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Abstract. We use a theorem of Tits on the algebraic presentation with gener-
ators and relations of the normalizer of a maximal torus of a compact connected
semisimple Lie group to derive several equivalent conditions for the splitting of
the associated normalizer group extension in terms of p-adic fibrewise homotopy
theory.

Introduction

It was shown by Curtis, Wiederhold and Williams [C-W-W] that the isomorphism
type of a compact connected semisimple Lie group G is completely determined by the
isomorphism type of the normalizer of the maximal torus T (G). This was generalized
much later by Notbohm for any compact connected Lie group [N]. In their paper
Curtis, Wiederhold and Williams also studied the question when the group extension

0 −→ T (G) −→ N(G)
π

−→ W (G) −→ 1

is a split extension and the normalizer N(G) be completely determined by the action
of the Weyl group W (G) on the maximal torus T (G). Using a theorem of Tits [T2]
giving an explicit description of the normalizer in terms of generators and relations,
they could decide case-by-case for which simple Lie groups the above normalizer
sequence is split exact.
In this note we use the theorem of Tits to derive the following more conceptional

criterion equivalent to the splitting of the above group extension in terms of fibrewise
p-adic Bousfield-Kan completion of the associated fibration of classifying spaces,
namely

Theorem. Let G be a compact connected Lie group. The group extension

0 −→ T (G) −→ N(G)
π

−→ W (G) −→ 1

is a split extension if and only if the fibration

BT (G)∧2 −→ BN(G)◦2
Bπ
−→ BW (G)

has a section, i.e. is fibre homotopy equivalent to the fibration

BT (G)∧2 −→ EW (G)×W (G) BT (G)
∧

2 −→ BW (G).
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Moreover, it turns out that for odd primes p the fibrewise p-adic completed fibra-
tion of classifying spaces

BT (G)∧p −→ BN(G)◦p
Bπ
−→ BW (G)

has always a section. Here we just consider the Lie group case, but it is interesting
to ask if one can derive similiar results for the more general case of a connected
finite loop space with maximal torus. The results of Andersen [A] show that si-
miliar statements can be obtained for connected p-compact groups in the sense of
Dwyer and Wilkerson [D-W], which are adequate homotopy theoretic replacements of
compact Lie groups. Instead of using the result of Tits Andersen calculated the low-
dimensional cohomology groups of the Weyl groups in all cases. Dwyer-Wilkerson
and Notbohm also announced proofs for the splitting of the normalizer of a maximal
torus in the case of connected p-compact groups. A detailed discussion of the split-
ting problem can be found in the overview article of Lannes [L]. But it is still an
open problem if there is an analogous statement of the theorem of Tits, which might
allow to decide the splitting question in the same manner as described in this note.
In the case of p-compact groups the Weyl groups are p-adic pseudoreflection groups,
so not real reflection groups anymore as in the Lie group case. The work of Broué,
Malle and Rouquier [B-M-R] on complex reflection groups and their associated braid
groups seems to be closely related with this question. It is also interesting to ask
what would happen in the case of a split semisimple reductive algebraic group G,
where the theorem of Tits is also known [T2].

Acknowledgements. We are very grateful to J. Møller, D. Notbohm L. Smith and
A. Viruel for many useful discussions and suggestions. Special thanks also to K. S.
Andersen for telling me about his work.

1. A Theorem of Tits and the Splitting of the Normalizer of a

maximal torus of a compact connected Lie group

Let G be a compact connected semisimple Lie group. Fix a maximal torus T (G)
of G and let N(G) be the normalizer of T (G) in G. The Weyl group of G is given
by W (G) = N(G)/T (G). We recall some basic facts from Lie theory [B-tD]. The
normalizer N(G) acts on T (G) by conjugation

N(G)× T (G) → T (G), n · t = ntn−1

The action restricted to T (G) is trivial, so factors through the quotient W (G) =
N(G)/T (G) inducing an action of W (G) on T (G)

W (G)× T (G) → T (G), n · T (G) = ntn−1.

We study the group extension

0 −→ T (G) −→ N(G)
π

−→ W (G) −→ 1
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and derive several equivalent conditions under which this extension is a split exten-
sion with

N(G) ∼= T (G)×W (G).

Denote by L(G) the Lie algebra of G which we identify with the tangent space to G
at the identity element e of G. Formally we may split L(G) ∼= L(T (G))⊕L(G/T (G)),
where L(G/T (G)) is the orthogonal complement of L(T (G)) with respect to the
W (G)-invariant inner product on L(T (G)).
Let Ψ(G) be the set of roots and Ψ0(G) be a simple root system of G. For any

root α ∈ Ψ0(G) let sα be the corresponding reflection of L(T (G)). The Weyl group
W (G) has a presentation as a finite real reflection group with generators the set of
reflections S = {sα : α ∈ Ψ0(G)} subject to the relations

(1) s2α = 1
(2) (sαsβ)

mαβ = 1 for all α 6= β and mαβ ∈ {2, 3, 4, 6}

The W (G)-invariant inner product allows us to identify the W (G)-representation
L(T (G)) with the dual representation L(T (G))∗ = HomR(L(T (G)),R). Denote this
isomorphism by κ : L(T (G)) → L(T (G))∗.
For α ∈ Ψ(G) and x ∈ L(T (G)) we have

sα(x) = x− < α, x > α∗

where α∗ = 2α/ < α, α > is the coroot corresponding to α. For the set of coroots of G
let us write Ψ(G)∗ = {α∗ : α ∈ ψ(G)}. If it becomes necessary to distinguish between
L(T (G)) and L(T (G))∗ we will denote by α∧ = κ(α∗) ∈ L(T (G))∗, the inverse root
of α. Let exp : LT (G) → T (G) be the exponential map and set I = ker(exp) and
I∗ = {α ∈ L(T (G)∗ : αI ⊂ Z}. I is called the integral lattice and I∗ the lattice of
integral forms. We get the following commutative diagram

0 // Zn //

��

Rn //exp

��

T (G) // 1

0 // I

��

// L(T (G))

��
α

//exp
T (G)

��
θα

// 1

0 // Z // R //e
U(1) // 1

where e : R → U(1) is given by t 7→ exp(2πit) and θα : T (G) → U(1) is defined by
exp(H) 7→ exp(2πiα(H)) as the global root corresponding to α ∈ L(T (G))∗. It is
easy to see that Ψ(G) ⊂ I∗ and Ψ(G)∗ ⊂ I [B-tD].
For every root α ∈ Ψ(G) we now define an element hα ∈ T (G) by hα = exp(1

2
α∧).

We get immediately from the above considerations that h2α = 1 and hα = h−α.
The normalizer N(G) of the maximal torus T (G) also has a presentation with

generators and relations as a braid group mixed with the toral part as given in the
following theorem of Tits [T1]. See also [C-W-W]. In [T2] Tits proved a similiar
theorem in the case of a split semisimple reductive algebraic group G.
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Theorem 1.1 (Tits). Let G be a compact connected semisimple Lie group, T (G) a
maximal torus and N(G) its normalizer in G. For every simple root α ∈ Ψ0(G)
there exists an element qα ∈ N(G) such that

π−1(sα) = T (G) ∪ qαT (G)

with the following properties

(1) q2α = hα
(2) (Braid condition)

qαqβqα . . . = qβqαqβ . . . for all α 6= β where the factors are repeated mαβ times,
where mαβ ∈ {2, 3, 4, 6}.

(3) qαtq
−1
α = sα(t) for t ∈ T (G).

Moreover, the normalizer N(G) is isomorphic to the group generated by the set
T (G) ∪ {qα : α ∈ Ψ0(G)} subject to the relations (1), (2), (3) and those coming
from T (G). ✷

Let T∞(G) be the subgroup of T (G) of elements having finite order, called the
discrete approximation of T (G). We have T∞(G) ∼= (Q/Z)n where n is the rank
of T (G). T∞(G) is mapped to itself under the action of the Weyl group W (G).
For all α ∈ Ψ0(G) the element hα lies in T∞(G). Let N∞(G) be the subgroup of
N(G) generated by the set T∞(G) ∪ {qα : α ∈ Ψ0(G)} subject to the relations (1),
(2), (3) in the theorem of Tits and those from T∞(G). Then N∞(G) is the discrete
approximation of N(G).
The inclusion i : T∞(G) → T (G) induces a homomorphism of group extensions

0 // T∞(G)

��
i

// N∞(G)

��

//π
W (G) // 1

0 // T (G) // N(G) //π
W (G) // 1

For a fixed prime p let Tp∞(G) denote the subgroup of T∞(G) of elements having
order a power of p. We have Tp∞(G) ∼= (Z/p∞)n where n is again the rank of T (G)
and Z/p∞ denotes the group Z[1

p
]/Z = colimsZ/p

s. The Weyl group W (G) acts on

Tp∞(G) and the inclusion

j :
∏

p prime

Tp∞(G)
∼=

−→ T∞(G)

is a W (G)-equivariant isomorphism.
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From the universal property of the product we get therefore a unique homomor-
phism πp∞ : T∞(G) → Tp∞(G) making the diagram

∏

p prime

Tp∞(G)

��

pr

//j
T∞(G)

yy
πp∞

t
t
t
t
t
t
t
t
t
t
t
t
t
t

Tp∞(G)

commutative. The map πp∞ is also a W (G)-equvariant map.
Now let Np∞(G) be the subgroup of N∞(G) generated by the set Tp∞(G) ∪ {qα :

α ∈ Ψ0(G)} subject to the relations (1), (2), (3) in the theorem of Tits and those
coming from Tp∞(G). The homomorphism πp∞ induces a homomorphism of group
extensions

0 // T∞(G)

��
πp∞

// N∞(G)

��

//π
W (G) // 1

0 // Tp∞(G) // Np∞(G) //π
W (G) // 1

Since h2α = 1 for all α ∈ Ψ0(G) it follows that hα ∈ T2∞(G). Therefore for all odd
primes p we have πp∞(hα) = 1.
From this it follows immediately that for odd primes p the group Np∞(G) is gen-

erated by the set Tp∞(G) ∪ {qα : α ∈ Ψ0(G)} subject only to the relations

(1’) q2α = 1
(2’) (qαqβ)

mαβ = 1 for all α 6= β
(3’) qαtq

−1
α = sα(t) for t ∈ T (G).

Let Bp∞(G) be the subgroup ofNp∞(G) generated only by the set {qα : α ∈ Ψ0(G)}
subject to the relations (1’), (2’), (3’). The homomorphism π : Np∞(G) → W (G)
mapsBp∞(G) isomorphically ontoW (G) since the elements π(qα) = sα for α ∈ Ψ0(G)
generate the Weyl groupW (G) and Bp∞(G)∩Tp∞(G) = ∅. Therefore we have shown
the following theorem:

Theorem 1.2. Let G be a compact connected semisimple Lie group. For each prime
p 6= 2 the group extension

0 −→ Tp∞(G) −→ Np∞(G)
π

−→ W (G) −→ 1

is a split extension with Np∞(G) ∼= Tp∞(G)×W (G). ✷

In the special case that hα = 1 for all α ∈ Ψ0(G) we can derive a stronger result.
Then the group N(G) is generated by the set T (G) ∪ {qα : α ∈ Ψ0(G)} subject to
the relations

(1) q2α = 1
(2) (qαqβ)

mαβ = 1 for all α 6= β
(3) qαtq

−1
α = sα(t) for t ∈ T (G).
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and in the same way as above we get immediately N(G) ∼= T (G)×W (G). From this
we can conclude the following equivalent algebraic conditions for the splitting of the
normalizer exact sequence:

Theorem 1.3. Let G be a compact connected semisimple Lie group. The following
statements are equivalent:

(1) For every α ∈ Ψ0(G) it is hα = 1.
(2) The group extension

0 −→ T2∞(G) −→ N2∞(G)
π

−→ W (G) −→ 1

splits, i.e. N2∞(G) ∼= T2∞(G)×W (G).
(3) The group extension

0 −→ T (G) −→ N(G)
π

−→ W (G) −→ 1

splits, i.e. N(G) ∼= T (G)×W (G). ✷

In [C-W-W] Curtis, Wiederhold and Williams used special elements in the Lie
algebra L(T (G)) to check case-by-case for which simple Lie groups the normalizer
sequence splits. This was also investigated earlier by Tits. He considered also groups
obtained by quotienting out proper subgroups of centers. It turns out that for
SU(2n + 1), SU(2n)/Z, SO(n), G2 the normalizers always splits, while the nor-
malizers of SU(2n), Sp(n)/Z, Spin(n), F4, E6, E7, E8 and their quotients modulo
centers Z do not split.

2. The splitting of the normalizer sequence via Fibrewise

Bousfield-Kan Completions

We would like to derive topological conditions for the splitting of the normalizer
of a maximal torus of a compact connected Lie group, which are equivalent to the
algebraic conditions derived in the previous section. Let us therefore consider the
following diagram of group extensions and homomorphisms of group extensions for
a compact connected Lie group G.

0 // T (G) // N(G) //π
W (G) // 1

0 // T∞(G)

��
πp∞

OO

i

// N∞(G)

��

OO

//π
W (G) // 1

0 // Tp∞(G) // Np∞(G) //π
W (G) // 1

Applying the classifying space functor B(?) and fibrewise p-adic completions of
the rows for a fixed prime p in the sense of Bousfield-Kan [B-K] yields the following
diagram of fibrations and maps of fibrations:
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BT (G)∧p // BN(G)◦p //Bπ
BW (G)

BT∞(G)∧p

��
≃

OO

≃

// BN∞(G)◦p

��
≃

OO

≃

//Bπ
BW (G)

BTp∞(G)∧p // BNp∞(G)◦p //Bπ
BW (G)

with fibrewise homotopy equivalences. We obtain therefore the following interpreta-
tion of theorem 1.2 in terms of fibrewise homotopy theory:

Theorem 2.1. Let G be a compact connected Lie group. For each prime p 6= 2 the
fibration

BT (G)∧p −→ BN(G)◦p
Bπ
−→ BW (G)

has a section, i.e is fibre homotopy equivalent to the fibration

BT (G)∧p −→ EW (G)×W (G) BT (G)
∧

p −→ BW (G)

In other words

BN(G)◦p ≃ B(T (G)×W (G))◦p ≃ EW (G)×W (G) BT (G)
∧

p

where EW (G) is a free acyclic W (G)-space. ✷

Proof. First of all let Z(G) be the center of G. The compact Lie group G/Z(G)
has maximal torus T (G)/Z(G) and Weyl group W (G) and the normalizer of the
maximal torus is given by N(G)/Z(G). We have a commutative diagram

0 // T (G)

��
i

// N(G)

��

//π
W (G) // 1

0 // T (G)/Z(G) // N(G)/Z(G) // W (G) // 1

.

So the top extension splits if and only if the bottom one is a split extension. Therefore
(see [B-tD], Theorem 7.1) we can always assume that G is simply connected. But if
G is simply connected it is certainly semisimple (see [B-tD], Remark 7.13). So the
theorem follows from the above considerations and theorem 1.2.

As an immediate consequence we get the following result in terms of group coho-
mology, which was also announced in [C-W-W], Appendix 2:

Corollary 2.2. Let G be a compact connected Lie group G. Then

H∗(BN(G),Z[
1

2
]) ∼= H∗(B(T (G)×W (G)),Z[

1

2
])

or equivalently

H∗(BN(G),Z∧

2 )
∼= H∗(B(T (G)×W (G)),Z∧

2 ). ✷
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For a compact Lie group G and a fixed prime p let SpW (G) denote a p-Sylow
subgroup of W (G) and SpN(G) the inverse image of SpW (G) in N(G). SpN(G) is
called a p-normalizer of N(G). Now we can state the main theorem of this section:

Theorem 2.3. Let G be a compact connected Lie group and p be a fixed prime. The
following statements are equivalent:

(1) The group extension

0 −→ Tp∞(G) −→ Np∞(G) −→ W (G) −→ 1

splits.
(2) The group extension

0 −→ T (G) −→ SpN(G) −→ SpW (G) −→ 1

splits.
(3) The fibration

BT (G) −→ BSpN(G) −→ BSpW (G)

has a section.
(4) The fibration

BT (G)∧p −→ BN(G)◦p −→ BW (G)

has a section.
(5) The fibration

BTp∞(G) −→ BNp∞(G) −→ BW (G)

has a section.

Proof. That assertion (2) follows from (1) is an immediate consequence of the fol-
lowing commutative diagram combining a pullback and a pushout diagram:

0 // Tp∞(G) // Np∞(G) // W (G) // 1

0 // Tp∞(G)

��

// SpNp∞(G)

��

OO

// SpW (G)

OO

// 1

0 // T (G) // SpN(G) // SpW (G) // 1

The assertion (3) follows at once from (2) by applying the classifying space functor
B(?) which sends a splitting homomorphism to a section.
To show that (4) follows from (3) suppose now that the fibration

BT (G) −→ BSpN(G) −→ BSpW (G)

has a section σ. After fibrewise p-adic Bousfield-Kan completion we still have a
section in the completed fibration

BT (G)∧p −→ BSpN(G)◦p −→ BSpW (G).
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Since the homomorphism in cohomology

i∗ : H3(BW (G), π2(BT (G)
∧

p )) −→ H3(BSpW (G), π2(BT (G)
∧

p ))

is a monomorphism (see also [N]) it follows that the fibration

BT (G)∧p −→ BN(G)◦p −→ BW (G)

has a section as required.
Now we show that (5) follows from (4). Let F be the homotopy fibre of the

completion map

φ : BTp∞(G) −→ BTp∞(G)∧p ≃ BT (G)∧p

Then we have

F = hofib(φ) ≃ K((Q∧

p )
n, 1)

where n is the rank of T (G) and we get the following diagram of fibrations

F

��

F

��

// ∗

��
BTp∞(G)

��

// BNp∞(G)

��

// BW (G)

BT (G)∧p // BN(G)◦p // BW (G)

where the bottom fibration has a section. Obstruction theory shows that this section
can be lifted to a section of the middle fibration, because

H∗+1(BW (G), π∗(F )) = 0

since W (G) is a finite group and char(Q∧

p ) = 0 (see [B]).
Finally we have to prove that (1) follows from (5). So suppose the fibration

BTp∞(G) −→ BNp∞(G) −→ BW (G)

has a section σ. The groups Tp∞(G), Np∞(G) and W (G) are discrete groups and
therefore the long exact sequence of homotopy groups degenerate to the following
short exact sequence of groups

0 −→ π1(BTp∞(G)) −→ π1(BNp∞(G)) −→ π1(BW (G)) −→ 1

which is nothing else than the group extension

0 −→ Tp∞(G) −→ Np∞(G) −→ W (G) −→ 1.

The section σ induces a splitting homomorphism in the short exact sequence of
fundamental groups and hence in the group extension.

As an immediate corollary we get finally from the algebraic considerations of the
first section the theorem as mentioned in the introduction:
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Corollary 2.4. Let G be a compact connected Lie group. The group extension

0 −→ T (G) −→ N(G)
π

−→ W (G) −→ 1

is a split extension with N(G) ∼= T (G)×W (G) if and only if one and hence all of
the statements in the preceeding theorem hold for the prime 2. ✷
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