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1 Introduction

The Julia set J

c

of a quadratic polynomial p

c

: C ! C ; z 7! z

2

+ c, where C denotes the

Riemann sphere and c 2 C , is either connected or a Cantor set, depending on whether the

parameter c is in the Mandelbrot set M or not, or | equivalently | depending on whether

the orbit of the unique critical point of p

c

is bounded or unbounded.

For c 62 M, the Julia set J

c

is homeomorphic to the set �

2

= f0; 1g

N

of sequences on two

symbols. Moreover, at this level the polynomial action p

c

j

J

c

: J

c

! J

c

is homeomorphically

conjugated to the shift map. This `coding' of J

c

is continuous with respect to c, so one can

think of J

c

as being (the same) �

2

as c moves around in C nM, see [1]. In this paper we will

restrict to parameter values c 2 R

M

(�) along an external ray R

M

(�) of the Mandelbrot set of

angle �, with � strictly preperiodic. R

M

(�) lands on some c

0

2 M. The Julia set J

c

0

is, in

this case, locally connected. We refer to Douady and Hubbard [2] as a general reference for

external rays of both the Mandelbrot set and Julia sets. In the dynamic plane, for c 2 R

M

(�)

and t 2 S

1

�

=

R=Z, the external rays R

c

(t) of the disconnected Julia set J

c

(dynamic rays) are

of two types (for more details see [1], and next section):

Branched rays: their angular values exactly correspond to the preimages of the angle � under

doubling; and

Unbranched rays: these are all other rays; each lands directly on a unique Julia set point.

The `main' branched rays | the �rst preimages of the unbranched dynamic ray of angle � |

correspond to the angle pair �

1

=

�

2

and �

2

=

�

2

+

1

2

(see Figure 1). They branch at the critical

value 0, going then directly to a pair of Julia set points x; y one on each side.

θ2

x

y

0 Pc

θ

∉c Jc

∈ Jc
Pc(x) = Pc(y)

θ1

Figure 1: The `main' branched rays (Critical pair) for c 2 R

M

(�), c 62 M,

correspond to the angle pair �

1

, �

2

. They branch at 0, then landing on x; y 2 J

c

.

The pair is mapped under p

c

to the unbranched ray of angle �. This ray lands

on a unique point and contains the critical value c 62 J

c

.
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θ1

θ2

t

1

0

Figure 2: The orbit of t 2

S

1

under doubling gives an

itinerary, a sequence of 0

and 1.

The angle pair �

1

; �

2

2 S

1

divides the unit circle S

1

�

=

R=Z=: T

into two semicircles which we label with 0 and 1 (see Figure 2).

In this way, every t 2 S

1

�

=

R=Zgives an itinerary| a sequence

in �

2

| under the doubling map S : S

1

! S

1

; t 7! 2t (mod 1).

A fundamental fact (see [1]) is

R

c

(t) lands on its itinerary.

That is, the dynamic ray of angle t 2 S

1

lands on the Julia

set point whose binary coding | a sequence in �

2

| is the

itinerary sequence of t under the doubling map. We refer the

reader to [1] and [3] as an introduction to these itineraries.

A branched ray whose angle t satis�es 2

n

t = � (mod 1) for some n � 1 has exactly two

sequences associated, left and right hand sides. These di�er by only one digit and correspond

to the codings of the endpoints x; y 2 J

c

(see [1]).

Since angles giving the same itinerary will correspond to rays landing on the same Julia set

point, one naturally considers the induced quotient space of S

1

or, equivalently, T. We show

that this quotient space has the topology of the Julia set J

c

0

. Recall that c

0

2M is the tip of

the ray R

M

(�) in the parameter plane. We also study in detail how, as c! c

0

along R

M

(�), the

Cantor set J

c

closes its gaps and limits on the connected Julia set J

c

0

. In fact, the gaps which

close are those corresponding to the landing sets of branched rays. Using a suitable equivalence

relation this will be described in the Main Theorem, on page 7.

The paper is organized as follows. In the next section we introduce the notation we will use

and recall some basic facts. In Section 3 we introduce the equivalence relations which are used

to state the Main Theorem. Section 4 deals with the convergence of external rays (and their

landing sets) of the Julia set J

c

as the parameter value c 2 R

M

(�) converges to the landing

point c

0

of the external ray R

M

(�) of the Mandelbrot set. With these preparations at hand,

the proof �nally is completed in the last section.

2 Notation and preliminary facts

We start with some notation. K

c

denotes the set of bounded orbits of p

c

. We always have that

@K

c

= J

c

. N denotes the set of non-negative integers, and N

�

the set of positive integers. �(z;w)

denotes the spherical distance of z;w 2 C and �(S; T ) the Hausdor� distance (with respect to

the spherical metric) of some closed sets S; T � C . S

�

=

T means that the sets S and T are

homeomorphic. The term component always refers to connected component. Neighborhoods

are always open and connected. Strictly preperiodic means preperiodic but not periodic.

We denote by S the mapping S : T! T given by t 7! 2t (mod 1).
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For c 2 C and z 2 C , let O

�

(z; p

c

) := f� 2 C j p

�n

c

(�) = z for some n 2 Ng be the backward

orbit of z with respect to p

c

. Note that, by de�nition, z 2 O

�

(z; p

c

).

For the map p

c

the point at in�nity is super-attracting, so in a neighborhood U of 1 there

is a unique analytic function 	

c

: U ! C n D

r

0

(where D

r

0

denotes the disk centered at the

origin with some radius r

0

� 1) normalized to 	

c

(1) = 1; 	

0

c

(1) = 1 (called the Boettcher

function), that satis�es

	

c

� p

c

�	

�1

c

= z 7! z

2

:

One extends the conjugacy 	

c

by taking successive preimages of U under p

c

, extending the

domain of 	

c

.

The external ray of J

c

of angle t is �rst de�ned as

R

c

(t) := 	

�1

c

�

fre

2�it

j r > r

0

g

�

:

The full ray is obtained by extending the conjugacy 	

c

. In the parameter plane there is

an analog de�nition of external rays of the Mandelbrot set M via the Riemann map of its

complement. For an angle � 2 T, R

M

(�) will denote the corresponding external ray of M. It

is well known that

c 2 R

M

(�) () c 2 R

c

(�):

In this paper we consider � values which are strictly preperiodic. It is also well known that

R

M

(�) lands on a well de�ned point c

0

2 @M which we will also denote by L

M

(�) (see [2]),

that J

c

0

= K

c

0

, and that J

c

0

is connected and locally connected.

Since the Julia set J

c

0

is connected, the extension of 	

c

0

turns out to be the Riemann map of the

complement of K

c

0

, which is the basin of attraction of in�nity A(1; c

0

), onto the complement

C nD of the closure of the unit disk D . By a theorem of Carath�eodory, since the Julia set J

c

0

is

locally connected, 	

�1

c

0

can be extended to the boundary of the unit disc D :

	

�1

c

0

: C nD �! A(1; p

c

) [ J

c

0

= A(1; p

c

) :

Every ray of angle t can then be extended up to J

c

0

, landing at a unique point. 	

�1

c

0

restricted

to the boundary S

1

�

=

T of D clearly induces a homeomorphism between J

c

0

and a quotient

space of T. The equivalence classes are formed by the angles of the rays sharing landing point

(see de�nition of the third equivalence relation in the next section).

x

y

P
c
-n

(0)

t’

t t

x ∈ Jc
∈ Jc

∉ Jc

∈ Jc

Figure 3:

If c 62 M, the Julia set is a Cantor

set and 	

c

cannot be analytically ex-

tended beyond a certain point. Nev-

ertheless one can extend the rays up

to the Cantor set J

c

, see [1]. Since

we will consider in this paper only

c 2 R

M

(�) with � strictly preperiodic,

the dynamic rays in this case are only

of two types (see Figure 3).
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1. A branched ray (Figure 3, left), whose angle t is a preimage (under the doubling map

S) of � (2

n

t = � (mod 1), for some n 2 N

�

). It has a unique branch point at a certain

preimage (under p

c

) of the critical point 0. A branched ray branches at this preimage

of 0 with its conjugate ray t

0

. They share two unique points x; y 2 J

c

as landing points.

The landing set L

c

(t) consists of exactly two points: L

c

(t) = L

c

(t

0

) = fx; yg.

2. An unbranched ray (Figure 3, right), whose angle t is not a preimage of �. It lands,

without branching, directly on a unique Julia set point. L

c

(t) is a singleton.

Notice that R

c

(t) does not include its landing set, we write R

c

(t) for the closed ray: R

c

(t) =

R

c

(t) [ L

c

(t). Similarly, R

M

(�) = R

M

(�) [ fc

0

g.

For every t, (in terms of binary coding) R

c

(t) has exactly `the same' landing set for all c 2

R

M

(�), there are no bifurcations (see [1]). Notice also that for all t 2 Twe have p

c

(R

c

(t)) =

R

c

(2t) :

3 Equivalence relations

We �x � 2 T such that � is strictly preperiodic with respect to S. The external ray R

M

(�)

lands on M, let c

0

:= L

M

(�) be its landing point.

De�nition 1 (First equivalence relation) Let � 2 T as above, and c 2 R

M

(�). We call

two points �

1

; �

2

2 J

c

equivalent and write �

1

� �

2

, if and only if f�

1

; �

2

g � L

c

(t) for some

t 2 T.

Proposition 1 shows that � is in fact an equivalence relation. If � 2 L

c

(t), then sometimes for

clarity we will write [L

c

(t)]

�

instead of [�]

�

.

De�nition 2 (Second equivalence relation) Let � 2 T as above, and c 2 R

M

(�). We

call t

1

; t

2

2 T equivalent and write t

1

� t

2

, if and only if there exists some t 2 T such that

L

c

(t

j

) � L

c

(t) for j = 1; 2.

Note that t

1

� t

2

if and only if there exist points �

j

2 L

c

(t

j

), where j = 1; 2, such that

�

1

� �

2

. This illustrates the close relation between � and �. One readily realizes that � is an

equivalence relation if and only if � is one. Again, we refer to Proposition 1 for a proof that �

is an equivalence relation.

We now turn our attention to p

c

0

and J

c

0

. Since the external map 	

�1

c

0

: C n D ! A(1; c

0

)

extends continuously up to the boundary S

1

�

=

T, 	

�1

c

0

: C n D ! A(1; c

0

) [ J

c

0

de�nes an

equivalence relation on T.
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De�nition 3 (Third equivalence relation) Let c

0

be as above and t

1

; t

2

2 T. We call t

1

and t

2

equivalent and write t

1

� t

2

, if and only if 	

�1

c

0

(t

1

) = 	

�1

c

0

(t

2

) holds.

That is, t

1

� t

2

if and only if the corresponding rays land at the same point of J

c

0

. We obviously

have T=�

�

=

J

c

0

.

Proposition 1 (Equivalence)

The three relations �;� and � are equivalence relations in their corresponding sets.

Proof: The third relation � is obviously an equivalence relation. We now show that � is an

equivalence relation on T. It is clearly reexive and symmetric. Suppose t

1

� t

2

and t

2

� t

3

.

We need to show that t

1

� t

3

. We have that there exist t

0

and t

00

such that

L

c

(t

1

); L

c

(t

2

) � L

c

(t

0

); and

L

c

(t

2

); L

c

(t

3

) � L

c

(t

00

) :

We have two cases:

(1) Suppose that both t

0

and t

00

are branched. Then R

c

(t

0

) and R

c

(t

00

) share landing points and

by the pink lemma 10 below we obtain L

c

(t

0

) = L

c

(t

00

), so t

1

� t

3

.

(2) Suppose that at least one of the rays, say t

00

, is unbranched. Since L

c

(t

00

) is then a singleton,

we obtain

L

c

(t

00

) = L

c

(t

3

) = L

c

(t

2

) � L

c

(t

0

):

Since we also had L

c

(t

1

) � L

c

(t

0

), this gives t

1

� t

3

.

The proof that � is an equivalence relations follows along the above lines and is therefore

omitted. �

Recall

Proposition 2 T=�

�

=

J

c

0

.

It is further known

Proposition 3 (Limiting dynamics)

J

c

0

= lim

c!c

0

J

c

with respect to the Hausdor� distance as c 2 R

M

(�) tends to c

0

.
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The proof is based on the fact that J

c

0

= K

c

0

, and can be found in [4]. In this paper we will

study this limiting behavior in more detail. The above proposition says that the Julia sets J

c

,

which are all Cantor sets, `condense' to the connected Julia set J

c

0

. We will show that the

points belonging to the landing set of a branched ray will be identi�ed in the limit, and that no

other identi�cation occurs. As we shall see this can be interpreted as follows: The limit Julia

set J

c

0

is the quotient of J

c

with respect to the equivalence relation �. In particular, each point

z 2 J

c

0

corresponds to the landing set of an external ray of J

c

with c 2 R

M

(�). In other words,

we obtain a one-to-one correspondence between the landing sets of J

c

0

and J

c

.

Theorem 4 (Main Theorem) Let � 2 T be strictly preperiodic with respect to S, c 2 R

M

(�),

and c

0

:= L

M

(�). We call two points �

1

; �

2

2 J

c

equivalent and write �

1

� �

2

, if and only if

f�

1

; �

2

g � L

c

(t) for some t 2 T. Then

J

c

=�

�

=

J

c

0

:

We will prove the above theorem via the following two propositions.

Proposition 5 J

c

=�

�

=

T=�

and

Proposition 6 T=�

�

=

T=� :

The Main Theorem follows directly from propositions 5, 6 and 2. The proof is divided into two

parts. The �rst part deals with preparatory lemmas while the second is the core of the proof.

4 Proof { part I

In this section we shall deal with the convergence of the external rays R

c

(t) and the corre-

sponding landing sets L

c

(t) as c 2 R

M

(�) tends to c

0

:= L

M

(�), where � 2 T is �xed and

strictly preperiodic with respect to S. We �rst study the convergence lim

c!c

0

R

c

(t) = R

c

0

(t)

for unbranched rays and then turn our attention to rays R

c

(t) with rational t 2 T.

4.1 The Blue section { convergence of rays

This subsection begins with a study of the convergence of preperiodic external rays.
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Lemma 7 (Blue Lemma) Let � and c

0

= L

M

(�) 2 M as above, and �

0

2 J

c

0

be a repelling

periodic point (with respect to p

c

0

). Furthermore, let fc

n

g

n2N

�

� R

M

(�) be a sequence with

lim

n!1

c

n

= c

0

. If t 2 T is such that R

c

0

(t) lands on �

0

, then every ray R

c

n

(t) is unbranched

and

lim

n!1

�

�

R

c

n

(t); R

c

0

(t)

�

= 0 :

In other words, rays landing at some repelling periodic point converge to rays landing at

repelling periodic points.

Proof: We �x c

0

as above and a repelling periodic point �

0

2 J

c

0

. If t 2 T is such that

L

c

0

(t) = �

0

, then t is periodic with respect to S. By the choice of � this implies t 62 O

�

(�).

Hence, R

c

n

(t) is unbranched for every n 2 N

�

. After switching to a suitable iterate we can

assume that R

c

0

(t) is �xed (and so is �

0

). Due to the implicit function theorem, there exists

a neighborhood U of c

0

and a holomorphic parameterization � : U ! C of the repelling �xed

point. In particular, �

0

= �(c

0

), and �

n

:= �(c

n

) is a repelling �xed point of p

c

n

for (almost)

every n 2 N

�

. After choosing U small enough we may and will assume the existence of some

neighborhood V of �

0

such that

(i) �(U) � V and V � p

c

(V ), for every c 2 U .

(ii) for every c 2 U there exists some linearizing conformal mapping  

c

: p

c

(V )! D

j�

c

j

(0) such

that

V

p

c

���! p

c

(V )

 

c

?

?

y

?

?

y

 

c

D ���!

z 7!�

c

z

D

j�

c

j

(0)

Here, �

c

denotes the multiplier of the repelling �xed point �(c) with respect to p

c

.

(iii)  

c

(z) is holomorphic with respect to z and c.

Let A(1; c) denote the basin of attraction of 1 with respect to p

c

. It is well known that

A(1; c) ! A(1; c

0

) (with respect to kernel convergence) as c 2 R

M

(�) (and, more generally,

c 2 C ) tends to c

0

, which in turn implies  

c

!  

c

0

uniformly on compact subsets of A(1; c

0

).

Hence, for each relatively compact subset B

0

� A(1; c

0

), there exists some neighborhood W

of B

0

such that W �� A(1; c

n

) for almost every n 2 N

�

.

We now look at R

c

0

(t). There are points �

1

; �

2

2 R

c

0

(t) such that p

c

0

(�

1

) = �

2

, and that the

closed segment S(t; c

0

) of R

c

0

(t) connecting �

1

and �

2

is contained in V . By construction, the

bounded component of R

c

0

(t)nf�

2

g is contained in V , too. The construction is illustrated in

Figure 4.
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ζ1

ζ2

ζ0

Rc0
(t)

S(t, c0)

B0

V

Figure 4: Schematic blow up of the neighborhood V of �

0

2 J

c

0

. The ray

R

c

0

(t) lands on �

0

. S(t; c

0

) denotes the closed ray segment between the points

�

1

and �

2

with p

c

0

(�

1

) = �

2

. B

0

denotes the part of the ray from �

2

to 1.

Let B

0

be the unbounded component of R

c

0

(t)nf�

2

g. Since B

0

�� A(1; c

0

) and A(1; c) !

A(1; c

0

) with respect to kernel convergence, we obtain for (almost) every n 2 N

�

the existence

of points �

1;n

; �

2;n

2 R

c

n

(t) satisfying

(i) lim

n!1

�

j;n

= �

j

, for j = 1; 2,

(ii) p

c

n

(�

1;n

) = �

2;n

,

(iii) B

n

! B

0

with respect to the Hausdor� distance, where B

n

denotes the unbounded com-

ponent of R

c

n

(t)nf�

2;n

g,

(iv) R

c

n

(t)nB

n

�� V , in particular, S(t; c

n

) �� V holds for the closed segment S(t; c

n

) of

R

c

n

(t) connecting �

1;n

and �

2;n

.

By hypothesis, R

c

n

(t) is unbranched, with �

n

= L

c

n

(t) = �(c

n

). Let q

n

be the branch of p

�1

c

n

satisfying q

n

(�

n

) = �

n

. (Recall that we have assumed �

0

to be a �xed point.) Note that q

n

is

well de�ned on V for (almost) every n 2 N

�

and is a contraction. We obtain q

n

(V ) � V . In

addition, q

n

j

V

! q

0

j

V

uniformly on V as n!1. This proves (by Banach principle)

(v)

S

�2N

q

��

n

(S(t; c

n

)) �!

S

�2N

q

��

0

(S(t; c

0

)) with respect to the Hausdor� distance as n!1.

Recall that

R

c

n

(t) = B

n

[

 

[

�2N

q

��

n

(S(t; c

n

))

!

:
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Combining (iii) and (v) gives R

c

n

(t) �!

n!1

R

c

0

(t) with respect to the Hausdor� distance. �

Taking backward iterates, the blue lemma yields (since every periodic point of p

c

0

is repelling)

Corollary 8 (Blue Corollary) Let � and c

0

2 M be as above. Let t 2 T be rational (and

therefore preperiodic with respect to S) and �

0

:= L

c

0

(t). Then �

0

2 O

�

(�

0

; p

c

0

) for some

repelling periodic point �

0

of p

c

0

, and R

c

(t) ! R

c

0

(t) (with respect to the Hausdor� distance)

as c! c

0

.

Now, if t 2 O

�

(�)nf�g. The corollary gives R

c

n

(t) ! R

c

0

(t) with respect to the Hausdor�

distance as n tends to 1, that is to say:

Corollary 9 (Second Blue Corollary) If t 2 O

�

(�)nf�g, then the branched rays R

c

n

(t)

converge to the ray R

c

0

(t). In particular, the landing points L

c

n

(t) of R

c

n

(t) merge at the

landing point L

c

0

(t) of R

c

0

(t) as n!1.

4.2 The Pink section

We �x some angle � 2 Twhich is strictly preperiodic with respect to the doubling map S. Let

c 2 R

M

(�) and c

0

:= L

M

(�). Then the external rays R

c

(�

j

), where �

1

=

�

2

and �

2

=

�

2

+

1

2

,

are branched rays and every branched ray R

c

(t) is a preimage of one of these rays. We are

interested in branched rays which share landing points.

Lemma 10 (Pink Lemma) A branched ray shares landing points with its conjugate ray, but

with no other branched ray.

In other words, if R

c

(t

1

) and R

c

(t

2

) are branched rays with L

c

(t

1

) \ L

c

(t

2

) 6= ; then either t

1

and t

2

are conjugate or t

1

= t

2

. Hence, for every � 2 J

c

there exists a t 2 T such that [�]

�

,

viewed as a subset of C , is equal to L

c

(t).

Remark. For c 2 R

M

(�), a branched ray may share a landing point with an unbranched ray.

Proof: Since � is strictly preperiodic, the ray R

c

(�) is strictly preperiodic. But its landing set

is a singleton. This shows

Fact 1: L

c

(�) is a strictly preperiodic point with respect to p

c

.

Backward iteration gives

10



Fact 2: Endpoints of a branched ray map (under a suitable iterate) to endpoints of the Critical

pair �

1

, �

2

.

We will prove the lemma by contradiction. To this end we assume the existence of branched

rays A := R

c

(t

1

) and B := R

c

(t

2

) such that A and B are not conjugate but L

c

(t

1

)\L

c

(t

2

) 6= ;.

Let z 2 L

c

(t

1

) \ L

c

(t

2

). We have p

�n

c

(A) = p

�m

c

(B) = R

c

(�) for some integers n;m 2 N

�

.

z

A

B

c

Pc (z)
n

Pc (z)
n

L =

Rc(θ)

Figure 5: If A and B share z and n =

m then p

n

c

is not locally injective at z, a

contradiction.

First we show that n 6= m. If

n = m then we would have (see Fig-

ure 5) that p

�n

c

is not injective on any

neighborhood of z.

Therefore z 2 O

�

(0; p

c

) (recall that

0 is the only critical point of p

c

). But

0 62 J

c

and z 2 J

c

, so we have a

contradiction, and hence n 6= m.

Without loss of generality we now assume m > n. Let x = p

�n

c

(z). Since x = L

c

(�), we also

have p

�m

c

(z) = x. Therefore

p

�(m�n)

c

(x) = p

�(m�n)

c

(p

�n

c

(z)) = p

�m

c

(z) = x:

So x is periodic and this contradicts Fact 1. �

Since conjugate rays have the same landing set, the blue corollary and the pink lemma give: If

R

c

(t

1

) and R

c

(t

2

) are branched rays, then

L

c

(t

1

) \ L

c

(t

2

) 6= ; =) L

c

(t

1

) = L

c

(t

2

) =) L

c

0

(t

1

) = L

c

0

(t

2

) :

Now suppose that one is branched, say t

1

, and the other one is unbranched. We have that t

1

is

rational and so is t

2

. We now assume L

c

(t

1

) \ L

c

(t

2

) 6= ;, which in this setting means

L

c

(t

2

) & L

c

(t

1

) :

By the blue corollary, R

c

(t

j

) ! R

c

0

(t

j

) as c ! c

0

for j = 1; 2. Furthermore, L

c

0

(t

j

) is a

singleton and L

c

0

(t

1

) = L

c

0

(t

2

). Altogether we obtain

Corollary 11 (Pink Corollary) Let c 2 R

M

(�) and t

1

; t

2

2 T such that at least one of the

rays R

c

(t

1

) and R

c

(t

2

) is branched. Then

L

c

(t

1

) \ L

c

(t

2

) 6= ; =) L

c

0

(t

1

) = L

c

0

(t

2

) :

11



4.3 Diameter of landing sets

The pink lemma shows that if �

1

2 J

c

is � equivalent to a point �

2

2 L

c

(t) of some branched

ray R

c

(t), then [�

1

]

�

= L

c

(t). The second blue corollary shows that if t 2 T is such that R

c

(t)

is a branched ray then limdiamL

c

(t) = 0 as c 2 R

M

(�) tends to c

0

.

If �

1

2 J

c

is not � equivalent to any landing point of branched rays, then [�

1

] = L

c

(t) with

some t 2 T satisfying �

1

2 L

c

(t). In particular, diamL

c

(t) = 0 for every c 2 R

M

(�).

Altogether we obtain

Corollary 12 (Second Pink Corollary)

For every t 2 T, limdiam[L

c

(t)]

�

= 0 as c 2 R

M

(�) tends to c

0

:= L

M

(�).

This corollary explains that certain gaps in the Julia sets J

c

close as c 2 R

M

(�) tends to c

0

. In

the next section we shall prove the converse.

5 Part II

In this section we prove Propositions 5 and 6, this completes the proof of the Main Theorem.

5.1 Proof of Proposition 5

We have to show the existence of a homeomorphism between T=� and J

c

=�. In fact, we will

prove that the mapping

� : T=� �! J

c

=� de�ned by [t]

�

7! [L

c

(t)]

�

is a homeomorphism.

First, we show that this mapping is bijective. Recall that by de�nition

t

1

� t

2

() [L

c

(t

1

)]

�

= [L

c

(t

2

)]

�

:

In particular, `)' shows that � is well de�ned, while `(' yields the injectivity. Note that the

map is obviously surjective.

We will establish now that the map and its inverse are continuous. Since both quotients

are compact, it su�ces to prove continuity for �

�1

. To this end, we choose some sequence

12



f[x

n

]

�

g

n2N

�

converging to some [x

0

]

�

with respect to the quotient topology. We can extract a

sequence fex

n

g

n2N

�

� J

c

with ex

n

2 [x

n

]

�

converging to some point ex

0

2 [x

0

]

�

with respect to

the spherical metric. We now choose points t

n

2 T such that ex

n

2 L

c

(t

n

) and an accumulation

point t

0

of the sequence ft

n

g

n2N

�

. If ft

n

g

n2N

�

is eventually constant, then clearly ex

0

2 L

c

(t

0

).

If not, then after switching to a monotonically (increasing or decreasing) convergent subse-

quence we may and will assume lim

n!1

t

n

= t

0

. We must show that ex

0

2 L

c

(t

0

). If R

c

(t

0

)

is a branched ray, then lim

n!1

R

c

n

(t) exists and is equal to the left or right branch of R

c

(t),

depending on the choice | increasing or decreasing | of the sequence ft

n

g

n2N

. If R

c

0

(t) is

unbranched, then lim

n!1

R

c

n

(t) = R

c

0

(t).

In both cases we obtain that lim

n!1

L

c

(t

n

) (with respect to Hausdor� distance) exists and is

equal to a singleton in L

c

(t

0

). Because of ex

n

2 L

c

(t

n

) and lim

n!1

ex

n

= ex

0

we obtain

ex

0

= lim

n!1

L

c

(t

n

) 2 L

c

(t

0

) :

Hence we have

[L

c

(t

n

)]

�

�!

n!1

[L

c

(t

0

)]

�

with respect to the quotient topology. �

5.2 Proof of Proposition 6

Note that c

0

2 J

c

0

and c

0

= L

c

0

(�). This implies that the rays R

c

0

(�

1

) and R

c

0

(�

2

) both land

on 0 2 J

c

0

. Therefore �

1

� �

2

. It is also well known that all rays landing at c

0

are preperiodic.

We have to show that t

1

� t

2

() t

1

� t

2

, for all t

1

; t

2

2 T.

=) If there exists a t 2 T such that R

c

(t) is a branched ray and t � t

j

, where j = 1; 2, then

t

1

and t

2

are rational. The conclusion follows from the blue corollary and the second pink

corollary. If t

1

and t

2

are not �{equivalent to any t such that R

c

(t) is a branched ray,

then looking at the external rays of the Julia sets J

c

0

respectively J

c

one realizes that the

itineraries of t

1

and t

2

are unique and the same. This carries over to the external rays

R

c

0

(t

1

) and R

c

0

(t

2

) and proves L

c

0

(t

1

) = L

c

0

(t

2

). This clearly means that t

1

� t

2

.

(= We �x t

1

; t

2

2 T and assume t

1

� t

2

. We suppose t

1

6= t

2

. The corresponding rays

R

c

0

(t

1

) and R

c

0

(t

2

) land on the same point, so let L := L

c

0

(t

1

) = L

c

0

(t

2

). There are two

possibilities:

(�) L is not precritical.

(�) L is precritical.
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(�) Since R

c

0

(�

1

) and R

c

0

(�

2

) both land on the critical point 0 2 J

c

0

, they divide the

dynamic plane into two regions that we label with 0 and 1 (in the way that it is

compatible with the coding chosen before in Figure 3). With this, the itinerary of L

with respect to p

c

0

is unique (since L is not precritical) and it is exactly the same as

the itinerary of t

1

and t

2

under doubling (Figure 3). This shows that L

c

(t

1

) = L

c

(t

2

)

for every c 2 R

M

(�), which is what had to be proven.

(�) If L is precritical, then t

1

and t

2

are preperiodic under the doubling map. There

exists a unique n 2 N such that

p

�n

c

0

(L) = 0 and p

�(n+1)

c

0

(L) = c

0

:

By hypothesis, there is a minimal m 2 N

�

such that p

�m

c

0

(c

0

) is a periodic point.

Then S

�k

(t

j

) is periodic for k = n+m+ 1 but not for any smaller k. Furthermore,

p

�(n+m+1)

c

0

is 2 : 1 on some neighborhood U of L. By Rouch�e's Theorem and for small

enough U , p

�(n+m+1)

c

is 2 : 1 on U , for c su�ciently close to c

0

.

Since L is precritical, there exists some t 2 O

�

(�) with L = L

c

0

(t). Note that

L = L

c

0

(t) = L

c

0

(t

1

) = L

c

0

(t

2

) :

Again, S

�k

(t) is periodic for k = n + m + 1 but not for any smaller k. Note that

S

�(n+m+1)

(t) and S

�(n+m+1)

(t

j

) have the same period. We shall show that

L

c

(t

j

) � L

c

(t)

for c 2 R

M

(�) su�ciently close to c

0

. Recall that R

c

(t) is a branched ray, so L

c

(t)

consists of exactly two points. Suppose L

c

(t

j

) 6� L

c

(t). This means that there exists

a point

�

j;c

2 L

c

(t

j

)nL

c

(t) :

Note that

^

�

j;c

:= p

�(n+m+1)

c

(�

j;c

)

is a periodic point, and that by the blue corollary

lim

c!c

0

L

c

(t

j

) = L

c

0

(t

j

) = L

which in turn implies �

j;c

2 U for c 2 R

M

(�) su�ciently close to c

0

. By the same

reason we have L

c

(t) � U .

Recall that p

�(n+m+1)

c

maps both elements of L

c

(t) to a periodic point

^

�

c

. Since

P

�(n+m+1)

c

is 2 : 1 on U we obtain that

^

�

c

and

^

�

j;c

are di�erent. But they both are

periodic points (with the same period) and

lim

c!c

0

^

�

c

= lim

c!c

0

^

�

c;j

= p

�(n+m+1)

c

0

(L) :

So p

�(n+m+1)

c

0

(L) is a multiple periodic point which in turn implies that it is rationally

indi�erent, a contradiction. �
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