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Abstract

We consider dynamics of sub-hyperbolic and semi-hyperbolic semi-

groups of rational functions on the Riemann sphere and will show some

no wandering domain theorems. The Julia set of a rational semigroup

in general may have non-empty interior points. We give a sufficient

condition that the Julia set has no interior points. From some in-

formation about forward and backward dynamics of the semigroup,

we consider when the area of the Julia set is equal to 0 or an upper

estimate of the Hausdorff dimension of the Julia set.

For a Riemann surface S, let End(S) denote the set of all holomorphic en-
domorphisms of S. It is a semigroup with the semigroup operation being
composition of functions. A rational semigroup is a subsemigroup of End(C)
without any constant elements. We say that a rational semigroup G is a
polynomial semigroup if each element of G is a polynomial.

Definition 0.1. Let G be a rational semigroup. We set

F (G) = {z ∈ C | G is normal in a neighborhood of z}, J(G) = C \ F (G).

F (G) is called the Fatou set for G and J(G) is called the Julia set for G.

∗1991 Mathematical Subject Classification: 30D05, 58F23
†Partially supported by JSPS Research Fellowships for Young Scientists.
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J(G) is backward invariant under G but not forward invariant in general.
If G = 〈f1, f2, . . . , fn〉 is a finitely generated rational semigroup , then J(G)
has the backward self-similarity. That is, we have J(G) = ∪n

i=1f
−1
i (J(G)).

The Julia set of any rational semigroup is a perfect set, backward orbit of
any point of the Julia set is dense in the Julia set and the set of repelling
fixed points of the semigroup is dense in the Julia set. In general, the Julia
set of a rational semigroup may have non-empty interior points. For exam-
ple, J(〈z2, 2z〉) = {|z| ≤ 1}. In fact, in [HM2] it was shown that if G is a
finitely generated rational semigroup, then any super attracting fixed point
of any element of G does not belong to ∂J(G). Hence we can easily get many
examples that the Julia sets have non-empty interior points. For more detail
about these properties, see [ZR], [GR], [HM1], [HM2], [S1] and [S2]. In this
paper we use the notations in [HM1] and [S3].

Since the Julia set of a rational semigroup may have non-empty interior
points, it is significant for us to get sufficient conditions such that the Julia
set has no interior points, to know when the area of the Julia set is equal to
0 or to get an upper estimate of the Hausdorff dimension of the Julia set.
We will try that using various information about forward dynamics of the
semigroup in the Fatou set or backward dynamics of the semigroup in the
Julia set.

In the section 1 of this paper we will define sub-hyperbolic and semi-
hyperbolic rational semigroups and show no wandering domain theorems.
In particular, we will see that if G is a finitely generated sub-hyperbolic
or semi-hyperbolic rational semigroup, then there exists an attractor in the
Fatou set for G. By using these theorems, we can show the continuity of the
Julia set with respect to the perturbation of the generators. By the existence
of an attractor, we can also show the contracting property with respect to
the backward dynamics(section2). Using that property, we will show that if
a finitely generated rational semigroup G is semi-hyperbolic and satisfies the
open set condition with the open set O such that ♯(∂O ∩ J(G)) < ∞ , then
2-dimensional Lebesgue measure of the Julia set is equal to 0(section2).

In the section 3, we will consider constructing δ-subconformal measures.
If a rational semigroup has at most countably many elements, then we can
construct δ-subconformal measures. We will see that if G is a finitely gen-
erated sub-hyperbolic rational semigroup and has no superattracting fixed
point of any element of it in the Julia set, or if G is a finitely generated
semi-hyperbolic rational semigroup and the interior of the Julia set is empty,
then the Hausdorff dimension of the Julia set is less than the exponent δ. To
show those results, the contracting property of backward dynamics will be
used.

2



ACKNOWLEDGEMENT. The author would like to express his grati-
tude to Prof. S.Ushiki for many valuable discussions and advices.

1 No Wandering Domain

Definition 1.1. Let G be a rational semigroup. We set

P (G) =
⋃
g∈G

{ critical values of g}.

We call P (G) the post critical set of G. We say that G is hyperbolic if P (G) ⊂
F (G). Also we say that G is sub-hyperbolic if ♯{P (G) ∩ J(G)} < ∞ and
P (G) ∩ F (G) is a compact set.

We denote by B(x, ǫ) a ball of center x and radius ǫ in the spherical metric.
We denote by D(x, ǫ) a ball of center x ∈ C and radius ǫ in the Euclidian
metric. Also for any hyperboplic manifold M we denote by H(x, ǫ) a ball
of center x ∈ M and radius ǫ in the hyperbolic metric. For any rational
map g, we denote by Bg(x, ǫ) a connected component of g−1(B(x, ǫ)). For
each open set U in C and each rational map g, we denote by c(U, g) the set
of all connected components of g−1(U). Note that if g is a polynomial and
U = D(x, r) then any element of c(U, g) is simply connected by the maximal
principle.

For each set A in C, we denote by Ai the set of all interior points of A.

Definition 1.2. Let G be a rational semigroup and A a set in C. We set
G(A) = ∪g∈Gg(A) and G−1(A) = ∪g∈Gg

−1(A).

We can show the following Lemma immediately.

Lemma 1.3. Let G be a rational semigroup. Assume that {fλ}λ∈Λ is a gen-
erator system of G. Then we have

⋃
g∈G

{critical values of g} =
⋃
λ∈Λ

G({critical values of fλ}).

Definition 1.4. Let G be a rational semigroup and N a positive integer.
We set

SHN(G)

= {x ∈ C|∃δ(x) > 0, ∀g ∈ G, ∀Bg(x, δ(x)), deg(g : Bg(x, δ) → B(x, δ)) ≤ N}

and UH(G) = C \ (∪N∈NSHN(G)).
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Remark 1. By definition, SHN(G) is an open set in C and g−1(SHN(G)) ⊂
SHN(G) for each g ∈ G. Also UH(G) is a compact set and g(UH(G)) ⊂
UH(G) for each g ∈ G. For each rational map g with deg(g) ≤ 2, any
parabolic or attracting periodic point of g belongs to UH(G).

Definition 1.5. Let G be a rational semigroup. We say that G is semi-
hyperbolic (resp. weakly semi-hyperbolic) if there exists a positive integer N
such that J(G) ⊂ SHN(G)(resp.∂J(G) ⊂ SHN(G)).

Remark 2. 1. If G is semi-hyperbolic and N = 1, then G is hyperbolic.

2. If G is sub-hyperbolic and for each g ∈ G, there is no super attracting
fixed point of g in J(G), then G is semi-hyperbolic.

3. For a rational map f with the degree at least two, 〈f〉 is semi-hyperbolic
if and only if f has no parabolic orbits and each critical point in the
Julia set is non-recurrent([CJY], [Y]). If 〈f〉 is semi-hyperbolic, then
there are no indifferent cycles, Siegel disks and Hermann rings.

Lemma 1.6 ([CJY], [Y]). For any positive integer N and real number r

with 0 < r < 1, there exists a constant C = C(N, r) such that if f :
D(0, 1) → D(0, 1) is a proper holomorphic map with deg(f) = N, then

H(f(z0), C) ⊂ f(H(z0, r)) ⊂ H(f(z0), r)

for any z0 ∈ D(0, 1). Here we can take C = C(N, r) independent of f.

Corollary 1.7 ([Y]). For any positive integer N and real number r with
0 < r < 1, there exist constants r1 and r2 with 0 < r1 ≤ r2 < 1 depending
only on r,N such that if f : D(0, 1) → D(0, 1) is a proper holomorphic map
with deg(f) = N and f(0) = 0, then

D(0, r1) ⊂ W ⊂ D(0, r2)

where W is the connected component of f−1(D(0, r)) containing 0.

Corollary 1.8 ([Y]). Let V be a simply connected domain in C, 0 ∈ V, f :
V → D(0, 1) be a proper holomorphic map of degree N and f(0) = 0, W be
the component of f−1(D(0, r)) containing 0, 0 < r < 1. Then there exists a
constant K depending only on r and N, not depending on V and f, so that

|
x

y
| ≤ K

for all x, y ∈ ∂W.
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Lemma 1.9. Let V be a domain in C, K a continuum in C with diamSK =
a. Assume V ⊂ C \ K. Let f : V → D(0, 1) be a proper holomorphic
map of degree N. Then there exists a constant r(N, a) depending only on
N and a such that for each r with 0 < r ≤ r(N, a), there exists a constant
C = C(N, r) depending only on N and r satisfying that for each connected
component U of f−1(D(0, r)),

diamS U ≤ C,

where we denote by diamS the spherical diameter. Also we have C(N, r) → 0
as r → 0.

Proof. Let r be a number with 0 < r < 1. Let U be a connected component
of f−1(D(0, r)) and V ′ be the connected component of C \ V containing
K. Since V is connected, V ′ is simply connected. Let U ′ be the connected
component of C \ U containing V ′. Since U ′ is also simply connected and
V ′ ⊂ U ′, we have U ′ \ V ′ is a ring domain.

There exists a sequence (rj)
n
j=0 of real numbers with r0 = r < r1 < · · · <

rn = 1 such that there exist no critical values of f in D(0, rj+1) \D(0, rj) for
j = 0, . . . , n−1. For each i = 0, . . . , n, let U ′′

i be the connected component of
f−1(D(0, ri)) containing U and let U ′

i be the connected component of C \U ′′
i

containing V ′. Then we have

U ′′
0 = U ⊂ U ′′

1 ⊂ · · · ⊂ U ′′
n = V and

U ′
0 = U ′ ⊃ U ′

1 ⊃ · · · ⊃ U ′
n = V ′.

By the construction, f : U ′′
i+1 \U

′′
i → D(0, ri+1) \D(0, ri) is a proper map for

i = 0, . . . , n−1. Since there exist no critical values of f inD(0, ri+1)\D(0, ri),
each connected component of U ′′

i+1 \ U
′′
i is a ring domain.

Now we claim that for each i = 0, . . . , n − 1, there exists a connencted
component of U ′′

i+1 \ U ′′
i which is included in U ′

i \ U ′
i+1. We will show that.

Since ∂U ′
i ⊂ U ′′

i+1, there exists a ring domain Ri in U ′′
i+1 \ U

′′
i such that ∂U ′

i

is a connected component of ∂Ri. Let R′
i be the connected component of

U ′′
i+1 \ U

′′
i containing Ri. Since

∂(U ′
i \ U

′
i+1) = ∂U ′

i ∪ ∂U ′
i+1 ⊂ ∂U ′′

i ∪ ∂U ′′
i+1,

we have R′
i ∩ ∂(U ′

i \U
′
i+1) = ∅. Hence R′

i ⊂ U ′
i \U

′
i+1 and we have proved the

above claim.
From the above claim, we get

mod U ′
i \ U

′
i+1 ≥

1

2πN
log

ri+1

ri
, for i = 0, . . . , n− 1.
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It follows that

mod (U ′ \ V ′) ≥
n−1∑
i=0

mod (U ′
i \ U

′
i+1)

≥
1

2πN
log

1

r
.

On the other hand, by Lemma 6.1 in p34 in [LV], we have

mod (U ′ \ V ′) ≤
π2

2C2
1

,

where C1 = min{a, diamS U}. Hence the statement of our lemma holds.

Lemma 1.10. Let G = 〈f1, . . . , fm〉 be a finitely generated rational semi-
group. Let y be a point of C \ UH(G). If there exists a neighborhood W of
y such that C \ G−1(W ) contains a continuum, then there exists a neigh-
borhood W1 of y such that for each simply connected open neighborhood V

of y included in W1 and for each g ∈ G, each element of c(V, g) is simply
connected.

Proof. For each j = 1, . . . ,m, let Cj be the set of all critical points of fj.
By Lemma 1.9, there exists a δ > 0 such that for each g ∈ G, each element
of c(B(y, δ), g) does not contain any two different points of Cj, j = 1, . . . m.

Then for any simply connected open neighborhood V of y included in B(y, δ)
and for any g ∈ G, each element of c(V, g) is simply connected.

Lemma 1.11. Let G be a rational semigroup and N a positive integer. Then
for each g ∈ G, any critical point c of g does not belong to SHN(G)∩G(g(c)).

Proof. Assume that there exists a critical point c of an element g ∈ G such
that c ∈ SHN(G) ∩ G(g(c)). Then there exists a sequence (gn) in G so that
gng(c) → c.

There exists a positive number ǫ such that B(c, ǫ) ⊂ SHN(G). Since
gng(c) → c, we can construct a sequence (nj) and a sequence (Bj) so that
for each j, Bj is a connected component of ((gn1g)(gn2g) · · · (gnj

g))−1(B(c, ǫ))
and c ∈ Bj, which contradicts that c ∈ SHN(G).

Lemma 1.12. Let g be a rational map with deg(g) ≥ 2 and N a positive
integer. Assume that x ∈ J(〈g〉) ∩ SHN(〈g〉). Then x belongs to neither
boundaries of Siegel disks, boundaries of Hermann rings nor indifferent cy-
cles.

Proof. By Theorem 1 and Corollary in [Ma] and Lemma 1.11, we can show
the statement immediately.
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Definition 1.13. Let G be a rational semigroup and U a component of
F (G). For every element g of G, we denote by Ug the connected component
of F (G) containing g(U). We say that U is a wandering domain if {Ug} is
infinite.

Remark 3. In [HM1], A.Hinkkanen and G.J.Martin showed that there ex-
ists an infinitely generated polynomial semigroup which has a wandering
domain.

Lemma 1.14. Let G be a rational semigroup which contains an element with
the degree at least two. Let x be a point of F (G) and assume that there exist
a point y ∈ ∂J(G) and a sequence (gn) of elements of G such that gn(x) → y.

Then we have y ∈ P (G) ∩ ∂J(G).

Proof. We can assume that ♯P (G) ≥ 3. Suppose y ∈ C \ P (G). Let δ be a
number so that B(y, δ) ⊂ C \P (G). We can assume that for each n, gn(x) ∈
B(y, δ). For each n, there exists an analytic inverse branch αn of gn in U

such that αn(gn(x)) = x. Since ♯P (G) ≥ 3, we have {αn}is normal in U.

Hence if we take an ǫ small enough,

diam αn(B(y, ǫδ)) < d(x, J(G)), for each n.

But x ∈ αn(B(y, ǫδ)) for large n and αn(B(y, ǫδ))∩J(G) 6= ∅ because J(G)
is backward invariant under G. This is a contradiction.

Corollary 1.15. Let G be a rational semigroup which contains an element
with the degree at least two. If P (G) ∩ ∂J(G) = ∅, then for each x ∈
F (G), G(x) \ F (G) and there is no wandering domain.

Lemma 1.16. Let G be a polynomial semigroup, N a positive integer and y

a point in ∂J(G)∩C. Assume that there exists an open neighborhood U of y
such that U ⊂ SHN(G) and ♯(C \ G−1(U)) ≥ 3. Then for each x ∈ F (G),
G(x) ⊂ C \ {y}.

Proof. We can assume that ∞ ∈ C \ G−1(U). Suppose that there exist a
point x ∈ F (G) and a sequence (gn) in G such that gn(x) → y as n → ∞.

Let δ be a positive number so that for each g ∈ G,

deg(g : V → D(y, δ)) ≤ N,

for each V ∈ c(D(y, δ), g). For any r with 0 < r ≤ δ there exists a positive
integer n(r) such that for each integer n with n ≥ n(r), gn(x) ∈ D(y, r).
Let Dgn(y, r) be the connected component of g−1

n (D(y, r)) containing x. For
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each n with n ≥ n(r), there exists a conformal map ϕn from D(0, 1) onto
Dgn(y, δ) such that ϕn(0) = x. From Lemma 1.9, there exists a constant C(r)
with C(r) → 0 as r → 0 such that for each integer n with n ≥ n(r),

diam ϕ−1
n (Dgn(y, r)) ≤ C(r).

Since ♯(C \G−1(U)) ≥ 3, the family {ϕn} is normal in D(0, 1). Hence if r is
sufficiently small, then for each integer n with n ≥ n(r),

diamSDgn(y, r) < d(J(G), x),

where we denote by diamS the spherical diameter and by d the spherical
distance. On the other hand, since J(G) is backward invariant under G and
y ∈ J(G), we have that for each n with n ≥ n(r), Dgn(y, r)∩ J(G) 6= ∅. This

is a contradiction. Therefore we have for each x ∈ F (G), G(x) ⊂ C\{y}.

Lemma 1.17. Let G be a polynomial semigroup. Assume that there exist
a point x ∈ F (G), a point y ∈ ∂J(G) and a sequence (gn) in G such that
gn(x) → y as n → ∞. Then at least one of the following holds.

1. UH(G) = ∅ and each element of G is a Möbius transformation. For
each z ∈ F (G), y ∈ G(z).

2. ♯(UH(G)) = 1or 2, UH(G) ⊂ J(G) and UH(G) ∩ ∂J(G) 6= ∅. For
each z ∈ F (G), y ∈ G(z).

3. y ∈ UH(G).

Proof. Suppose that ♯(UH(G)) ≥ 3. From Lemma 1.16, we have y ∈ UH(G).
Suppose there exists a point z ∈ F (G) such that G(z) ⊂ C \ {y}. Then

there exists a neighborhood V of z such that G(V ) ⊂ C\{y}. By Lemma 1.16,
y ∈ UH(G).

Now we consider the case ♯(UH(G)) = 1 or 2. Then ∞ ∈ UH(G). If
∞ ∈ F (G), then since G(∞) = {∞}, from Lemma 1.16 the condition 3.
holds. Now suppose ∞ ∈ J(G). There exists an element g ∈ G with the
degree at least two. From Corollary 1.12, g has no Siegel disks. Let z be a
point in F (G). Since F (G) ⊂ F (〈g〉), z ∈ F (〈g〉). From no wandering domain
theorem and the fact that g has no Siegel disks, there exist an attracting or
parabolic periodic point ζ ∈ F (G) of g and a sequence (nj) of positive integers
such that gnj(z) → ζ. We have ζ ∈ UH(G). If ζ ∈ ∂J(G), then the condition
2. holds. If ζ ∈ F (G), then since G is a polynomial semigroup, we have
G({ζ}) = {ζ} ⊂ F (G) and it implies y ∈ UH(G) from Lemma 1.16. Hence
the condition 3. holds.
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Finally we consider the case UH(G) = ∅. Assume there exists an element
h ∈ G with the degree at least two. Since F (G) 6= ∅, we have F (〈g〉) 6=
∅. By the no wandering domain theorem, g has (super)attracting cycles,
parbolic cycles, Siegel disks or Hermann rings. Since UH(G) = ∅, this is a
contradiction.

Theorem 1.18. Let G be a rational semigroup containing an element with
the degree at least two and U a connected component. Assume that there
exists a sequence (gn) of elements of G such that Ugn ∩Ugm = ∅ if n 6= m ( in
pariticular, U is a wandering domain). Then there exist a subsequence (gnj

)
of (gn) and a point y ∈ P (G) ∩ ∂J(G) such that (gnj

) converges to y locally
uniformly on U.

Proof. By the method in the proof of Theorem 2.2.3 in [S3], we can show
that there exist a subsequence (gnj

) of (gn) and a point y ∈ ∂J(G) such
that (gnj

) converges to y locally uniformly on U. Hence the statement of our
theorem holds from Lemma 1.14.

Theorem 1.19. Let G be a polynomial semigroup and U a connected com-
ponent of F (G). Assume that there exists a sequence (gn) of elements of G
such that Ugn ∩Ugm = ∅ if n 6= m ( in pariticular, U is a wandering domain).
Then at least one of the following holds.

1. UH(G) = ∅ and each element of G is a Möbius transformation. For
each z ∈ F (G), G(z) ∩ ∂J(G) 6= ∅.

2. ♯(UH(G)) = 1 or 2, UH(G) ⊂ J(G) and UH(G) ∩ ∂J(G) 6= ∅. For
each z ∈ F (G), G(z) ∩ ∂J(G) 6= ∅.

3. There exist a subsequence (gnj
) of (gn) and a point y ∈ UH(G)∩∂J(G)

such that (gnj
) converges to y locally uniformly on U.

Proof. Using Lemma 1.17, we can show the statement in the same way as
the proof of Theorem 1.18.

By Lemma 1.9 and using the method of the proof in Lemma 1.16, we can
show the next lemma immediately.

Lemma 1.20. Let G be a rational semigroup and y a point of ∂J(G) \
UH(G). Assume that there exists an open neighborhood U of y such that
C \ G−1(U) contains a continuum K. Then for each x ∈ F (G), G(x) ⊂
C \ {y}.
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Lemma 1.21. Let G be a rational semigroup. Assume that there exist a
point x ∈ F (G), a point y ∈ ∂J(G) and a suquence (gn) in G such that
gn(x) → y as n → ∞. Then at least one of the following holds.

1. UH(G) = ∅ and each element of G is a Möbius transformation. For
each z ∈ F (G), y ∈ G(z).

2. UH(G) is totally disconnected, UH(G) ⊂ J(G) and UH(G)∩∂J(G) 6=
∅. For each z ∈ F (G), y ∈ G(z).

3. y ∈ UH(G).

Proof. Suppose UH(G) is empty. Then we can show that each element of G
is a Möbius transformation in the same way as the proof of Lemma 1.17.

Suppose there exists a point z ∈ F (G) such that G(z) ⊂ C \ {y}. Then
there exists a neighborhood V of z such that G(V ) ⊂ C\{y}. By Lemma 1.20,
y ∈ UH(G).

Suppose UH(G)∩F (G) 6= ∅. Let z ∈ UH(G)∩F (G). If G(z) ⊂ C \ {y},
then by the previous arguments, y ∈ UH(G). If y ∈ G(z), we have also
y ∈ UH(G).

If UH(G) contains a continuum, then from Lemma 1.20, we have y ∈
UH(G).

Suppose that ∅ 6= UH(G) ⊂ J(G) and UH(G) is totally disconnected.
There exists an element g ∈ G of degree at least two. Since UH(G) is totally
disconnected and F (G) 6= ∅, by no wandering domain theorem we can show
that g has an (super) attracting or parabolic periodic point ζ in ∂J(G). We
have ζ ∈ UH(G).

By Lemma 1.21, we can show the next result in the same way as the proof
of Theorem 1.18.

Theorem 1.22. Let G be a rational semigroup and U a connected compo-
nent of F (G). Assume that there exists a sequence (gn) of elements of G such
that Ugn ∩ Ugm = ∅ if n 6= m ( in pariticular, U is a wandering domain).
Then at least one of the following holds.

1. UH(G) = ∅ and each element of G is a Möbius transformation. For
each z ∈ F (G), G(z) ∩ ∂J(G) 6= ∅.

2. UH(G) is totally disconnected, UH(G) ⊂ J(G) and UH(G)∩∂J(G) 6=
∅. For each z ∈ F (G), G(z) ∩ ∂J(G) 6= ∅.
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3. There exist a subsequence (gnj
) of (gn) and a point y ∈ UH(G)∩∂J(G)

such that (gnj
) converges to y locally uniformly on U.

By Lemma 1.20, we can show the next result immediately.

Theorem 1.23. Let G be a rational semigroup. Assume that G is weakly
semi-hyperbolic and there is a point z ∈ F (G) such that the closure of the
G-orbit G(z) is included in F (G). Then for each x ∈ F (G), G(x) ⊂ F (G)
and there is no wandering domain.

Next theorem follows from Lemma 1.21.

Theorem 1.24. Let G be a rational semigroup containing an element g ∈ G

with deg(g) ≥ 2. Assume that G is weakly semi-hyperbolic. If F (G) 6= ∅, then
for each x ∈ F (G), G(x) ⊂ F (G) and there is no wandering domain.

Definition 1.25. Let G be a rational semigroup. We set

A0(G) = G({z ∈ C | ∃g ∈ G with deg(g) ≥ 2, g(x) = x and |g′(x)| < 1.}),

Ã0(G) = G({z ∈ F (G) | ∃g ∈ G with deg(g) ≥ 2, g(x) = x and |g′(x)| < 1.}),

A(G) = G({z ∈ C | ∃g ∈ G, g(x) = x and |g′(x)| < 1.}),

Ã(G) = G({z ∈ F (G) | ∃g ∈ G, g(x) = x and |g′(x)| < 1.}),

where the closure in the definition of Ã0(G) and Ã(G) is considered in C.

Remark 4. By definition,A0(G) ⊂ A(G)∩P (G). For each g ∈ G, g(A0(G)) ⊂
A0(G) and g(A(G)) ⊂ A(G). We have also similar statements for Ã0(G) and
Ã(G).

Lemma 1.26. Let G be a rational semigroup. If Ã0(G) is a non-empty
compact subset of F (G), then

∅ 6= Ã0(G) = Ã(G) ⊂ P (G) ∩ F (G).

Proof. Let g be any Möbius transformation in G and x ∈ C a fixed point of
g with |g′(x)| < 1. Since g(Ã0(G)) ⊂ Ã0(G)∩F (G) and Ã0(G) 6= ∅, we have
that x ∈ Ã0(G). Therefore the statement follows.

11



Lemma 1.27. Let G be a rational semigroup containing an element with the
degree at least two. Assume that G is semi-hyperbolic and F (G) 6= ∅. Then

∅ 6= A0(G) = Ã0(G) = A(G) = Ã(G) ⊂ F (G).

Proof. Let g ∈ G be an element with the degree at least two. Since F (G) 6=
∅, the element g has a (super)attracting periodic point x in F (G). By Re-
mark 1, we have that A0(G) ⊂ F (G). Hence the statement follows from the
proof of Lemma 1.26.

Lemma 1.28. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational semi-
group. Assume that each element of G with the degree at least two has neither
Siegel disks nor Hermann rings and each Möbius transformation in G is lox-
odromic. Also assume that ♯J(G) ≥ 3. Let U1, . . . , Us be some connected
components of F (G) and K a non-empty compact subset of V = ∪s

j=1Uj

such that Uj ∩K 6= ∅ for each j = 1, . . . , s and g(K) ⊂ K for each g ∈ G.

Then for each compact subset L of V there exist a constant c with c > 0 and
a constant λ with 0 < λ < 1 such that

1. sup{‖(fin · · · fi1)
′(z)‖ | z ∈ L, (in, . . . , i1) ∈ {1, . . . ,m}n} ≤ cλn,

where we denote by ‖ · ‖ the norm of the derivative of with respect to
the hyperbolic metric on V.

2. sup{d(fin · · · fi1(z), K) | z ∈ L, (in, . . . , i1) ∈ {1, . . . ,m}n} ≤ cλn,

where we denote by d the spherical metric.

Proof. Let a be a large positive number. For each j = 1, . . . , s, let Kj be
the compact a-neighborhood of K ∩ Uj in Uj with respect to the distance
induced by the hyperbolic metric in Uj . We set K0 = ∪s

j=1Kj. Then for each
g ∈ G, g(K0) ⊂ K0. If a is large enough, we have that L ⊂ K0.

We claim that there exist a constant c > 0 and a constant λ < 1 such
that

sup{‖(fin · · · fi1)
′(z)‖ | z ∈ L, (in, . . . , i1) ∈ {1, . . . ,m}n} ≤ cλn, (1)

where we denote by ‖ · ‖ the norm of the derivative of with respect to the
hyperbolic metric on V. To show the claim, let z be a point of Kj and
(is+1, . . . , i1) an element of {1, . . . ,m}s+1. Then there exists an integer t

with 1 ≤ t ≤ s such that (fis+1 · · · fit+1)(Ujt) ⊂ Ujt , where Ujt is the compo-
nent of V containing (fit · · · fi1)(Uj). From the assumption, we have that for
each x ∈ Kjt , ‖(fis+1 · · · fit+1)

′(x)‖ < 1. Hence

‖(fis+1 · · · fi1)
′(z)‖ < 1.

12



Therefore the claim holds.
From the above claim, we can show the statement of our lemma immedi-

ately.

Definition 1.29. Let G be a rational semigroup and U a open set in C. We
say that a non-empty compact subset K of U is an attractor in U for G if
g(K) ⊂ K for each g ∈ G and for any open neighborhood V of K in U and
each z ∈ U, g(z) ∈ U for all but finitely many g ∈ G.

Lemma 1.30. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational semi-
group and E a finite subset of C. Assume that each x ∈ E is not a non-
repelling fixed point of any element of G. Then for any M > 0, there
exists a positive integer n0 such that for any integer n with n ≥ n0 if
z, fw1(z), fw2fw1(z), . . . , (fwn−1 · · · fw1)(z) and (fwn

· · · fw1)(z) belong to
E and |(fwn

· · · fw1)
′(z)| 6= 0, then |(fwn

· · · fw1)
′(z)| > M.

Proof. We will show the statement by induction on ♯E. When ♯E = 1, it
easy to see that the statement holds. Now assume that for each finite subset
E of C with ♯E ≤ s the statement holds. Let E ′ be a finite subset of C with
♯E ′ = s + 1 and assume that each x ∈ E ′ is not a non-repelling fixed point
of any element of G. Take a number M0 so that

M0(inf{|(fj)
′(ζ)| | ζ ∈ E ′, (fj)

′(ζ) 6= 0, j = 1, . . . ,m.})2 > 1.

From the hypothesis of the induction, there exists a positive integer n0 such
that for any subset E of E ′ with E 6= E ′ and for any integer n with n ≥ n0,

if x, fw1(x), fw2fw1(x), . . . , (fwn−1 · · · fw1)(x) and (fwn
· · · fw1)(x) belong to

E and |(fwn
· · · fw1)

′(x)| 6= 0, then |(fwn
· · · fw1)

′(x)| > M0. For each y ∈ E

and postive integer t with t ≤ n0 + 1, we set

Gy,t = {g ∈ G | g(y) = y, g: a product of t generators }.

Then we have that ♯Gy,t < ∞ and for each g ∈ Gy,t, y is a repelling fixed
point of g.

Now assume that z, fw1(z), fw2fw1(z), . . . , (fwn−1 · · · fw1)(z) and (fwn
· · · fw1)(z)

belong to E ′, (fwn
· · · fw1)(z) = z, (fwn

· · · fw1)
′(z) 6= 0 and (fwj

· · · fw1)(z) 6=
z for each j = 1, . . . , n− 1. If n ≤ n0 + 1, we have

|(fwn
· · · fw1)

′(z)| > inf{|g′(z)| | g ∈ Gz,t, 1 ≤ t ≤ n0 + 1} > 1.

If n ≥ n0 + 2, then we have

|(fwn
· · · fw1)

′(z)| > M0(inf{|(fj)
′(ζ)| | ζ ∈ E ′, f ′

j(ζ) 6= 0, j = 1, . . . ,m.})2 > 1.

13



From these results, we can show that for anyM > 0, there exits a positive
integer n1 such that for any integer u with u ≥ n1 if z, fw1(z), fw2fw1(z), . . . ,
(fwu−1 · · · fw1)(z) and (fwu

· · · fw1)(z) belong to E
′ and |(fwu

· · · fw1)
′(z)| 6= 0,

then

(fwu
· · · fw1)

′(z)| > M.

Hence we have completed the induction.

Lemma 1.31. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational semi-
group and E a finite subset of C. Assume that each x ∈ E is not any
non-repelling fixed point of any element of G. Then there exists an open
neighborhood V of E in C such that for each z ∈ V, if there exists a word
w = (w1, w2, . . . ) ∈ {1, . . . ,m}N satifying that:

1. for each n, (fwn
· · · fw1)(z) ∈ V,

2. (fwn
· · · fw1(z)) accumulates only in E and

3. for each n, (fwn
· · · fw1)(ζ) ∈ E and (fwn

· · · fw1)
′(ζ) 6= 0 where ζ is

the most close point to z in E,

then z is equal to the point ζ ∈ E.

Proof. Let ǫ be a small number so that B(x, ǫ) ∩B(y, ǫ) = ∅ if x, y ∈ E and
x 6= y. Take an ǫ smaller, if necesarry, so that if z0 ∈ E and f ′

j(z0) 6= 0 for
some j, then fj|B(z0,ǫ) is injective. We set V = ∪z∈EB(z, ǫ).

Let z ∈ V be a point. Assume that there exists a word w = (w1, w2 . . . ) ∈

{1, . . . ,m}N satisfying the conditions 1, 2 and 3. We set αn = fwn
fwn−1 · · · fw1 .

From the conditions 2 and 3, there exist a point a ∈ E and a sequence (nj)
such that αnj

(z) → a as j → ∞ and anj
(ζ) = a for each j. By lemma 1.30,

we have |(αn)
′(ζ)| → ∞ as n → ∞. Hence by the Koebe distortion theorem,

there exists a number η > 0 such that for each positive integer j, there
exists an analytic inverse branch βj of αnj

on B(a, η) so that βj(a) = ζ and
βj(B(a, η)) ⊂ V and diam βt(B(a, η)) → 0 as t → ∞.

We set yj = βj(αnj
(z)) for each large j. We claim that for each integer

l with 0 ≤ l ≤ nj − 1, if (fwl+1
fwl

· · · fw1)(yj) = (fwl+1
fwl

· · · fw1)(z), then
(fwl

fwl−1
· · · fw1)(yj) = (fwl

fwl−1
· · · fw1)(z). Let us show the claim above.

Assume that (fwl+1
fwl

· · · fw1)(yj) = (fwl+1
fwl

· · · fw1)(z). We have that

fwl
fwl−1

· · · fw1 ◦ βj : B(a, η) → C

14



is an analytic inverse branch of fwnj
fwnj−1 · · · fwl+1

satisfying

(fwl
fwl−1

· · · fw1βj)(a) = (fwl
fwl−1

· · · fw1)(ζ).

By Lemma 1.30 and the Koebe distortion theorem, we can assume that

(fwl
fwl−1

· · · fw1βj)(B(a, η)) ⊂ B((fwl
fwl−1

· · · fw1)(ζ), ǫ).

Since

(fwl
fwl−1

· · · fw1)(z) ∈ B((fwl
fwl−1

· · · fw1)(ζ), ǫ), (2)

(fwl
fwl−1

· · · fw1)(yj) = (fwl
fwl−1

· · · fw1βj)(αnj
(z)) ∈ B((fwl

fwl−1
· · · fw1)(ζ), ǫ)

(3)

and fwl+1
|B(fwl

fwl−1
···fw1 (ζ), ǫ) is injective,

(fwl+1
fwl

· · · fw1)(yj) = (fwl+1
fwl

· · · fw1)(z)

implies that (fwl
fwl−1

· · · fw1)(yj) = (fwl
fwl−1

· · · fw1)(z). Hence the claim
above holds.

From this claim, it follows that yj = z for each large j. Since diam
βj(B(a, η)) → 0 as j → ∞, we have z = ζ.

Theorem 1.32. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational
semigroup. Assume that F (G) 6= ∅, there is an element g ∈ G such that
deg(g) ≥ 2 and each Möbius transformation in G is loxodromic. Also we
assume all of the following conditions;

1. Ã0(G) is a compact subset of F (G),

2. any element of G with the degree at least two has neither Siegel disks
nor Hermann rings.

3. ♯(UH(G) ∩ ∂J(G)) < ∞ and each point of UH(G) ∩ ∂J(G) is not a
non-repelling fixed point of any element of G.

Then Ã0(G) = Ã(G) 6= ∅ and for each compact subset L of F (G),

sup{d(fin · · · fi1(z), Ã(G)) | z ∈ L, (in, . . . , i1) ∈ {1, . . . ,m}n} → 0,

as n → ∞, where we denote by d the spherical metric. Also Ã(G) is the
smallest attractor in F (G) for G.
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Proof. First we will show that Ã0(G) = Ã(G) 6= ∅. By the condition 2, g
has neither Siegel disks nor Hermann rings. Since F (G) 6= ∅ and by the
condition 3, applying the no wandering domain theorem for 〈g〉, we see that
the element g has an attracting periodic point x in F (G). Hence Ã0(G) 6= ∅.
By Lemma 1.26, we get Ã0(G) = Ã(G) 6= ∅.

Next we will show that for each x ∈ F (G), G(x) ⊂ F (G). Assume that
there exist a connected component U of F (G), a sequence (gn) of elements
of G and a point y ∈ ∂J(G) such that (gn) converges to y locally uniformly
on U. We take a subsequence (g1,n) of (gn) satisfying that there exists a
generator fi1 so that

g1,n = · · · fi1 ,

for each n. Inductively when we get a sequence (gj,n)n satisfying that there
exists a word (i1, . . . , ij) ∈ {1, . . . ,m}j so that gj,n = · · · fij · · · fi1 for each
n, we take a subsequence (gj+1,n)n of (gj,n)n satisfying that there exists a
generator fij+1

so that

gj+1,n = · · · fij+1
· · · fi1

for each n. By the diagonal method, we get a subsequence (gn,n)n of (gn)

satisfying that there exists a word (i1, i2, . . . ) ∈ {1, . . . ,m}N so that for each
n,

gn,n = αnfin · · · fi1 ,

where αn is an element of G. We consider the sequence (βn) where βn =
fin · · · fi1 . We see that Uβn

6= Uβm
if n 6= m. For, if there exist n and m with

n > m such that Uβn
= Uβm

, then

(fin · · · fim+1)(Uβm
) ⊂ Uβm

and the element fin · · · fim+1 has an (super)attracting fixed point x0 in Uβm
.

By the condition 3, we have x0 ∈ Ã(G). From Lemma 1.28, it contradicts to
that (gn) converges to y ∈ ∂J(G) in U. Hence Uβn

6= Uβm
if n 6= m. Now let

z be a point of U. Since Uβn
6= Uβm

if n 6= m, we have (βn(z)) accumulates
only in ∂J(G). By Theorem 1.22, we can show that (βn(z)) accumulates only
in ∂J(G)∩UH(G). For each large n, let ζn be the most close point to βin(z)
in ∂J(G) ∩ UH(G). Since ♯(∂J(G) ∩ UH(G)) < ∞ and there is no super
attracting fixed point of any element of G in ∂J(G), there exists an integer
n0 such that for each integer n with n ≥ n0,

(fin · · · fin0+1)
′(ζn0) 6= 0.
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From Lemma 1.31, we get a contradiction. Therefore we have for each x ∈
F (G), G(x) ⊂ F (G).

Now let x be a point of F (G). We have G(x) ⊂ F (G). Let {U1, . . . , Us}
be the set of all connected components of F (G) having non-empty inter-
section with G(x). We set V = ∪s

j=1Uj. Suppose that x ∈ Uj. For each
(is+1, is, . . . , i1) ∈ {1, . . . ,m}s+1, there exists an integer t with 1 ≤ t ≤ s

such that (fis+1 · · · fit+1)(Ujt) ⊂ Ujt , where Ujt is the component of V con-
taining (fit · · · fi1)(Uj). From our assumption, the element fis+1 · · · fit+1 has

an attracting fixed point in Ujt ∩ Ã(G). Hence, from Lemma 1.28, we have

sup{d(fin · · · fi1(z), Ã(G)) | (in, . . . , i1) ∈ {1, . . . ,m}n} → 0,

as n → ∞. Therefore for each compact subset L of F (G), the similar result
holds.

Finally we will show that Ã(G) is the smallest attractor in F (G) for G.

From the argument above, Ã(G) is an attractor in F (G) for G. Let K be any
attractor in F (G) for G. It is easy to see that each attracting fixed point of
any element of G in F (G) belongs to the set K. It implies that Ã(G) ⊂ K.

By Theorem 1.32 and Lemma 1.27, we get the next theorem.

Theorem 1.33. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational
semigroup which is semi-hyperbolic. Assume that there is an element g ∈ G

such that deg(g) ≥ 2 and each Möbius transformation in G is loxodromic. If
F (G) 6= ∅, then ∅ 6= A(G) = A0(G) ⊂ F (G) and for each compact subset L
of F (G),

sup{d(fin · · · fi1(z), A(G)) | z ∈ L, (in, . . . , i1) ∈ {1, . . . ,m}n} → 0,

as n → ∞, where we denote by d the spherical metric. Also A(G) is the
smallest attractor in F (G) for G.

Theorem 1.34. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational
semigroup which is sub-hyperbolic. Assume that there is an element g ∈ G

such that deg(g) ≥ 2 and each Möbius transformation in G is loxodromic. If
F (G) 6= ∅, then ∅ 6= Ã(G) = Ã0(G) ⊂ F (G) and for each compact subset L
of F (G),

sup{d(fin · · · fi1(z), Ã(G)) | z ∈ L, (in, . . . , i1) ∈ {1, . . . ,m}n} → 0,

as n → ∞, where we denote by d the spherical metric. Also Ã(G) is the
smallest attractor in F (G) for G.
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Proof. Since Ã0(G) ⊂ P (G) and G is sub-hyperbolic, we have that Ã0(G) is
a compact subset of F (G) and ♯(UH(G)∩ J(G)) < ∞. Now let x be a point
of UH(G) ∩ ∂J(G). Assume that there exists an element h ∈ G such that
h(x) = x. Since G is sub-hyperbolic, x is neither attracting nor indifferent
fixed point of h. Since G is finitely generated, by [HM2], we have that there
exists no superattracting fixed point of any element of G in ∂J(G). Hence x

is a repelling fixed point of h.
From Theorem 1.32, the statement of our theorem holds.

Proposition 1.35. Let G be a finitely generated rational semigroup which
contains an element with the degree at least two. Assume that ♯P (G) < ∞
and P (G) ⊂ J(G). Then J(G) = C.

Proof. Suppose F (G) 6= ∅. Let g ∈ G be an element with the degree at least
two. By the assumption of our Proposition, g has a super attracting periodic
point in ∂J(G). On the other hand, since G is finitely generated, by [HM2],
there exist no super attracting fixed points of any element of G in ∂J(G).
This is a contradiction.

Definition 1.36. Let M be a complex manifold. Suppose the map

(z, a) ∈ C×M 7→ fj,a(z) ∈ C

is holomorphic for each j = 1, . . . , n . We set Ga = 〈f1,a, · · · , fn,a〉. Then we
say that {Ga}a∈M is a holomorphic family of rational semigroups.

By Theorem 1.32 and Theorem 2.3.4 in [S3], we get the following result.

Corollary 1.37. Let M be a complex manifold. Let {Ga}a∈M be a holomor-
phic family of rational semigroups where Ga = 〈f1,a, · · · , fn,a〉. Let b be a
point of M. We assume that Gb satisfies the assumption in Theorem 1.32.
Then the map

a 7→ J(Ga)

is continuous at the point a = b with respect to the Hausdorff metric.

Corollary 1.38. Let M be a complex manifold. Let {Ga}a∈M be a holomor-
phic family of rational semigroups where Ga = 〈f1,a, · · · , fn,a〉. Let b be a
point of M. Assume that Gb contains an element of degree at least two and
that each Möbius transformation in Gb is loxodromic. If Gb is semi-hyperbolic
or sub-hyperbolic, then the map

a 7→ J(Ga)

is continuous at the point a = b with respect to the Hausdorff metric.
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2 Open Set Condition and Area 0

Definition 2.1. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational
semigroup. We say that G satisfies the open set condition with respect to
the generators f1, f2, . . . , fm if there exists an open set O such that for each
j = 1, . . . ,m, f−1

j (O) ⊂ O and {f−1
j (O)}j=1,... ,m are mutually disjoint.

Definition 2.2. Let G be a rational semigroup and S = {fλ | λ ∈ Λ} a
generator system of G. For each g ∈ G, We set

wlS(g) = min{n ∈ N | g = fλ1 · · · fλn
}.

We call wlS(g) the word length of g with respect to S.

Proposition 2.3. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational
semigroup. Assume that G satisfies the open set condition with respect to
the generators f1, f2, . . . , fm and O \ J(G) 6= ∅ where O is an open set in
the definition of the open set condition. Then J(G)i = ∅ where we denote by
J(G)i the interior of J(G).

Proof. Let S = {f1, . . . , fm}. Assume that J(G)i 6= ∅.
Then we claim that for each element g ∈ G and each point x ∈ J(G)i,

g(x) ∈ C \ (O \ J(G)).

Suppose that there exist a point y ∈ J(G)i and an element g1 ∈ G such that
g1(y) ∈ O \ J(G). Since J(G) = ∪n

i=1f
−1
i (J(G)), there exists an element

h ∈ G with wlS(h) = wlS(g1) such that h(y) ∈ J(G). Since f−1
j (O) ⊂ O for

each j = 1, . . . ,m, we have J(G) ⊂ O and J(G)i ⊂ O. Hence g−1
1 (O) ∩

h−1(O) 6= ∅. But g1 6= h and that is a contradiction because of the open set
condition. Therefore the above claim holds.

Now the claim implies thatG is normal in J(G)i but this is a contradiction
and so we have J(G)i = ∅.

Lemma 2.4. Let V and W be simply connected domains in C. Suppose that
W ⊂ V and mod (V \W ) > c > 0. Then there exists a constant 0 < λ < 1
depending only on c such that

diam W

diam V
≤ λ,

here by “diam” we mean the spherical diameter.
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Proof. We can assume that 0 ∈ W and diam V = d(0, 1) where d is the
spherical metric. Let g : D(0, 1) → V be the Riemann map such that
g(0) = 0. By Theorem 2.4 in [M], there exists a constant c1 depending only
on c such that

diamH(g
−1(W )) ≤ c1,

where we denote by diamH the diameter with respect to the hyperbolic metric
in D(0, 1). Since diam V = d(0, 1), by the Koebe distortion theorem, we
have that there exists a constant c2 not depending on V and W such that
|g′(0)| ≤ c2. Using the Koebe distortion theorem again, we see that there
exists a constant c3 depending only on c such that for each z ∈ g−1(W ),
|g(z)| ≤ c3. Hence there exists a constant 0 < c4 < d(0, 1) depending only on
c such that diam W ≤ c4.

Lemma 2.5. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational semi-
group which is semi-hyperbolic. Assume G contains an element with the
degree at least two and each Möbius transformation in G is loxodromic. Also
assume that J(G)i = ∅. Then there exist a δ > 0, a constant L with L > 0
and a constant λ with 0 < λ < 1 such that

sup{diamSU | U ∈ c(B(x,
1

2
δ), fin · · · fi1), x ∈ J(G), (i1, . . . , in) ∈ {1, . . . ,m}n}

≤ Lλn, for each n.

Proof. We will show the statement in the same way as the proof of Proposi-
tion 3.3 in [Y] or Theorem 2.1 in [CJY]. In the proof of them, it was used that
for each rational map f and each open set V with V ∩J(〈f〉) 6= ∅, there exists
a positive integer n such that fn(V ) ⊃ J(〈f〉). But in the case of semigroups,
it is not true in general that for each word w = (w1, w2, . . . ) ∈ {1, . . . ,m}
and for each open set V with V ∩ J(G) 6= ∅, there exists an n such that
(fwn

· · · fw1)(V ) ⊃ J(G). So here, we will use the fact that there exists an
attractor in F (G) for G(Theorem 1.33). We can assume that ∞ ∈ F (G). We
have only to show the statement of our Lemma with respect to the Euclidian
diameter. Let δ > 0 be a small number so that for each g ∈ G and x ∈ J(G),

deg(g : U → D(x, δ)) ≤ N.

for each U ∈ c(D(x, δ), g). By Theorem 1.33, there exists a ball B included in
F (G) such that G(B) ⊂ F (G). Hence by Lemma 1.10, we can assume that for
each g ∈ G and x ∈ J(G), if V is a simply connected open neighborhood of x
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contained in D(x, δ), then each element of c(D(x, δ), g) is simply connected.
First we claim that

sup{diam U | U ∈ c(D(x,
1

2
δ), fin · · · fi1), x ∈ J(G), (i1, . . . , in) ∈ {1, . . . ,m}n}

→ 0, as n → ∞. Suppose that is false. Then there exist a constant C with
C > 0, a sequence (yk) of points in J(G), a sequence (gk) of elements of G
and a sequence (Uk) with Uk ∈ c(D(yk,

1
2
δ), gk) such that gk is a product of

nk generators, nk → ∞, and

diam Uk ≥ C, for each k.

We can assume that (yk) converges to a point y0 in J(G) and that there
exists a sequence (xk)k with xk ∈ g−1

k (yk) ∩ Uk converging to a point z0 in
J(G). By Corollary 1.8, there exists a number r0 > 0 such that for each large
k,

Uk ⊃ D(z0, r0).

Hence

gnk
(D(z0, r0)) ⊂ D(yk,

1

2
δ) ⊂ D(y0, δ) ⊂ C \ UH(G), (4)

for each large k. Since J(G)i = ∅, we have D(z0, r0) ∩ F (G) 6= ∅. By Theo-
rem 1.33, we get a contradiction. Hence the above claim holds.

By the above claim, there exists a positive integer n0 such that for each
n with n ≥ n0, for each element g ∈ G which is a product of n generators
and for each point y ∈ J(G),

diam (U) ≤
1

4
δ, (5)

for each U ∈ c(D(y, 1
2
δ), g). Fix any positive integer k. Let w = (w1, w2, . . . ) ∈

{1, . . . ,m}N be any word. Let (xn) be a sequence such that fwn
(xn) = xn−1

for each n. For each j = 0, . . . , k, let Wj be the element of

c(D(x(k−j)n0 ,
1

2
δ), fw(k−j)n0+1

· · · fwkn0
)

containing xkn0 . By (5), we have

W0 ⊃ · · · ⊃ Wk.
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Since D(J(G), δ) ⊂ C \ UH(G), there exists a positive integer N such that
D(J(G), δ) ⊂ SHn(G). Then for each j = 1, . . . , k,

fw(k−j)n0+1
· · · fwkn0

: Wj → D(x(k−j)n0 ,
1

2
δ)

is a proper holomorphic map with the degree at most N. Since

fw(k−j)n0+1
· · · fwkn0

(Wj+1)

is a connected component of (fw(k−j−1)n0+1
· · · fwkn0

)−1(D(x(k−j−1)n0 ,
1
2
δ)),

which is included in D(x(k−j)n0 ,
1
4
δ) by (5), we have that for each j =

0, . . . , k − 1,

mod (Wj \Wj+1) ≥
1

2πN
log 2.

By Lemma 2.4, there exists a λ with 0 < λ < 1 depending only on N such
that

diam Wj+1

diam Wj

≤ λ, for j = 0, . . . , k − 1.

Hence we get that diam Wk ≤ λkdiam D(x0,
1
2
δ). Therefore the statement of

our lemma holds.

Theorem 2.6. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational semi-
group which is semi-hyperbolic, contains an element with the degree at least
two and satisfies the open set condition with respect to the generators f1, f2, . . . ,
fm. Let O be an open set in Definition 2.1. Assume that ♯(∂O∩ J(G)) < ∞.

Then the 2-dimensional Lebesgue measure of J(G) is equal to 0.

Proof. We will show the statement using the method of Theorem 1.3 in
[Y]. We fix a gemerator system S = {f1, . . . , fm}. By the assumption of
our Theorem, we have each Möbius transformation in G is loxodromic. By
Theorem 1.33, A(G) is an attractor in F (G) forG.We can assume∞ ∈ A(G).
Suppose that the 2-dimensional Lebesgue measure of J(G) is positive.

Since ♯(∂O ∩ J(G)) < ∞, G−1(G(∂O ∩ J(G))) is a countable set. Hence
there exists a Lebesgue density point x of J(G) such that x ∈ J(G) \
(G−1(G(∂O ∩ J(G))). Since we have J(G) = ∪m

j=1f
−1
j (J(G)), there exists a

word w = (w1, w2, . . . ) ∈ {1, . . . ,m}N such that for each positive integer u,
fwu

· · · fw1(x) ∈ J(G).
We will show that the sequence (fwu

· · · fw1(x))u has an accumulation
point in J(G) \ ∂O. Assume that is false. For each large u, let ζu be the
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most close point to fwu
· · · fw1(x) in ∂O ∩ J(G). Since there exists no super

attracting fixed point of any point of any element of G in J(G), there exists a
positive integer s such that for each integer t with t ≥ s, (fwt

· · · fws
)′(ζs−1) 6=

0. Since G is semi-hyperbolic, we have that for each x ∈ ∂O∩ J(G), if there
exists an element g ∈ G such that g(x) = x, then x is a repelling fixed point
of g. Applying Lemma 1.31, we get a contradiction. Hence the sequence
(fwu

· · · fw1(x))u has an accumulation point in J(G) \ ∂O.

By the argument above, we have that there exist an ǫ > 0 and a sequence
(gn) of elements of G such that for each n, gn+1 = hngn for some hn ∈ G

and gn(x) ∈ J(G) \D(∂O, ǫ). Let δ be a small number so that δ < ǫ and for
each g ∈ G and each x ∈ J(G),

deg(g : U → D(x, δ)) ≤ N

for each U ∈ c(D(x, δ), g), where N is a positive integer independent of
x, g and U. By Lemma 1.10, we can assume that for each g ∈ G and each
x ∈ J(G), if V is a simply connected neighborhood of x contained inD(x, δ),
then each element of c(D(x, δ), g) is simply connected.

For each n, we set xn = gn(x). Let Un be the conncted component of
g−1(D(xn,

1
2
δ)) containing x. Now we will claim that

lim
n→∞

m2(Un ∩ J(G))

m2(Un)
= 1, (6)

where we denote by m2 the 2-dimensional Lebesgue measure. By Corol-
lary 1.8, Proposition 2.3 and Lemma 2.5, there exist a constant K > 0, two
sequences (rn) and (Rn) such that 1

K
≤ rn

Rn
< 1, Rn → 0 and

D(x, rn) ⊂ Un ⊂ D(x,Rn).

Since x is a Lebesgue density point of J(G), the claim holds. Now we get

lim
n→∞

m2(Un ∩ F (G))

m2(Un)
= 0. (7)

For each n, Let φn : D(0, 1) → Dgn(xn, δ) be the Riemann map such that
φn(0) = x, where Dgn(xn, δ) is the element of c(D(xn, δ), gn) containing Un.

By (7) and the Koebe distortion theorem, we get

lim
n→∞

m2(φ
−1
n (Un ∩ F (G)))

m2(φ−1
n (Un))

= 0. (8)

By Corollary 1.7, there exists a constant 0 < c1 < 1 such that for each n,

the Euclidian diameter of φ−1
n (Un) is less than c1. Since we can assume that
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Dgn(xn, δ) ⊂ C for each n and uniformly bounded in C, by Caushy’s formula,
we get that there exists a constant c2 such that

|(gnφn)
′(z)| ≤ c2 on φ−1

n (Un), n = 1, 2, . . . (9)

Now we will show

D(xn,
1

2
δ) ∩ F (G) = gn(Un ∩ F (G)), for each n. (10)

It is easy to see that D(xn,
1
2
δ)∩F (G) ⊃ gn(Un∩F (G)). Now let z be a point

of D(xn,
1
2
δ) ∩ F (G) and assume that there exists a point w ∈ Un ∩ J(G)

such that gn(w) = z. Since J(G) = ∪m
j=1f

−1
j (J(G)) and gn(w) ∈ F (G), there

exists an element g ∈ G with wlS(g) = wlS(gn) such that g(w) ∈ J(G) ⊂ O.

Hence we have g 6= gn and g−1(O) ∩ g−1
n (O) 6= ∅. But this contradicts to the

open set condition. Therefore (10) holds.
By (8) , (9) and (10), we have

m2(D(xn,
1
2
δ) ∩ F (G))

m2(D(xn,
1
2
δ))

=
m2((gn ◦ φn)(φ

−1
n (Un ∩ F (G)))

m2(D(xn,
1
2
δ))

≤

∫
φ−1
n (Un∩F (G))

|(gn ◦ φn)
′(z)|2dm2(z)

m2(φ−1
n (Un))

m2(φ
−1
n (Un))

m2(D(xn,
1
2
))

→ 0,

as n → ∞. Hence we have

lim
n→∞

m2(D(xn,
1
2
δ) ∩ J(G))

m2(D(xn,
1
2
δ))

= 1.

We can assume that there exists a point x∞ ∈ J(G) such that xn → x∞.

Then

m2(D(x∞, 1
2
δ) ∩ J(G))

m2(D(x∞, 1
2
δ))

= 1.

This implies that D(x∞, 1
2
δ) ⊂ J(G) but this is a contradiction because we

have J(G)i = ∅ by Proposition 2.3.

Corollary 2.7. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational
semigroup which is sub-hyperbolic, contains an element with the degree at
least two and satisfies the open set condition with respect to the genera-
tors f1, f2, . . . , fm. Let O be an open set in Definition 2.1. Assume that
♯(∂O ∩ J(G)) < ∞. Then the 2-dimensional Lebesgue measure of J(G) is
equal to 0.
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Proof. By Proposition 2.3, J(G)i = ∅. SinceG is finitely generated, by [HM2],
there is no super attracting fixed point of any element of G in ∂J(G) = J(G).
Therefore G is semi-hyperbolic. By Theorem 2.6, the statement holds.

3 δ-subconformal measure

Definition 3.1. Let G be a rational semigroup and δ a non-negative num-
ber. We say that a Borel probability measure µ on C is δ-subconformal if for
each g ∈ G and for each Borel measurable set A

µ(g(A)) ≤

∫
A

‖g′(z)‖δdµ,

where we denote by ‖ · ‖ the norm of the derivative with respect to the
spherical metric. For each x ∈ C and each real number s we set

S(s, x) =
∑
g∈G

∑
g(y)=x

‖g′(y)‖−s

counting multiplicities and

S(x) = inf{s | S(s, x) < ∞}.

If there is not s such that S(s, x) < ∞, then we set S(x) = ∞.Also we set

s0(G) = inf{S(x)}, s(G) = inf{δ | ∃µ : δ-subconformal measure}

It is not difficult for us to prove the next result using the same method
as that in [Sul].

Theorem 3.2 ([S4]). Let G be a rational semigroup which has at most
countably many elements. If there exists a point x ∈ C such that S(x) < ∞
then there is a S(x)-subconformal measure. In particular, we have s(G) ≤
s0(G).

Proposition 3.3 ([S4]). Let G be a rational semigroup and τ a δ-subconformal
measure for G where δ is a real number. Assume that ♯J(G) ≥ 3 and for each
x ∈ E(G) there exists an element g ∈ G such that g(x) = x and |g′(x)| < 1.
Then the support of τ contains J(G).

Proposition 3.4. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational
semigroup. Assume that G satisfies the open set condition with respect to the
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generators f1, f2, . . . , fm and O \ J(G) 6= ∅ where O is an open set in the
definition of the open set condition. If there exists an attractor in F (G) for
G, then

s0(G) ≤ 2.

Proof. We can assume m ≥ 2. Let K be an attractor in F (G) for G. There
exists a simply connected domain U in (O ∩ F (G)) \ (K ∪ P (G)) such that
g(U)∩U = ∅ for each g ∈ G. By the open set condition, it is easy to see that
if g 6= h, then g−1(U) ∩ h−1(U) = ∅. Hence we have

∑
S

∫
U

‖S ′(z)‖2dm2(z) < ∞,

where S is taken over all holomorphic inverse branches of all elements of
G defined on U, ‖ · ‖ denotes the norm of the derivative with respect to
the spherical metric and m2 is the 2-dimensional Lebesgue measure on C. It
follows that for almost every where x ∈ U, S(2, x) < ∞.

Remark 5. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated hyperbolic ra-
tional semigroup which satisfies the strong open set condition (i.e. G satisfies
the open set condition with an open set O satisfying O ⊃ J(G).). We as-
sume that when n = 1 the degree of f1 is at least two. By the results in
[S4](Theorem 3.2 and the proof, Theorem 3.4 and Corollary 3.5), we have

0 < dimH J(G) = s(G) = s0(G) < 2.

Lemma 3.5. Let G be a rational semigroup. Assume that ∞ ∈ F (G),
♯J(G) ≥ 3 and for each x ∈ E(G) there exists an element g ∈ G such that
g(x) = x and |g′(x)| < 1. We also assume that there exist a countable set E
in C, positive numbers a1 and a2 and a constant c with 0 < c < 1 such that
for each x ∈ J(G)\E, there exist two sequences (rn) and (Rn) of positive real
numbers and a sequence (gn) of elements of G satisfying all of the following
conditions:

1. rn → 0 and for each n, 0 < rn
Rn

< c and gn(x) ∈ J(G).

2. for each n, gn(D(x,Rn)) ⊂ D(gn(x), a1).

3. for each n gn(D(x, rn)) ⊃ D(gn(x), a2).

Let δ be a real number with δ ≥ s(G) and µ a δ- subconformal measure. Then
δ-Hausdorff measure on J(G) is absolutely continuous with respect to µ such
that the Radon-Nikodim derivative is bounded from above. In particular, we
have

dimH(J(G)) ≤ s(G).
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Proof. By Proposition 3.3, the support of µ contains J(G). Hence there exists
a constant c1 > 0 such that for each x ∈ J(G), µ(D(x, a2)) > c1.

Fix any x ∈ J(G)\E. For each n we set R̃n(z) = Rnz+x. By the condition
1 and 2, the family {gn ◦ R̃n} is normal in D(0, 1). By Marty’s theorem, there
exists a constant c2 such that for each n and each w ∈ D(0, c),

‖(gn ◦ R̃n)
′(w)‖ ≤ c2.

Note that we can take the constant c2 independent of x ∈ J(G) \ E. Hence
we have for each n,

c1 ≤ µ(D(gn(x), a2))

≤ µ(gn(D(x, rn)))

≤

∫
D(x,rn)

‖g′n(z)‖
δdµ(z)

=

∫
D(x,rn)

‖(gn ◦ R̃n ◦ R̃n

−1
)′(z)‖δdµ(z)

≤ c3
1

Rδ
n

µ(D(x, rn))

≤ c3
1

rδn
µ(D(x, rn)),

where c3 is a constant not depending on n and x ∈ J(G) \ E. Therefore we
get that there exists a constant c4 not depending on n and x ∈ J(G)\E such
that

µ(D(x, rn))

rδn
≥ c4. (11)

Now we can show the statement of our lemma in the same way as the
proof of Theorem 14 in [DU]. We will follow it. Let A be any Borel set in
J(G). We set A1 = A \E. We denote by Hδ the δ-Hausdorff measure. Since
E is a countable set, we have Hδ(A) = Hδ(A1). Fix γ, ǫ. For every x ∈ A1,

denote by {rn(x)}
∞
j=1 the sequence constructed in the above paragraph. Since

µ is regular, for every x ∈ A1 there exists a radius r(x) being of the form
rn(x) such that

µ(
⋃
x∈A1

D(x, r(x)) \ A1) < ǫ.

By the Besicovič theorem we can choose a countable subcover {D(xi, rxi
)}∞i=1

from the cover {D(x, r(x)}x∈A1 of A1, of multiplicity bounded by some con-
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stant C ≥ 1, independent of the cover. By (11), we obtain

∞∑
i=1

r(xi)
δ ≤ c−1

4

∞∑
i=1

µ(D(xi, r(xi)))

≤ c−1
4 Cµ(

∞⋃
i=1

D(xi, r(xi)))

≤ c−1
4 C(ǫ+ µ(A1)).

Letting ǫ → 0 and then γ → 0 we get

Hδ(A) = Hδ(A1) ≤ c−1
4 Cµ(A1) ≤ c−1

4 Cµ(A).

Lemma 3.6. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated sub-hyperbolic
rational semigroup. Assume that there exists an element of G with the degree
at least two, that each Möbius transformation in G is loxodromic and that
there is no super attracting fixed point of any element of G in J(G). Then
there exists a Riemannian metric ρ on a neighborhood V of J(G) \ P (G)
such that for each z0 ∈ J(G) \ G−1(P (G) ∩ J(G)), if there exists a word

w = (w1, w2, . . . , ) ∈ {1, . . . ,m}N satisfying (fwn
· · · fw1)(z0) ∈ J(G) for

each n, then

‖(fwn
· · · fw1)

′(z0)‖ → ∞, as n → ∞,

where ‖ · ‖ is the norm of the derivative measured from ρ on V to it.

Proof. By Theorem 1.34, there exists an attractor K in F (G) for G such that
Ki ⊃ P (G)∩F (G). Let {V1, . . . , Vt} be the set of all connected components
of C \K having non-empty intersection with J(G). We take the hyperbolic
metric in Vi \ P (G) for each i = 1, . . . , t. We denote by ρ the Riemannian
metric in V = ∪t

i=1Vi \ P (G). First we will show the following.

• Claim 1. there exists a k ∈ N such that for each n,

‖(fwn+k
· · · fwn

)′(fwn
· · · fw1(z0))‖ > 1,

where ‖ · ‖ is the norm of the derivative measured from ρ to it. For each
i = 1, . . . , t, let xi be a point of Vi ∩ F (G). Since K is an attractor in F (G)
for G, there exists a k ∈ N such that for each (i1, . . . , ik) ∈ {1, . . . ,m}k,

(fik · · · fi1)(xi) ∈ K, for i = 1, . . . , t. (12)
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Let x be a point of J(G)∩ Vi \P (G). Suppose (fik · · · fi1)(x) ∈ Vj \P (G) for
some (i1, . . . , ik) ∈ {1, . . . ,m}k and j. Let U be the connected component of
(fik · · · fi1)

−1(Vj \ P (G)) ∩ (Vi \ P (G)) containing x. Then

(fik · · · fi1) : U → Vj \ P (G)

is a covering map. Hence we have

‖(fik · · · fi1)
′(z)‖U, Vj\P (G) = 1, for each z ∈ U, (13)

where we denote by ‖ · ‖U, Vj\P (G) the norm of the derivative measured from
the hyperbolic metric on U to that on Vj \P (G). On the other hand, by (12),
U 6= Vi \ P (G). Therefore the inclusion map i : U → Vi \ P (G) satisfies that

‖i′(z)‖U, Vi\P (G) < 1, for each z ∈ U, (14)

where we denote by ‖ · ‖U, Vi\P (G) the norm of the derivative measured from
the hyperbolic metric on U to that on Vi \ P (G). By (13) and (14), we get

‖(fik · · · fi1)
′(z)‖Vi\P (G), Vj\P (G) > 1, for each z ∈ U, (15)

where we denote by ‖ · ‖Vi\P (G), Vj\P (G) the norm of the derivative measured
from the hyperbolic metric on Vi \ P (G) to that on Vj \ P (G). Hence the
Claim 1. holds.

By Claim 1., we get that if the sequence (fwn
· · · fw1)(z0))

∞
n=1 does not

accumulate to any point of P (G) ∩ J(G), then ‖(fwn
· · · fw1)

′(z0)‖ → ∞ as
n → ∞. Hence we can assume that the sequence accumulates to a point of
P (G) ∩ J(G). We set

gn = fwnk
· · · fw1 , for each n.

We will show the following.

• Claim 2. ‖(gn)
′(z0)‖ → ∞ as n → ∞.

Since z0 ∈ J(G) \ G−1(P (G) ∩ J(G)), by the same arguments as that in
the proof of Theorem 1.32, we can show that there exist an ǫ1 > 0 and a
sequence (nj) of integers such that

gnj
(z0) ∈ J(G) \B(P (G), ǫ1), gnj+1(z0) ∈ J(G) ∩ B(P (G), ǫ1).

Suppose the case there exists a constant ǫ2 such that for each j,

d(gnj+1(z0), P (G)) ≥ ǫ2.
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Then from Claim 1, there exists a constant c > 1 such that for each j,

‖(fw(nj+1)k
· · · fwnjk+1

)′((fwnjk
· · · fw1)(z0))‖ > c.

Using the Claim 1 again, we can show that ‖(gn)
′(z0)‖ → ∞ as n → ∞.

Next suppose the case there exists a subsequence (hl)
∞
l=1 of (gnj+1)

∞
j=1

such that d(hl(z0), P (G)) → 0 as l → ∞. There exists a subsequence (βl)
∞
l=1

of (gnj
)∞j=1 such that for each l hl = αl ◦βl where αl is an element of G. Then

there exists a constant c1 ∈ N such that for each l, wlS(αl) ≤ c1 where S =
{f1, . . . , fm}. Hence there exists a sequence (xl) such that d(xl, βl(z0)) → 0
as l → ∞ and αl(xl) ∈ P (G) for each l ∈ N. We can assume that xl ∈
B(βl(z0), ǫ1) for each l ∈ N. Let γl be the analytic inverse branch of βl in
B(βl(z0), ǫ1) such that

γl(βl(z0)) = z0, for each l ∈ N.

Since ∪∞
l=1γl(B(βl(z0), ǫ1)) ⊂ C\K and d(xl, βl(z0)) → 0, We get γl(xl) → z0

as l → ∞. Hence we have

d(z0, h−1
l (P (G))) → 0, as l → ∞. (16)

There exists an i such that z0 ∈ Vi \ P (G). For each l let Vjl be the element
of {V1, . . . , Vt} such that hl(z0) ∈ Vjl \ P (G). Let Wl be the connected com-
ponent of h−1

l (Vjl \ P (G)) ∩ Vi \ P (G) containing z0. Then hl : Wl → Vjl is a
covering map. Hence we have

‖(hl)
′(z)‖Wl, Vjl

\P (G) = 1, for z ∈ Wl,

where ‖ · ‖Wl, Vjl
\P (G) is the norm of the derivative measured from the hy-

perbolic metric on Wl to that on VjlBy Theorem 2.25 in [M], (16) implies
that

‖(il)
′(z)‖Wl, Vi\P (G) → 0 as l → ∞,

where we denote by il the inclusion map from Wl into Vi \ P (G) for each
l ∈ N. It follows that

‖h′
l(z)‖Vi\P (G), Vjl

\P (G) → ∞ as l → ∞, (17)

where ‖ · ‖Vi\P (G), Vjl
\P (G) is the norm of the derivative measured from the

hyperbolic metric on Vi \ P (G) to that on Vjl \ P (G). By (17) and Claim 1,
we get ‖(gn)

′(z0)‖ → ∞ as n → ∞. Hence the Claim 2 holds.
In the same way we can show that for each i = 1, . . . , k − 1,

‖(fwnk+i
· · · fw1)(z0)‖ → ∞ as n → ∞.

We have thus proved the lemma.
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By Lemma 3.5 and Lemma 3.6 , we can show the next result.

Theorem 3.7. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational semi-
group. Assume that G is sub-hyperbolic, for each g ∈ G there is no super
attracting fixed point of g in J(G), there exists an element of G with the de-
gree at least two and each Möbius transformation in G is loxodromic. Then

dimH(J(G)) ≤ s(G) ≤ s0(G).

Proof. First we will show that F (G) 6= ∅. Assume J(G) = C. Let h ∈ G

be an element with the degree at least two. Since G is sub-hyperbolic, the
element h has a super attracting fixed point. But this contradicts to the
assumption of our theorem. Hence F (G) 6= ∅.

We can assume that ∞ ∈ F (G). We set E = G−1(P (G)∩J(G)). Then E

is a countable set. Fix any z0 ∈ J(G) \ E. By the same arguments as that
in the proof of Theorem 1.32, we can show that there exist an ǫ > 0 and a
sequence (gn) of elements of G such that for each n, gn+1 = hngn where hn

is an element of G and

gn(z0) ∈ J(G) \D(P (G), ǫ).

By Lemma 3.6, we can show that

|g′n(z0)| → ∞, as n → ∞. (18)

For each n, let αn be the analytic inverse branch of gn in D(gn(z0), ǫ) such
that αn(gn(z0)) = z0. By the Koebe distortion theorem, there exist constants

a > 0 and b ≥ 1 such that for each n ∈ N, if we set rn = ǫ|α′

n(gn(z0))|
a

, then

D(z0, rn) ⊂ αn(D(gn(z0), ǫ)), D(z0,
rn

2
) ⊃ αn(D(gn(z0),

ǫ

b
)).

Note that we can take the constants a and b independent of n and z0. By (18),
we have rn → 0 as n → ∞. By Lemma 3.5, the statement of our theorem
holds.

Theorem 3.8. Let G = 〈f1, f2, . . . , fm〉 be a finitely generated rational semi-
group which is semi-hyperbolic. Assume that G contains an element with
the degree at least two, each Möbius transformation in G is loxodromic and
J(G)i = ∅. Then we have

dimH(J(G)) ≤ s(G) ≤ s0(G).
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Proof. We can assume ∞ ∈ F (G). Let x be any point of J(G). Since we
have J(G) = ∪m

j=1f
−1
j (J(G)), for each n ∈ N there exists an element gn ∈ G

which is in the form fw1 · · · fwn
such that gn(x) ∈ J(G). Let δ be a small

positive number. For each n, we denote by Dgn(gn(x), δ) the element of
c(D(gn(x), δ), δ) containing x. By Lemma 2.5, if we take a δ smaller, then

diam (Dgn(gn(x), δ)) → 0, as n → ∞. (19)

By Lemma 1.10, we can assume that Dgn(gn(x), δ) is simply connected for
each n. Let φn : D(0, 1) → Dgn(gn(x), δ) be the Riemann map such that
φn(0) = x. By the Koebe distortion theorem, we have that for each n,

Dgn(gn(x), δ) ⊃ D(x,
1

4
|φ′

n(0)|).

Since G is semi-hyperbolic, we can assume that D(J(G), δ) ⊂ SHN(G)
where N is a positive integer. By Lemma 1.9, we get

sup
n∈N

{diam (φ−1
n (Dgn(gn(x), ǫδ)))} → 0, as ǫ → 0.

Therefore by the Koebe distortion theorem, there exists an ǫ such that

Dgn(gn(x), ǫδ) = φn(φ
−1
n (Dgn(gn(x), ǫδ)))

⊂ D(x,
1

8
|φ′

n(0)|), for each n.

By (19), we have |φ′
n(0)| → 0 as n → ∞. Applying Lemma 3.5, we get

dimH(J(G)) ≤ s(G).

By Theorem 3.2, we have s(G) ≤ s0(G).

Example 3.9. Let G = 〈f1, f2〉 where f1(z) = z2 + 2, f2(z) = z2 − 2.
Since P (G) ∩ J(G) = {2,−2} and P (G) ∩ F (G) is compact, we have G is
sub-hyperbolic. Since f−1

j (D(0, 2)) ⊂ D(0, 2) for j = 1, 2 andf−1
1 (D(0, 2)) ∩

f−1
2 (D(0, 2)) = ∅, G satisfies the open set condition. Also J(G) is included
in B = ∪2

j=1f
−1
j (D(0, 2)). Since B ∩ ∂D(0, 2) = {2,−2, 2i,−2i}, we get

♯(J(G) ∩ ∂D(0, 2)) < ∞. By Corollary 2.6, we have m2(J(G)) = 0, where
we denote by m2 the 2-dimensional Lebesgue measure. By Theorem 3.7 and
Proposition 3.4, we have also

dimH(J(G)) ≤ s(G) ≤ s0(G) ≤ 2.
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