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Abstract

The structure of Julia sets of holomorphic maps in C

n

is investigated,

i.e. topological and measure theoretic aspects, potential theory and com-

plex analysis. In particular, we deal with Julia sets of holomorphic skew

products f : C

2

! C

2

. For a family of skew products with special base

map, so-called noodle type maps, we describe the role played by the set

of the critical points Crit of f . This gives insight in the structure of the

parameter space of the above kind of maps and leads to a generalisation

of the Mandelbrot set for quadratic maps in C

1

.

0 Introduction

During the last years there has been a lot of e�ort to generalise the iteration

theory of holomorphic maps of one complex variable to the higher-dimensional

case. In dimension one the simple Alexandrov compacti�cation C := C [ 1

(for the iteration of polynomials) and the complex projective space P (iteration

of rational functions) are isomorphic, whereas holomorphic automorphisms of C

(being a�ne linear transforms) are not interesting from the `dynamical point of

view'. In the higher-dimensional case there is a priori no unique choice of `the

right class of mappings'. There have been investigations of non-trivial automor-

phisms of C

2

, so-called H�enon maps, by Bedford and Smillie (cf. [2] for further

references) as well as of endomorphisms of complex projective spaces, hence iter-

ation of homogeneous polynomial vectors, by Sibony and Forn�ss (see Forn�ss'

book [5]). In this paper we are interested in the iteration of general polynomial
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maps in C

n

, so-called (p; q)-regular maps. These maps are generic in the space

of polynomial vectors f : C

n

! C

n

.

Though one might disagree about the choice of the `right' model there are still

several criteria to judge the quality of a higher-dimensional iteration theory. Of

course the Julia set in dimension n > 1 will be designed to have as many `good'

properties of `one-dimensional' Julia sets as possible. It is of particular interest

that one can characterise these sets in completely di�erent but equivalent ways.

Usually, the Julia set J of a rational function f : C

1

! C

1

is described as the set

of points where the iterates of that map are not normal convergent. The set J

may also be characterised by being the closure of the union of repelling periodic

points of f , or equivalently by being the support of a measure �(f) of maximal

entropy. If f is a polynomial one obtains J as the boundary (either topological

boundary @K or functional analytic Shilov boundary @

SH

K) of the setK of points

with bounded forward orbit. In this case, �(f) can be calculated by means of

the Green function of {K. Moreover, what is interesting for numerical studies,

J may be obtained by inverse iteration of (almost) arbitrary points of C . The

latter follows since the action of f on J is topologically mixing.

In section 1 we give an outline of the iteration theory of (p; q)-regular maps,

i.e. polynomial maps f : C

n

! C

n

with a certain growth condition which is

similar to a well-known condition for polynomials in C . It turns out that it is not

appropriate to work with `na��ve' normal convergence. Instead we shall introduce

the notion of weakly normal convergence. For a family of (p; q)-regular maps,

so-called maps of noodle type we investigate in detail the structure of their Julia

sets. It turns out that for these maps, the above characterisations of the Julia

set are still in force, i.e. the Julia set equals the closure of of the set of repelling

periodic points of f , and at the same time supports a measure of maximal entropy

which is induced by the Green current for {K. Moreover J may be identi�ed with

the Shilov boundary of K. Also, the action of noodle type maps on their Julia

sets is topologically mixing. Finally we have a look at the parameter space of

noodle type maps and present a natural generalisation of the Mandelbrot set for

quadratic polynomials in C

1

.

1 Strict polynomials, (p,q)-regular maps, and

weakly normal convergence

In [11] we gave a detailed overview of the concept of (p; q)-regular maps and

strict polynomials. The underlying idea is the observation that polynomials can

be characterised `dynamically' by means of the following growth condition.

Lemma 1.1

([13, p. 11]) An entire mapping f : C ! C is a polynomial of degree p 2 N if and
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only if one can �nd constants k

1

; k

2

> 0, r 2 R such that

k

1

� jzj

p

� jf(z)j � k

2

� jzj

p

holds for all jzj > r. �

For n > 1 and maps f : C

n

! C

n

, one replaces the modulus j � j by a norm k � k

which is compatible with the usual metric on C

n

and obtains the de�nition of a

strict polynomial.

De�nition 1.2 (strict polynomial)

([9, Def. 1.3.6]) An entire mapping f : C

n

! C

n

is called a strict polynomial of

degree p 2 N if for some k

1

; k

2

> 0, r 2 R, and for all kzk > r

k

1

� kzk

p

� kf(z)k � k

2

� kzk

p

: (1)

Let S denote the set of all strict polynomials. Clearly, a strict polynomial of

degree p is given by an n-vector of polynomials in n variables (polynomial vector)

of (algebraic) degree p (cf. [4, p. 219]). Whereas in dimension one the exponents

on the right and left side of (1) have to be equal (provided one chooses the

left exponent to be maximal, the right one to be minimal, resp.), it is possible

to obtain di�erent exponents for higher-dimensional maps. This leads to the

concept of (p; q)-regularity.

De�nition 1.3 ((p; q)-regular mapping )

([10, Sec. 2.1]) An entire map f : C

n

! C

n

is called (p; q)-regular if, for p 2 Q

+

,

q 2 N

+

, there exist constants k

1

; k

2

> 0, r 2 R such that, for all kzk > r

k

1

� kzk

p

� kf(z)k � k

2

� kzk

q

:

Evidently, for p 2 N, the (p; p)-regular mappings are exactly the strict polyno-

mials of degree p. We remark that (p; q)-regular mappings are also polynomial

vectors of degree not exceeding q. We call a map regular if it is (p; q)-regular for

some p 2 Q

+

, q 2 N

+

. Let R denote the set of all regular mappings, and let us

assume from now on that p > 1.

In order to establish an iteration theory for (p; q)-regular maps at least we have

to require that R is closed under composition. An easy calculation yields the

following lemma.

Lemma 1.4

([12, L. 1.4]) The composition of regular mappings is regular. More precisely, for

f; g : C

n

! C

n

(p

0

; q

0

)-regular, (p

00

; q

00

)-regular, resp., the composition f � g is

(p

0

p

00

; q

0

q

00

)-regular. �

In particular, the following holds.
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Corollary 1.5

The composition of strict polynomials is again a strict polynomial. For f 2 S,

all iterates (for ` 2 N)

f

`

:= f � : : : � f

| {z }

` times

are also strict polynomials (of degree p

`

). �

Concerning the topological behaviour of (p; q)-regular maps we get the following

theorem.

Theorem 1.6

([12, Th. 1.6]) (p; q)-regular mappings are proper. �

This implies that regular maps are compatible with the simplest compacti�cation

of C

n

.

Corollary 1.7

If we de�ne f(1) := 1, a (p; q)-regular mapping f : C

n

! C

n

admits a

continuation to C

n

:= C

n

[ f1g. �

Fortunately, this compacti�cation also makes sense for dynamical purposes.

Theorem 1.8

([9, Satz 1.5.8]) The attracting basin F

1

:= F

1

(f) for `in�nity', i.e. the set of

points whose forward orbits eventually leave any compact set in C

n

, is not empty.

More precisely, if we de�ne

R

f

:= max

n

r; 1

.

p�1

p

k

1

o

;

K = K(f) :=

�

z 2 C

n

: kf

k

(z)k stays bounded.

	

;

and

B

R

f

:= fz 2 C

n

: kzk < R

f

g;

then

F

1

=

1

[

k=0

f

�k

�

{B

R

f

�

;

and

K =

1

\

k=0

f

�k

�

B

R

f

�

: (2)

�
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The fact that f is proper implies that the mapping has constant rank n on a

dense open subset of C

n

, namely the complement of the critical locus Crit where

the Jacobi-determinant J

f

of f vanishes. Applying Bezout's theorem ([17, p.

199]) one obtains the following result for strict polynomials.

Theorem 1.9

([12, Th. 1.9]) A strict polynomial f : C

n

! C

n

is surjective and has mapping

degree p

n

. �

By Corollary 1.5 we see.

Corollary 1.10

([12, Cor. 1.10]) A strict polynomial f : C

n

! C

n

has p

nk

periodic points of order

k 2 N (counted with multiplicity). �

Corollary 1.11

For a strict polynomial f , the set K(f) is non empty. �

It is clear that strict polynomials are dense in the parameter space of polynomial

vectors with maximal degree p. For a given polynomial vector one simply varies

(if necessary) slightly the coe�cients of the monomials with maximal degree in

order to eliminate common zeros of these monomials. R contains S, hence the

same holds for (p; q)-regular mappings.

We saw that the suitable type of convergence for (p; q)-regular maps is weakly

normal convergence, which is, loosely speaking, normal convergence on at least

one-dimensional complex analytic sets (instead of normal convergence on `full'

open sets (cf. [12, sec. 2])).

De�nition 1.12 (weakly normal)

([12, Def. 2.2]) For a sequence of holomorphic mappings (f

k

: U ! C

n

)

k2N

on a

domain U � C

n

we de�ne that (f

k

) is called weakly normal in a point z 2 U if

there exists

� an open neighbourhood V of z,

� a family C

x

of at least one-dimensional (complex) analytic sets indexed by

the points x 2 V ,

such that

� each x lies in the corresponding analytic set C

x

;

� for each x 2 V the sequence (f

k

) restricted to C

x

\ V is normal (including

convergence to in�nity).

We may now de�ne the Julia set for a regular map.
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De�nition 1.13 (Julia set of a (p; q)-regular mapping )

([12, Def. 2.3]) The Julia set J(f) for a (p; q)-regular mapping f : C

n

! C

n

is

the set of points for which the family ff

k

g of iterates of f is not weakly normal.

Clearly, J is closed and contained in @K, and hence compact. Also, an easy

calculation shows that J is completely invariant. i.e.

f(J) = J = f

�1

(J):

Moreover, weakly normal convergence in C

n

is a natural generalisation of normal

convergence in C

1

. Namely, for n = 1, weakly normal and normal convergence

lead to the same result since one-dimensional analytic sets are open sets in C

([12, Rem. 2.6]). In [12] and [11] we have also seen that, for certain classes of

higher dimensional maps as products ([11, ch. 2]), Cantor skews ([12, ch. 3]), and

torus maps ([11, ch. 3]), the following di�erent characterisations of the Julia sets

of polynomials in dimension one, namely,

I: J as set of points where ff

k

g is not weakly normal,

II: J as Shilov boundary @

SH

K(f) of K(f),

III: J as closure of the set of repelling periodic points of f ,

IV: J as support of a measure �(f) of maximal entropy for f which can be

represented as �G, where G is the Green function of the complement of K,

are still valid . In the following section we shall deal with yet another class of maps

which neither show the simple dynamics of products nor show the hyperbolic

behaviour of Cantor skews or torus maps.

2 Noodle type maps and their dynamics

For z 2 C

2

let x; y denote the two components. A skew product can be con-

structed by means of a polynomial q : C ! C in one variable, and another

polynomial p : C

2

! C in two variables. We shall write p

y

(x) instead of p(x; y)

in order to indicate that we view p as a polynomial in x whose coe�cients depend

on y. We then obtain a skew product f : C

2

! C

2

by de�ning

f :

�

x

y

�

7!

�

p

y

(x)

q(y)

�

:

The dynamics of such a map f consists of two parts, namely the base map and

the �bre map. The base map q acts on the �bres C

y

:= C �fyg by mapping C

y

to

C

q(y)

. Within each �bre we have the action of the �bre maps p

y

. If we project to

the �rst coordinate we obtain on each �

1

(C

y

) a family of holomorphic functions

P

y

:=

�

p

y

; p

q(y)

� p

y

; p

q

2

(y)

� p

q(y)

� p

y

; : : :

	

:
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For this family we can compute the usual Julia J

�

y

set as subset of C

y

, �

1

(C

y

),

resp., where P

y

is not normal. Furthermore, let J

y

:= J(f) \ C

y

, and K

y

:=

K(f)\C

y

. Evidently, @(�

1

(K

y

)) = �

1

(J

�

y

). Recall that we may compare two sets

A;B of the above kinds, their projections �

1

(A); �

1

(B), resp., by calculating the

Hausdor� distance d

H

, which is de�ned on the space P

C

of compact subsets of C

by (see [4, p. 66])

d

H

(�

1

(A); �

1

(B)) := sup

x2�

1

(A)

�

inf

x

0

2�

1

(B)

d(x; x

0

)

�

;

where d(�; �) denotes the usual metric on C .

Before we give the de�nition of maps of noodle type we mention an interesting

aspect of the above type of skew products. It is easy to see that the Julia sets of

these maps are contained in C�J(q). If one concentrates on the `one-dimensional'

dynamics of the �bre maps, then the inuence of q is just that the parameters y of

the mappings p

y

are varied along the `path' J(q). It is interesting in its own sake

to study the Julia sets J

�

y

:= J(P

y

). Though, the variation happens in a much

subtler way than in a usual parameter space. Clearly the mixing dynamics of q

on J(q) makes things more complicated. One might want J(q) to be a connected

set in order to study the behaviour of the mapping

J : (J(q); d(�; �)) ! (P

C

(C ); d

H

(�; �)) ;

given by

y 7! �

1

(J

�

y

):

We de�ne.

De�nition 2.1 (noodle type map)

A mapping f : C

2

! C

2

is called a noodle type map if it is a skew product of the

form

�

x

y

�

7!

�

p

y

(x)

q(y)

�

:

Here

q(y) := y

2

+ F;

where the constant F 2 C is chosen such that J(q) = K(q) is connected. Fur-

thermore, the �bre maps are given by

p

y

(x) := x

2

+ k(y) = x

2

+ cy

2

+ ey + f:

7



An easy calculation shows that any strict polynomial which is a skew product of

quadratic polynomials can be transformed to this form (without the restriction

on F , of course).

It is clear that

K := K(f) � B

R

f

� J(q):

This is easily seen since, for (x; y) in the complement of B

R

f

�J(q), we have that

kf

k

(x; y)k ! 1 for k !1.

Propositon 2.2

For given z = (x; y) 2 K, the only possible choice for C

z

in the de�nition of

weakly normal convergence are sets of the form U � fyg, where U is an open

neighbourhood of x in C .

Proof: Assume there is a connected component of C

z

which does not have the

form U � fyg. Then its projection to the second coordinate would contain an

open set, hence points from {J(q) = {K(q). This implies that C

z

\{K 6= ;, which

contradicts the normal convergence on C

z

. �

The proposition shows that we can obtain J in the following way. Calculate the

Julia sets J

�

y

of the families P

y

of maps of one variable on the C

y

for y 2 J(q).

Their union gives the pre Julia set

J

�

:=

[

y2J(q)

J

�

y

:

Using the de�nition of weakly normal convergence, one obtains J as the closure

of J

�

. If one can show that J

�

is already closed, then J = J

�

. In this case we

obtain the Julia set J of the two-dimensional mapping f as union of Julia sets

J

�

y

of sequences of one-dimensional maps.

Remark 2.3

Clearly, the continuity of the map J is a su�cient condition for J

�

= J . �

For quadratic polynomials p

c

: z 7! z

2

+ c of one variable we have the following

two generic (hyperbolic) cases:

I) The forward orbit of the critical point 0 (together with a small neighbourhood)

might converge to an attracting k-cycle, i.e. a k-tuple z

0

; : : : ; z

k�1

such that, for

i = 0; : : : k � 2, p

c

(z

i

) = z

i+1

, and p

c

(z

k�1

) = z

0

, and, for all i = 0; : : : ; k � 1, the

modulus of the multiplier is smaller than 1. Hence we have

j�(z

i

)j :=

�

�

D(f

k

(z

i

))

�

�

=

�

�

�

�

�

k�1

Y

i=0

f

0

(z

i

)

�

�

�

�

�

= 2

k

�

k�1

Y

i=0

jz

i

j < 1:

II) The forward orbit of 0 converges to in�nity. In this case J(p

c

) is a hyperbolic

Cantor set, and the dynamics of p

c

on J(p

c

) is equivalent to the shift on f0; 1g

N

.

Let us �rst investigate the analogue of the second case for maps of noodle type.
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2.1 Spaghetti

Clearly, in the higher-dimensional setting, we have critical varieties instead of the

critical points in the one-dimensional case. Though, in the case of noodle type

maps, the relevant set for the �bre dynamics is

Crit

x

:= f0g � J(q):

The equivalent to II) is then represented by the following de�nition.

De�nition 2.4 (Spaghetti type map)

A noodle type map f is called a Spaghetti type map if the iterates under f of

Crit

x

tend to in�nity.

Propositon 2.5

For a Spaghetti type map, for each �xed r > R

f

, there is a non-negative integer

N(r) <1 such that

f

N(r)

(Crit

x

) \

�

B

r

� J(q)

�

= ;:

Proof: Let

G

r

:= B

r

� J(q):

By assumption, the orbit of each point (0; y) 2 Crit

x

eventually leaves G

r

. Sup-

pose it does so for the N

y

-th iterate of f . Then, by continuity of f , this also

holds for all points (0; y

0

) such that y

0

lies in a small open neighbourhood U

y

of y

in J(q). The union of all U

y

, for y 2 J(q), covers J(q). By compactness of J(q)

already �nitely many U

y

1

; : : : ; U

y

t

are su�cient to cover J(q). But then, with

N(r) := max

i=1;::: ;t

fN

y

i

g ;

we get

f

N(r)

(Crit

x

) \G

r

= ;:

�

The assumption implies that, on each set C

y

\ f

�N(r)

(G

r

), the inverse branches

p

�1

q

�1

(y)

are well de�ned and univalent holomorphic maps. For k 2 N, we de�ne

�

0

:= G

r

;

�

k+1

:= f

�1

(�

k

);

�

k;y

:= C

y

\ �

k

:

By virtue of the choice of r,

�

k+1;y

�� �

k;y

;

9



and, in particular,

K

y

=

1

\

k=0

�

k;y

= lim

k!1

�

k;y

:

Moreover,

1

\

k=0

�

k;y

� (@(�

1

(K

y

)))� fyg = J

�

y

6= ;:

Since the p

�1

q

�1

(y)

are algebraic functions, we �nd, for each y 2 J(q), a neighbour-

hood V

y

, such that, with N := N(r),

�

1

0

@

[

y

0

2V

y

�

N+1;y

0

1

A

�� �

�

N;V

y

:=

\

y

0

2V

y

�

1

(�

N;y

0

):

Again, J(q) is covered by �nitely many of these sets, say V

y

1

; : : : ; V

y

s

. For each

index i 2 f1; : : : ; sg, we change the �

N;y

to closed sets �

�i

N;y

such that, for y 2 V

y

i

,

�

�i

N;y

:= �

�

N;y

i

� fyg:

For y 2 J(q) n V

y

i

, we choose �

�i

N;y

such that the mapping y 7! �

�i

N;y

is continuous

on J(q) and such that

�

1

(�

N+1;y

) �� �

1

(�

�i

N;y

) �� �

1

(�

N;y

):

In complete analogy to the de�nition of �

k

and �

k;y

, for k � N , let

�

�i

k+1

:= f

�1

(�

�i

k

):

With this notation we obtain, for k � N ,

�

�i

k+1;y

�� �

�i

k;y

;

and

K

y

= lim

k !1

�

�i

k;y

:

Let y

�

2 J(q) be �xed and C be a connected component of K

y

�

= lim

k!1

�

�i

k;y

�

.

C is either a continuum or a point (since it is the intersection of a decreasing

sequence of compact sets (namely the components of the �

�i

k;y

�

which contain C),

cf. [15, Th. IV.5.3]).
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Propositon 2.6

If y

�

2 J(q) and C denotes a connected component of K

y

�

, then C is a single

point.

Proof: If y

�

is pre-periodic under iteration of q we can apply a well-known

theorem for the iteration of polynomials of one variable ([1, Th. 9.8.1]). The

general case is solved in the following way. The sequence (q

k

(y

�

))

k2N

has an

accumulation point y

0

in J(q). Let V

y

i

be one of the sets V

y

1

; : : : ; V

y

s

, such that

y

0

2 V

y

i

and de�ne �

�i

k

as above. We consider a subsequence (n

j

)

j2N

such that,

for all j 2 N,

q

n

j

(y

�

) 2 V

y

i

:

Now, let S

n

j

be the inverse branches of

p

q

n

j

�1

(y

�

)

� : : : � p

q(y

�

)

� p

y

�

;

which are de�ned on �

1

(�

�i

N;q

n

j

(y

�

)

), such that, for all j,

S

n

j

(�

1

(�

�i

N;q

n

j

(y

�

)

)) �� �

1

(C):

We can view the S

n

j

as holomorphic maps of one variable on �

1

(�

�

N;V

y

i

). Since all

S

n

j

map into the bounded domain �

�

N;V

y

i

, the sequence (S

n

j

)

j2N

is normal. We

may assume that already

lim

j!1

S

n

j

= '

for some holomorphic function ' de�ned on �

�

N;V

y

i

. If ' is a constant then C is

a single point. Hence, let us assume that ' is not constant. Then, according to

Hurwitz's theorem, ' is univalent (since this is the case for each S

n

j

). Each set

�

�i

N;q

n

j

(y

�

)

contains points

(x

j

; q

n

j

(y�)) 2 J

�

� J:

We de�ne the set

D :=

[

j2N

x

j

:

For �xed x 2 D and for n

j

bigger than some M(x) <1, the argument principle

implies that the image S

n

j

(�

�

N;V

y

i

) contains a �xed open neighbourhood of '(x).

By compactness of '(D) it follows that we can �nd M < 1 such that, for

n

j

� M , the sets S

n

j

(�

�

N;V

y

i

) contain a �xed open neighbourhood W of '(D).

Each �

1

�f

n

j

maps the open setW into the bounded domain �

�

N;V

y

i

. We conclude

that

�

f

n

j

j

W�fy

�

g

�

is a normal family, which yields a contradiction to the fact

that f

n

j

(W � fy

�

g) 3 (x

j

; q

n

j

(y

�

)). �

11



We are now interested in the variation of J

�

y

with y. We choose N maximal such

that �

N

is a connected set but �

N+1

is not. For �xed (x

�

; y

�

) 2 J

�

y

�

we consider

the decreasing sequence of

�

N+k

(x

�

; y

�

) := component of �

N+k

which contains (x

�

; y

�

):

Clearly, for all k, we have that

�

N+k+1

(x

�

; y

�

) �� �

N+k

(x

�

; y

�

);

and that

(x

�

; y

�

) := lim

k!1

�

N+k

(x

�

; y

�

)

is a non-empty connected set which is either a point or a continuum. Moreover,

since, for each y 2 J(q), the intersection C

y

\

T

k!1

�

N+k

(x

�

; y

�

) is a single point,

we see that (x

�

; y

�

) is actually the graph of a continuous map



(x

�

;y

�

)

: J(q) ! B

R

f

y 7! 

(x

�

;y

�

)

(y):

It is clear that J(q) contains at least one �xed-point. From now on we assume

that y

�

is such a point. On J

�

y

�

, p

y

�

induces the dynamics of the binary one-

sided shift �. We use this to code �

1

(J

�

y

�

). To each x 2 �

1

(J

�

y

�

) corresponds

exactly one in�nite word a(x) 2 f0; 1g

N

. Clearly, the �

k

are compatible with

this symbolic representation. It is obvious that we can label the 2

k

components

�

(i)

N+k;y

�

, i 2

�

0; 2

k

� 1

	

, of �

N+k;y

�

with �nite words a

(i)

k

2 f0; 1g

k

such that

p

y

�

�

�

(i)

N+k+1;y

�

�

= �

(j)

N+k;y

�

is equivalent to

�(a

(i)

k+1

) = a

(j)

k

:

Evidently, for each x 2 �

1

(J

y

�

), we have that

x = lim

k!1

�

1

�

�

j

k

N+k;y

�

�

;

where j

k

2 f0; : : : ; 2

k

� 1g is chosen such that, if �

k

denotes the projection onto

the �rst k letters, for all k,

�

k

(a(x)) = a

(j

k

)

k

:

We may use this fact to investigate the maps 

(x

�

;y

�

)

whose graphs form J

�

.

12



Propositon 2.7

For (x

�

; y

�

) 2 J

�

y

�

, the family



(x

�

;y

�

)

: J(q)! B

R

f

is normal.

Proof: We label the 

(x

�

;y

�

)

with respect to the x

�

by a(x

�

).



a(x

�

)

:= 

(x

�

;y

�

)

:

From any sequence (

i

)

i2N

:= (

a(x

i

)

), i 2 N, x

i

2 J

�

y

�

, we extract a convergent

subsequence by the usual diagonal method: There exists �

1

2 f0; 1g such that

for in�nitely many i

�

1

(a

i

) = �

1

: (3)

Let i

1

be the �rst index such that (3) holds. Then there also exists �

2

2 f0; 1g

such that for in�nitely many i

�

2

(a

i

) = �

1

�

2

: (4)

Let i

2

be the �rst index which is bigger than i

1

such that (4) holds. This procedure

yields a sequence i

1

< i

2

< : : : < i

n

< : : : and letters �

1

; �

2

; : : : ; �

n

; : : : Evidently

the graphs of almost all 

i

`

, ` 2 N are contained in �

(m)

N+k

, where

a

(m)

k

= �

1

� � ��

k

:

This implies that 

i

`

converges to 

(x�;y

�

)

, where

a(x

�

) = �

1

�

2

: : : �

k

: : :

Clearly, the convergence is uniform by compactness of J(q) and continuity of the

�

(m)

N+k

. �

Corollary 2.8

The family 

(x

�

;y

�

)

is equicontinuous.

Proof: This is an immediate consequence of the theorem of Arz�ela-Ascoli. �

Corollary 2.9

For a Spaghetti type map, the pre Julia set is equal to the Julia set,

J = J

�

:

Proof: Evidently J is continuous, which immediately implies the statement. �

13



Figure 1: Julia set of a Spaghetti type map

2.2 Cannelloni

We shall now investigate the equivalent of I). Let us once more assume that f

is given by a map of noodle type, but this time the forward orbit of Crit

x

is

assumed to be bounded. Clearly, a necessary condition for this is, that jk(y)j is

small for each y 2 J(q). Similar to our investigation in [12] (where we considered

the base map q to be hyperbolic), we shall assume that, for some " > 0,

kkk

J(q)

:= max

y2J(q)

� 1=4 � ": (5)

De�nition 2.10 (Cannelloni type map)

A noodle type map which ful�ls the condition (5) is called a Cannelloni type map.

Theorem 2.11

For a Cannelloni type map f , we have that J is continuous, and, for each y 2 J(q),

the image J(y) is a Jordan curve.

Proof: We `envelop' the J(y) in several steps. In order to do so we de�ne the

closed annulus A

�;�

as A

�;�

:= fx 2 C : � � jzj � �g. A rough approximation of

J is given by the following lemma.

14



Lemma 2.12

For a Cannelloni type map f and y 2 J(q), one has

J(y) � A

1=2+

p

";1=2+

p

1=2�"

:

Proof: For jxj < 1=2 +

p

" and y 2 J(q), we have

�

�

x

2

+ k(y)

�

�

� jxj

2

+ jk(y)j

<

�

1=2 +

p

"

�

2

+ 1=4 � "

= 1=2 +

p

";

which shows that

�

f

k

	

�

�

B

1=2+

p

"

� fyg is normal. For jxj = � �

�

1=2 +

p

1=2 � "

�

,

� > 1, and y 2 J(q), we see that

�

�

x

2

+ k(y)

�

�

� jxj

2

� jk(y)j

=

�

� �

�

1=2 +

p

1=2 � "

��

2

� (1=4 � ")

> �

2

�

�

1=2 +

p

1=2 � "

�

2

� �

2

� (1=4 � ")

= �

2

�

�

1=2 +

p

1=2 � "

�

= � � jxj;

which implies convergence to in�nity on

�

C nB

1=2+

p

1=2�"

�

�J(q), hence we have

that J(y)� A

1=2+

p

";1=2+

p

1=2�"

. �

We remark that the forward orbit of Crit

x

is bounded away from J

�

, hence also

from J . Namely, one calculates, for y 2 J(q),

lim sup

k!1

�

�

�

1

�

f

k

(0; y)

�

�

�

� lim sup

k!1

�

�

: : :

�

(0 + 1=4 � ")

2

+ 1=4 � "

�

2

+ : : :

�

2

+ 1=4 � "

�

= 1=2 �

p

"

< 1=2 +

p

":

For some r > R

f

, we de�ne �

k

and �

k;y

like in subsection 2.1 (Spaghetti type

maps). Using this de�nition we derive that �

k+1;y

�� �

k;y

and also that

K

y

=

1

\

k=0

�

k;y

= lim

k!1

�

k;y

:

It follows that K

y

is simply connected and not empty. This follows since the

critical point (0; y) (of p

y

) is contained in �

k;y

for all k 2 N. Of course, for all

15



y 2 J(q), �

0;y

:= @�

0;y

(where we interpret @�

0;y

as the boundary of �

0;y

within

C

y

) is a Jordan curve (namely a circle around (0; y) with radius r). In particular,

the same is true for all �

0;q

k

(y)

. These sets can easily be parametrised by the

arguments (within C

y

) of their points. We will `pull back' this parametrisation

to the

�

k;y

:= @�

k;y

and prove the existence of the limits sets �

1;y

which are also Jordan curves.

In order to transfer the parametrisation of �

0;y

to �

1;y

(which is an inverse

image of �

0;q(y)

) we �rst go in the `opposite direction' and map �

0;y

forward.

We obtain a set �

(y)

�1;q(y)

in C

q(y)

(the additional index (y) is necessary, since

�

0;�y

is also mapped to C

q(y)

= C

q(�y)

, but, in general, �

(y)

�1;q(y)

6= �

(�y)

�1;q(�y)

).

�

(y)

�1;q(y)

is a circle of radius r

2

around the point k(y) in C

q(y)

. As mentioned

above, �

0;q(y)

can easily be parametrised by the argument. A simple geometrical

construction permits to transfer this parametrisation to �

(y)

�1;q(y)

. Namely, any ray

r

x

� C

q(y)

from (0; q(y)) to (x; q(y)) 2 �

0;q(y)

has a unique intersection (x

0

; q(y))

with �

(y)

�1;q(y)

; moreover, each point of �

(y)

�1;q(y)

lies in exactly one r

x

. We denote

the directed segment of r

x

from (x

0

; q(y)) to (x; q(y)) with �

(y)

0;q(y);x

0

. The length

of the �

(y)

0;q(y);x

0

is uniformly bounded by

� := (r

2

+ 1=4 � ")� r:

For k � 1, we de�ne �

k;y;x

, inductively by (now, the additional index `(y)' is not

necessary)

�

1;y;x

:= f

�1

�

�

�

(y)

0;q(y);p

y

(x)

�

:

Here the inverse branch f

�1

�

is chosen such that �

1;y;x

starts in (x; y). Analogously,

we de�ne

�

k+1;y;x

:= f

�1

�

�

�

k;q(y);p

y

(x)

�

;

where f

�1

�

is chosen such that �

k+1;y;x

starts in the endpoint of �

k;y;x

.

For y 2 J(q), x

0

in any of the �

k;y;x

, we have

jp

y

0

(x

0

)j � 2 �

�

1=2 +

p

"

�

= 1 + 2 �

p

" =: � > 1;

and hence

length (�

k;y;x

) � �=�

k

:

In particular, this implies that the concatenation

�

y;x

:= (�

1;y;x

� : : : � �

k;y;y

� : : : )
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is of �nite length, which is bounded by

� �

1

X

k=1

1

�

k

=

�

�� 1

=

�

2 �

p

"

:

The latter observation gives the existence of a well-de�ned endpoint in @K

y

= J

�

y

(again, @K

y

interpreted as the boundary within C

y

). As in [3, Th. 8.1] we see

that each point of J

�

y

is endpoint of exactly one �

y;x

since for each y the critical

point (0; y) of p

y

lies strictly inside K

y

. It is now clear that the mapping `x is

mapped to the endpoint of �

y;x

' gives a parametrisation of J

�

y

as a Jordan curve.

It remains to prove the continuity of J. We may assume that (5) is valid for

y 2 V , where V is an open neighbourhood of J(q) with q

�1

(V ) � V . This allows

us to extend the de�nition of �

0

to all of V . For the shape of the �

k;y

, �

1

(�

k;y

),

resp., only the action of the inverse maps p

�1

y

is relevant. But p

�1

y

is given by the

branches of

x 7!

p

x� k(y): (6)

Since we have that, for the relevant x,

1=2 +

p

" � jxj � r

2

+ 1=4 � ";

and furthermore, since the inequality (5) holds for all y 2 V , it follows that the

modulus of the arguments of the square-root in (6) is always bigger than or at

least equal to (1=2 +

p

")

2

. We deduce that the relevant branches of p

�1

y

are

locally (i.e. for some � > 0, on B

�

(x), for x 2 �

1

(J

�

y

)) Lipschitz with a global

constant L < 1. Also k(y), seen as a di�erentiable function, is Lipschitz with

some constant P <1.

For � > 0, we choose ` 2 N such that

` > log

�

3 � �

2 �

p

" � �

��

log (�) :

This implies

� �

1

X

k = `

1

�

`

=

�

�

k

�

1

1 � 1=�

=

�

2 �

p

"

�

1

�

`

< �=3:

We deduce that, for all y 2 J(q),

d

H

(J(y);�

`;y

) < �=3:
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Without loss of generality we may assume that � < �. By compactness of J(q)

and continuity of q, we �nd � > 0 such that, for any y

0

2 J(q),

`

[

k=0

q

k

(B

�

(y

0

)) � V;

and, for k 2 f0; : : : ; `g,

q

k

(B

�

(y

0

)) � B

�

(y

k

) � V;

where

y

k

:= q

k

(y

0

)

and

� :=

�

3 � P �

P

`

m=1

L

m

:

We set

x

k

:= �

1

�

f

k

(x

0

; y

0

)

�

:

For y

0

0

2 B

�

(y

0

), we de�ne y

0

1

; : : : ; y

0

`

by y

0

k

:= q

k

(y

0

0

). We set x

0

`

:= x

`

and obtain

x

0

`�1

; : : : ; x

0

`�k

; : : : ; x

0

0

as �

1

�

f

�k

�

(x

0

`

; y

0

`

)

�

where f

�k

�

is the branch of f

�k

which

sends (x

`

; y

`

) to (x

`�k

; y

`�k

). Clearly,

jx

0

`

� x

`

j = 0;

jx

0

`�1

� x

`�1

j � L � jk(y

0

`�1

)� k(y

`�1

)j

� L � P ��:

Furthermore,

jx

0

`�(k+1)

� x

`�(k+1)

j � L � j(x

0

`�k

� k(y

0

`�k

))� (x

`�k

� k(y

`�k

))j

� L � (jx

0

`�k

� x

`�k

j+ jk(y

0

`�k

)� k(y

`�k

)j)

� L � (jx

0

`�k

� x

0

`�k

j+ P ��);

and, by induction,

jx

0

`�k

� x

`�k

j � P �� �

k

X

m=1

L

m

;

hence

jx

0

0

� x

0

j � P �� �

`

X

m=1

L

m

� �=3:
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This implies that, for y

0

; y

0

0

2 J(q), jy

0

0

� y

0

j < � ,

d

H

�

�

`

y

0

0

;�

`

y

0

�

� �=3:

Combining these estimates, we see, for y

0

; y

0

0

2 J(q), that jy

0

0

� y

0

j < � implies

d

H

�

J

�

y

0

0

; J

�

y

0

�

� d

H

�

J

�

y

0

0

;�

`

y

0

0

�

+ d

H

�

�

`

y

0

0

;�

`

y

0

�

+ d

H

�

�

`

y

0

; J

�

y

0

�

� �:

Hence, J is continuous, and we have proved theorem 2.11. �

Corollary 2.13

For a Cannelloni type map the pre Julia set is equal to the Julia set,

J = J

�

:

Proof: This is an immediate consequence of remark 2.3. �

Figure 2: Julia set of a Cannellono type map

Clearly, if one wants to obtain the dynamical behaviour and structure of a Can-

nelloni type map, i.e. hyperbolic Jordan-curves in each �bre, then (5) is merely

a su�cient condition. Moreover, one can generalise the notion of a Cannelloni

type map to the case where the J

�

y

are close to the dynamics of case 1 with k > 1.
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3 J

�

-continuous noodle type maps

Spaghetti type and Cannelloni type maps are examples for noodle type maps f

for which the map

J : y 7! J

�

y

is continuous. We call these f J

�

-continuous.

It turns out that J

�

-continuity is the key to the equivalence of the 4 characteri-

sations of the Julia set we gave at the end of section 1.

We begin with the description of the Julia set of a J

�

-continuous mapping f by

the repelling periodic points of f .

De�nition 3.1

A k-periodic point z

�

of a holomorphic map f : C

n

! C

n

is called repelling, if

and only if the (complex) Jacobi-matrix of f

k

at the point z

�

has eigenvalues of

modulus bigger than 1 exclusively.

For a noodle type map one obtains an upper triangular matrix with eigenvalues

@

@y

�

q

k

(y)

�

and

@

@x

�

p

q

k�1

(y)

� : : : p

q(y)

� p

y

(x)

�

.

Theorem 3.2

The Julia set of a J

�

-continuous noodle type map f is equal to the closure of the

set of repelling periodic points of f .

Proof: It is clear that we cannot have weakly normal convergence in a repelling

periodic point, hence the set RPP of all repelling periodic points is contained

in J . Since J is closed the same holds for RPP . In order to show the inclusion

of J in RPP we make use of the fact that for one-dimensional Julia sets the

assertion of the theorem holds ([3, Th. 4.1]). We �nd � > 0 such that, for

arbitrary (x

0

; y

0

) 2 J and � > 0, y

0

2 J(q) together with jy

0

� y

0

j < � implies

d

H

(J

y

0

; J

y

0

) < �=2.

In J(q) repelling periodic points of q are dense, we �nd y

1

in J(q) which is k-

periodic for some k 2 N and repelling with

jy

1

� y

0

j < minf�; �g:

In J

y

1

we �nd (x

0

; y

1

) such that

jx

0

� x

0

j < �=2:

Finally, as in

J

y

1

= J(p

q

k�1

(y

1

)

� : : : � p

q(y

1

)

� p

y

1

| {z }

P

y

1

)� fy

1

g
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repelling periodic points of P

y

1

are dense, we �nd x

1

which is repelling periodic

under P

y

1

such that jx

1

� x

0

j < �=2. Evidently, (x

1

; y

1

) is a repelling periodic

point of f and (using the maximum norm)

k(x

1

; y

1

)� (x

0

; y

0

)k � maxfjx

1

� x

0

j; jy

1

� y

0

jg

� maxfjx

1

� x

0

j+ jx

0

� x

0

j; jy

1

� y

0

jg

� �:

�

Corollary 3.3

For a J

�

-continuous map f , the action of f on J is topologically mixing.

Proof: Again, we know that the assertion of the theorem holds for qj

J(q)

and,

for y

1

periodic under q, for P

y

1

j

J

�

y

1

. Let U be an open set with U \ J 6= ;. We

can assume that U = B

�

(x)�B

�

(y) for a repelling periodic point (x; y) of f and

some � > 0. We �nd k

0

such that, for V = f

k

0

(U),

J

y

� V;

which implies, for some � > 0, that even

[

y

0

2B

�

(y)

J

y

0

� V:

For B

�

(y), we �nd k

00

2 N such that

q

k

00

(B

�

(y)) � J(q):

With k := k

0

+ k

00

, we get

f

k

(U) � J:

�

An interesting aspect of J is its description via harmonic analysis on {K � C

n

.

We follow [14, ch. 5].

The family of plurisubharmonic (psh) functions on C

n

with minimal growth is

de�ned as

G := fu psh on C

n

: u(z) � log(1 + kzk) + C

u

g ;

where C

u

is a constant depending on u. For a compact set K �� C

n

we de�ne

G

�

K

(z) := sup fu 2 G : u � 0 on Kg :
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The so-called generalised Green function for K in C

n

is then given by

G

K

(z) := lim sup

�!z

G

�

K

(�):

We remark that G

K

is uniquely determined. By a result of Siciak (cf. [18]) one

can compute G

K

as

G

K

(z) = sup

P2P

�

1

deg(P )

� log(jP (z)j)

�

; (7)

where P is a certain class of polynomials. Application of dd

C

to G

K

gives a

current �

K

whose n-fold product induces a measure �(f) := �

K

with support

exactly the so-called Shilov boundary @

SH

K of K (see the following paragraph).

In our situation (K = K(f) for a strict polynomial f : C

2

! C

2

of degree 2) we

may choose in (7).

P :=

�

�

1

� f

k

	

i=1;2;k2N

Corollary 1.5 implies, for kzk > R

f

,

k

2

k

�1

1

� kzk

2

k

�





f

k

(z)





� k

2

k

�1

2

� kzk

2

k

;

hence

1

2

k

log

�

k

2

k

�1

1

� kzk

2

k

�

�

1

2

k

log





f

k

(z)





�

1

2

k

log

�

k

2

k

�1

2

� kzk

2

k

�

:

Finally,

log kzk+

2

k

� 1

2

k

� log(k

1

) �

1

2

k

log





f

k

(z)





� log kzk+

2

k

� 1

2

k

� log(k

1

)

gives the existence of the limit

G

0

K

(z) := lim

k!1

1

2

k

� log





f

k

(z)





on {K. Minimal growth, continuity, and G

0

K

j

K

� 0 are evident, hence G

0

K

= G

K

.

By construction

G

K

(f(z)) = 2 �G

K

(z);

and we see that

�

K

� f = 2

2

� �

K

;

from which we deduce that �(f) has maximal entropy 2 log(2) (cf. [8]). We have

already mentioned that �

K

is supported on the Shilov boundary @

SH

K of K. It
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is a natural question to ask for the relationship of @

SH

K and J . In order to do

so, we need some notation (for the original de�nitions and proofs see [7]).

Let A

0

denote the algebra of functions which are holomorphic on some neigh-

bourhood of K. Let

A := A (K) := A

0

be its closure (in the algebra C(K) of continuous functions with the topology

of uniform convergence). The space of maximal ideals A of A is in this case

(note that by (2) K is polynomially convex) isomorphic to K. Each of these

ideals consists of all functions which vanish at some point z 2 K. Hence, in the

following we will de�ne the terms determining set and boundary for K though

they are usually de�ned for A.

De�nition 3.4 (determining set)

A closed subset Q �� K is called a determining set if and only if for each ' 2 A

there exists a z

�

2 Q such that

j'(z

�

)j = k'k

K

:

We mention that, for example K itself is a determining set.

De�nition 3.5 (boundary)

A minimal determining set Q (i.e. no proper subset of Q is also determining) is

called a boundary of K.

Theorem 3.6

For K, a uniquely determined boundary exists. It is called the Shilov boundary

@

SH

K of K. �

Theorem 3.7

A point z 2 K lies in @

SH

K if and only if for each neighbourhood U 3 z there

exists a function '

U

2 A (which we call a peak function) such that j'

U

j has its

maximum in U but takes only smaller values on {U . �

We use theorem 3.7 to show that, for compact sets in C

1

, the topological bound-

ary and the Shilov boundary coincide.

Lemma 3.8

For any compact set K �� C ,

@

SH

K = @K:

Proof: The inclusion @

SH

K � @K follows from the above and the maximum

principle for holomorphic functions; for each z

�

2 @K and � > 0, we can choose

z

0

2 {K such that

jz

�

� z

0

j < �=2:
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Then

'

�

(z) :=

1

z � z

0

de�nes a peak function for B

�

(z

�

). �

If one strengthens the condition in theorem 3.7 such that j'

U

(z)j � k'

U

k

K

, then

one obtains the so-called Choquet boundary @

CH

K.

Propositon 3.9

([16, Cor. 8.3]) For z 2 K and for A and A as above the following assertions are

equivalent:

I: z is in the Choquet boundary of A, K, resp.;

II: for each U 3 z, there exists '

U;z

2 A such that j'

U;z

(z)j = k'

U;z

k

K

and

j'

U;z

(z

0

)j < k'

U;z

k

K

for all z

0

2 K n U ;

III: for each z

0

2 K, z

0

6= z, there exists '

z;z

0

2 A such that

j'

z;z

0

(z

0

)j < j'

z;z

0

(z)j = k'

z;z

0

(z)k

K

:

�

Clearly, the Choquet boundary is a subset of the Shilov boundary. We obtain

the following theorem.

Theorem 3.10

([16, Prop. 6.4]) For K and A as above, the closure of the Choquet boundary is

the Shilov boundary

@

CH

K = @

SH

K:

�

We shall also need Mergelyan's theorem.

Theorem 3.11 (Mergelyan)

([6, III, x2]) For a compact set K � C whose complement {K is connected, a

map ' : K ! C holomorphic on the interior int(K) of K and continuous on @K,

" > 0, we can always �nd a polynomial P such that

kf(z) � P (z)k

K

< ":

Hence P approximates ' uniformly. �
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We are now in the position to give a satisfying answer to the question of the

relationship of the Julia set and the Shilov boundary of the set of points with

bounded forward orbit.

Theorem 3.12

For a J

�

-continuous noodle type map the Julia set J equals the Shilov boundary

@

SH

K of the set of points with bounded forward orbit.

J = J

�

= @

SH

K:

Proof: For (x

�

; y

�

) 2 J and � > 0, we construct a peak function for B

�

(x

�

; y

�

)

� : K ! C :

There exists � > 0, � � �=2, such that jy � y

�

j < � implies

d

H

(J

y

; J

y

�

) < �=2:

Choose y

0

2 @

CH

J(q) with

jy

0

� y

�

j < �;

and �nd x

0

2 @

CH

�

1

(K

y

0

) � �

1

(J

y

0

) such that

jx

0

� x

�

j < �=2:

For 0 < � < 1=2, there is a peak function ' for B

�=2

(x

0

) in �

1

(K

y

0

) such that

'(x

0

) = 1 = k'k

�

1

(K

y

0

)

;

k'k

�

1

(K

y

0

)nB

�=2

(x

0

)

< �=4:

' can be approximated by a polynomial P such that

kP � 'k

�

1

(K

y

0

)

< �=4:

For every 0 < � < 1, the derivative P

0

of P is bounded on the disk B

�

, i.e. for

some ! <1, we have that

kP

0

k

B

�

< !:

Let us �x � such that �

1

(K) � B

�

.

It is clear that P still is a peak function for B

�=2

(x

0

) in �

1

(K

y

0

). This follows

since

kPk

B

�=2

\�

1

(K

y

0

)

> 1 � �=4;

kPk

�

1

(K

y

0

)nB

�=2

< �=2:
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Now we choose 0 < � < �=2, such that jy � y

0

j < � implies

d

H

(J

y

; J

y

0

) < minf�=(4!); �=2g :

Since y

0

2 @

CH

J(q) we �nd Q 2 A (J(q) such that

Q(y

0

) = 1 = kQk

J(q)

;

kQk

J(q)nB

�

(y

0

)

� �=(1 + �=4 + 2�!):

We obtain the desired peak function � for B

�

(x; y) by setting

�(x; y) := P (x) �Q(y);

namely

k�k

B

�

(x

�

;y

�

)

� kP �Qk

B

�=2

(x

0

)�B

�

(y

0

)

> (1 � �=4) � 1 = 1 � �=4;

whereas

k�k

KnB

�

(x

�

;y

�

)

� max

�

k�k

Kn(C�(J(q)nB

�

(y

0

)))

< �;

k�k

(CnB

�

(x;y))�B

�

(y

0

)

< 3�=4:

�

4 A glimpse at the parameter space of noodle

type maps

If we �x the base map q (the coe�cient F , resp.), the parameter space for noodle

type maps is still (complex) three-dimensional (coe�cients c; e; f). We use the

suggestive name T

c;e;f

for the map

T

c;e;f

:

�

x

y

�

7!

�

x

2

+ cy

2

+ ey + f

y

2

+ F

�

=

�

x

2

+ k

c;e;f

(y)

q(y)

�

and propose the following parametrisation of the set of all maps T

c;e;f

by one-

parameter families.

Let

k

c;e;f ;�

:= k

�c;�e;�(f+��1)

;

and, analogously,

T

c;e;f ;�

:= T

�c;�e;�(f+��1)

:

Finally, for (c; e; f) 2 C

3

, we denote with F

c;e;f

the family

fT

c;e;f ;�

: � 2 C g :
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Propositon 4.1

For the above parametrisation(s) and any �xed triple (c; e; f) 2 C

3

, the following

holds

I: T

c;e;f

2 F

c;e;f

, namely T

c;e;f

= T

c;e;f ;1

;

II: T

0;0;0

= T

c;e;f ;0

2 F

c;e;f

;

III: there is �(c; e; f) > 0, such that, for j�j < �(c; e; f), T

c;e;f ;�

is of Cannelloni

type;

IV: there is �(c; e; f) <1, such that, for j�j > �(c; e; f), T

c;e;f ;�

is of Spaghetti

type.

Proof: I and II follow from the de�nition of T

c;e;f ;�

. In order to prove III and

IV, we have to control the �bre maps of the T

c;e;f ;�

. It is enough to do so for

y 2 J(q). We know that J(q) is bounded, namely

J(q) � B

�

;

where

� := 1=2 +

p

1=4 + jF j:

For j�j � 1, y 2 J(q), we get

jk

c;e;f ;�

(y)j � j�j �

�

�

2

jcj+ �jej+ jf j+ j�j+ 1

�

� j�j �

�

�

2

jcj+ �jej+ jf j+ 2

�

:

Hence, we can set

�(c; e; f) :=

1

4 � (�

2

jcj+ �jej+ jf j+ 2)

which proves III.

Ad IV: In order to state a simple su�cient condition for Crit

x

tending to in�nity

under iteration of T

c;e;f ;�

, we de�ne

k

min

(�) := min

y2J(q)

jk

c;e;f ;�

(y)j ;

k

max

(�) := max

y2J(q)

jk

c;e;f ;�

(y)j :

Evidently

k

min

(�)

2

� k

max

(�) > k

min

(�)
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guarantees that the forward orbit of any (0; y), y 2 J(q), tends to in�nity. We

shall even try to ful�l the stronger condition

k

min

(�)

2

> 2 � k

max

(�): (8)

Assume with

K := �

2

jcj+ �jej+ jf j+ 1

that

j�j > 1 +K +

p

1 + 4K

which implies

(j�j � K)

2

> 2(j�j +K): (9)

For any y; y 2 J(q) such that

�

�

k

c;e;f ;�

�

y

�

�

�

= k

min

(�);

jk

c;e;f ;�

(y)j = k

max

(�);

we get

k

min

(�)

2

=

�

�

� �

�

cy

2

+ ey + f + � � 1

�

�

�

2

= j�j

2

�

�

�

�

cy

2

+ ey + f � 1

�

+ �

�

�

2

> j�j

2

�

�

j�j �

�

�

cy

2

+ ey + f � 1

�

�

�

2

� j�j

2

� (j�j � K)

2

> j�j � (j�j+K)

> 2 � j�j �

�

�

�

cy

2

+ ey + f � 1

�

�

+ j�j

�

� 2 �

�

�

� �

�

cy

2

+ ey + f + �� 1

�

�

�

= 2 � k

max

(�):

Clearly, one can set

�(c; e; f) := 1 +K +

p

1 + 4K:

�

The above calculations show that the parameter space (in �) of each F

c;e;f

con-

tains at least three separate regions, namely one unbounded set where the dy-

namics of T

c;e;f ;�

is that of a Spaghetti type map because the orbit of Crit

x

tends

to in�nity (evidently this set is open), secondly a compact set which represents

the maps where Crit

x

contains points with bounded forward orbit, the latter one
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contains a non-empty (open) set which corresponds to the maps with Cannel-

lono type dynamics (in the narrow sense). There might also be regions where

one gets Cannellono type dynamics in the wide sense. We call the (compact) set

where we neither get Spaghetti- nor Cannellono-dynamics the interesting set. For

F

0;0;1

, hence product maps, the structure of the parameter space is well-known,

it exactly gives a picture of the Mandelbrot set, its inverse image under the map

� 7! �

2

, resp. Here, the unbounded region corresponds to the complement of

the Mandelbrot set, the Cannellono-type region consists of the hyperbolic com-

ponents of the interior of the Mandelbrot set. The interesting set in this case is

the remaining compact so-called \boundary of the Mandelbrot set\.

It is interesting to note that, provided F

c;e;f

is a family of proper skew-

products, the interesting set does contain non-empty open sets.

Theorem 4.2

If (c; e) 6= (0; 0), hence the parameter space of F

c;e;f

is not an inverse image of

the Mandelbrot set, then the interesting set has non-empty interior.

Proof: We deduce from our de�nition of noodle type maps, that the base map

has two distinct �xed-points y

1

; y

2

2 J(q). The �bre maps for y

1

; y

2

have the

form

x 7! x

2

+ �(k(y

i

) + �� 1);

hence, if we have a look at the parameter space for these two �bres, we obtain

two inverse images M

1

;M

2

of the Mandelbrot set under the maps

� 7! �

2

+ �(k(y

i

)� 1) = �

2

+ l

i

� �;

where

l

i

= k(y

i

)� 1:

Clearly, if l

1

6= l

2

, an easy calculation shows that the images are not identical,

hence we can �nd open sets which are in the complement of one M

i

but in the

interior of the other. If cy

2

1

+ ey

1

= cy

2

2

+ ey

2

, then the maps P

y

1

; P

y

2

(de�ned

in theorem 3.2) are identical, but we know that there is also a 2-cycle (y

3

; y

4

) in

J(q). The maps P

y

3

, P

y

4

on C

y

3

, C

y

4

, resp., are given by x 7! (x

2

+ �

2

+ l

3

� �)

2

+

�

2

+ l

4

� �, x 7! (x

2

+ �

2

+ l

4

� �)

2

+ �

2

+ l

3

� �, resp. We can apply the same idea

as above if we know that the parameter spaces for these maps have a di�erent

structure, which clearly is the case provided l

3

6= l

4

. If l

3

= l

4

, we still can

compare with the parameter sets of the maps P

y

1

, P

y

2

for the �xed points y

1

, y

2

.

But, since k is at most quadratic, but not constant by assumption, we then have

l

1

= l

2

6= l

3

= l

4

. �

The following pictures represent numerical approximations of parameter sets for

noodle type maps. The dark gray region stands for Cannellono type maps in

the narrow sense, the light gray for general Cannellono type maps, the white for

Spaghetti type maps, the interesting set is painted black. Real and imaginary

parts of � range within [�2; 2].

29



Figure 3: parameter set for F

0;0;1

(the T

c;e;f

are product maps)
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