# Cantor goes Julia 

Pau Atela and Hartje Kriete

February 1998

## 1 Introduction

The Julia set $J_{c}$ of a quadratic polynomial $p_{c}: \overline{\mathbb{C}} \rightarrow \overline{\mathbb{C}} ; z \mapsto z^{2}+c$, where $\overline{\mathbb{C}}$ denotes the Riemann sphere and $c \in \mathbb{C}$, is either connected or a Cantor set, depending on whether the parameter $c$ is in the Mandelbrot set $\mathbf{M}$ or not, or - equivalently - depending on whether the orbit of the unique critical point of $p_{c}$ is bounded or unbounded.

For $c \notin \mathbf{M}$, the Julia set $J_{c}$ is homeomorphic to the set $\Sigma_{2}=\{0,1\}^{\mathbb{N}}$ of sequences on two symbols. Moreover, at this level the polynomial action $\left.p_{c}\right|_{J_{c}}: J_{c} \rightarrow J_{c}$ is homeomorphically conjugated to the shift map. This 'coding' of $J_{c}$ is continuous with respect to $c$, so one can think of $J_{c}$ as being (the same) $\Sigma_{2}$ as $c$ moves around in $\mathbb{C} \backslash \mathbf{M}$, see [1]. In this paper we will restrict to parameter values $c \in R_{\mathrm{M}}(\theta)$ along an external ray $R_{\mathrm{M}}(\theta)$ of the Mandelbrot set of angle $\theta$, with $\theta$ strictly preperiodic. $R_{\mathbf{M}}(\theta)$ lands on some $c_{0} \in \mathbf{M}$. The Julia set $J_{c_{0}}$ is, in this case, locally connected. We refer to Douady and Hubbard [2] as a general reference for external rays of both the Mandelbrot set and Julia sets. In the dynamic plane, for $c \in R_{\mathrm{M}}(\theta)$ and $t \in S^{1} \cong \mathbb{R} / \mathbb{Z}$, the external rays $R_{c}(t)$ of the disconnected Julia set $J_{c}$ (dynamic rays) are of two types (for more details see [1], and next section):

Branched rays: their angular values exactly correspond to the preimages of the angle $\theta$ under doubling; and

Unbranched rays: these are all other rays; each lands directly on a unique Julia set point.

The 'main' branched rays - the first preimages of the unbranched dynamic ray of angle $\theta$ correspond to the angle pair $\theta_{1}=\frac{\theta}{2}$ and $\theta_{2}=\frac{\theta}{2}+\frac{1}{2}$ (see Figure 1). They branch at the critical value 0 , going then directly to a pair of Julia set points $x, y$ one on each side.


Figure 1: The 'main' branched rays (Critical pair) for $c \in R_{\mathrm{M}}(\theta), c \notin \mathbf{M}$, correspond to the angle pair $\theta_{1}, \theta_{2}$. They branch at 0 , then landing on $x, y \in J_{c}$. The pair is mapped under $p_{c}$ to the unbranched ray of angle $\theta$. This ray lands on a unique point and contains the critical value $c \notin J_{c}$.

The angle pair $\theta_{1}, \theta_{2} \in S^{1}$ divides the unit circle $S^{1} \cong \mathbb{R} / \mathbb{Z}=: \mathbb{T}$ into two semicircles which we label with 0 and 1 (see Figure 2). In this way, every $t \in S^{1} \cong \mathbb{R} / \mathbb{Z}$ gives an itinerary - a sequence in $\Sigma_{2}$ - under the doubling map $\mathcal{S}: S^{1} \rightarrow S^{1} ; t \mapsto 2 t(\bmod 1)$. A fundamental fact (see [1]) is

$$
R_{c}(t) \text { lands on its itinerary. }
$$

That is, the dynamic ray of angle $t \in S^{1}$ lands on the Julia set point whose binary coding - a sequence in $\Sigma_{2}$ - is the itinerary sequence of $t$ under the doubling map. We refer the reader to [1] and [3] as an introduction to these itineraries.


Figure 2: The orbit of $t \in$ $S^{1}$ under doubling gives an itinerary, a sequence of 0 and 1.

A branched ray whose angle $t$ satisfies $2^{n} t=\theta(\bmod 1)$ for some $n \geq 1$ has exactly two sequences associated, left and right hand sides. These differ by only one digit and correspond to the codings of the endpoints $x, y \in J_{c}$ (see [1]).

Since angles giving the same itinerary will correspond to rays landing on the same Julia set point, one naturally considers the induced quotient space of $S^{1}$ or, equivalently, $\mathbb{T}$. We show that this quotient space has the topology of the Julia set $J_{c_{0}}$. Recall that $c_{0} \in \mathbf{M}$ is the tip of the ray $R_{\mathrm{M}}(\theta)$ in the parameter plane. We also study in detail how, as $c \rightarrow c_{0}$ along $R_{\mathrm{M}}(\theta)$, the Cantor set $J_{c}$ closes its gaps and limits on the connected Julia set $J_{c_{0}}$. In fact, the gaps which close are those corresponding to the landing sets of branched rays. Using a suitable equivalence relation this will be described in the Main Theorem, on page 7.

The paper is organized as follows. In the next section we introduce the notation we will use and recall some basic facts. In Section 3 we introduce the equivalence relations which are used to state the Main Theorem. Section 4 deals with the convergence of external rays (and their landing sets) of the Julia set $J_{c}$ as the parameter value $c \in R_{\mathrm{M}}(\theta)$ converges to the landing point $c_{0}$ of the external ray $R_{\mathrm{M}}(\theta)$ of the Mandelbrot set. With these preparations at hand, the proof finally is completed in the last section.

## 2 Notation and preliminary facts

We start with some notation. $K_{c}$ denotes the set of bounded orbits of $p_{c}$. We always have that $\partial K_{c}=J_{c} . \mathbb{N}$ denotes the set of non-negative integers, and $\mathbb{N}^{*}$ the set of positive integers. $\chi(z, w)$ denotes the spherical distance of $z, w \in \overline{\mathbb{C}}$ and $\chi(S, T)$ the Hausdorff distance (with respect to the spherical metric) of some closed sets $S, T \subset \overline{\mathbb{C}} . S \cong T$ means that the sets $S$ and $T$ are homeomorphic. The term component always refers to connected component. Neighborhoods are always open and connected. Strictly preperiodic means preperiodic but not periodic.

We denote by $\mathcal{S}$ the mapping $\mathcal{S}: \mathbb{T} \rightarrow \mathbb{T}$ given by $t \mapsto 2 t(\bmod 1)$.

For $c \in \mathbb{C}$ and $z \in \overline{\mathbb{C}}$, let $O^{-}\left(z, p_{c}\right):=\left\{\zeta \in \overline{\mathbb{C}} \mid p_{c}^{\circ n}(\zeta)=z\right.$ for some $\left.n \in \mathbb{N}\right\}$ be the backward orbit of $z$ with respect to $p_{c}$. Note that, by definition, $z \in O^{-}\left(z, p_{c}\right)$.

For the map $p_{c}$ the point at infinity is super-attracting, so in a neighborhood $U$ of $\infty$ there is a unique analytic function $\Psi_{c}: U \rightarrow \overline{\mathbb{C}} \backslash \overline{D_{r^{\prime}}}$ (where $D_{r^{\prime}}$ denotes the disk centered at the origin with some radius $r^{\prime} \geq 1$ ) normalized to $\Psi_{c}(\infty)=\infty, \Psi_{c}^{\prime}(\infty)=1$ (called the Boettcher function), that satisfies

$$
\Psi_{c} \circ p_{c} \circ \Psi_{c}^{-1}=z \mapsto z^{2} .
$$

One extends the conjugacy $\Psi_{c}$ by taking successive preimages of $U$ under $p_{c}$, extending the domain of $\Psi_{c}$.

The external ray of $J_{c}$ of angle $t$ is first defined as

$$
R_{c}(t):=\Psi_{c}^{-1}\left(\left\{r e^{2 \pi i t} \mid r>r^{\prime}\right\}\right) .
$$

The full ray is obtained by extending the conjugacy $\Psi_{c}$. In the parameter plane there is an analog definition of external rays of the Mandelbrot set $\mathbf{M}$ via the Riemann map of its complement. For an angle $\theta \in \mathbb{T}, R_{\mathrm{M}}(\theta)$ will denote the corresponding external ray of $\mathbf{M}$. It is well known that

$$
c \in R_{\mathrm{M}}(\theta) \Longleftrightarrow c \in R_{c}(\theta)
$$

In this paper we consider $\theta$ values which are strictly preperiodic. It is also well known that $R_{\mathbf{M}}(\theta)$ lands on a well defined point $c_{0} \in \partial \mathbf{M}$ which we will also denote by $L_{M}(\theta)$ (see [2]), that $J_{c_{0}}=K_{c_{0}}$, and that $J_{c_{0}}$ is connected and locally connected.

Since the Julia set $J_{c_{0}}$ is connected, the extension of $\Psi_{c_{0}}$ turns out to be the Riemann map of the complement of $K_{c_{0}}$, which is the basin of attraction of infinity $A\left(\infty, c_{0}\right)$, onto the complement $\overline{\mathbb{C}} \backslash \overline{\mathbb{D}}$ of the closure of the unit disk $\mathbb{D}$. By a theorem of Carathéodory, since the Julia set $J_{c_{0}}$ is locally connected, $\Psi_{c_{0}}^{-1}$ can be extended to the boundary of the unit disc $\mathbb{D}$ :

$$
\Psi_{c_{0}}^{-1}: \overline{\mathbb{C}} \backslash \mathbb{D} \longrightarrow A\left(\infty, p_{c}\right) \cup J_{c_{0}}=\overline{A\left(\infty, p_{c}\right)}
$$

Every ray of angle $t$ can then be extended up to $J_{c_{0}}$, landing at a unique point. $\Psi_{c_{0}}^{-1}$ restricted to the boundary $S^{1} \cong \mathbb{T}$ of $\mathbb{D}$ clearly induces a homeomorphism between $J_{c_{0}}$ and a quotient space of $\mathbb{T}$. The equivalence classes are formed by the angles of the rays sharing landing point (see definition of the third equivalence relation in the next section).

If $c \notin \mathbf{M}$, the Julia set is a Cantor set and $\Psi_{c}$ cannot be analytically extended beyond a certain point. Nevertheless one can extend the rays up to the Cantor set $J_{c}$, see [1]. Since we will consider in this paper only $c \in R_{\mathrm{M}}(\theta)$ with $\theta$ strictly preperiodic, the dynamic rays in this case are only of two types (see Figure 3).


Figure 3:


1. A branched ray (Figure 3, left), whose angle $t$ is a preimage (under the doubling map $\mathcal{S})$ of $\theta\left(2^{n} t=\theta(\bmod 1)\right.$, for some $\left.n \in \mathbb{N}^{*}\right)$. It has a unique branch point at a certain preimage (under $p_{c}$ ) of the critical point 0 . A branched ray branches at this preimage of 0 with its conjugate ray $t^{\prime}$. They share two unique points $x, y \in J_{c}$ as landing points. The landing set $L_{c}(t)$ consists of exactly two points: $L_{c}(t)=L_{c}\left(t^{\prime}\right)=\{x, y\}$.
2. An unbranched ray (Figure 3, right), whose angle $t$ is not a preimage of $\theta$. It lands, without branching, directly on a unique Julia set point. $L_{c}(t)$ is a singleton.

Notice that $R_{c}(t)$ does not include its landing set, we write $\overline{R_{c}(t)}$ for the closed ray: $\overline{R_{c}(t)}=$ $R_{c}(t) \cup L_{c}(t)$. Similarly, $\overline{R_{\mathrm{M}}(\theta)}=R_{\mathrm{M}}(\theta) \cup\left\{c_{0}\right\}$.

For every $t$, (in terms of binary coding) $R_{c}(t)$ has exactly 'the same' landing set for all $c \in$ $R_{\mathrm{M}}(\theta)$, there are no bifurcations (see [1]). Notice also that for all $t \in \mathbb{T}$ we have $p_{c}\left(R_{c}(t)\right)=$ $R_{c}(2 t)$.

## 3 Equivalence relations

We fix $\theta \in \mathbb{T}$ such that $\theta$ is strictly preperiodic with respect to $\mathcal{S}$. The external ray $R_{\mathbf{M}}(\theta)$ lands on $\mathbf{M}$, let $c_{0}:=L_{\mathrm{M}}(\theta)$ be its landing point.

Definition 1 (First equivalence relation) Let $\theta \in \mathbb{T}$ as above, and $c \in R_{\mathrm{M}}(\theta)$. We call two points $\zeta_{1}, \zeta_{2} \in J_{c}$ equivalent and write $\zeta_{1} \sim \zeta_{2}$, if and only if $\left\{\zeta_{1}, \zeta_{2}\right\} \subset L_{c}(t)$ for some $t \in \mathbb{T}$.

Proposition 1 shows that $\sim$ is in fact an equivalence relation. If $\zeta \in L_{c}(t)$, then sometimes for clarity we will write $\left[L_{c}(t)\right]_{\sim}$ instead of $[\zeta]_{\sim}$.

Definition 2 (Second equivalence relation) Let $\theta \in \mathbb{T}$ as above, and $c \in R_{\mathrm{M}}(\theta)$. We call $t_{1}, t_{2} \in \mathbb{T}$ equivalent and write $t_{1} \equiv t_{2}$, if and only if there exists some $t \in \mathbb{T}$ such that $L_{c}\left(t_{j}\right) \subset L_{c}(t)$ for $j=1,2$.

Note that $t_{1} \equiv t_{2}$ if and only if there exist points $\zeta_{j} \in L_{c}\left(t_{j}\right)$, where $j=1,2$, such that $\zeta_{1} \sim \zeta_{2}$. This illustrates the close relation between $\sim$ and $\equiv$. One readily realizes that $\sim$ is an equivalence relation if and only if $\equiv$ is one. Again, we refer to Proposition 1 for a proof that $\equiv$ is an equivalence relation.

We now turn our attention to $p_{c_{0}}$ and $J_{c_{0}}$. Since the external map $\Psi_{c_{0}}^{-1}: \overline{\mathbb{C}} \backslash \overline{\mathbb{D}} \rightarrow A\left(\infty, c_{0}\right)$ extends continuously up to the boundary $S^{1} \cong \mathbb{T}, \Psi_{c_{0}}^{-1}: \overline{\mathbb{C}} \backslash \mathbb{D} \rightarrow A\left(\infty, c_{0}\right) \cup J_{c_{0}}$ defines an equivalence relation on $\mathbb{T}$.

Definition 3 (Third equivalence relation) Let $c_{0}$ be as above and $t_{1}, t_{2} \in \mathbb{T}$. We call $t_{1}$ and $t_{2}$ equivalent and write $t_{1} \approx t_{2}$, if and only if $\Psi_{c_{0}}^{-1}\left(t_{1}\right)=\Psi_{c_{0}}^{-1}\left(t_{2}\right)$ holds.

That is, $t_{1} \approx t_{2}$ if and only if the corresponding rays land at the same point of $J_{c_{0}}$. We obviously have $\mathbb{T} / \approx \cong J_{c_{0}}$.

## Proposition 1 (Equivalence)

The three relations $\sim, \approx$ and $\equiv$ are equivalence relations in their corresponding sets.

Proof: The third relation $\approx$ is obviously an equivalence relation. We now show that $\equiv$ is an equivalence relation on $\mathbb{T}$. It is clearly reflexive and symmetric. Suppose $t_{1} \equiv t_{2}$ and $t_{2} \equiv t_{3}$. We need to show that $t_{1} \equiv t_{3}$. We have that there exist $t^{\prime}$ and $t^{\prime \prime}$ such that

$$
\begin{aligned}
& L_{c}\left(t_{1}\right), L_{c}\left(t_{2}\right) \subset L_{c}\left(t^{\prime}\right), \quad \text { and } \\
& L_{c}\left(t_{2}\right), L_{c}\left(t_{3}\right) \subset L_{c}\left(t^{\prime \prime}\right) .
\end{aligned}
$$

We have two cases:
(1) Suppose that both $t^{\prime}$ and $t^{\prime \prime}$ are branched. Then $R_{c}\left(t^{\prime}\right)$ and $R_{c}\left(t^{\prime \prime}\right)$ share landing points and by the pink lemma 10 below we obtain $L_{c}\left(t^{\prime}\right)=L_{c}\left(t^{\prime \prime}\right)$, so $t_{1} \equiv t_{3}$.
(2) Suppose that at least one of the rays, say $t^{\prime \prime}$, is unbranched. Since $L_{c}\left(t^{\prime \prime}\right)$ is then a singleton, we obtain

$$
L_{c}\left(t^{\prime \prime}\right)=L_{c}\left(t_{3}\right)=L_{c}\left(t_{2}\right) \subset L_{c}\left(t^{\prime}\right)
$$

Since we also had $L_{c}\left(t_{1}\right) \subset L_{c}\left(t^{\prime}\right)$, this gives $t_{1} \equiv t_{3}$.

The proof that $\sim$ is an equivalence relations follows along the above lines and is therefore omitted.

Recall

Proposition $2 \mathbb{T} \approx \cong J_{c_{0}}$.

It is further known

## Proposition 3 (Limiting dynamics)

$J_{c_{0}}=\lim _{c \rightarrow c_{0}} J_{c}$ with respect to the Hausdorff distance as $c \in R_{\mathrm{M}}(\theta)$ tends to $c_{0}$.

The proof is based on the fact that $J_{c_{0}}=K_{c_{0}}$, and can be found in [4]. In this paper we will study this limiting behavior in more detail. The above proposition says that the Julia sets $J_{c}$, which are all Cantor sets, 'condense' to the connected Julia set $J_{c_{0}}$. We will show that the points belonging to the landing set of a branched ray will be identified in the limit, and that no other identification occurs. As we shall see this can be interpreted as follows: The limit Julia set $J_{c_{0}}$ is the quotient of $J_{c}$ with respect to the equivalence relation $\sim$. In particular, each point $z \in J_{c_{0}}$ corresponds to the landing set of an external ray of $J_{c}$ with $c \in R_{\mathrm{M}}(\theta)$. In other words, we obtain a one-to-one correspondence between the landing sets of $J_{c_{0}}$ and $J_{c}$.

Theorem 4 (Main Theorem) Let $\theta \in \mathbb{T}$ be strictly preperiodic with respect to $\mathcal{S}$, $c \in R_{\mathrm{M}}(\theta)$, and $c_{0}:=L_{\mathrm{M}}(\theta)$. We call two points $\zeta_{1}, \zeta_{2} \in J_{c}$ equivalent and write $\zeta_{1} \sim \zeta_{2}$, if and only if $\left\{\zeta_{1}, \zeta_{2}\right\} \subset L_{c}(t)$ for some $t \in \mathbb{T}$. Then

$$
J_{c} / \sim \cong J_{c_{0}} .
$$

We will prove the above theorem via the following two propositions.

Proposition $5 \quad J_{c} / \sim \cong \mathbb{T} / \equiv$
and

Proposition $6 \quad \mathbb{T} / \equiv \cong \mathbb{T} / \approx$.

The Main Theorem follows directly from propositions 5, 6 and 2. The proof is divided into two parts. The first part deals with preparatory lemmas while the second is the core of the proof.

## 4 Proof - part I

In this section we shall deal with the convergence of the external rays $R_{c}(t)$ and the corresponding landing sets $L_{c}(t)$ as $c \in R_{\mathrm{M}}(\theta)$ tends to $c_{0}:=L_{\mathrm{M}}(\theta)$, where $\theta \in \mathbb{T}$ is fixed and strictly preperiodic with respect to $\mathcal{S}$. We first study the convergence $\lim _{c \rightarrow c_{0}} \overline{R_{c}(t)}=\overline{R_{c_{0}}(t)}$ for unbranched rays and then turn our attention to rays $R_{c}(t)$ with rational $t \in \mathbb{T}$.

### 4.1 The Blue section - convergence of rays

This subsection begins with a study of the convergence of preperiodic external rays.

Lemma 7 (Blue Lemma) Let $\theta$ and $c_{0}=L_{\mathrm{M}}(\theta) \in \mathrm{M}$ as above, and $\zeta_{0} \in J_{c_{0}}$ be a repelling periodic point (with respect to $p_{c_{0}}$ ). Furthermore, let $\left\{c_{n}\right\}_{n \in \mathbb{N}^{*}} \subset R_{M}(\theta)$ be a sequence with $\lim _{n \rightarrow \infty} c_{n}=c_{0}$. If $t \in \mathbb{T}$ is such that $R_{c_{0}}(t)$ lands on $\zeta_{0}$, then every ray $R_{c_{n}}(t)$ is unbranched and

$$
\lim _{n \rightarrow \infty} \chi\left(\overline{R_{c_{n}}(t)}, \overline{R_{c_{0}}(t)}\right)=0
$$

In other words, rays landing at some repelling periodic point converge to rays landing at repelling periodic points.

Proof: We fix $c_{0}$ as above and a repelling periodic point $\zeta_{0} \in J_{c_{0}}$. If $t \in \mathbb{T}$ is such that $L_{c_{0}}(t)=\zeta_{0}$, then $t$ is periodic with respect to $\mathcal{S}$. By the choice of $\theta$ this implies $t \notin O^{-}(\theta)$. Hence, $R_{c_{n}}(t)$ is unbranched for every $n \in \mathbb{N}^{*}$. After switching to a suitable iterate we can assume that $R_{c_{0}}(t)$ is fixed (and so is $\zeta_{0}$ ). Due to the implicit function theorem, there exists a neighborhood $U$ of $c_{0}$ and a holomorphic parameterization $\phi: U \rightarrow \mathbb{C}$ of the repelling fixed point. In particular, $\zeta_{0}=\phi\left(c_{0}\right)$, and $\zeta_{n}:=\phi\left(c_{n}\right)$ is a repelling fixed point of $p_{c_{n}}$ for (almost) every $n \in \mathbb{N}^{*}$. After choosing $U$ small enough we may and will assume the existence of some neighborhood $V$ of $\zeta_{0}$ such that
(i) $\phi(U) \subset V$ and $\bar{V} \subset p_{c}(V)$, for every $c \in U$.
(ii) for every $c \in U$ there exists some linearizing conformal mapping $\psi_{c}: p_{c}(V) \rightarrow D_{\mid \lambda_{c}}(0)$ such that


Here, $\lambda_{c}$ denotes the multiplier of the repelling fixed point $\phi(c)$ with respect to $p_{c}$.
(iii) $\psi_{c}(z)$ is holomorphic with respect to $z$ and $c$.

Let $A(\infty, c)$ denote the basin of attraction of $\infty$ with respect to $p_{c}$. It is well known that $A(\infty, c) \rightarrow A\left(\infty, c_{0}\right)$ (with respect to kernel convergence) as $c \in R_{\mathrm{M}}(\theta)$ (and, more generally, $c \in \mathbb{C})$ tends to $c_{0}$, which in turn implies $\psi_{c} \rightarrow \psi_{c_{0}}$ uniformly on compact subsets of $A\left(\infty, c_{0}\right)$. Hence, for each relatively compact subset $B_{0} \subset A\left(\infty, c_{0}\right)$, there exists some neighborhood $W$ of $B_{0}$ such that $W \subset \subset A\left(\infty, c_{n}\right)$ for almost every $n \in \mathbb{N}^{*}$.

We now look at $R_{c_{0}}(t)$. There are points $\xi_{1}, \xi_{2} \in R_{c_{0}}(t)$ such that $p_{c_{0}}\left(\xi_{1}\right)=\xi_{2}$, and that the closed segment $S\left(t, c_{0}\right)$ of $R_{c_{0}}(t)$ connecting $\xi_{1}$ and $\xi_{2}$ is contained in $V$. By construction, the bounded component of $R_{c_{0}}(t) \backslash\left\{\xi_{2}\right\}$ is contained in $V$, too. The construction is illustrated in Figure 4.


Figure 4: Schematic blow up of the neighborhood $V$ of $\zeta_{0} \in J_{c_{0}}$. The ray $R_{c_{0}}(t)$ lands on $\zeta_{0} . S\left(t, c_{0}\right)$ denotes the closed ray segment between the points $\xi_{1}$ and $\xi_{2}$ with $p_{c_{0}}\left(\xi_{1}\right)=\xi_{2}$. $B_{0}$ denotes the part of the ray from $\xi_{2}$ to $\infty$.

Let $B_{0}$ be the unbounded component of $R_{c_{0}}(t) \backslash\left\{\xi_{2}\right\}$. Since $B_{0} \subset \subset A\left(\infty, c_{0}\right)$ and $A(\infty, c) \rightarrow$ $A\left(\infty, c_{0}\right)$ with respect to kernel convergence, we obtain for (almost) every $n \in \mathbb{N}^{*}$ the existence of points $\xi_{1, n}, \xi_{2, n} \in R_{c_{n}}(t)$ satisfying
(i) $\lim _{n \rightarrow \infty} \xi_{j, n}=\xi_{j}$, for $j=1,2$,
(ii) $p_{c_{n}}\left(\xi_{1, n}\right)=\xi_{2, n}$,
(iii) $\overline{B_{n}} \rightarrow \overline{B_{0}}$ with respect to the Hausdorff distance, where $B_{n}$ denotes the unbounded component of $R_{c_{n}}(t) \backslash\left\{\xi_{2, n}\right\}$,
(iv) $R_{c_{n}}(t) \backslash B_{n} \subset \subset V$, in particular, $S\left(t, c_{n}\right) \subset \subset V$ holds for the closed segment $S\left(t, c_{n}\right)$ of $R_{c_{n}}(t)$ connecting $\xi_{1, n}$ and $\xi_{2, n}$.

By hypothesis, $R_{c_{n}}(t)$ is unbranched, with $\zeta_{n}=L_{c_{n}}(t)=\phi\left(c_{n}\right)$. Let $q_{n}$ be the branch of $p_{c_{n}}^{-1}$ satisfying $q_{n}\left(\zeta_{n}\right)=\zeta_{n}$. (Recall that we have assumed $\zeta_{0}$ to be a fixed point.) Note that $q_{n}$ is well defined on $\bar{V}$ for (almost) every $n \in \mathbb{N}^{*}$ and is a contraction. We obtain $q_{n}(\bar{V}) \subset V$. In addition, $\left.\left.q_{n}\right|_{V} \rightarrow q_{0}\right|_{V}$ uniformly on $V$ as $n \rightarrow \infty$. This proves (by Banach principle)
(v) $\overline{\bigcup_{\nu \in \mathbb{N}} q_{n}^{\circ \nu}\left(S\left(t, c_{n}\right)\right)} \longrightarrow \overline{\bigcup_{\nu \in \mathbb{N}} q_{0}^{\circ \nu}\left(S\left(t, c_{0}\right)\right)}$ with respect to the Hausdorff distance as $n \rightarrow \infty$.

Recall that

$$
R_{c_{n}}(t)=B_{n} \cup\left(\bigcup_{\nu \in \mathbb{N}} q_{n}^{\circ \nu}\left(S\left(t, c_{n}\right)\right)\right)
$$

Combining (iii) and (v) gives $\overline{R_{c_{n}}(t)} \underset{n \rightarrow \infty}{\longrightarrow} \overline{R_{c_{0}}(t)}$ with respect to the Hausdorff distance.
Taking backward iterates, the blue lemma yields (since every periodic point of $p_{c_{0}}$ is repelling)

Corollary 8 (Blue Corollary) Let $\theta$ and $c_{0} \in \mathbf{M}$ be as above. Let $t \in \mathbb{T}$ be rational (and therefore preperiodic with respect to $\mathcal{S})$ and $\zeta_{0}:=L_{c_{0}}(t)$. Then $\zeta_{0} \in O^{-}\left(\xi_{0}, p_{c_{0}}\right)$ for some repelling periodic point $\xi_{0}$ of $p_{c_{0}}$, and $\overline{R_{c}(t)} \rightarrow \overline{R_{c_{0}}(t)}$ (with respect to the Hausdorff distance) as $c \rightarrow c_{0}$.

Now, if $t \in O^{-}(\theta) \backslash\{\theta\}$. The corollary gives $\overline{R_{c_{n}}(t)} \rightarrow \overline{R_{c_{0}}(t)}$ with respect to the Hausdorff distance as $n$ tends to $\infty$, that is to say:

Corollary 9 (Second Blue Corollary) If $t \in O^{-}(\theta) \backslash\{\theta\}$, then the branched rays $\overline{R_{c_{n}}(t)}$ converge to the ray $\overline{R_{c_{0}}(t)}$. In particular, the landing points $L_{c_{n}}(t)$ of $R_{c_{n}}(t)$ merge at the landing point $L_{c_{0}}(t)$ of $R_{c_{0}}(t)$ as $n \rightarrow \infty$.

### 4.2 The Pink section

We fix some angle $\theta \in \mathbb{T}$ which is strictly preperiodic with respect to the doubling map $\mathcal{S}$. Let $c \in R_{\mathrm{M}}(\theta)$ and $c_{0}:=L_{\mathrm{M}}(\theta)$. Then the external rays $R_{c}\left(\theta_{j}\right)$, where $\theta_{1}=\frac{\theta}{2}$ and $\theta_{2}=\frac{\theta}{2}+\frac{1}{2}$, are branched rays and every branched ray $R_{c}(t)$ is a preimage of one of these rays. We are interested in branched rays which share landing points.

Lemma 10 (Pink Lemma) A branched ray shares landing points with its conjugate ray, but with no other branched ray.

In other words, if $R_{c}\left(t_{1}\right)$ and $R_{c}\left(t_{2}\right)$ are branched rays with $L_{c}\left(t_{1}\right) \cap L_{c}\left(t_{2}\right) \neq \emptyset$ then either $t_{1}$ and $t_{2}$ are conjugate or $t_{1}=t_{2}$. Hence, for every $\zeta \in J_{c}$ there exists a $t \in \mathbb{T}$ such that $[\zeta]_{\sim}$, viewed as a subset of $\mathbb{C}$, is equal to $L_{c}(t)$.

Remark. For $c \in R_{M}(\theta)$, a branched ray may share a landing point with an unbranched ray.
Proof: Since $\theta$ is strictly preperiodic, the ray $R_{c}(\theta)$ is strictly preperiodic. But its landing set is a singleton. This shows

Fact 1: $L_{c}(\theta)$ is a strictly preperiodic point with respect to $p_{c}$.

Backward iteration gives

Fact 2: Endpoints of a branched ray map (under a suitable iterate) to endpoints of the Critical pair $\theta_{1}, \theta_{2}$.

We will prove the lemma by contradiction. To this end we assume the existence of branched rays $A:=R_{c}\left(t_{1}\right)$ and $B:=R_{c}\left(t_{2}\right)$ such that $A$ and $B$ are not conjugate but $L_{c}\left(t_{1}\right) \cap L_{c}\left(t_{2}\right) \neq \emptyset$. Let $z \in L_{c}\left(t_{1}\right) \cap L_{c}\left(t_{2}\right)$. We have $p_{c}^{\circ n}(A)=p_{c}^{\circ m}(B)=R_{c}(\theta)$ for some integers $n, m \in \mathbb{N}^{*}$.

First we show that $n \neq m$. If $n=m$ then we would have (see Figure 5) that $p_{c}^{\circ n}$ is not injective on any neighborhood of $z$.

Therefore $z \in O^{-}\left(0, p_{c}\right)$ (recall that 0 is the only critical point of $p_{c}$ ). But $0 \notin J_{c}$ and $z \in J_{c}$, so we have a contradiction, and hence $n \neq m$.


Figure 5: If $A$ and $B$ share $z$ and $n=$ $m$ then $p_{c}^{n}$ is not locally injective at $z$, a contradiction.

Without loss of generality we now assume $m>n$. Let $x=p_{c}^{o n}(z)$. Since $x=L_{c}(\theta)$, we also have $p_{c}^{o m}(z)=x$. Therefore

$$
p_{c}^{\circ(m-n)}(x)=p_{c}^{\circ(m-n)}\left(p_{c}^{\circ n}(z)\right)=p_{c}^{\circ m}(z)=x .
$$

So $x$ is periodic and this contradicts Fact 1 .
Since conjugate rays have the same landing set, the blue corollary and the pink lemma give: If $R_{c}\left(t_{1}\right)$ and $R_{c}\left(t_{2}\right)$ are branched rays, then

$$
L_{c}\left(t_{1}\right) \cap L_{c}\left(t_{2}\right) \neq \emptyset \quad \Longrightarrow \quad L_{c}\left(t_{1}\right)=L_{c}\left(t_{2}\right) \quad \Longrightarrow \quad L_{c_{0}}\left(t_{1}\right)=L_{c_{0}}\left(t_{2}\right)
$$

Now suppose that one is branched, say $t_{1}$, and the other one is unbranched. We have that $t_{1}$ is rational and so is $t_{2}$. We now assume $L_{c}\left(t_{1}\right) \cap L_{c}\left(t_{2}\right) \neq \emptyset$, which in this setting means

$$
L_{c}\left(t_{2}\right) \varsubsetneqq L_{c}\left(t_{1}\right)
$$

By the blue corollary, $\overline{R_{c}\left(t_{j}\right)} \rightarrow \overline{R_{c_{0}}\left(t_{j}\right)}$ as $c \rightarrow c_{0}$ for $j=1,2$. Furthermore, $L_{c_{0}}\left(t_{j}\right)$ is a singleton and $L_{c_{0}}\left(t_{1}\right)=L_{c_{0}}\left(t_{2}\right)$. Altogether we obtain

Corollary 11 (Pink Corollary) Let $c \in R_{\mathrm{M}}(\theta)$ and $t_{1}, t_{2} \in \mathbb{T}$ such that at least one of the rays $R_{c}\left(t_{1}\right)$ and $R_{c}\left(t_{2}\right)$ is branched. Then

$$
L_{c}\left(t_{1}\right) \cap L_{c}\left(t_{2}\right) \neq \emptyset \quad \Longrightarrow \quad L_{c_{0}}\left(t_{1}\right)=L_{c_{0}}\left(t_{2}\right)
$$

### 4.3 Diameter of landing sets

The pink lemma shows that if $\zeta_{1} \in J_{c}$ is $\sim$ equivalent to a point $\zeta_{2} \in L_{c}(t)$ of some branched ray $R_{c}(t)$, then $\left[\zeta_{1}\right]_{\sim}=L_{c}(t)$. The second blue corollary shows that if $t \in \mathbb{T}$ is such that $R_{c}(t)$ is a branched ray then $\lim \operatorname{diam} L_{c}(t)=0$ as $c \in R_{\mathrm{M}}(\theta)$ tends to $c_{0}$.

If $\zeta_{1} \in J_{c}$ is not $\sim$ equivalent to any landing point of branched rays, then $\left[\zeta_{1}\right]=L_{c}(t)$ with some $t \in \mathbb{T}$ satisfying $\zeta_{1} \in L_{c}(t)$. In particular, $\operatorname{diam} L_{c}(t)=0$ for every $c \in R_{\mathrm{M}}(\theta)$.

Altogether we obtain

## Corollary 12 (Second Pink Corollary)

For every $t \in \mathbb{T}, \lim \operatorname{diam}\left[L_{c}(t)\right]_{\sim}=0$ as $c \in R_{\mathrm{M}}(\theta)$ tends to $c_{0}:=L_{\mathrm{M}}(\theta)$.

This corollary explains that certain gaps in the Julia sets $J_{c}$ close as $c \in R_{\mathrm{M}}(\theta)$ tends to $c_{0}$. In the next section we shall prove the converse.

## 5 Part II

In this section we prove Propositions 5 and 6 , this completes the proof of the Main Theorem.

### 5.1 Proof of Proposition 5

We have to show the existence of a homeomorphism between $\mathbb{T} / \equiv$ and $J_{c} / \sim$. In fact, we will prove that the mapping

$$
\Phi: \mathbb{T} / \equiv \longrightarrow J_{c} / \sim \quad \text { defined by } \quad[t]_{\equiv \mapsto} \mapsto\left[L_{c}(t)\right] \sim
$$

is a homeomorphism.
First, we show that this mapping is bijective. Recall that by definition

$$
t_{1} \equiv t_{2} \quad \Longleftrightarrow \quad\left[L_{c}\left(t_{1}\right)\right]_{\sim}=\left[L_{c}\left(t_{2}\right)\right]_{\sim}
$$

In particular, ' $\Rightarrow$ ' shows that $\Phi$ is well defined, while ' $\Leftarrow$ ' yields the injectivity. Note that the map is obviously surjective.

We will establish now that the map and its inverse are continuous. Since both quotients are compact, it suffices to prove continuity for $\Phi^{-1}$. To this end, we choose some sequence
$\left\{\left[x_{n}\right]_{\sim}\right\}_{n \in \mathbb{N}^{*}}$ converging to some $\left[x_{0}\right]_{\sim}$ with respect to the quotient topology. We can extract a sequence $\left\{\widetilde{x}_{n}\right\}_{n \in \mathbb{N}^{*}} \subset J_{c}$ with $\widetilde{x}_{n} \in\left[x_{n}\right]_{\sim}$ converging to some point $\widetilde{x}_{0} \in\left[x_{0}\right]_{\sim}$ with respect to the spherical metric. We now choose points $t_{n} \in \mathbb{T}$ such that $\widetilde{x}_{n} \in L_{c}\left(t_{n}\right)$ and an accumulation point $t_{0}$ of the sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}^{*}}$. If $\left\{t_{n}\right\}_{n \in \mathbb{N}^{*}}$ is eventually constant, then clearly $\widetilde{x}_{0} \in L_{c}\left(t_{0}\right)$.

If not, then after switching to a monotonically (increasing or decreasing) convergent subsequence we may and will assume $\lim _{n \rightarrow \infty} t_{n}=t_{0}$. We must show that $\widetilde{x}_{0} \in L_{c}\left(t_{0}\right)$. If $R_{c}\left(t_{0}\right)$ is a branched ray, then $\lim _{n \rightarrow \infty} R_{c_{n}}(t)$ exists and is equal to the left or right branch of $R_{c}(t)$, depending on the choice - increasing or decreasing - of the sequence $\left\{t_{n}\right\}_{n \in \mathbb{N}}$. If $R_{c_{0}}(t)$ is unbranched, then $\lim _{n \rightarrow \infty} R_{c_{n}}(t)=R_{c_{0}}(t)$.

In both cases we obtain that $\lim _{n \rightarrow \infty} L_{c}\left(t_{n}\right)$ (with respect to Hausdorff distance) exists and is equal to a singleton in $L_{c}\left(t_{0}\right)$. Because of $\widetilde{x}_{n} \in L_{c}\left(t_{n}\right)$ and $\lim _{n \rightarrow \infty} \widetilde{x}_{n}=\widetilde{x}_{0}$ we obtain

$$
\widetilde{x}_{0}=\lim _{n \rightarrow \infty} L_{c}\left(t_{n}\right) \in L_{c}\left(t_{0}\right) .
$$

Hence we have

$$
\left[L_{c}\left(t_{n}\right)\right]_{\sim}^{\sim} \underset{n \rightarrow \infty}{\longrightarrow}\left[L_{c}\left(t_{0}\right)\right]_{\sim}
$$

with respect to the quotient topology.

### 5.2 Proof of Proposition 6

Note that $c_{0} \in J_{c_{0}}$ and $c_{0}=L_{c_{0}}(\theta)$. This implies that the rays $R_{c_{0}}\left(\theta_{1}\right)$ and $R_{c_{0}}\left(\theta_{2}\right)$ both land on $0 \in J_{c_{0}}$. Therefore $\theta_{1} \approx \theta_{2}$. It is also well known that all rays landing at $c_{0}$ are preperiodic.

We have to show that $t_{1} \equiv t_{2} \Longleftrightarrow t_{1} \approx t_{2}$, for all $t_{1}, t_{2} \in \mathbb{T}$.
$\Longrightarrow$ If there exists a $t \in \mathbb{T}$ such that $R_{c}(t)$ is a branched ray and $t \equiv t_{j}$, where $j=1,2$, then $t_{1}$ and $t_{2}$ are rational. The conclusion follows from the blue corollary and the second pink corollary. If $t_{1}$ and $t_{2}$ are not $\equiv$-equivalent to any $t$ such that $R_{c}(t)$ is a branched ray, then looking at the external rays of the Julia sets $J_{c_{0}}$ respectively $J_{c}$ one realizes that the itineraries of $t_{1}$ and $t_{2}$ are unique and the same. This carries over to the external rays $R_{c_{0}}\left(t_{1}\right)$ and $R_{c_{0}}\left(t_{2}\right)$ and proves $L_{c_{0}}\left(t_{1}\right)=L_{c_{0}}\left(t_{2}\right)$. This clearly means that $t_{1} \approx t_{2}$.
$\Longleftarrow$ We fix $t_{1}, t_{2} \in \mathbb{T}$ and assume $t_{1} \approx t_{2}$. We suppose $t_{1} \neq t_{2}$. The corresponding rays $R_{c_{0}}\left(t_{1}\right)$ and $R_{c_{0}}\left(t_{2}\right)$ land on the same point, so let $L:=L_{c_{0}}\left(t_{1}\right)=L_{c_{0}}\left(t_{2}\right)$. There are two possibilities:
( $\alpha$ ) $L$ is not precritical.
( $\beta$ ) $L$ is precritical.
( $\alpha$ ) Since $R_{c_{0}}\left(\theta_{1}\right)$ and $R_{c_{0}}\left(\theta_{2}\right)$ both land on the critical point $0 \in J_{c_{0}}$, they divide the dynamic plane into two regions that we label with 0 and 1 (in the way that it is compatible with the coding chosen before in Figure 3). With this, the itinerary of $L$ with respect to $p_{c_{0}}$ is unique (since $L$ is not precritical) and it is exactly the same as the itinerary of $t_{1}$ and $t_{2}$ under doubling (Figure 3). This shows that $L_{c}\left(t_{1}\right)=L_{c}\left(t_{2}\right)$ for every $c \in R_{\mathbf{M}}(\theta)$, which is what had to be proven.
$(\beta)$ If $L$ is precritical, then $t_{1}$ and $t_{2}$ are preperiodic under the doubling map. There exists a unique $n \in \mathbb{N}$ such that

$$
p_{c_{0}}^{\circ n}(L)=0 \quad \text { and } \quad p_{c_{0}}^{\circ(n+1)}(L)=c_{0} .
$$

By hypothesis, there is a minimal $m \in \mathbb{N}^{*}$ such that $p_{c_{0}}^{o m}\left(c_{0}\right)$ is a periodic point. Then $\mathcal{S}^{\circ k}\left(t_{j}\right)$ is periodic for $k=n+m+1$ but not for any smaller $k$. Furthermore, $p_{c}^{\circ(n+m+1)}$ is $2: 1$ on some neighborhood $U$ of $L$. By Rouché's Theorem and for small enough $U, p_{c}^{\circ(n+m+1)}$ is $2: 1$ on $U$, for $c$ sufficiently close to $c_{0}$.
Since $L$ is precritical, there exists some $t \in O^{-}(\theta)$ with $L=L_{c_{0}}(t)$. Note that

$$
L=L_{c_{0}}(t)=L_{c_{0}}\left(t_{1}\right)=L_{c_{0}}\left(t_{2}\right) .
$$

Again, $\mathcal{S}^{\circ k}(t)$ is periodic for $k=n+m+1$ but not for any smaller $k$. Note that $\mathcal{S}^{\circ(n+m+1)}(t)$ and $\mathcal{S}^{\circ(n+m+1)}\left(t_{j}\right)$ have the same period. We shall show that

$$
L_{c}\left(t_{j}\right) \subset L_{c}(t)
$$

for $c \in R_{\mathrm{M}}(\theta)$ sufficiently close to $c_{0}$. Recall that $R_{c}(t)$ is a branched ray, so $L_{c}(t)$ consists of exactly two points. Suppose $L_{c}\left(t_{j}\right) \not \subset L_{c}(t)$. This means that there exists a point

$$
\xi_{j, c} \in L_{c}\left(t_{j}\right) \backslash L_{c}(t) .
$$

Note that

$$
\hat{\xi}_{j, c}:=p_{c}^{\circ(n+m+1)}\left(\xi_{j, c}\right)
$$

is a periodic point, and that by the blue corollary

$$
\lim _{c \rightarrow c_{0}} L_{c}\left(t_{j}\right)=L_{c_{0}}\left(t_{j}\right)=L
$$

which in turn implies $\xi_{j, c} \in U$ for $c \in R_{\mathrm{M}}(\theta)$ sufficiently close to $c_{0}$. By the same reason we have $L_{c}(t) \subset U$.
Recall that $p_{c}^{o(n+m+1)}$ maps both elements of $L_{c}(t)$ to a periodic point $\hat{\zeta}_{c}$. Since $P_{c}^{\circ(n+m+1)}$ is 2:1 on $U$ we obtain that $\hat{\zeta}_{c}$ and $\hat{\xi}_{j, c}$ are different. But they both are periodic points (with the same period) and

$$
\lim _{c \rightarrow c_{0}} \hat{\zeta}_{c}=\lim _{c \rightarrow c_{0}} \hat{\xi}_{c, j}=p_{c_{0}}^{\circ(n+m+1)}(L) .
$$

So $p_{c_{0}}^{0(n+m+1)}(L)$ is a multiple periodic point which in turn implies that it is rationally indifferent, a contradiction.

## Acknowledgment

This papers reports research done at the Mathematisches Forschungsinstitut Oberwolfach (MFO) in 1997. We are gratefully indebted to the MFO for hospitality and financial support under the RiP-Programme Stiftung Volkswagenwerk (and its endless supply of coloured chalk). The second author thanks the Deutsche Forschungsgemeinschaft (DFG) for a travel grant to Smith College, where the final version of the paper was prepared.

## References

[1] Pau Atela. Bifurcations od dynamic rays in the complex polynomials of degree two. Erg. Th. and Dyn. Syst., 12:401-423, 1991.
[2] Adrien Douady and John H. Hubbard. Etude Dynamique des Polynômes Complexes. Publ. Math. d'Orsay, 1984.
[3] Karsten Keller. Julia equivalences and abstract Siegel disks. In Hartje Kriete, editor, Progress in Complex Dynamics, 1998. to appear.
[4] Hartje Kriete. Continuity of filled-in Julia sets and the Closing lemma. Nonlinearity, 9(6):1599-1608, 1996.

Pau Atela<br>Smith College<br>Northampton, MA, USA<br>patela@math.smith.edu

Hartje Kriete<br>Georg-August-Universität<br>Göttingen, Germany<br>kriete@uni-math.gwdg.de

