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Introdu
tion

Introdu
tions to algebrai
 number theory often regard the 
lassi
al theory of algebrai


number �elds just as a spe
ial 
ase of the theory of Dedekind domains. The level of

abstra
tion 
an even be more in
reased by studying Krull domains instead of Dede-

kind domains. Rings of this type, also known as rings with divisor theory, still allow

some sort of prime fa
torization, but in general, the 
orresponding system of prime

divisors 
an no longer be made expli
it by the system of prime ideals. It has be
ome

standard to des
ribe the prime divisors of a Krull domain by its p-adi
 valuations, i. e.

by its dis
rete rank one valuations. Thus, Krull domains are usually studied by means

of valuation theory and lo
al-global arguments. This methodi
al approa
h, however,

has the disadvantage of being more abstra
t and less graphi
 than 
lassi
al ideal theo-

ry. Compared to prime ideals dis
rete rank one valuations are indeed rather abstra
t

algebrai
 obje
ts. In addition, there is no natural de�nition of the norm of a divisor or

the di�erent of a Krull domain with respe
t to a �nite �eld extension.

The intention of this paper is to present and propagate a methodi
al alterna-

tive devoid of these in
onvenien
es, namely Krone
ker's divisor theory. There have

been several attempts to make Krone
ker's methods popular, but most of the treat-

ments on Krone
ker's divisor theory la
k of systemati
 approa
h. This may explain
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why Krone
ker's approa
h to algebrai
 number theory is little known and still lives in

the shadow of ideal and valuation theory.

In [7℄ Krone
ker's theory was analyzed in modern terms, i. e. by means of the theory

of divisorial ideals, Krone
ker fun
tion rings and Nagata domains. In the present paper

we want to show how Krone
ker's divisor theory 
an be used to transfer notions and

well-known results from the theory of Dedekind domains to Krull domains thereby

giving an alternative approa
h to the fundamentals of algebrai
 number theory.

If D is a Krull domain with �eld of fra
tions K, the 
orresponding Krone
ker fun
-

tion ring Dv
with respe
t to the v-operation is a prin
ipal ideal domain whose elements

deliver a 
omplete and (up to asso
iation) uniquely determined system of divisors for D
in a most natural way. It is well-known that the group of fra
tional Dv

-ideals is isomor-

phi
 to the Lorenzen v-group Λv(D) of D, i. e. the group of fra
tional divisorial ideals

of D. We will show that this isomorphism is given by extending divisorial D-ideals to

Dv
-ideals and by 
ontra
ting Dv

-ideals to D-ideals. Observing that the integral 
losure

T of D in a �nite �eld extension L/K is again a Krull domain and that the integral


losure of Dv
in the 
orresponding extension L(X)/K(X) is given by the Krone
ker

fun
tion ring T v
, we de�ne the norm of a divisor of T with respe
t to L/K in line with

the usual norm with respe
t to L(X)/K(X). Sin
e the Krone
ker fun
tion rings Dv

resp. T v
are prin
ipal ideal domains, hen
e Dedekind domains, the same translation

pro
ess 
an be applied to the de�nition of the residue 
lass �eld, the rami�
ation in-

dex, the inertial degree, the di�erent, the dis
riminant et
. Consequently, many results

on Dedekind domains su
h as the di�erent and dis
riminant theorems 
an easily be

transferred to Krull domains. Finally, we will show that the di�erent of T v
over Dv

is

generated by an element di�erent di�(F ), F ∈ T v
, whi
h implies that T v

is a simple

extension ring of Dv
with T v = Dv[F ]. From this we will explain, why, whith slight

modi�
ations, Kummer's method to fa
torize rational primes in an algebrai
 number

�eld is also appli
able to 
ommon inessential dis
riminant divisors.

The present paper generalizes several results already obtained by H. Flanders for

Dedekind domains (
f. [2℄). It is a 
ontribution to an adequate assessment of Krone
ker's

method. The following passage quoted from the introdu
tion of Flander's paper ex-

plains why Krone
ker's approa
h to algebrai
 number theory deserves being 
arefully

studied even today:

In many situations it is extremely 
onvenient, indeed almost imperative, to have a

prin
ipal ideal ring instead of a Dedekind ring. The usual modern devi
e for passing

to this te
hni
ally vastly simpler situation is to lo
alize either by passing to p-adi



ompletions or by forming the quotient ring with respe
t to the 
omplement of a

�nite set of prime ideals. [Krone
ker's divisor . . . ] theory has not generally been

looked upon as a tool for a

omplishing this redu
tion to prin
ipal ideals, [. . . ]. In

a 
ertain sense it a

omplishes the task mu
h better than does lo
alization be
ause

with lo
alization the bulk of the stru
ture of the ideal group is lost, whereas with

forms [i. e. elements of the Krone
ker fun
tion ring] this stru
ture is preserved down

to the �nest detail. [2, 92℄
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1 Divisorial ideals, Krone
ker divisors and the norm

We start this se
tion with a short introdu
tion to the theory of divisorial ideals and

Krone
ker divisors as outlined in [7℄. If not otherwise stated, we always mean fra
tional

ideals with respe
t to an integral domain when speaking of ideals.

Let D be a domain with quotient �eldK. If a is a D-ideal and if a−1
means the ideal

quotient (D : a) := {µ ∈ K : µa ⊆ D}, we 
all the fra
tional D-ideal av := (a−1)−1

the divisorial or v-ideal 
orresponding to a. The map a 7→ av is referred to as the

v-operation with respe
t to D. It indu
es the t-operation, whi
h is given by

a 7→ at :=
⋂

e f. g.

e⊆a

ev,

where the abbreviation �f. g.� stands for ��nitely generated D-ideal�. The v-operation

is said to be of �nite type if it 
oin
ides with the t-operation. Note that v- and t-

operation mean the same when restri
ted to the set of �nitely generated D-ideals. If

a = av, the D-ideal a is 
alled divisorial or v-ideal ; if a = at, it is 
alled t-ideal. In the

next paragraph the symbol �∗� is used to denote both the v- and the t-operation on D.

A ∗-ideal a is ∗-�nite if there is a �nitely generated D-ideal b with a = b∗. If

this ideal b is generated by a1, . . . , am ∈ b, we also write a = a∗ = (a1, . . . , am)∗ and

refer to a1, . . . , am as the ∗-generating system of a. The fra
tional ∗-ideals of D form

a partially ordered semigroup by the so-
alled ∗-multipli
ation �×�. It is de�ned by

a∗×b∗ := (a′ · b′)∗, where a′, b′ denote fra
tional D-ideals with a′∗ = a∗ and b′∗ = b∗.

The meaning of ∗-divisibility and ∗-invertibility is obvious. Note that, in general, the

v-inverse of a v-invertible v-ideal a is not v-�nite, even if a is v-�nite. The t-inverse of

a t-invertible t-ideal, however, is always t-�nite.

If f(X) = a0 + a1X + . . .+ amX
m

is a polynomial in K[X], the v-ideal


(f)v := (a1, . . . , am)v

is 
alled the v-
ontent of f . If 
(f)v = D, f is 
alled v-primitive. The set of v-

primitive polynomials is denoted by Nv(D). The v-
ontent is said to be multipli
a-

tive if 
(f · g)v = 
(f)v×
(g)v for all f, g ∈ K[X]. The v-
ontent is multipli
ative

if and only if D is integrally 
losed. If the v-�nite v-ideals of D are v-invertible, the

v-
ontent fun
tion 
(·)v 
an be extended from polynomials to rational fun
tions over

K by 
(f)v := 
(f1)v×
(f2)
−1
v for all f := f1

f2
, f1, f2 ∈ D[X].

If the v-�nite v-ideals of D are v-
an
ellative with respe
t to the v-multipli
ation,

whi
h is shown to be equivalent to the v-�nite v-ideals being v-invertible, D is 
alled a

v-domain. The quotient group Λv(D) of all integral v-�nite v-ideals is referred to as the

Lorenzen v-group of D; Λ+
v (D) denotes the semigroup of all integral v-ideals in Λv(D).

If D is a v-domain, the set

Dv :=
{f

g
: f, g ∈ D[X] with 
(f)v ⊆ 
(g)v

}

of rational fun
tions over K be
omes an integral domain, the Krone
ker fun
tion ring

of D with respe
t to the v-operation. Any Dv
-ideal generated by �nitely many rational
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fun
tions

f1
g
, . . . , fm

g
, fi, g ∈ D[X], is a prin
ipal ideal of the form

f

g
Dv

, where f(X) =
f1 · X

r1 + . . . + fm · X
rm

denotes a polynomial in whi
h the exponents ri are su
h

that in the representation of f no monomials of equal degree o

ur. This shows that

Dv
is a
tually a Bezout domain. It is easy to see that Dv ∩ K = D. With Λ(Dv)

(resp. Λ+(Dv)) denoting the Lorenzen (semi)group of Dv
, i. e. the (semi)group of all

(integral) �nitely generated, hen
e prin
ipal Dv
-ideals, we get the isomorphisms of

g
d-(semi)groups Λv(D) ∼= Λ(Dv) resp. Λ+
v (D) ∼= Λ+(Dv).

If the v-�nite v-ideals of D even form a group by v-multipli
ation, i. e. if the v-

inverse of any v-�nite v-ideal is v-�nite again,D is 
alled Prüfer v-multipli
ation domain

(PVMD). In this 
ase, the Krone
ker fun
tion ring Dv
is equal to the quotient ring of

D[X] with respe
t to the multipli
atively 
losed set Nv(D) of v-primitive polynomials

Dv(X) = D[X]Nv(D) =
{f

g
: f ∈ D[X], g ∈ Nv(D)

}
.

We 
all Dv(X) the Nagata domain of D with respe
t to the v-operation.

IfD is a Prüfer v-multipli
ation domain in whi
h every v-ideal is v-�nite,D is shown

to be a Krull domain (and vi
e versa). Observing that the v-�niteness 
ondition means

that v-operation and t-operation 
oin
ide, we obtain ideal theoreti
 
hara
terizations

of a Krull domain whi
h are analogue to those of a Dedekind domain. To be pre
ise,

D is a Krull domain if and only if any of the following 
onditions holds: (1) The

fra
tional t-ideals form a group by t-multipli
ation. (2) Any t-ideal 
an be uniquely

written as the t-produ
t of �nitely many prime t-ideals. (3) D is integrally 
losed,

every as
ending 
hain of t-ideals be
omes stable (t-noetherian property) and any prime

t-ideal is maximal in the set of all t-ideals.

We re
all that a Krull domain is nothing else than a ring with divisor theory, i. e.

a domain together with a fa
torial semigroup D+
and a homomorphism (·) : D∗ → D+

su
h that the following 
onditions hold:

(D 1) a | b with respe
t to D ⇔ (a) | (b) with respe
t to D+
.

(D 2) {d ∈ K : a | (d)} = {d ∈ K : b | (d)} ⇔ a = b for all a, b ∈ D+
.

A

ording to this de�ntion the se
ond ideal theoreti
 
riterion for Krull domains 
ited

above says that an adequate system of divisors is given by the fa
torial group of t-ideals,

i. e. by the Lorenzen v-group Λv(D). Up to isomorphism, there is no other divisor theory

for D than the homomorphism (·)v : D
∗ → Λ+

v (D) with a 7→ (a)v = aD.

An alternative to make the divisor theory for D expli
it is given by the Krone
ker

fun
tion ring Dv
of D with respe
t to the v-operation. It is well-known that D is a

Krull domain if and only if its 
orresponding Nagata domain Dv(X) is a prin
ipal ideal
domain. Sin
e Dv(X) = Dv

in this 
ase, the order preserving isomorphism Λv(D) ∼=
Λ(Dv) be
omes an isomorphism of fa
torial groups. Thus, [ · ]v : D∗ → Λ+(Dv) with
a 7→ [ a ]v := aDv

de�nes another divisor theory for D. It is 
alled Krone
ker's divisor

theory for D. The elements of Dv
are referred to as integral Krone
ker divisors, the ele-

ments in K(X) as fra
tional Krone
ker divisors. Sin
e any element in Dv
is asso
iated

to a polynomial over K, we 
an think of Krone
ker divisors as polynomials. Note that
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with respe
t to Dv
every polynomial in K[X] 
an be interpreted as a greatest 
ommon

divisor of its 
oe�
ients.

If T is the integral 
losure of a Krull domain D in the �nite �eld extension L/K,

then T is again a Krull domain whose Kroen
ker fun
tion ring T v
is the integral 
losure

of Dv
in the �nite �eld extension L(X)/K(X). Thus, the equalities

T v = Tv(X) = T [X]Nv(T ) = T [X]Nv(D)

hold. Sin
e the elements of Dv
are 
ontained in T v

, Krone
ker divisors for D 
an be

regarded as Krone
ker divisors for T in a most natural way.

In regard to v-ideal divisors it is well-known that dv = (dT )v ∩K for all D-ideals d

(
f. [5, Satz 9℄). This, however, implies that nothing is lost when we lift v-ideals of D to

v-ideals of T . Thus, we may identify the v-ideals of D with the v-ideals they generate

in T . Note that, in parti
ular, the g
d-property of a Krone
ker resp. v-ideal divisor
remains untou
hed when passing on from one algebrai
 extension �eld to another.

Informally speaking, �g
d in D stays g
d in T �.

Sin
e the algebrai
 stru
ture of the �eld extension L(X)/K(X) mimi
ks that of

L/K, we have [L(X) : K(X)] = [L : K] = m. In parti
ular, the degrees of separability

s and inseparability i are the same. Sin
e every 
onjugation map over K is equal to the

restri
tion of a 
onjugation map overK(X), we will denote theK-monomorphisms from

L into the normal 
losure of L/K resp. the K(X)-monomorphism from L(X) into the

normal 
losure of L(X)/K(X) uniformly by σ1, . . . , σs. For the norm fun
tion of L/K
resp. L(X)/K(X), whi
h is given by

∏s

k=1 σk(·)
i
, we will always use the abbreviated

notation NL/K, even when applied to L(X).

A

ording to this de�nition the meaning of the norm of a Krone
ker divisor is

obvious, at least if it is referred to as an element of L(X). For an element of Λ(T v), i. e.
for a prin
ipal ideal of the form FT v

, F ∈ L(X), we de�ne NL/K(FT v) := NL/K(F )Dv
.

Sin
e the map Λ(T v) → Λv(T ) with FT v 7→ 
(F )v is a well-de�ned isomorphism and

sin
e any v-ideal of T 
an be written as the v-
ontent of a polynomial with 
oe�
ients

in L, this de�nition indu
es a well-de�ned norm fun
tion for v-ideal divisors of T by

N (v)

L/K(A) := 
(NL/K(F ))v for all A ∈ Λv(T ), F ∈ L(X) with A = 
(F )v.

It is 
alled the v-ideal norm or just v-norm with respe
t to L/K. Note that per de�-

nitionem the v-norm of a v-ideal of T gives a v-ideal of D.

Proposition 1.1. Let L/K be an algebrai
 �eld extension with degree of separability

s and degree of inseparability i. Let further A = Av be a v-ideal of T . If σk(A)v,
1 6 k 6 s, is the v-ideal generated by σk(A) in the normal 
losure of L/K, we get

N (v)

L/K(A) = σ1(A)
i
v× . . .×σs(A)

i
v ∩K.

Thus, if L/K is a separable �nite extension, the v-norm of a v-ideal is just the v-produ
t
of its 
onjugates.

Proof: It has already been mentioned that in 
ase of an arbitary algebrai
 �eld

extension L/K the equality dv = (dT )v ∩ K holds for any D-ideal d. This, however,

implies that nothing is lost when we lift v-ideals in L to v-ideals in the normal 
losure
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of L/K. Thus, we may assume without loss of generality that the �nite extension

L/K is normal. Let F ∈ L[X] be a polynomial with v-
ontent A. Per de�nitionem,

N (v)

L/K(A) = 
(NL/K(F ))v. In addition, we obtain

σk(A)v = σk(A) = σk

(

(F )v

)
= 


(
σk(F )

)
v

for 1 6 k 6 s

sin
e L/K is normal. Observing that the v-
ontent in an integrally 
losed domain is

always multipli
ative we obtain

N (v)

L/K(A) = 


(
σ1(F )i · . . . · σs(F )i

)
v

= 
(σ1(F ))iv× . . .×
(σm(F ))iv ∩K

= σ1(
(F )v)
i× . . .×σm(
(F )v)

i ∩K

= σ1(A)
i× . . .×σm(A)

i ∩K. ✷

Proposition 1.2. Let F ∈ L(X) be a Krone
ker divisor with v-
ontent A = Av. If

�∼� means �is asso
iated to�, we have

NL/K(F ) ∼ g
d

(
{NL/K(α)}α∈L, F |α

)
.

In terms of v-ideals we obtain

N (v)

L/K(A) =
(
{NL/K(α)}α∈A

)
v
.

Proof: Making the divisor group of T expli
it by the Lorenzen v-group we have

g
d({αi}i∈I) = ({αi}i∈I)v for any family {αi}i∈I of elements in L (
f. [7, Satz 2.6℄).

Be
ause of the de�nition of the v-norm it is therefore su�
ient to prove the statement

for Krone
ker divisors. Obviously, NL/K(F ) | NL/K(α) for all α ∈ L with F | α. Thus, it
remains to show g
d

(
{NL/K(α)}α∈L,F |α

)
| NL/K(F ). Let p ∈ Dv

be a Krone
ker divisor

prime in Dv
. Sin
e T is a Krull domain, there exists a Krone
ker divisor Gp ∈ T v

with

g
d(p,Gp) ∼ 1 in T v
and F · Gp = αp ∈ T (
f. [7, Satz 3.1, (G 2.4)℄). The 
ondition

g
d(p,Gp) ∼ 1 in T v
implies that the 
orresponding norms are relatively prime in Dv

,

hen
e g
d

(
p,NL/K(Gp)

)
∼ 1 in Dv

. With vp(·) denoting the p-exponent of a Krone
ker

divisor we obtain

vp
(
NL/K(αp)

)
= vp

(
NL/K(F ) ·NL/K(Gp)

)

= vp
(
NL/K(F )

)
+ vp

(
NL/K(Gp)

)

= vp
(
NL/K(F )

)
.

Sin
e min
{
vp
(
NL/K(α)

)
: α ∈ L, F | α

}
≤ vp

(
NL/K(αp)

)
= vp

(
NL/K(F )

)
for all prime

Krone
ker divisors p ∈ Dv
, it follows that

g
d

(
{NL/K(α)}α∈L, F |α

)
=

∏

p∈Dv
prime

pmin{vp(NL/K(α)): α ∈ L, F | α}

divides NL/K(F ). ✷

We want to end this se
tion by proving that in the 
ase of a Krull domain D
the ismorphism Λv(D) ∼= Λ(Dv) is given by extending divisorial D-ideals to prin
ipal

Dv
-ideals and by 
ontra
ting prin
ipal Dv

-ideals to divisorial D-ideals. This follows

immediately from
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Lemma 1.3. Let D be a v-domain in whi
h the v-operation is of �nite type. Then

aDv = avD
v
for all D-ideals a. In parti
ular, fDv = 
(f)vD

v
for all f ∈ K[X].

Proof: Due to a ⊆ av the in
lusion aDv ⊆ avD
v
is trivial. Let α ∈ avD

v
. There

are α1, . . . , αm ∈ av and f1, . . . , fm ∈ Dv
su
h that α = α1f1 + . . . + αmfm. Sin
e the

v-operation is of �nite type, for every αi there is a �nitely generated D-ideal a(i) with

a(i) ⊆ a and αi ∈ a
(i)
v . Let b be the D-ideal generated by a(1), . . . , a(m)

. Then, we have

b ⊆ a and αi ∈ bv for 1 6 i 6 m. Sin
e b is �nitely generated, there is a polynomial

f ∈ K[X] whose 
oe�
ients generate b. This implies αi ∈ 
(f)v, hen
e f | αi with

respe
t to Dv
. Thus, f | α, i. e. α ∈ fDv = bDv ⊆ aDv

. ✷

Theorem 1.4. Let D be a Krull domain with �eld of fra
tions K and T the inte-

gral 
losure of D in the �nite �eld extension L/K. Then the following diagrams are


ommutative with the horizontal maps being inverse isomorphisms:

Λv(T )
· T v

−−−→←−−−
∩ L

Λ(T v)

N
(v)
L/K





y





y

NL/K

Λv(D)
· Dv

−−−→←−−−
∩ K

Λ(Dv)

Λv(T )
· T v

−−−→←−−−
∩ L

Λ(T v)

∩ K





y





y

∩ K(X)

Λv(D)
· Dv

−−−→←−−−
∩ K

Λ(Dv)

Proof: Sin
e D and T are Krull domains, the 
orresponding Krone
ker fun
tion

rings Dv
and T v

are prin
ipal ideal domains and all divisorial ideals of D resp. T are

v-�nite. The map Λ(Dv) → Λv(D), fDv 7→ 
(f)v, is known to be a well-de�ned iso-

morphism with inverse map av 7→ bDv
, where b is a �nitely generated D-ideal with

av = bv. Sin
e 
(f)v = fDv ∩ K for all f ∈ K[X], the isomorphism fDv 7→ 
(f)v
is a
tually given by 
ontra
ting Dv

-ideals to divisorial D-ideals. Vi
e versa, the iso-

morphism av 7→ aDv
is given by extending divisorial D-ideals to Dv

-ideals be
ause

aDv = avD
v
a

ording to Lemma 1.3. By de�nition of the v-norm the �rst diagram

is obviously 
ommutative. Let F ∈ L[X] be a Krone
ker divisor of T and A the 
or-

responding v-ideal of T su
h that A = 
(F )v = FT v ∩ L resp. AT v = FT v
. Sin
e

the 
ontra
ted ideal FT v ∩ K(X) is a prin
ipal Dv
-ideal, there is an f ∈ K[X] with

fDv = FT v ∩ K(X). The 
orresponding v-ideal of D is given by fDv ∩ K = 
(f)v,
and we obtain FT v ∩ K = FT v ∩ L ∩ K = A ∩ K = 
(f)v. This proves that the


ontra
tion of a divisorial T -ideal gives a divisorial D-ideal. This means that the map

Λv(T )
∩ K
−→ Λv(D) is de�ned and that the se
ond diagram is 
ommutative. ✷

For the reader familiar with the theory of ∗-operations and ∗-ideals it is a well-

known fa
t that the following 
onditions are equivalent for a ∗-operation (·)∗ of �nite

type whi
h is endli
h arithmetis
h brau
hbar, i. e. for whi
h the Krone
ker fun
tion

ring D(∗)
resp. the Lorenzen ∗-group is de�ned: (1) The ∗-�nite ∗-ideals form a group

by ∗-multipli
ation. (2) The map a∗ 7→ a∗D
(∗)

from the semigroup of ∗-ideals of D
to the semigroup of D(∗)

-ideals is an isomorphism (
f. [4, II, � 3.1, Théorème 3℄). In

addition, it is easy to prove the ∗-theoreti
 analogue to Lemma 1.3, whi
h says that

a∗D
(∗) ∩K = a∗ for any ∗-ideal a∗ of D if the ∗-�nite ∗-ideals are ∗-invertible. If any of
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the 
onditions (1) or (2) hold it 
an be dedu
ed that the inversve map of a∗ 7→ a∗D
(∗)

is given by 
ontra
ting D(∗)
-ideals to ∗-ideals of D. Translating this general result to

Krull domains we get an alternative proof of Theorem 1.4.

Notation: To make the reading of this paper easier we will use the following stan-

dard of notation: Elements in K are denoted by small Latin letters (a, b, c, . . . ), ele-
ments in the algebrai
 extension �eld L by small Greek letters (α, β, γ, . . . ). D-ideals

are denoted by small, T -ideals by 
apital German letters (a, b, c, . . . resp. A,B,C, . . . ).
Krone
ker divisors of D, i. e. elements of the fun
tion �eld K(X), are denoted by small,

Krone
ker divisors of T by 
apital Latin letters (f, g, h, . . . resp. F,G,H, . . . ). v-Ideals
and Krone
ker divisors that 
orrespond to ea
h other a

ording to Theorem 1.4 are

denoted by 
orresponding letters: av ↔ f , i. e. av = 
(f)v, bv ↔ g, . . . resp. Av ↔ F ,

Bv ↔ G, . . . . For D- resp. T -ideals extended to Dv(X) resp. Tv(X) we will also write

av(X), bv(X), . . . resp. Av(X),Bv(X), . . . , i. e. we will set av(X) := avD
v = avDv(X)

et
. av[X], bv[X], . . . resp. Av[X], bv[X] denote the set of polynomials in the indetermi-

nate X with 
oe�
ients in av, bv, . . . resp. Av,Bv, . . . , i. e. we will set av[X] := avD[X]
et
. Prime ideals or prime Krone
ker divisors are denoted by the letter p in its adequate

form (p,P resp. p, P ). If not otherwise stated, all ideals in this paper are v-ideals so
that the index letter v will usually be omitted.

2 Residue 
lass �elds, inertia degree and ramifa
tion index

Let D be a Krull domain with �eld of fra
tions K and a = av ∈ Λ+
v (D) an integral

v-ideal of D that is not v-primitive. Extending the 
anoni
al epimorphism D → D/a
to the ring of polynomials over D in the indeterminate X we obtain

ϕa : D[X] −→ D/a [X]

a0 + a1X + . . .+ amX
m 7−→ a0 + a1X + . . .+ amX

m,
(2.1)

where the bar stands for taking the residue modulo a, i. e. ai := ai mod a. We are

interested in the image of the set of v-primitive polynomials over D.

Proposition 2.2. The 
anoni
al epimorphism ϕa : D[X]→ D/a [X] of (2.1) maps

the v-primitive polynomials of D to the non-zero divisors of D/a [X]. To be pre
ise,

ϕa

(
Nv(D)

)
=

{
ϕa(f) : f ∈ D[X]∗; fg ∈ a(X) for g ∈ D[X] ⇔ g ∈ a(X)

}
.

Proof: �⊆� Let g ∈ Nv(D) and h ∈ D[X] be polynomials over D with ϕa(g) ·
ϕa(h) = 0, i. e. gh ∈ a[X]. Sin
e 
(g)v = D, it follows 
(h)v = 
(g)v×
(h)v = 
(gh)v ⊆
a. This, however, means h ∈ a[X], hen
e ϕa(h) = 0, whi
h proves that ϕa(g) is a

non-zero divisor in D/a [X].

�⊇� Let ϕa(h) be a non-zero divisor of D/a [X]. First, we prove that the v-
ideal generated by a and the v-
ontent of h is the unit ideal, i. e. (
(h)v, a)v = D.

Assume that (
(h)v, a)v $ D. By the v-invertiblity of any v-ideal in D, there is a

fra
tional v-ideal b = bv with D $ bv su
h that bv×(
(h)v, a)v = D. This implies

(av×bv)×(
(h)v, a)v = av with av×bv % av. Sin
e every v-ideal in a Krull domain is
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v-�nite, there is a polynomial f ∈ K[X] with v-
ontent av×bv. It follows


(f)v×(
(h)v, a)v = (
(f · h)v, a · 
(f)v)v = av = a,

hen
e fh ∈ a[X]. Sin
e f, h /∈ a[X], we obtain ϕa(f) ·ϕa(h) = 0 with ϕa(f), ϕa(h) 6= 0.
This shows that ϕa(f) is a zero divisor in D/a [X], whi
h 
ontradi
ts our assump-

tion. Thus, (
(h)v, a)v = D. Re
alling that any v-ideal in a Krull domain 
an be

v-generated by two elements we 
on
lude that there must be elements a, b ∈ a su
h

that (
(h)v, a, b)v = D. Let g = h + aXm + bXm+1
with m := 1 + deg h. Then g is

v-primitive, and from g − h = aXm + bXm+1 ∈ a[X] we get ϕa(g)− ϕa(h) = 0. Thus,
ϕa(g) = ϕa(h), whi
h proves that there is a v-primitive polynomial that is mapped

onto the non-zero divisor ϕa(h). ✷

Proposition 2.3. Let D be a Krull domain and a = av a v-ideal whi
h is not v-
primitive. Writing D/a [X]ϕa (Nv(D)) for the quotient ring of D/a [X] with respe
t to the

multipli
ative set of non-zero divisors ϕa (Nv(D)), we have the isomorphisms

Dv(X)/a(X) ∼= D[X]Nv(D)/aD[X]Nv(D)

∼= D/a [X]ϕa (Nv(D)).

Proof: We prove that the well-de�ned epimorphism

ϕ̃a : D[X]Nv(D) −→ D/a [X]ϕa (Nv(D))

f

g
7−→ ϕa(f) · ϕa(g)

−1, f ∈ D[X], g ∈ Nv(D)

has kernel a(X) = aD[X]Nv(D). Let h = f

g
, f ∈ D[X], g ∈ Nv(D), be a Krone
ker

divisor of D. Sin
e ϕa(g) 6= 0, we have

ϕ̃a(h) = 0 ⇔ ϕa(f) = 0 ⇔ f ∈ a[X] ⇔ h ∈ aD[X]Nv(D). ✷

Let p be a prime v-ideal of D and p the 
orresponding Krone
ker divisor, i. e. an

element of K(X) with 
(p)v = p. Note that p need not be a maximal D-ideal and


onsequently the residue 
lass ring of D modulo p, whi
h is an integral domain, need

not be a �eld. We 
all the quotient �eld of D/p the residue 
lass �eld of D with

respe
t to p. It is denoted by Kp. This terminology is obviously 
ompatible with the

one developed for Dedekind domains. Passing on to the Krone
ker fun
tion ring Dv =
Dv(X) = D[X]Nv(D) of D the situation be
omes even simpler and 
learer. A

ording

to Theorem 1.4 the extended Dv(X)-ideal pDv(X) = p(X) = pDv(X) gives a prime

Krone
ker divisor of D. Sin
e prin
ipal prime ideals are maximal, the residue 
lass ring

Dv(X)/pDv(X) a
tually is a �eld, namely the residue 
lass �eld of Dv(X) with respe
t

to p, denoted by K(X)p .

Theorem 2.4. Let D be a Krull domain with quotient �eld K and T the integral


losure of D in a �nite �eld extension L/K. Let p be a prime Krone
ker divisor of D
with v-
ontent p and P a prime Krone
ker divisor of T with v-
ontent P, su
h that

P | p in Tv(X), i. e. P ∩K = p. Then

(1) Kp(X) ∼= K(X)p and LP(X) ∼= L(X)P.

(2) [LP : Kp] = [L(X)P : K(X)p ] 6 L/K.
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Proof: Ad (1) Sin
e D/p is an integral domain, the 
orresponding polynomial

ring D/p [X] is an integral domain as well. Thus, D/p [X] 
ontains no zero divisors,

whi
h implies ϕp (Nv(D)) = D/p [X] a

ording to Proposition 2.2. Therefore,

D/p [X]ϕp (Nv(D)) = Quot

(
D/p [X]

)
= Quot(D/p)(X) = Kp(X).

The isomorphism now follows from Proposition 2.3.

Ad (2) By (1) the equality [LP : Kp] = [L(X)P : K(X)p ] is obvious. It is well-
known that [LP : Kp] 6 [L : K] holds if D and T are Dedekind domains. Sin
e

Dv(X) and Tv(X) are even prin
ipal ideal domains we get [L(X)P : K(X)p ] 6 [L(X) :
K(X)] = [L : K]. ✷

In line with the usual terminology the inertia degree of the prime Krone
ker divisor

P with respe
t to L/K, i. e. the degree [LP : Kp] = [L(X)P : K(X)p ], is denoted by

fL/K(P ). For the ramifa
tion index of P with respe
t to L/K we will write eL/K(P ).
The meaning of the terms inertia degree and ramifa
ation index for a prime v-ideal in
T is obvious. From the theory of Dedekind domains we obtain the following results.

Proposition 2.5. Let p ∈ Dv(X) be a prime Krone
ker divisor of D whose prime

fa
torization in Tv(X) is given by p ∼ P e1
1 · . . . ·P

en
n , where the Pi ∈ Tv(X) are distin
t

prime divisors with eL/K(Pi) = ei. Interpreting the residue 
lass ring Tv(X)/pTv(X) as
a ve
tor spa
e over the residue 
lass �eld Dv(X)/pDv(X) = K(X)p of dimension d we

obtain:

(1) d =
∑n

i=1 eL/K(Pi) · fL/K(Pi) 6 [L : K]. If L/K is a separable extension, equality

holds.

(2) If L/K is a normal extension, then eL/K(Pi) = e and fL/K(Pi) = f for all 1 6 i 6 n.
Thus, d = e · f · n 6 [L : K].

(3) If L/K is a Galois extension, then d = e · f · n = [L : K]

Proposition 2.6. Let L/K be a �nite separable extension. If P ∈ Tv(X) and p ∈
Dv(X) are prime Krone
ker divisors su
h that P | p with respe
t to Tv(X) and if P

and p are the 
orresponding v-ideals, we have

NL/K(P ) ∼ pfL/K(P )
and N (v)

L/K(P) = (pfL/K(P))v.

3 Di�erents, dis
riminants and fundamental divisors

From now on let L/K be a �nite separable extension of degree m. Then L(X)/K(X)
is also separable of degree m. We denote the tra
e fun
tion with respe
t to L/K resp.

L(X)/K(X) uniformly by TrL/K. For A ⊆ L

AT̂/D := {γ ∈ L : TrL/K(γA) ⊆ D}

is 
alled the 
omplementary set 
orresponding to A. Any 
omplementary set is a D-

module. If A is a free module with D-basis {ω1, . . . , ωm}, then AT̂/D is a free D-module

with the 
omplementary basis {ω̂1, . . . , ω̂m}. The 
omplementary basis is determined

by TrL/K(ωiω̂j) = δij, 1 6 i, j 6 m, where δij means the Krone
ker symbol. If A = A
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is a fra
tional T -ideal, the 
omplementary set AT̂/D is a fra
tional T -ideal, too. If T is

a Krull domain, it even is a v-ideal. This follows from

Lemma 3.1. Let A be an arbitrary fra
tional ideal of the Krull domain T . Then,

A(X)
T̂v(X)/Dv(X)

∩ L = AT̂/D.

Proof: Sin
e any element in Tv(X) 
an be written as the quotient of a polynomial

F over T and a v-primitive polynomial g over D and sin
e TrL/K(
F
g
) = 1

g
· TrL/K(F )

for all F ∈ T [X] and g ∈ D[X], we have

A(X)
T̂v(X)/Dv(X)

∩ L

=
{
γ ∈ L(X) : TrL/K(γ · A(X)) ⊆ Dv(X)

}
∩ L

=
{
γ ∈ L : TrL/K

(
γ · F

g

)
∈ Dv(X) for all F ∈ A[X], g ∈ Nv(D)

}

=
{
γ ∈ L : TrL/K(γ · F ) ∈ Dv(X) ∩K[X] = D[X] for all F ∈ A[X]

}

=
{
γ ∈ L : TrL/K(γ · α) ∈ D for all α ∈ A

}
= AT̂/D. ✷

Proposition 3.2. If T is a Krull domain, the 
omplementary ideal of an arbitrary

T -ideal is always a v-ideal. Two T -ideals generating the same v-ideal have the same


omplementary ideal.

Proof: Let A be an arbitrary T -ideal. By Theorem 1.4 the 
ontra
ted T -ideal
Av(X)

T̂v(X)/Dv(X)
∩ L = AT̂/D is a v-ideal. If B is another T -ideal with Av = Bv,

we have A(X) = Av(X) = Bv(X) = B(X) by Lemma 1.3. Now Lemma 3.1 yields

AT̂/D = BT̂/D. ✷

The di�erent of the integral ring extension T/D is given by the integral v-ideal(
TT̂/D

)
−1

and is denoted by DT/D. Correspondingly, Dv(X)T/D :=
(
Tv(X)T̂v(X)/Dv(X)

)
−1

means the di�erent of the integral ring extension Tv(X)/Dv(X). By Lemma 3.1 we have

TT̂/D = Tv(X)T̂v(X)/Dv(X) ∩L. Theorem 1.4, however, says that 
ontra
ting Tv(X)-ideals
to T -ideals is an isomorphism. Thus, we obtain

Proposition 3.3. Let T be a Krull domain. Then

DT/D = Dv(X)T/D ∩ L.

If T is a Krull domain, all we know about di�erents in Dedekind domains 
an be

applied to the Krone
ker fun
tion ring T v = Tv(X), whi
h is a prin
ipal ideal domain

in this 
ase. Translating the results into the language of divisorial ideals we see that,

a

ording to Theorem 1.4 and Proposition 3.3, most of the well-known ideal theoreti


statements on di�erents in Dedekind domains, su
h as Dedekind's Di�erent theorem

or the Di�erent tower theorem, 
arry over to di�erents in Krull domains.

The same is true for dis
riminants in Krull domains. It is well known that the

dis
riminant of an extension T/D is the ideal norm of the 
orresponding di�erent

if D resp. T are Dedekind domains. The dis
riminant of Tv(X)/Dv(X) is therefore

given by the integral Krone
ker divisor dv(X)T/D := NL/K(Dv(X)T/D). Correspondingly,
we de�ne the dis
riminant of T/D to be the integral v-ideal dT/D := N (v)

L/K(DT/D).
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Theorem 1.4 and Proposition 3.3 yield

dT/D = dv(X)T/D ∩ L.

Thus, the well-known ideal theoreti
 statements on dis
riminants in Dedekind domains,

su
h as Dedekind's dis
rimiant theorem or the Dis
riminant tower theorem, remain

valid for Krull domains.

In fa
t, it would be su�
ient to know all the results on di�erents and dis
riminants

in the 
ase of an integral extension of prin
ipal ideal domains instead of Dedekind

domains. We leave it to the reader to simplify the standard proofs. It is most likely

that many proofs do without the methods of lo
alization and 
ompletion, whi
h are

usually applied.

There is another point whi
h makes things easier in Krone
ker's divisor theory. If

the �nite extensions L/K resp. L(X)/K(X) are separable, the prin
ipal ideal domain

Tv(X) be
omes a free Dv(X)-module of degree [L(X) : K(X)] = m (
f. [8, V, � 4,

Corollary 2 of Theorem 7℄). In parti
ular, the algebrai
 fun
tion �eld L(X) has an

integral basis over K(X). This remarkable fa
t has not been put mu
h emphasis on

yet.

Let {F1, . . . , Fm}, Fi ∈ Tv(X), be an integral basis of L(X) over K(X). Sin
e
every element in Tv(X) 
an be written as the quotient of a polynomial over T and

a polynomial over D whi
h is v-primitive, we may assume without loss of generality

that the Fi are polynomials with 
oe�
ients in T . Let α1, . . . , αr be the 
oe�
ients

of F1, . . . , Fm. Any Krone
ker divisor of T whose denominator is a polynomial with

exa
tly these 
oe�
ients and whose nominator is v-primitive is 
alled fundamental

Krone
ker divisor with respe
t to the integral basis {F1, . . . , Fm}. The polynomials

α1X + . . . + αrX
r
and F := F1X

r1 + . . . + F rm
m with r1 = 0 and ri+1 = i ·

(
1 +

max16j6m{deg fj}
)
for 1 6 i 6 m−1 are examples of fundamental Krone
ker divisors.

It will be su�
ient to think of fundamental divisors as polynomials of exa
tly this type.

Note that any fundamental divisor is a greatest 
ommon divisor of its 
orrespon-

ding integral basis, but that not any greatest 
ommon divisor of an integral basis is

fundamental. This is obvious sin
e

Tv(X) = F1Dv(X) + . . .+ FmDv(X) ⊆ F1Tv(X) + . . .+ FmTv(X) ⊆ Tv(X),

whi
h means that the elements of an integral basis {F1, . . . , Fm} are always relatively
prime with respe
t to Tv(X).

To show that a fundamental divisor is also a primitive element of the separable

extension L(X)/K(X) we have to take a look at the element di�erent of F . Remember

that if χ(t) denotes the 
hara
teristi
 polynomial of F over K(X), the element di�erent

of F is de�ned by

di�L/K(F ) =
d

dt
χ(t)|t=F =

d

dt
NL/K(t− F )|t=F =

m∏

k=2

(
F − σk(F )

)
.(3.4)

Proposition 3.5. Let L/K be a �nite separable extension and F ∈ L[X] a polyno-

mial with the 
oe�
ients α1, . . . , αr. Then the following 
onditions are equivalent:
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(1) di�L/K(F ) 6= 0.
(2) L(X) = K(X)[F ].
(3) L = K[α1, . . . , αr].

Proof: The equivalen
e (1) ⇔ (2) is well-known.

(1)⇒ (3) Let di�L/K(F ) 6= 0. SupposeK ′ := K(α1, . . . , αr) $ L, i. e. [L : K ′] > 1,
in parti
ular. Sin
e the �eld polynomial of F over K is given by χ(t) = NL/K(t−F ) =
NL/K′

(
NK′/K(t− F )

)
= NK′/K(t− F )[L:K

′]
,

di�L/K(F ) = [L : K ′] ·NL/K′(F − F )[L:K
′]−1 ·

d

dt
NK′/K(t− f)|t=F = 0,

whi
h is a 
ontradi
tion.

(3)⇒ (1) Let L = K(α1, . . . , αr). Assume di�L/K(F ) = 0. By (3.4) this means

there is a k ∈ {2, . . . ,m} su
h that σk(αi) = αi for all 1 6 i 6 r. This, however,
implies σk(α) = α for all α ∈ L, hen
e σk = σ1 = idL, whi
h is impossible. ✷

To show that the fundamental Krone
ker divisor F with the 
oe�
ients α1, . . . , αr

is a primitive element of the separable extension L(X)/K(X), hen
e a divisor with

di�L/K(F ) 6= 0, it is therefore su�
ient to prove L = K[α1, . . . , αr]. Sin
e

Tv(X) = F1Dv(X) + . . .+ FmDv(X) ⊆ Dv(X)[α1, . . . , αr] ⊆ Tv(X)

the Krone
ker fun
tion ring Tv(X) is a �nitely generated extension ring of Dv(X) with
Tv(X) = Dv(X)[α1, . . . , αr]. Passing on to the 
orresponding quotient �elds we obtain

L = L(X) ∩ L = K(X)(α1, . . . , αr) ∩ L = K(α1, . . . , αr).

Sin
e the αi are algebrai
 over K, this yields L = K[α1, . . . , αr].

We will show that even more is true, namely that any fundamental divisor F
generates the Krone
ker fun
tion ring Tv(X) over Dv(X), i. e. Tv(X) = Dv(X)[F ].
This follows from

Theorem 3.6. Let D be a Krull domain with quotient �eld K, T the integral 
losure

of D in the �nite separable extension L/K and F ∈ T [X] a fundamental Krone
ker

divisor of T with respe
t to the integral basis {F1, . . . , Fm}. If the residue 
lass �eld

extensions L(X)P/K(X)p are separable for all prime Krone
ker divisors P ∈ Tv(X),
p ∈ Dv(X) with P | p, we have

Dv(X)T/D = di�L/K(F )Tv(X).

We prove this theorem by means of

Lemma 3.7. Let D be a Krull domain with quotient �eld K, T the integral 
losure

of D in the �nite separable extension L/K and F ∈ T [X] a fundamental Krone
ker

divisor of T with respe
t to the integral basis {F1, . . . , Fm}. Then we have

di�L/K(F ) ∼ g
d

({
di�L/K(G) : G ∈ Tv(X) with L(X) = K(X)[G]

})
.
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Proof: Let α1, . . . , αr be the 
oe�
ients of F1, . . . , Fm. Sin
e we have the equality

Tv(X) = Dv(X)[α1, . . . , αr] any element G ∈ Tv(X) 
an be written as

G =
∑

i1,... ,ir∈N

di1,... ,irα
i1
1 · . . . · α

ir
r with di1,... ,ir ∈ Dv(X),

where only �nitely many di1,... ,ir are 6= 0. Let G ∈ Tv(X) be a primitive element of the

separable �eld extension L(X)/K(X), i. e. let di�L/K(G) 6= 0. We denote the normal


losure of L(X)/K(X) by L(X) and the integral 
losure of Tv(X) in L(X) by Tv(X).
Let σ be a K(X)-automorphism of L(X). To show di�L/K(F ) | di�L/K(G) we �rst prove
by indu
tion on the number of 
oe�
ients r that G− σ(G) is a linear 
ombination of

α1 − σ(α1), . . . , αr − σ(αr) over Tv(X). For r = 1 we have G =
∑

i∈N di · α
i
1 with

di ∈ Dv(X). This, however, implies

G− σ(G) =
∑

i∈N

di
(
αi
1 − σ(α1)

i
)

=
(
α1 − σ(α1)

)
·
∑

i∈N

di ·
(
αi−1
1 + αi−2

1 σ(α1) + . . .+ α1σ(α1)
i−2 + σ(α1)

i−1
)
,

whi
h obviously is an element of the desired form. Suppose now that the statement has

been proved for r > 1 and let

G =
∑

i1,... ,ir ,ir+1∈N

di1,... ,ir ,ir+1 · α
i1
1 · . . . · α

ir
r · α

ir+1

r+1

=
∑

ir+1∈N

α
ir+1

r+1 ·
∑

i1,... ,ir∈N

di1,... ,ir,ir+1 · α
i1
1 · . . . · α

ir
r .

We de�ne Gir+1 to be the Krone
ker divisor

∑
di1,... ,ir ,ir+1 · α

i1
1 · . . . · α

ir
r . Then, by

indu
tion hypothesis, Gir+1 − σ(Gir+1) is a linear 
ombination of α1 − σ(α1), . . . , αr −

σ(αr) over Tv(X). Thus,

G− σ(G) =
∑

ir+1∈N

(
Gir+1 · α

ir+1

r+1 − σ(Gir+1) · σ(α
ir+1

r+1 )
)

=
∑

ir+1∈N

(
α
ir+1

r+1

(
Gir+1 − σ(Gir+1)

)
+ σ(Gir+1)

(
α
ir+1

r+1 − σ(α
ir+1

r+1 )
))

is a linear 
ombination of α1 − σ(α1), . . . , αr+1 − σ(αr+1) over Tv(X), where we made

use of the fa
t that

α
ir+1

r+1 − σ(α
ir+1

r+1 ) =
(
αr+1 − σ(αr+1)

)
·
(
α
ir+1−1
r+1 + . . .+ σ(α

ir+1−1
r+1 )

)

and αi+1
r+1 resp. σ(Gir+1)

(
α
ir+1−1
r+1 + . . . + σ(α

ir+1−1
r+1 )

)
are elements in Tv(X). For the

fundamental divisor F = α1X
i1 + . . . + αrX

ir
, ik 6= il for k 6= l, with respe
t to the

integral basis {F1, . . . , Fm} we have

F − σ(F ) = (α1 − σ(α1))X
i1 + . . .+ (αr − σ(αr))X

ir .

Sin
e Tv(X) is equal to the Krone
ker fun
tion ring of T , the Krone
ker divisor F−σ(F )
divides ea
h of its 
oe�
ients in Tv(X). This however, implies F − σ(F ) | G− σ(G) in
Tv(X) for any G ∈ Tv(X) with di�L/K(G) 6= 0. Sin
e di�L/K(F ) =

∏
σ 6=idL

(
F − σ(F )

)
,
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we obtain di�L/K(F ) | di�L/K(G) in Tv(X) ∩ L(X) = Tv(X). Thus, di�L/K(F ) is a

greatest 
ommon divisor o� all element di�erents di�L/K(G) 6= 0. ✷

Proof of Theorem 3.6: It is well-known that the di�erent of a Dedekind domain is

the greatest 
ommon divisor of all element di�erents 6= 0 (
f. [6, III, � 2, Proposition 8℄

or [3, XII, Satz 4.3℄). Thus, by Lemma 3.7

Dv(X)T/D =
({

di�L/K(G) : G ∈ Tv(X) with L(X) = K(X)[G]
})

Tv(X)

= di�L/K(F )Tv(X). ✷

Theorem 3.6 is indeed remarkable. Sin
e we have

NL/K

(
di�L/K(G)

)
= (−1)

1
2
n(n−1)

dis
rL/K(G)

for any primitive element G ∈ Tv(X) of the separable extension L(X)/K(X), it follows
that the dis
riminant of Tv(X)/Dv(X) is given by

dv(X)T/D = dis
rL/K(F )Dv(X).

But we already know dv(X)T/D = dis
rL/K(F1, . . . , Fm) sin
e the dis
riminant of the

integral extension Tv(X)/Dv(X) is just the dis
riminant of any integral basis. Thus,

{1, F, . . . , Fm−1} is shown to be an integral basis of L(X)/K(X), too, and we obtain

Theorem 3.8. Let D be a Krull domain with quotient �eld K and T the integral


losure of D in the �nite separable extension L/K. All residue 
lass �eld extensions

L(X)P/K(X)p are supposed to be separable for any pair of prime Krone
ker divisors

P ∈ Tv(X), p ∈ Dv(X) with P | p. If F ∈ T [X] is a fundamental Krone
ker divisor of

T , we have

Tv(X) = Dv(X)[F ].

In parti
ular, there are no 
ommon inessential dis
riminant divisors 6∼ 1 with respe
t

to the integral extension Tv(X)/Dv(X).

4 Fa
torizing primes in Krone
ker's divisor theory

Suppose now that the assumptions of Theorem 3.8 are ful�lled. Sin
e we have Tv(X) =
Dv(X)[F ] for any fundamental Krone
ker divisor F , we 
an always apply Kummer's

de
omposition theorem (
f. [6, I, � 8, Proposition 25℄) in order to fa
torize prime

Krone
ker divisors of Dv(X) in the integral 
losure Tv(X).

Let p ∈ Dv(X) be a prime Krone
ker divisor of Dv(X). Assume that F ∈ Dv(X)
is a fundamental divisor with minimal polynomial µ(t) ∈ Dv(X)[t]. Redu
tion modulo

pDv(X) gives the de
omposition

µ(t) = µ1(t)
e1
· . . . · µn(t)

en

with µi ∈ Dv(X)[t] su
h that µi is prime in Dv(X)/pDv(X)[t]. Then the de
ompositi-

on of p into irredu
ible fa
tors in Tv(X) is given by

p ∼ P e1
1 · . . . · P

en
n ,
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where Pi ∼ g
d

(
p, µi(F )

)
with fL/K(Pi) = deg µi(t) for all 1 6 i 6 n.

Let us have a look at the 
lassi
al situation of algebrai
 number theory, i. e. let

D be the ring of rational integers Z with quotient �eld K = Q and T the ring of

algebrai
 integers in the algebrai
 number �eld L. Then there is an integral basis

{ω1, . . . , ωm} of L/K whi
h is also an integral basis of L(X)/K(X). Thus, we 
an


hoose a fundamental Krone
ker divisor of the form F = ω1X + . . . + ωmX
m
. Note

that in the 
ase of an algebrai
 number �eld the v-operation is the identity on the

system of all ideals. Thus, v-primitivity means primitivity in the usual sense, i. e. a

polynomial over Z resp. T is v-primitive if and only if its 
oe�
ients generate the

unit ideal. In Z this is obviously equivalent to the 
ondition that all 
oe�
ients are

relatively prime. Thus, the Krone
ker fun
tion rings Zv(X) and Tv(X) are given by

Zv(X) =
{

f

g
: f, g ∈ Z[X], g
d(
oe�
ients of g) ∼ 1

}
and Tv(X) =

{
F
G

: F,G ∈

T [X], (
oe�
ients of G)T = T
}
.

Suppose that p ∈ Z is a rational prime with 
orresponding prime ideal p = pZ. Let
P ∈ Tv(X) be a prime Krone
ker divisor of T with 
orresponding v-ideal P su
h that

P | p in Tv(X). Sin
e p and P are maximal ideals the residue 
lass rings Z/p = Zp

and T/P are �elds, namely the residue 
lass �elds of p and P. Sin
e Zp is �nite,

T/P is separable over Zp. This implies that T/P (X) is separable over Zp(X). By
Theorem 2.4.(1) it follows that Tv(X)/PTv(X) is separable over Zv(X)/pZv(X). Thus,
the 
onditions of Theorem 3.8 are ful�lled and we obtain Tv(X) = Zv(X)[F ].

Let µ(t) ∈ Zv(X)[t] be the minimal polynomial of the fundamental divisor F .

The proof of Proposition 2.3 shows that redu
ing a Krone
ker divisor

f

g
∈ Zv(X),

f ∈ Z[X], g ∈ Nv(Z), modulo pZv(X) = p(X) a
tually means redu
ing the 
oe�
ients

of f and g modulo pZ = p. Sin
e µ(t) has 
oe�
ients in Z[X] ⊆ Zv(X), redu
tion
modulo pZv(X) gives the polynomial µ(t) with 
oe�
ients in Zp[X] ⊆ Quot

(
Zp[X]

)
∼=

Zv(X)/pZv(X). Note that by Gauss' Lemma any irredu
ible fa
tor of µ(t) in Zp[X][t]
remains irredu
ible over Zv(X)/pZv(X). Thus, it is su�
ient to determine the prime

de
omposition of µ(t) over Zp[X]. Sin
e Zp is a �nite �eld, this 
an be done in a �nite

number of steps. If µ1, . . . , µn ∈ Z[X][t] are su
h that

µ(t) = µ1(t)
e1
· . . . · µn(t)

en
with µi(t) prime in Zp[X][t],

all prime Krone
ker divisors of T dividing p in Tv(X) are given by

Pi ∼ g
d

(
p, µi(F )

)
∼ p+ µi(F ) ·X,

and we obtain the prime de
omposition of p in Tv(X) by

p ∼ P e1
1 · . . . · P

en
n .

A similar result has also been obtained by H.M. Edwards in the 
ase of algebrai


number �elds (
f. [1, �� 2.4�2.7℄). Edward's presentation, however, is unfamiliar to the

modern reader and sometimes la
ks the 
larity of modern mathemati
al language. In

my opinion, it does not reveal the real 
ause why Krone
ker divisors make Kummer's

fa
torization method work also for 
ommon inessential dis
riminant divisors.
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