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Abstract

The structure of Julia sets of holomorphic maps in C* is investigated,
i.e. topological and measure theoretic aspects, potential theory and com-
plex analysis. In particular, we deal with Julia sets of holomorphic skew
products f : C* — C?. For a family of skew products with special base
map, so-called noodle type maps, we describe the role played by the set
of the critical points Crit of f. This gives insight in the structure of the
parameter space of the above kind of maps and leads to a generalisation
of the Mandelbrot set for quadratic maps in C'.

0 Introduction

During the last years there has been a lot of effort to generalise the iteration
theory of holomorphic maps of one complex variable to the higher-dimensional
case. In dimension one the simple Alexandrov compactification C := C U oo
(for the iteration of polynomials) and the complex projective space P (iteration
of rational functions) are isomorphic, whereas holomorphic automorphisms of C
(being affine linear transforms) are not interesting from the ‘dynamical point of
view’. In the higher-dimensional case there is a priori no unique choice of ‘the
right class of mappings’. There have been investigations of non-trivial automor-
phisms of C*, so-called Hénon maps, by Bedford and Smillie (cf. [2] for further
references) as well as of endomorphisms of complex projective spaces, hence iter-
ation of homogeneous polynomial vectors, by Sibony and Forness (see Fornaess’
book [5]). In this paper we are interested in the iteration of general polynomial
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maps in C", so-called (p, g)-regular maps. These maps are generic in the space
of polynomial vectors f: C* — C".

Though one might disagree about the choice of the ‘right’ model there are still
several criteria to judge the quality of a higher-dimensional iteration theory. Of
course the Julia set in dimension n > 1 will be designed to have as many ‘good’
properties of ‘one-dimensional’” Julia sets as possible. It is of particular interest
that one can characterise these sets in completely different but equivalent ways.
Usually, the Julia set J of a rational function f : C' — C! is described as the set
of points where the iterates of that map are not normal convergent. The set J
may also be characterised by being the closure of the union of repelling periodic
points of f, or equivalently by being the support of a measure u(f) of maximal
entropy. If f is a polynomial one obtains J as the boundary (either topological
boundary 0K or functional analytic Shilov boundary dsy K') of the set K of points
with bounded forward orbit. In this case, pu(f) can be calculated by means of
the Green function of [K. Moreover, what is interesting for numerical studies,
J may be obtained by inverse iteration of (almost) arbitrary points of C. The
latter follows since the action of f on J is topologically mixing.

In section 1 we give an outline of the iteration theory of (p, ¢)-regular maps,
i.e. polynomial maps f : C* — C* with a certain growth condition which is
similar to a well-known condition for polynomials in C. It turns out that it is not
appropriate to work with ‘naive’ normal convergence. Instead we shall introduce
the notion of weakly normal convergence. For a family of (p, ¢)-regular maps,
so-called maps of noodle type we investigate in detail the structure of their Julia
sets. It turns out that for these maps, the above characterisations of the Julia
set are still in force, i.e. the Julia set equals the closure of of the set of repelling
periodic points of f, and at the same time supports a measure of maximal entropy
which is induced by the Green current for K. Moreover J may be identified with
the Shilov boundary of K. Also, the action of noodle type maps on their Julia
sets 1s topologically mixing. Finally we have a look at the parameter space of
noodle type maps and present a natural generalisation of the Mandelbrot set for
quadratic polynomials in C!.

1 Strict polynomials, (p,q)-regular maps, and
weakly normal convergence

In [11] we gave a detailed overview of the concept of (p,g)-regular maps and
strict polynomials. The underlying idea is the observation that polynomials can
be characterised ‘dynamically’ by means of the following growth condition.

Lemma 1.1
([13, p. 11]) An entire mapping f : C — C is a polynomial of degree p € N if and



only if one can find constants ki, ks > 0, r € R such that
ko < P < kol
holds for all |z| > r. O

For n > 1 and maps f : C* — C", one replaces the modulus |- | by a norm || - ||
which is compatible with the usual metric on C* and obtains the definition of a
strict polynomial.

Definition 1.2 (strict polynomial)
([9, Def. 1.3.6]) An entire mapping f : C* — C" is called a strict polynomial of
degree p € N if for some ki, ky > 0, r € R, and for all ||z|| > r

ko lzlP < IFGIE < ks fl2]]7 (1)

Let & denote the set of all strict polynomials. Clearly, a strict polynomial of
degree p is given by an n-vector of polynomials in n variables (polynomial vector)
of (algebraic) degree p (cf. [4, p. 219]). Whereas in dimension one the exponents
on the right and left side of (1) have to be equal (provided one chooses the
left exponent to be maximal, the right one to be minimal, resp.), it is possible
to obtain different exponents for higher-dimensional maps. This leads to the
concept of (p, q)-regularity.

Definition 1.3 ((p, q)-regular mapping )
([10, Sec. 2.1]) An entire map f : C* — C" is called (p, q)-regular if, for p € Q4,
q € N4, there exist constants kq, ko > 0, r € R such that, for all ||z]| > r

Fo- =P < IFGI < ks - fl2]]

Evidently, for p € N, the (p, p)-regular mappings are exactly the strict polyno-
mials of degree p. We remark that (p, ¢)-regular mappings are also polynomial
vectors of degree not exceeding q. We call a map regular if it is (p, ¢)-regular for
some p € Q4, ¢ € N;. Let R denote the set of all regular mappings, and let us
assume from now on that p > 1.

In order to establish an iteration theory for (p, ¢)-regular maps at least we have
to require that R is closed under composition. An easy calculation yields the
following lemma.

Lemma 1.4
([12, L. 1.4]) The composition of regular mappings is regular. More precisely, for
frg: C —= C" (p/, ¢ )-regular, (p”,¢")-regular, resp., the composition f o g is

ol

(P'p", q'q")-regular. O

In particular, the following holds.



Corollary 1.5
The composition of strict polynomials is again a strict polynomial. For f € S,
all iterates (for ¢ € N)

ft = fo...of
——
{ times
are also strict polynomials (of degree p*). O

Concerning the topological behaviour of (p, g)-regular maps we get the following
theorem.

Theorem 1.6
([12, Th. 1.6]) (p, q)-regular mappings are proper. O

This implies that regular maps are compatible with the simplest compactification

of C".

Corollary 1.7
If we define f(co) := oo, a (p,q)-regular mapping f : C* — C* admits a
continuation to C* := C" U {oo}. O

Fortunately, this compactification also makes sense for dynamical purposes.

Theorem 1.8

([9, Satz 1.5.8]) The attracting basin F., := F..(f) for ‘infinity’, i.e. the set of
points whose forward orbits eventually leave any compact set in C", is not empty.
More precisely, if we define

Ry = max{r, 1/13_\1/5},

K = K(f) = {Z ceC: ||fk(z)|| stays bounded.},

and
Br, == {2 €C": ||z|| < Ry},
then
Fo = Uf (CBx,) .
and

K = ﬂf BRf (2)



The fact that f is proper implies that the mapping has constant rank n on a
dense open subset of C*, namely the complement of the critical locus C'rit where
the Jacobi-determinant J; of f vanishes. Applying Bezout’s theorem ([17, p.
199]) one obtains the following result for strict polynomials.

Theorem 1.9
([12, Th. 1.9]) A strict polynomial f : C* — C" is surjective and has mapping
degree p". O

By Corollary 1.5 we see.

Corollary 1.10
([12, Cor. 1.10]) A strict polynomial f : C* — C" has p"* periodic points of order
k € N (counted with multiplicity). O

Corollary 1.11
For a strict polynomial f, the set K'(f) is non empty. O

It is clear that strict polynomials are dense in the parameter space of polynomial
vectors with maximal degree p. For a given polynomial vector one simply varies
(if necessary) slightly the coefficients of the monomials with maximal degree in
order to eliminate common zeros of these monomials. R contains S, hence the
same holds for (p, ¢)-regular mappings.

We saw that the suitable type of convergence for (p, ¢)-regular maps is weakly
normal convergence, which is, loosely speaking, normal convergence on at least
one-dimensional complex analytic sets (instead of normal convergence on ‘full’
open sets (cf. [12, sec. 2])).

Definition 1.12 (weakly normal)

([12, Def. 2.2]) For a sequence of holomorphic mappings (f : U — C*), ¢y on a
domain U C C* we define that (f;) is called weakly normal in a point z € U if
there exists

e an open neighbourhood V' of z,

e a family C, of at least one-dimensional (complex) analytic sets indexed by
the points z € V,

such that
e each x lies in the corresponding analytic set C,;

e for each @ € V the sequence (fy) restricted to C, NV is normal (including
convergence to infinity).

We may now define the Julia set for a regular map.



Definition 1.13 (Julia set of a (p, g)-regular mapping )
([12, Def. 2.3]) The Julia set J(f) for a (p, ¢)-regular mapping f : C* — C" is
the set of points for which the family {f*} of iterates of f is not weakly normal.

Clearly, J is closed and contained in dK, and hence compact. Also, an easy
calculation shows that J is completely invariant. i.e.

fU) = J = 1)

Moreover, weakly normal convergence in C* is a natural generalisation of normal
convergence in C'. Namely, for n = 1, weakly normal and normal convergence
lead to the same result since one-dimensional analytic sets are open sets in C
([12, Rem. 2.6]). In [12] and [11] we have also seen that, for certain classes of
higher dimensional maps as products ([11, ch. 2]), Cantor skews ([12, ch. 3]), and
torus maps ([11, ch. 3]), the following different characterisations of the Julia sets
of polynomials in dimension one, namely,

I: J as set of points where {f*} is not weakly normal,
IT: J as Shilov boundary dsg K(f) of K(f),
III: J as closure of the set of repelling periodic points of f,

IV: J as support of a measure p(f) of maximal entropy for f which can be
represented as AG, where (7 is the Green function of the complement of K,

are still valid . In the following section we shall deal with yet another class of maps
which neither show the simple dynamics of products nor show the hyperbolic
behaviour of Cantor skews or torus maps.

2 Noodle type maps and their dynamics

For z € C? let x,y denote the two components. A skew product can be con-
structed by means of a polynomial ¢ : C — C in one variable, and another
polynomial p : C* — C in two variables. We shall write p,(z) instead of p(z,y)
in order to indicate that we view p as a polynomial in « whose coefficients depend
on y. We then obtain a skew product f:C* — C? by defining

r(y) e ()

The dynamics of such a map f consists of two parts, namely the base map and
the fibre map. The base map g acts on the fibres C, := Cx {y} by mapping C, to
Cy(y)- Within each fibre we have the action of the fibre maps p,. If we project to
the first coordinate we obtain on each m1(C,) a family of holomorphic functions

Py = {pyv Py(y) © Pys Pq?(y) © Pa(y) © Py» }
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For this family we can compute the usual Julia J set as subset of C,, m(C,),
resp., where P, is not normal. Furthermore, let J, := J(f) N C,, and K, :=
K(f)NC,. Evidently, d(mi(K,)) = mi(J;). Recall that we may compare two sets
A, B of the above kinds, their projections m1(A), m1(B), resp., by calculating the
Hausdorff distance dy, which is defined on the space P of compact subsets of C
by (see [4, p. 66])

dg(mi(A),m(B)) := sup { inf d(:z;,:z;’)},

zem (A) r'em (B)

where d(-,-) denotes the usual metric on C.

Before we give the definition of maps of noodle type we mention an interesting
aspect of the above type of skew products. It is easy to see that the Julia sets of
these maps are contained in Cx .J(¢). If one concentrates on the ‘one-dimensional’
dynamics of the fibre maps, then the influence of ¢ is just that the parameters y of
the mappings p, are varied along the ‘path’ J(q). It is interesting in its own sake
to study the Julia sets Jr := J(P,). Though, the variation happens in a much
subtler way than in a usual parameter space. Clearly the mixing dynamics of ¢
on J(q) makes things more complicated. One might want J(¢) to be a connected
set in order to study the behaviour of the mapping

J:(J(q).d(-.-)) = (Po(C),du(-)),
given by
y = mi(Jy).
We define.

Definition 2.1 (noodle type map)
A mapping f : C* — C? is called a noodle type map if it is a skew product of the

form
() = ()

q(y) == "+ F,

Here

where the constant F' € C is chosen such that J(¢) = K(q) is connected. Fur-
thermore, the fibre maps are given by

py(2) = 2* +k(y) = ¥+’ +ey+ [



An easy calculation shows that any strict polynomial which is a skew product of
quadratic polynomials can be transformed to this form (without the restriction
on F', of course).

It is clear that

K = K(f) C B—foj(q).

This is easily seen since, for (z,y) in the complement of Br, x J(q), we have that
/5 (z,y)|| — oo for k — oo.

Propositon 2.2

For given z = (x,y) € K, the only possible choice for C. in the definition of
weakly normal convergence are sets of the form U x {y}, where U is an open
neighbourhood of x in C.

Proof: Assume there is a connected component of C. which does not have the
form U x {y}. Then its projection to the second coordinate would contain an
open set, hence points from [.J(¢) = K (q). This implies that C.NCK # @, which
contradicts the normal convergence on C.. O

The proposition shows that we can obtain J in the following way. Calculate the
Julia sets J of the families P, of maps of one variable on the C, for y € J(q).
Their union gives the pre Julia set

o=

v€J(q)

Using the definition of weakly normal convergence, one obtains .J as the closure
of J*. If one can show that J* is already closed, then J = J*. In this case we
obtain the Julia set J of the two-dimensional mapping f as union of Julia sets
J,; of sequences of one-dimensional maps.

Remark 2.3
Clearly, the continuity of the map J is a sufficient condition for J* = J. 0

For quadratic polynomials p. : z — 2% + ¢ of one variable we have the following
two generic (hyperbolic) cases:

I) The forward orbit of the critical point 0 (together with a small neighbourhood)
might converge to an attracting k-cycle, i.e. a k-tuple zg, ..., zx_1 such that, for
i =0,...k =2, p.(z) = ziy1, and p.(zk—1) = 2o, and, for all t = 0,... , k — 1, the
modulus of the multiplier is smaller than 1. Hence we have

Ml = [Dten] = TLFGa) = 2 I s < 1

IT) The forward orbit of 0 converges to infinity. In this case J(p.) is a hyperbolic
Cantor set, and the dynamics of p, on J(p,.) is equivalent to the shift on {0, 1},
Let us first investigate the analogue of the second case for maps of noodle type.



2.1 Spaghetti

Clearly, in the higher-dimensional setting, we have critical varieties instead of the
critical points in the one-dimensional case. Though, in the case of noodle type
maps, the relevant set for the fibre dynamics is

Crity, = {0} x J(q).
The equivalent to II) is then represented by the following definition.

Definition 2.4 (Spaghetti type map)
A noodle type map f is called a Spaghetti type map if the iterates under f of
Crit, tend to infinity.

Propositon 2.5
For a Spaghetti type map, for each fixed r > Ry, there is a non-negative integer
N(r) < oo such that

fN(r)(Critx) N (E X J(q)) = 0.
Proof: lLet
G, = B, x J(q).

By assumption, the orbit of each point (0,y) € Crit, eventually leaves (.. Sup-
pose it does so for the N,-th iterate of f. Then, by continuity of f, this also
holds for all points (0,y’) such that ¢ lies in a small open neighbourhood U, of y
in J(g). The union of all U,, for y € J(q), covers J(q). By compactness of J(q)
already finitely many U,,, ..., U, are sufficient to cover J(g). But then, with

N(r) = max {Ny},
we get
MNOCrit,)naG, = 0.
O

The assumption implies that, on each set C, N f~N)(G,), the inverse branches

pq__l1 (y) Are well defined and univalent holomorphic maps. For & € N, we define

FO = Gr,
Fk-l-l = f_l(rk)v
Fkﬂ/ = (Cy N Fk

By virtue of the choice of r,

Pir1y CC Ty,
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and, in particular,

K, = (Thy = lim Ty

k—oo

Moreover,
(VY Tey 2 @m(K) x {u} = J; # 0.
k=0

Since the pq__ll(y) are algebraic functions, we find, for each y € J(q), a neighbour-

hood V,, such that, with N := N(r),

T U Pnpy ] CC Iy, = ﬂ TNy )-
y'eVy y' eVy
Again, J(q) is covered by finitely many of these sets, say V,,,...,V,.. For each
index i € {1,... s}, we change the 'y, to closed sets I'y; , such that, for y € V,,,

F}K\Zf',y = F?V,y,‘ X {y}

For y € J(q) \ V,, we choose F]*Viy such that the mapping y — ]*Viy is continuous
on J(g) and such that

7T1(FN_|_17y) CcC 7T1(Fﬁ7y) CcC 7T1(FN7y).
In complete analogy to the definition of I'y and I'y,, for &k > N, let
23-1 = f‘l(FZi)-
With this notation we obtain, for &k > N,
Fry CC TE,.
and

K, = lim F*Z
Y kE —oo ky

Let y* € J(q) be fixed and C be a connected component of Ky» = limy_,q, Fky
(' is either a continuum or a point (since it is the intersection of a decreasing
sequence of compact sets (namely the components of the Fk,y* which contain ('),

cf. [15, Th. IV.5.3)).
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Propositon 2.6

If y* € J(q) and C denotes a connected component of Ky, then C is a single
point.

Proof: If y* is pre-periodic under iteration of ¢ we can apply a well-known
theorem for the iteration of polynomials of one variable ([1, Th. 9.8.1]). The
general case is solved in the following way. The sequence (¢"(y*))ren has an
accumulation point ¢’ in J(¢). Let V,, be one of the sets V,,,...,V,., such that
y' € V,, and define '}’ as above. We consider a subsequence (n;);en such that,

for all 7 € N,

q"(y") € Vi,

Now, let 5™ be the inverse branches of
pqnj—l(y*) 0...0 pq(y*) (0] py*7

which are defined on m(I'%¢

N (y*)), such that, for all 7,

S (Wl(ry\;7qn] (y*))) D 7T1(C).

We can view the 5" as holomorphic maps of one variable on 7 (I'y y, ). Since all

S™ map into the bounded domain N, the sequence (5™ );en is normal. We
may assume that already

lim S™ = ¢

J]—00

for some holomorphic function ¢ defined on FNV If ¢ is a constant then C is
a single point. Hence, let us assume that ¢ is not  constant. Then, according to
Hurwitz’s theorem, ¢ is univalent (since this is the case for each S”ﬂ). Each set
F}K\?qn] (") contains points

(zj,4" (yx)) € J° C J.
We define the set

D = Ul‘j.

JEN

For fixed x € D and for n; bigger than some M (x) < oo, the argument principle
implies that the image S™ (I'y v, ) contains a fixed open neighbourhood of ().

By compactness of (D) it follows that we can find M < oo such that, for
nj > M, the sets S™(I'y ), ) contain a fixed open neighbourhood W' of o (D).
Each 7 o f maps the open set W into the bounded domain Ny, - We conclude

that <f”ﬂ |W><{y*}> is a normal family, which yields a contradiction to the fact
that ™ (W x {y"}) 3 (z;,¢" (y")). B
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We are now interested in the variation of .J; with y. We choose N maximal such
that 'y is a connected set but I'yy; is not. For fixed (a*,y*) € S we consider
the decreasing sequence of

Inir(z™,y") = component of I'yip which contains (2%, y*).
Clearly, for all k, we have that
Ingrgr(a™y") CC Dygpr(a™ y7),
and that
(&%) = Jim P, y7)

is a non-empty connected set which is either a point or a continuum. Moreover,
since, for each y € J(q), the intersection C, N(,_ ., I'nyr(z*, y*) is a single point,
we see that y(z*,y*) is actually the graph of a continuous map

V(x*,y*) : J(q) — B—Rf
Y= Y (Y)-

It is clear that J(q) contains at least one fixed-point. From now on we assume
that y* is such a point. On J3., p,« induces the dynamics of the binary one-
sided shift . We use this to code 7T1(Jy**). To each = ¢ 7T1(Jy**) corresponds
exactly one infinite word a(z) € {0,1}Y. Clearly, the T'; are compatible with
this symbolic representation. It is obvious that we can label the 2¥ components
F%)_l_k’y*, 1 € {0, 2k 1}, of I'nyy» with finite words ag) € {0, 1}* such that

Py* <F§\Z7)—I—k—|—1,y*> = F%)—I—k,y*

is equivalent to

Evidently, for each @ € m1(Jy«), we have that
r = lim m (Fﬁ+k7y*> ,

k—oc0

where j € {0,...,2% — 1} is chosen such that, if II; denotes the projection onto
the first & letters, for all k,

My(a(z)) = aV).

We may use this fact to investigate the maps v+ ,+) whose graphs form J~.
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Propositon 2.7
For (z*,y*) € Jyx, the family

Vv : J(q) = Br,

is normal.
Proof: We label the v« ,«) with respect to the 2™ by a(z”).

Ta(z*) = V(@)

From any sequence (7:)ien := (Ya(ey)), ¢ € N, 2; € Ju, we extract a convergent
subsequence by the usual diagonal method: There exists oy € {0,1} such that
for infinitely many 1

() = on. (3)

Let ¢; be the first index such that (3) holds. Then there also exists oy € {0,1}
such that for infinitely many ¢

h(a;) = ajos. (4)

Let i3 be the first index which is bigger than ¢; such that (4) holds. This procedure
yields a sequence i1 < 13 < ... <1, < ... and letters oy, ag,... ,,,... Evidently
the graphs of almost all v;,, £ € N are contained in F%n_gk, where

ag”) = ay-- Q.
This implies that ~;, converges to ¥z« y+), where

a(z™) = arog...ap...

Clearly, the convergence is uniform by compactness of J(¢) and continuity of the
(m)
| O

Corollary 2.8
The family v(,+4+) is equicontinuous.
Proof: This is an immediate consequence of the theorem of Arzela-Ascoli. [

Corollary 2.9
For a Spaghetti type map, the pre Julia set is equal to the Julia set,

J = J.

Proof: Evidently J is continuous, which immediately implies the statement. [
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Figure 1: Julia set of a Spaghetti type map

2.2 Cannelloni

We shall now investigate the equivalent of I). Let us once more assume that f
is given by a map of noodle type, but this time the forward orbit of Crit, is
assumed to be bounded. Clearly, a necessary condition for this is, that |k(y)] is
small for each y € J(g). Similar to our investigation in [12] (where we considered
the base map ¢ to be hyperbolic), we shall assume that, for some ¢ > 0,

k = max < 1/4 —=e. 5
Ikl = max < 1/ 5)

Definition 2.10 (Cannelloni type map)
A noodle type map which fulfils the condition (5) is called a Cannelloni type map.

Theorem 2.11

For a Cannelloni type map f, we have that J is continuous, and, for each y € J(q),
the image J(y) is a Jordan curve.

Proof: We ‘envelop’ the J(y) in several steps. In order to do so we define the
closed annulus A, g as A, g:={x € C:a < |z| < B}. A rough approximation of
J is given by the following lemma.

14



Lemma 2.12
For a Cannelloni type map f and y € J(g¢), one has

Jy) C A1/2+¢E,1/2+w/1/2_5'
Proof: For |z| < 1/2+4 /¢ and y € J(q), we have
| +k(y)| < Jel® + 1E(y)]
< (124Ve) +1/4—¢
= 1/2+ e,

which shows that {fk}‘B/ fx{y} is normal. For || =4 - <1/2—|—\/1/2—5>
1/2+4
d>1,and y € J(q), we see that

[ + k()| = [af* = [k(y)]
:< <1/2+J1/2i>> (1/4—¢)
<1/2+J1/27—5>2 (1/4—¢)
= 52-<1/2+m>

= 4 |$|,

>

which implies convergence to infinity on <(C \ B1/2+\/1/2——s> x J(q), hence we have

that J(y) - A1/2+\/E,1/2+\/1/2——5' -

We remark that the forward orbit of C'rit, is bounded away from J*, hence also
from J. Namely, one calculates, for y € J(q),

lim sup ‘7T1 (fk(oa y)) ‘
k—oo

k—oc0

= 1/2 /e
< 1/24+ /e

For some r > Ry, we define ['y and Iy, like in subsection 2.1 (Spaghetti type
maps). Using this definition we derive that I'y41, CC I'y, and also that

< limsup ((...((0+1/4—5)2+1/4—5)2+...>2+1/4—5>

k—oo

ﬂ F]m/ = hm Fky

It follows that K, is simply connected and not empty. This follows since the
critical point (0,y) (of p,) is contained in 'y, for all k& € N. Of course, for all
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y € J(q), Ao,y := 0y, (where we interpret 0y, as the boundary of I'y, within
C,) is a Jordan curve (namely a circle around (0, y) with radius r). In particular,
the same is true for all Ag k(). These sets can easily be parametrised by the
arguments (within C,) of their points. We will ‘pull back’ this parametrisation
to the

A]m/ = 8Fk7y

and prove the existence of the limits sets A, , which are also Jordan curves.
In order to transfer the parametrisation of Ag, to Ay, (which is an inverse
image of Ag,,)) we first go in the ‘opposite direction’ and map A, forward.

We obtain a set A(_yl) ) in Cy,) (the additional index (y) is necessary, since

Ao,y is also mapped to Cy,y = C,_y, but, in general, A(_yl) o) # A(__lyg(_y)).
A(_yl) ) is a circle of radius r?
above, Ag () can easily be parametrised by the argument. A simple geometrical

(v)

around the point k(y) in C,,y. As mentioned

construction permits to transfer this parametrisation to A . Namely, any ray

—1,q(y)
re C Cyyy from (0, ¢(y)) to (z,¢(y)) € Aoy has a unique intersection (2, g(y))
with A(_yl) J(y)} oreover, each point of A(_yl) o) lies in exactly one r,. We denote

the directed segment of r, from (2’ ¢(y)) to (x,¢(y)) with 5&2@) ,. The length

W

of the 5((qu)(y) . is uniformly bounded by
6 = (r2—|—1/4—5)—r.

For k > 1, we define 4y, ., inductively by (now, the additional index ‘(y)’ is not
necessary)

=1 )
Otye = [: <507q(y)7py(l’)>'

Here the inverse branch f! is chosen such that d, , . starts in (2, y). Analogously,
we define

Opt1ye = f*_l <5k7q(y)7py(l’)> )

where f7! is chosen such that §j41,, starts in the endpoint of dg, .-
For y € J(¢), 2’ in any of the &, ., we have

p/(a)] > 2-(1/2+E) = 1+2-e = A > 1,
and hence
length (0y,..) < §/AF,
In particular, this implies that the concatenation

Syr = (8142 0...08ky0...)
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is of finite length, which is bounded by

=1 § §
J - - = = .
;Ak A—-1 2-\/e

The latter observation gives the existence of a well-defined endpoint in 9K, = J;
(again, 0K, interpreted as the boundary within C,). As in [3, Th. 8.1] we see
that each point of J is endpoint of exactly one d, . since for each y the critical
point (0,y) of p, lies strictly inside K. It is now clear that the mapping ‘x is
mapped to the endpoint of ¢, ," gives a parametrisation of J as a Jordan curve.
It remains to prove the continuity of J. We may assume that (5) is valid for
y € V, where V is an open neighbourhood of J(q) with ¢~*(V) C V. This allows
us to extend the definition of I'g to all of V. For the shape of the Ay, m1 (Ag,),
resp., only the action of the inverse maps p;l is relevant. But p;l is given by the
branches of

= —k(y). (6)
Since we have that, for the relevant z,
24 VE < Je] € PH1fd-c,

and furthermore, since the inequality (5) holds for all y € V, it follows that the
modulus of the arguments of the square-root in (6) is always bigger than or at
least equal to (1/2 4+ /2)*. We deduce that the relevant branches of p, ! are
locally (i.e. for some 6 > 0, on By(x), for x € m1(J;)) Lipschitz with a global
constant [ < oco. Also k(y), seen as a differentiable function, is Lipschitz with
some constant P < oco.

For n > 0, we choose ¢ € N such that

(> log (%) / log (A) .

~ 1 5 1
5 - - = .-
ZN Ak 1T —1/A

This implies

k=1
I
T 2. Af
< n/3

We deduce that, for all y € J(q),
dy (J(y),Ley) < n/3.

17



Without loss of generality we may assume that n < 6. By compactness of J(q)
and continuity of ¢, we find 7 > 0 such that, for any yo € J(q),

£

| d"(B-(w)) C V.

k=0

and, for k € {0,...,(},

where
ue = q"(y0)

and

0 = 77[

3.P-5_ Lm

We set

ar = m (20, v0)) -
For y, € B,(yo), we define v}, ...y, by y}. := ¢"(y},). We set 2, := z;, and obtain
T e T gy 0 AS T (f;%:z;%,yé)) where fo* is the branch of f=* which

sends (x4, y¢) to (xe—k, yi—g). Clearly,

|$2 —$g| = 07
51/'2—1 - $€—1| < L- |k(y2_1) - k(yé—1)|
< L-P-0O.

Furthermore,

|$2—(k-|—1) - wé—(k+1)|

IAINAIA
&~

and, by induction,
Ty — k| < P-O- ZLW,
hence

A P-@-Zngn/i’).



This implies that, for yo, v, € J(q), |y5 — vo| < 7,
¢ e
dig (T 1%,) < /3.
Combining these estimates, we see, for yo,y, € J(q), that |y) — yo| < 7 implies
* * * 0 £ £ £ *
dn <Jy67‘]yo> < du <Jy6’ry6> +du <Fy67ryo> +du <Fyo7‘]yo> < 7
Hence, J is continuous, and we have proved theorem 2.11. O

Corollary 2.13
For a Cannelloni type map the pre Julia set is equal to the Julia set,

J = J.

Proof: This is an immediate consequence of remark 2.3. O

Figure 2: Julia set of a Cannellono type map

Clearly, if one wants to obtain the dynamical behaviour and structure of a Can-
nelloni type map, i.e. hyperbolic Jordan-curves in each fibre, then (5) is merely
a sufficient condition. Moreover, one can generalise the notion of a Cannellonsi
type map to the case where the J7 are close to the dynamics of case 1 with & > 1.
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3 J*-continuous noodle type maps

Spaghetti type and Cannelloni type maps are examples for noodle type maps f
for which the map

Jiy—J;

is continuous. We call these f J*-continuous.

It turns out that J*-continuity is the key to the equivalence of the 4 characteri-
sations of the Julia set we gave at the end of section 1.

We begin with the description of the Julia set of a J*-continuous mapping f by
the repelling periodic points of f.

Definition 3.1

A k-periodic point z* of a holomorphic map f : C* — C" is called repelling, if
and only if the (complex) Jacobi-matrix of f* at the point z* has eigenvalues of
modulus bigger than 1 exclusively.

For a noodle type map one obtains an upper triangular matrix with eigenvalues
i)

e (qk(y)> and 88_1’ <qu—1(y) O ... Py(y) © py(:zj)>.

Theorem 3.2

The Julia set of a J*-continuous noodle type map f is equal to the closure of the
set of repelling periodic points of f.

Proof: It is clear that we cannot have weakly normal convergence in a repelling
periodic point, hence the set RPP of all repelling periodic points is contained
in J. Since J is closed the same holds for RPP. In order to show the inclusion
of J in RPP we make use of the fact that for one-dimensional Julia sets the
assertion of the theorem holds ([3, Th. 4.1]). We find § > 0 such that, for
arbitrary (zo,y0) € J and n > 0, vy’ € J(q) together with |y" — yo| < ¢ implies
du(Jy, Jy) <nf2.

In J(q) repelling periodic points of ¢ are dense, we find y; in J(q) which is k-
periodic for some k € N and repelling with

ly1 — yo| < min{d,n}.
In J,, we find (2/,y1) such that
|2 — x| < /2.
Finally, as in

Sy = J(qu—l(yl) O+ 0 Py(u) opyl) X {yl}
Py

1
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repelling periodic points of P, are dense, we find x; which is repelling periodic
under P,, such that |y — /| < n/2. Evidently, (x1,y1) is a repelling periodic
point of f and (using the maximum norm)

max{ |z — @ol, |y1 — yol}
max{|zy — 2’| + &' — x|, |y1 — vo|}

n.

I(z1; 91) = (20, yo)l

VANVANRVAN

Corollary 3.3

For a J*-continuous map f, the action of f on J is topologically mizing.

Proof: Again, we know that the assertion of the theorem holds for q|J(q and,
for y; periodic under ¢, for P, Js Let U be an open set with U N J # é We

can assume that U = B,(z) x B,(y) for a rep(/elling periodic point (x,y) of f and
some i > 0. We find &’ such that, for V = f¥(U),

J, C V,

which implies, for some 6 > 0, that even

U s cv

y' €Bg(y)

For By(y), we find k" € N such that
4" (Bs(y)) D J(q)-
With k 1= k' + k", we get
F Uy o J
O

An interesting aspect of J is its description via harmonic analysis on 0K C C”.
We follow [14, ch. 5].
The family of plurisubharmonic (psh) functions on C* with minimal growth is

defined as
G := {upshon C":u(z) <log(l+|z]])+ Cu},
where (', i1s a constant depending on u. For a compact set K CC C* we define

G (z) == sup{fueG:u<0on K}.
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The so-called generalised Green function for K in C* is then given by

Gr(z) = limsup G5 (¢).

(—z

We remark that Gk is uniquely determined. By a result of Siciak (cf. [18]) one
can compute G as

1
Gnt2) = sup{ s oulPED )
where P is a certain class of polynomials. Application of dd“ to Gy gives a
current Ax whose n-fold product induces a measure u(f) := pux with support
exactly the so-called Shilov boundary dsy K of K (see the following paragraph).
In our situation (K = K(f) for a strict polynomial f : C* — C* of degree 2) we
may choose in (7).

P o= {7Tl Ofk}Z':Lz;keN

Corollary 1.5 implies, for ||z|| > Ry,

21 < IR < Rl

hence
1 2k_1 2k 1 k 1 2k_1 2k
Stlog (K 1=17) < grtog | )| < grtoe (8120
Finally,
2k 1 1 2k 1
log 2]l + = - log(ki) < sclog [F4(:)]| < log 2l + =5 - log(h)

gives the existence of the limit
! : 1 k
() o= lim o -log | f(=)]

on CA. Minimal growth, continuity, and G|, = 0 are evident, hence G = G.
By construction

GK(f(Z)) = 2- GK(Z)v
and we see that
prof = 2% MK,

from which we deduce that p(f) has maximal entropy 2log(2) (cf. [8]). We have
already mentioned that g is supported on the Shilov boundary dsy K of K. It
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is a natural question to ask for the relationship of dsy K and J. In order to do
so, we need some notation (for the original definitions and proofs see [7]).
Let Ay denote the algebra of functions which are holomorphic on some neigh-

bourhood of K. Let
A = AK) := Ay

be its closure (in the algebra C(K') of continuous functions with the topology
of uniform convergence). The space of maximal ideals A of A is in this case
(note that by (2) K is polynomially convex) isomorphic to K. FEach of these
ideals consists of all functions which vanish at some point z € K. Hence, in the
following we will define the terms determining set and boundary for K though
they are usually defined for A.

Definition 3.4 (determining set)
A closed subset () CC K is called a determining set if and only if for each ¢ € A
there exists a z* € () such that

(=) = llelx-
We mention that, for example A itself is a determining set.
Definition 3.5 (boundary)

A minimal determining set () (i.e. no proper subset of @) is also determining) is
called a boundary of K.

Theorem 3.6
For K, a uniquely determined boundary exists. It is called the Shilov boundary
&gHK of K. O
Theorem 3.7

A point z € K lies in dsy K if and only if for each neighbourhood U 3 z there
exists a function ¢y € A (which we call a peak function) such that |py| has its
maximum in U but takes only smaller values on GU. 0

We use theorem 3.7 to show that, for compact sets in C', the topological bound-
ary and the Shilov boundary coincide.

Lemma 3.8
For any compact set K CC C,

Osp K = OK.

Proof: The inclusion dsgy K C JK follows from the above and the maximum
principle for holomorphic functions; for each z* € K and § > 0, we can choose
2" € 0K such that

|2* =2 < §/2.
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Then

ps(z) = ! p

Z—Z

defines a peak function for Bs(z*). O

If one strengthens the condition in theorem 3.7 such that |ou(2)| = ||¢v||x, then
one obtains the so-called Choguet boundary dcpy K.

Propositon 3.9
([16, Cor. 8.3]) For z € K and for A and A as above the following assertions are
equivalent:

I: zis in the Choquet boundary of A, K, resp.;

II: for each U > z, there exists @y, € A such that |pu.(2)| = ||ev..||x and
|pu,2(2)] < [lpv.|[x for all 2" € K\ U;

III: for each 2z’ € K, 2’ # z, there exists ¢, . € A such that
|00 ()] <z (2)] = [z (2]l -

O

Clearly, the Choquet boundary is a subset of the Shilov boundary. We obtain
the following theorem.

Theorem 3.10
([16, Prop. 6.4]) For K and A as above, the closure of the Choquet boundary is
the Shilov boundary

6CH K = &gH K.

We shall also need Mergelyan’s theorem.

Theorem 3.11 (Mergelyan)

([6, I1I, §2]) For a compact set K C C whose complement [K is connected, a
map ¢ : K — C holomorphic on the interior int(K) of K and continuous on JK,
¢ > 0, we can always find a polynomial P such that

17(z) = Pl < e

Hence P approximates ¢ uniformly. O
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We are now in the position to give a satisfying answer to the question of the
relationship of the Julia set and the Shilov boundary of the set of points with
bounded forward orbit.

Theorem 3.12
For a J*-continuous noodle type map the Julia set J equals the Shilov boundary
Osg K of the set of points with bounded forward orbit.

J = J" = Ospk.

Proof: For (z*,y*) € J and n > 0, we construct a peak function for B,(z*, y*)
. K —C

There exists ¢ > 0, ( < /2, such that |y — y*| < ¢ implies

du(Jy, J,«) < n/2.
Choose y' € dcpJ(q) with

' =y <
and find «' € dogmi (K, ) C m1(Jy) such that
|2" — 2| < n/2.

For 0 < § < 1/2, there is a peak function ¢ for B, j;(2') in m (K ) such that

g@(l’/) = 1 = ||S‘Q||W1(Iﬁyy/)7
||S‘Q||7r1(f(y/)\Bn/2(x’) < 5/4

@ can be approximated by a polynomial P such that
1P = @llmx,) < 8/4

For every 0 < 7 < oo, the derivative P’ of P is bounded on the disk B, i.e. for
some w < 0o, we have that

1P'[B, < w.

Let us fix 7 such that m(K) C B;.
It is clear that P still is a peak function for B, (z") in m (K, ). This follows
since

||P||Bn/2l’17r1(Ky/) > 1 - (S/47
||P||7r1(Ky/)\Bn/2 < 4/2.
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Now we choose 0 < € < n/2, such that |y — y'| < £ implies
dnlydy) < min(8/(4), /2}.
Since y' € dcmJ(q) we find @ € A(J(q) such that

Qy) = 1 = (1Qllsco),
1QllsanBewy < 6/(1+68/44 2rw).

We obtain the desired peak function ® for B,(x,y) by setting
O(z,y) = P(z)-Qy),
namely
1®llBye 0y = 1P~ QllB,pexBetyy > (1 =06/4)-1 = 1—4/4,

whereas

[\ ex(r@nBewyy < O
Ol i\ B (sr oy < max PAT 7

O

4 A glimpse at the parameter space of noodle
type maps

If we fix the base map ¢ (the coefficient F', resp.), the parameter space for noodle
type maps is still (complex) three-dimensional (coefficients ¢, e, f). We use the
suggestive name T, . ; for the map

T (l‘) o <x2+cy2+ey+f> _ <$2+kc,e,f(y)>
RN y 4 F q(y)

and propose the following parametrisation of the set of all maps T, . s by one-
parameter families.
Let

kc,e,f;/\ = k/\c,/\e,/\(f—l—/\—l)v
and, analogously,

Teepin = Theper(frr—1)-
Finally, for (c, e, f) € C*, we denote with F.. ; the family

{Tc,e,f;/\ . )\ € (C} .
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Propositon 4.1

For the above parametrisation(s) and any fixed triple (¢, e, f) € C*, the following
holds

I: TC,B,f E FC,B,f? namely TC,B,f = TC,B,f;l;
I To,00 = Tere 50 € Fep, s

ITI: there is u(c, e, f) > 0, such that, for |A| < p(e, e, f), Tee s is of Cannelloni
type;

IV: there is v(c, e, f) < oo, such that, for |A| > v(c, e, f), Tec . is of Spaghetti
type.

Proof: I and II follow from the definition of T}, f.\. In order to prove III and
IV, we have to control the fibre maps of the T, ;.\. It is enough to do so for
y € J(q). We know that J(gq) is bounded, namely

J(q) C By,

where

k= 1/24/1/44+|F|.

For |A| < 1,y € J(q), we get

[Keeiix (y)] AL (s%]e] + slel + 11+ A +1)

A (62lel + le] + 171+ 2)
Hence, we can set

1

meed) = T R T 1T D)

which proves III.
Ad IV: In order to state a simple sufficient condition for C'rit, tending to infinity
under iteration of T, . ;.\, we define

kmin()\) = min |k0757f§A(y)|;
yeJ(q)

kmax()‘) = max |k0757f§/\(y)| °
yeJ(q)

Evidently

kmin()\)z —kmax()\) > kmin()\)
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guarantees that the forward orbit of any (0,y), y € J(q), tends to infinity. We
shall even try to fulfil the stronger condition

Emin(A)? > 2 kmax(A). (8)
Assume with
K = &*le|+ kle| +|f| +1
that
A > 14+K+V1+4K
which implies
(A= K)* > 2(]A[ + K). (9)

For any y,¥ € J(q) such that

ke (9)] =
ke (U)] =

we get

bain(V)? = A (e Feg+ S+ A=)

|)\|2-‘(cg2—|—eg—|—f—1>—l-)\‘2

AP (I = Jey? + ey + £ —1))°
AR (] - K)?
AL (A 4 K)

2- A - (|7 + ey + f = 1] +|A])
2- A (W +ey+ f+A—1)]
2+ Emax(A).

vV vV VvV IV V

Clearly, one can set
vic,e, f) := 1+ K+ V1+4K.
O

The above calculations show that the parameter space (in A) of each F.. ¢ con-
tains at least three separate regions, namely one unbounded set where the dy-
namics of T, . .\ 1s that of a Spaghetti type map because the orbit of C'rit, tends
to infinity (evidently this set is open), secondly a compact set which represents
the maps where C'rit, contains points with bounded forward orbit, the latter one
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contains a non-empty (open) set which corresponds to the maps with Cannel-
lono type dynamics (in the narrow sense). There might also be regions where
one gets Cannellono type dynamics in the wide sense. We call the (compact) set
where we neither get Spaghetti- nor Cannellono-dynamics the interesting set. For
Fo,0,1, hence product maps, the structure of the parameter space is well-known,
it exactly gives a picture of the Mandelbrot set, its inverse image under the map
A A% resp. Here, the unbounded region corresponds to the complement of
the Mandelbrot set, the Cannellono-type region consists of the hyperbolic com-
ponents of the interior of the Mandelbrot set. The interesting set in this case is
the remaining compact so-called “boundary of the Mandelbrot set“.

It is interesting to note that, provided F..  is a family of proper skew-
products, the interesting set does contain non-empty open sets.

Theorem 4.2

If (¢,e) # (0,0), hence the parameter space of F.. s is not an inverse image of
the Mandelbrot set, then the interesting set has non-empty interior.

Proof: We deduce from our definition of noodle type maps, that the base map
has two distinct fixed-points y1,y2 € J(g). The fibre maps for y;,y> have the
form

T — :1;2—|—)\(k(yi)—|—)\—1),

hence, if we have a look at the parameter space for these two fibres, we obtain
two inverse images M, M, of the Mandelbrot set under the maps

A N ME(y) —1) = M+,
where
li = k(yz) — 1.

Clearly, if {1 # l5, an easy calculation shows that the images are not identical,
hence we can find open sets which are in the complement of one M; but in the
interior of the other. If cy? 4 ey, = cyi + ey, then the maps P, , P,, (defined
in theorem 3.2) are identical, but we know that there is also a 2-cycle (ys,y4) in
J(q). The maps P,,, P,, on C,,, C,, resp., are given by @ + (2? + A\* 4 I3 - )\)2—|—
Ml o= (22 + A+ 1y )\)2 + A2+ 13- A, resp. We can apply the same idea
as above if we know that the parameter spaces for these maps have a different
structure, which clearly is the case provided l3 # [4. If I3 = 4, we still can

compare with the parameter sets of the maps P, , P, for the fixed points y;, y2.
But, since k is at most quadratic, but not constant by assumption, we then have

=1 #1l5= 14 ]

The following pictures represent numerical approximations of parameter sets for
noodle type maps. The dark gray region stands for Cannellono type maps in
the narrow sense, the light gray for general Cannellono type maps, the white for
Spaghetti type maps, the interesting set is painted black. Real and imaginary
parts of A range within [—2, 2].
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Figure 3: parameter set for Foo1 (the T.. s are product maps)
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