ Gl(V ) be a
pseudo reflection group. Let W1 ⊂ W be a subgroup such the index [W : W1] is
coprime to the characteristic char(F) of F. If F[V ]W1 is a polynomial algebra, then
so is F[V ]W .

Proof. By [12; 6.4.4] it is sufficient to show that F[V ]W1 is a free F[V ]W –module,

and by [12; 6.1.1] this follows if Tor
F[V ]W

1 (F,F[V ]W1) vanishes. Since
([W : W1], char(F)) = 1, there exists an averaging map

a : F[V ]W1 −→ F[V ]W : f 7→ (1/[W : W1])
∑

w∈W/W1

wf .

The vanishing of the Tor1–term now follows analogously as in the proof of the
Shepard–Todd theorem as given in [12; 7.4.1]. �

Actually, for our purpose, we need a p–adic integral version of Proposition 3.5.

3.6 Corollary. Let L be W–lattice. Let W −→ Gl(L) be a pseudo reflection group.
Let W1 −→ W be a subgroup of index coprime to p. If L is polynomial as W1–lattice,
then so is L as W–lattice.

Proof. Since the index [W : W1] is a unit in Z∧

p , there exists again the averaging

map a : Z∧

p [L]
W1 −→ Z∧

p [L]
W which, in particular, is an epimorphism. The same

holds after reducing everything mod p. Therefore, in the diagram

Z∧

p [L]
W1 −−−−→ Z∧

p [L]
W





y





y

Fp[L/p]
W1 −−−−→ Fp[L/p]

W

the bottom and the left vertical arrow are epimorphisms (Lemma 3.3) as well as the
right vertical map. By Lemma 3.3 follows that L is a polynomial W–lattice. �

If we choose the trivial group for W1 in the the last two statements, we get the
Shepard–Todd–Chevalley Theorem. We end this section with an p–adic integral
version of the converse.

3.7 Proposition. Let L be a finitely generated lattice and W −→ Gl(L) be a faithful
representation of a finite group of a finite group W . If Z∧

p [L]
W is a polynomial

algebra, then W −→ Gl(L) is a pseudo reflection group.

Proof. Because Q∧

p [LQ]
W ∼= Z∧

p [L]
W ⊗Q, both are polynomial algebras. Now, ap-

plying the Shepard–Todd–Chevalley Theorem in characteristic 0 shows that W −→
Gl(LQ) as well as W −→ Gl(L) are pseudo reflection groups.
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4. Proof of Theorem 1.3.

For the proof of Theorem 1.3 we need the following results.

4.1 Lemma. Let G be a finite group and let M be a W–lattice. Then, MG −→
(M/p)G is an epimorphism if and only if H1(G;M) = 0.

Proof. Multiplication by p gives rise to a short exact sequence M −→ M −→ M/p.
Taking fixed–points establishes an exact sequence MG −→ MG −→ (M/p)G −→
H1(G;M) −→ H1(G;M). The first and last map are again given by multiplication
by p. Since M is a Z∧

p –module and since G is finite, the group H1(G;M) is a
finite abelian p group. Therefore, the second map in the above sequence is an
epimorphism iff H1(G;M) vanishes. �

4.2 Corollary. Let L be polynomial W–lattice. Then, H1(W ;Z∧

p [L]) = 0.

Proof. Since L is polynomial, the map Z∧

p [L]
W −→ Fp[L/p]

W is an epimorphism
(Lemma 3.3) �

Now we can start with the proof of Theorem1.3.

Proof of Theorem 1.3. Let us first assume that S := SL is polynomial and
that Z := LW is torsionfree. The short exact sequence S −→ L −→ Z establishes
a fibration B2S −→ B2L −→ B2Z (see 2.1.1) of W–equivariant spaces, where W
acts trivially on the last term. All spaces are classifying spaces of p–adic tori and
H∗(B2S;Z∧

p )
∼= Z∧

p [S] (analogously for the two other lattices). Now we look at
the associated W–equivariant Serre spectral sequence whose E2–term is given by
E∗,∗

2
∼= H∗(B2Z;Z∧

p ) ⊗ H∗(B2S;Z∧

p ). By degree reasons all differentials vanish.
The extension problems are given by short exact sequences of the form F ∗,∗ −→
F ∗+1,∗−1 −→ H∗(B2Z;Z∧

p ) ⊗ H∗(B2S;Z∧

p ). We claim that, taking fixed–points,

gives again a short exact sequence. That is we have to show that H1(W ;F ∗,∗)
vanishes for all (∗, ∗). But this follows via an induction based on the above exact
sequence from Corollary 4.2.

In particular, this argument shows that H∗(B2L;Z∧

p )
W −→ H∗(B2S;Z∧

p )
W is an

epimorphism and that H∗(B2Z;Z∧

p ) −→ H∗(B2L;Z∧

p )
W is a monomorphism. Let

g1, ..., gn be polynomial generators of H∗(B2S;Z∧

p )
W . Choosing lifts of this classes

in H∗(B2L;Z∧

p )
W establishes an isomorphism H∗(B2Z;Z∧

p ) ⊗ H∗(B2S;Z∧

p )
W ∼=

H∗(B2L;Z∧

p )
W , which shows that L is polynomial.

Now let us assume that L is polynomial. We first want to show that LW is
torsionfree. The lattice L fits into an W–trivial extension S ⊕ Z −→ L −→ K with
Z ∼= LW (Thereom 1.2). We dualize this sequence, i.e. we apply the functor
Hom( ,Z∧

p ). Let L
♯ denote the dual. We get a short exact sequence

L♯ −→ S♯ ⊕ Z♯ −→ Ext(K,Z∧

p )
∼= K .

Taking fixed–points yields the exact sequence given by the top row of the commu-
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tative diagram

0 −−−−→ L♯W −−−−→ S♯W ⊕ Z♯ ∼= Z♯ −−−−→ K −−−−→ H1(W ;L♯)




y





y

∥

∥

∥

0 −−−−→ L♯ −−−−→ S♯ ⊕ Z♯ −−−−→ K −−−−→ 0




y





y





y

0 −−−−→ L♯/L♯W
∼=

−−−−→ S♯ −−−−→ 0 .

The isomorphism in the middle of the top row follows since S as well as S♯ are
fixed–point free. AAll rows and columns are exact.

Having in mind that, for a lattice M , we have (M ♯)♯ ∼= M and dualizing the first
column establishes the short exact sequence

S −→ L −→ ((L♯)W )♯ ∼= LW .

Therefore, the module LW is torsionfree.
Now we want to show that S is polynomial. Let AL := Z∧

p [L] and define AS

analogously. By assumption we have AW
L

∼= Z∧

p [f1, ...fr, g1, ...gs] for suitable ele-
ments fi and gj , where deg(fi) = 2 and deg(gj) > 2. The number of generators are
determined by the dimension of the lattices. That is that
s + r = dim(L) . Since S♯ is fixed–point free, the elements fi are images of ele-
ments of Z♯ and r ≤ dimZ. Since Z♯ ⊂ L♯W we have r ≥ dim(Z) and therefore
r = dim(Z) and s = dim(S). Now let g′j ∈ AW

S be the images of gj ∈ AW
L . Then

∏

j deg(g
′

j)/2 =
∏

j deg(gj)/2
∏

i deg(fi)/2 = |W | (Corollary 3.2). Moreover, the

map AL/(fi, gj) −→ AS/(g
′

j) is an epimorphism and therefore, the target is also

finitely generated. Applying Corollary 3.2 again yields AW
S

∼= Z∧

p [gj ]. In particu-
lar, the lattice S is polynomial. This finishes the proof of the first equivalence of
statements. The second follows from the lemma below. �

4.3 Lemma. Let S ⊕ Z −→ L −→ K be a W–trivial extension, such that W acts
trivially on Z and such that S is simply connected. Then LW is torsionfree if and
only if the composition K −→ S∞ ⊕ Z∞ −→ Z∞ is injective.

Proof. Since S is simply connected, passing to covariants establishes a short exact
sequence Z −→ LW −→ K. If LW is torsionfree, this is a W–trivial extension and
establishes the short exact sequence K −→ Z∞ −→ (LW )∞. In particular, K −→ Z∞

is a monomorphism.
If K −→ Z∞ is a monomorphism the quotient Z ′

∞
:= Z∞/K defines a lattice

Z ′ := Hom(Z/p∞, Z ′

∞
) with trivial W–action and fits into the diagram

S∞ S∞





y





y

K −−−−→ S∞ ⊕ Z∞ −−−−→ L∞

∥

∥

∥





y





y

K −−−−→ Z∞ −−−−→ Z ′

∞
.
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Passing toW–lattices, i.e. applying the functorHom(Z/p∞, ) shows that LW
∼= Z ′

is torsionfree. �

5. Proof of Theorem 1.4.

proof of Theorem 1.4. Let W −→ Gl(n;Q∧

p ) be an irreducible pseudo reflection
group over the p–adic rationals. There exists a complete classification of these
objects (see [5]). Let S ⊂ Q∧

p
n be the simply connected W lattice unique up to

isomorphism (see Theorem 1.2).

For the pairs (W, p) listed in the statement, the prime p is always a torsion prime
of the integral cohomology of the connected compact Lie group G. Thus, the simply
connected WG–lattices H2(BTG;Z

∧

p ) are not polynomial. This proves one half of
the statement.

We now show that, for all other pairs (W, p), the associated simply connected
lattice S is polynomial. If (p, |W |) = 1, we can apply Corollary 3.6 to see that S
is polynomial. Checking the complete list of irreducible pseudo reflection groups
over Q∧

p of Clark and Ewing [5], there are only a few cases left. For all these cases,
there exists a connected compact Lie group G such that WG ⊂ W −→ Gl(S) is
a WG lattice isomorphic to LG := H2(BTG;Z

∧

p ) and such that LG is polynomial.
Here, TG ⊂ G denotes a maximal torus of G. The particular information about
the Lie groups, the subgroups and the primes are given in the following table. The
numbering refers to the Clark–Ewing list [5].

No G W1 W prime

1 SU(n) Σn Σn p ≤ n

2a U(n) Σn W ⊂ Z/r ≀ Σn r|(p− 1), p ≤ n

2b SU(3) Σ3 D12, D6 p = 3

12 SU(3) Σ3 Gl(2;F3) p = 3

29 SU(5) Σ5 W p = 5

31 SU(5) Σ5 W p = 5

34 SU(7) Σ7 W p = 7

For all other cases, the pair (W, p) belongs to the excluded list or (p, |W |) = 1. The
information given in this table is obvious for No. 1 and may be found in [10] for
No. 2a and in [2] for all other cases. For all cases besides No. 2a, S is already
simply connected as W1–lattice and therefore simply connected as W–lattice. For
No. 2a, we have (S♯/p)W = 0 [10; Proposition 1.4]. Hence, by [8; Lemma 2.2 and
Proposition 5.1], S is simply connected as W–lattice.

Now we can apply Corollary 3.6, which shows that S is a polynomial W–lattice.
This finishes the proof of Theorem 1.4. �
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From the mentioned references [10] and [2], for the lattices of the above table, you
can get a little extra piece of information about the subgroup W1 ⊂ W . Actually,
if ∆ ∼= Z/p ⊂ L/p describes the diagonal of L/p, then W1

∼= IsoW (∆) is given as
the isotropy subgroup of ∆.

For (p, |W |) = 1, we define ∆ := L/p. Then, W1 := IsoW (∆) is the trivial group
(p is odd). Taking the trivial connected compact Lie group as G we get the same
picture as desribed in the above table. This shows that the following proposition
is true at least for simply conneceted irreducible W–lattices.

5.1 Proposition. Let p be an odd prime. Let L be a polynomial W–lattices. Then,
there exists a compact connected Lie group G and a subspace ∆ ⊂ L/p such that
the following holds:
i) WG ⊂ W −→ Gl(L) is isomorphic to the WG–lattice LG.
ii) L is a polynomial WG–lattice and Z∧

p [L]
WG ∼= H∗(BG;Z∧

p ).
iii) WG = IsoW (∆) and the index [W : WG] is coprime to p.

Proof. The statement is true for simply connected W–lattices, since these split into
a product of irreducible simply connected lattices.

Every polynomial lattice L fits into an exact sequence SL×Z −→ L −→ K, where
W acts trivially on Z and K, such that SL is simply connected and polynomial and
such that the associated monomorphism K −→ Z∞ is a monomorphism (Theorem
1.3). Now, we choose ∆ ⊂ SL/p and a connected compact Lie group G which satisfy
the statement for SL. Since the rpresentation WG −→ Gl(LG) has an integral lift,

the inclusion SL∞ ⊂ TG is W–equivariant, and K ⊂ TWG

G . By the lemma below,

the index of the center Z(G) ⊂ TWG

G is a power of 2. Hence, K ⊂ TG ⊂ G is a
central subgroup.

We also can realize Z as the p–adic lattice of an integral torus T with trivial
WG–action. Let H := (G × T )/K. Then, WH

∼= WG ⊂ W has index copriome to
p and, by construction, the composition WH ⊂ W −→ Gl(L) is isomorphic to the
WH–lattice LH . Moreover, ∆ ⊂ L/p and WH

∼= IsoW (∆). This shows that the
statement is true for general polynomial W–lattices. �

The following lemma might be well known, but we couldn’t find a reference for
it stating the result in terms of compact Lie groups.

3.2 Lemma. For any connected compact Lie group G, the index [TWG

G : Z(G)] is
a power of 2.

Proof. We only have to show that, for odd primes every p–toral subgroup P ⊂ TWG

G

is already contained in Z(G). Let C ⊂ G be the centralizer of P . Then, C is of
maximal rank, the weyl groups WC = WG are identical and π0(C) is a finite p–
group. The first two claims are obvious and the third follows from [7; A. 4]. Since
the normalizerNC(TG) of TG taken in C maps onto π0(C) and sinceWG is generated
by elements of order 2, the group C is connected. Because C and G have identical
Weyl groups, they are isomorphic. This shows that P ⊂ Z(G). �

3.3 Remark. The only simply connected W–lattices, which are not polynomial,
come from the Weyl group action of some exeptional connected compact Lie groups.
Hence, for odd primes, the first and the third part of Proposition 3.2 are true for
general W–lattices of a given pseudo reflection group W .
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1996.

[10] D. Notbohm, Topological realization of a family of pseudo reflection groups,
preprint 1996.

[9] D. Notbohm, Spaces with polynomial cohomology, in preparation.
[11] G.C. Shepard and J.A. Todd, Finite unitary reflection groups, Can. J. Math.

6 (1957), 274-304.
[12] L. Smith, Polynomial invariants of finite groups, A.K. Peters Welley Mas-

sachusetts 1995.
[13] N.E. Steenrod, Polynomial algebras over the algebra of cohomology operations,

Proceedings, Neuchâtel 1970, SLNM 196, Springer Verlag, 1971.

Mathematsisches Institut, Bunssenstr. 3-5, 37073 Göttingen, Germany.
e-mail : notbohm at cfgauss.uni-math.gwdg.de


