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Introdution

Introdutions to algebrai number theory often regard the lassial theory of algebrai

number �elds just as a speial ase of the theory of Dedekind domains. The level of

abstration an even be more inreased by studying Krull domains instead of Dede-

kind domains. Rings of this type, also known as rings with divisor theory, still allow

some sort of prime fatorization, but in general, the orresponding system of prime

divisors an no longer be made expliit by the system of prime ideals. It has beome

standard to desribe the prime divisors of a Krull domain by its p-adi valuations, i. e.

by its disrete rank one valuations. Thus, Krull domains are usually studied by means

of valuation theory and loal-global arguments. This methodial approah, however,

has the disadvantage of being more abstrat and less graphi than lassial ideal theo-

ry. Compared to prime ideals disrete rank one valuations are indeed rather abstrat

algebrai objets. In addition, there is no natural de�nition of the norm of a divisor or

the di�erent of a Krull domain with respet to a �nite �eld extension.

The intention of this paper is to present and propagate a methodial alterna-

tive devoid of these inonvenienes, namely Kroneker's divisor theory. There have

been several attempts to make Kroneker's methods popular, but most of the treat-

ments on Kroneker's divisor theory lak of systemati approah. This may explain
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why Kroneker's approah to algebrai number theory is little known and still lives in

the shadow of ideal and valuation theory.

In [7℄ Kroneker's theory was analyzed in modern terms, i. e. by means of the theory

of divisorial ideals, Kroneker funtion rings and Nagata domains. In the present paper

we want to show how Kroneker's divisor theory an be used to transfer notions and

well-known results from the theory of Dedekind domains to Krull domains thereby

giving an alternative approah to the fundamentals of algebrai number theory.

If D is a Krull domain with �eld of frations K, the orresponding Kroneker fun-

tion ring Dv
with respet to the v-operation is a prinipal ideal domain whose elements

deliver a omplete and (up to assoiation) uniquely determined system of divisors for D
in a most natural way. It is well-known that the group of frational Dv

-ideals is isomor-

phi to the Lorenzen v-group Λv(D) of D, i. e. the group of frational divisorial ideals

of D. We will show that this isomorphism is given by extending divisorial D-ideals to

Dv
-ideals and by ontrating Dv

-ideals to D-ideals. Observing that the integral losure

T of D in a �nite �eld extension L/K is again a Krull domain and that the integral

losure of Dv
in the orresponding extension L(X)/K(X) is given by the Kroneker

funtion ring T v
, we de�ne the norm of a divisor of T with respet to L/K in line with

the usual norm with respet to L(X)/K(X). Sine the Kroneker funtion rings Dv

resp. T v
are prinipal ideal domains, hene Dedekind domains, the same translation

proess an be applied to the de�nition of the residue lass �eld, the rami�ation in-

dex, the inertial degree, the di�erent, the disriminant et. Consequently, many results

on Dedekind domains suh as the di�erent and disriminant theorems an easily be

transferred to Krull domains. Finally, we will show that the di�erent of T v
over Dv

is

generated by an element di�erent di�(F ), F ∈ T v
, whih implies that T v

is a simple

extension ring of Dv
with T v = Dv[F ]. From this we will explain, why, whith slight

modi�ations, Kummer's method to fatorize rational primes in an algebrai number

�eld is also appliable to ommon inessential disriminant divisors.

The present paper generalizes several results already obtained by H. Flanders for

Dedekind domains (f. [2℄). It is a ontribution to an adequate assessment of Kroneker's

method. The following passage quoted from the introdution of Flander's paper ex-

plains why Kroneker's approah to algebrai number theory deserves being arefully

studied even today:

In many situations it is extremely onvenient, indeed almost imperative, to have a

prinipal ideal ring instead of a Dedekind ring. The usual modern devie for passing

to this tehnially vastly simpler situation is to loalize either by passing to p-adi

ompletions or by forming the quotient ring with respet to the omplement of a

�nite set of prime ideals. [Kroneker's divisor . . . ] theory has not generally been

looked upon as a tool for aomplishing this redution to prinipal ideals, [. . . ]. In

a ertain sense it aomplishes the task muh better than does loalization beause

with loalization the bulk of the struture of the ideal group is lost, whereas with

forms [i. e. elements of the Kroneker funtion ring] this struture is preserved down

to the �nest detail. [2, 92℄
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1 Divisorial ideals, Kroneker divisors and the norm

We start this setion with a short introdution to the theory of divisorial ideals and

Kroneker divisors as outlined in [7℄. If not otherwise stated, we always mean frational

ideals with respet to an integral domain when speaking of ideals.

Let D be a domain with quotient �eldK. If a is a D-ideal and if a−1
means the ideal

quotient (D : a) := {µ ∈ K : µa ⊆ D}, we all the frational D-ideal av := (a−1)−1

the divisorial or v-ideal orresponding to a. The map a 7→ av is referred to as the

v-operation with respet to D. It indues the t-operation, whih is given by

a 7→ at :=
⋂

e f. g.

e⊆a

ev,

where the abbreviation �f. g.� stands for ��nitely generated D-ideal�. The v-operation

is said to be of �nite type if it oinides with the t-operation. Note that v- and t-

operation mean the same when restrited to the set of �nitely generated D-ideals. If

a = av, the D-ideal a is alled divisorial or v-ideal ; if a = at, it is alled t-ideal. In the

next paragraph the symbol �∗� is used to denote both the v- and the t-operation on D.

A ∗-ideal a is ∗-�nite if there is a �nitely generated D-ideal b with a = b∗. If

this ideal b is generated by a1, . . . , am ∈ b, we also write a = a∗ = (a1, . . . , am)∗ and

refer to a1, . . . , am as the ∗-generating system of a. The frational ∗-ideals of D form

a partially ordered semigroup by the so-alled ∗-multipliation �×�. It is de�ned by

a∗×b∗ := (a′ · b′)∗, where a′, b′ denote frational D-ideals with a′∗ = a∗ and b′∗ = b∗.

The meaning of ∗-divisibility and ∗-invertibility is obvious. Note that, in general, the

v-inverse of a v-invertible v-ideal a is not v-�nite, even if a is v-�nite. The t-inverse of

a t-invertible t-ideal, however, is always t-�nite.

If f(X) = a0 + a1X + . . .+ amX
m

is a polynomial in K[X], the v-ideal

(f)v := (a1, . . . , am)v

is alled the v-ontent of f . If (f)v = D, f is alled v-primitive. The set of v-

primitive polynomials is denoted by Nv(D). The v-ontent is said to be multiplia-

tive if (f · g)v = (f)v×(g)v for all f, g ∈ K[X]. The v-ontent is multipliative

if and only if D is integrally losed. If the v-�nite v-ideals of D are v-invertible, the

v-ontent funtion (·)v an be extended from polynomials to rational funtions over

K by (f)v := (f1)v×(f2)
−1
v for all f := f1

f2
, f1, f2 ∈ D[X].

If the v-�nite v-ideals of D are v-anellative with respet to the v-multipliation,

whih is shown to be equivalent to the v-�nite v-ideals being v-invertible, D is alled a

v-domain. The quotient group Λv(D) of all integral v-�nite v-ideals is referred to as the

Lorenzen v-group of D; Λ+
v (D) denotes the semigroup of all integral v-ideals in Λv(D).

If D is a v-domain, the set

Dv :=
{f

g
: f, g ∈ D[X] with (f)v ⊆ (g)v

}

of rational funtions over K beomes an integral domain, the Kroneker funtion ring

of D with respet to the v-operation. Any Dv
-ideal generated by �nitely many rational
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funtions

f1
g
, . . . , fm

g
, fi, g ∈ D[X], is a prinipal ideal of the form

f

g
Dv

, where f(X) =
f1 · X

r1 + . . . + fm · X
rm

denotes a polynomial in whih the exponents ri are suh

that in the representation of f no monomials of equal degree our. This shows that

Dv
is atually a Bezout domain. It is easy to see that Dv ∩ K = D. With Λ(Dv)

(resp. Λ+(Dv)) denoting the Lorenzen (semi)group of Dv
, i. e. the (semi)group of all

(integral) �nitely generated, hene prinipal Dv
-ideals, we get the isomorphisms of

gd-(semi)groups Λv(D) ∼= Λ(Dv) resp. Λ+
v (D) ∼= Λ+(Dv).

If the v-�nite v-ideals of D even form a group by v-multipliation, i. e. if the v-

inverse of any v-�nite v-ideal is v-�nite again,D is alled Prüfer v-multipliation domain

(PVMD). In this ase, the Kroneker funtion ring Dv
is equal to the quotient ring of

D[X] with respet to the multipliatively losed set Nv(D) of v-primitive polynomials

Dv(X) = D[X]Nv(D) =
{f

g
: f ∈ D[X], g ∈ Nv(D)

}
.

We all Dv(X) the Nagata domain of D with respet to the v-operation.

IfD is a Prüfer v-multipliation domain in whih every v-ideal is v-�nite,D is shown

to be a Krull domain (and vie versa). Observing that the v-�niteness ondition means

that v-operation and t-operation oinide, we obtain ideal theoreti haraterizations

of a Krull domain whih are analogue to those of a Dedekind domain. To be preise,

D is a Krull domain if and only if any of the following onditions holds: (1) The

frational t-ideals form a group by t-multipliation. (2) Any t-ideal an be uniquely

written as the t-produt of �nitely many prime t-ideals. (3) D is integrally losed,

every asending hain of t-ideals beomes stable (t-noetherian property) and any prime

t-ideal is maximal in the set of all t-ideals.

We reall that a Krull domain is nothing else than a ring with divisor theory, i. e.

a domain together with a fatorial semigroup D+
and a homomorphism (·) : D∗ → D+

suh that the following onditions hold:

(D 1) a | b with respet to D ⇔ (a) | (b) with respet to D+
.

(D 2) {d ∈ K : a | (d)} = {d ∈ K : b | (d)} ⇔ a = b for all a, b ∈ D+
.

Aording to this de�ntion the seond ideal theoreti riterion for Krull domains ited

above says that an adequate system of divisors is given by the fatorial group of t-ideals,

i. e. by the Lorenzen v-group Λv(D). Up to isomorphism, there is no other divisor theory

for D than the homomorphism (·)v : D
∗ → Λ+

v (D) with a 7→ (a)v = aD.

An alternative to make the divisor theory for D expliit is given by the Kroneker

funtion ring Dv
of D with respet to the v-operation. It is well-known that D is a

Krull domain if and only if its orresponding Nagata domain Dv(X) is a prinipal ideal
domain. Sine Dv(X) = Dv

in this ase, the order preserving isomorphism Λv(D) ∼=
Λ(Dv) beomes an isomorphism of fatorial groups. Thus, [ · ]v : D∗ → Λ+(Dv) with
a 7→ [ a ]v := aDv

de�nes another divisor theory for D. It is alled Kroneker's divisor

theory for D. The elements of Dv
are referred to as integral Kroneker divisors, the ele-

ments in K(X) as frational Kroneker divisors. Sine any element in Dv
is assoiated

to a polynomial over K, we an think of Kroneker divisors as polynomials. Note that
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with respet to Dv
every polynomial in K[X] an be interpreted as a greatest ommon

divisor of its oe�ients.

If T is the integral losure of a Krull domain D in the �nite �eld extension L/K,

then T is again a Krull domain whose Kroenker funtion ring T v
is the integral losure

of Dv
in the �nite �eld extension L(X)/K(X). Thus, the equalities

T v = Tv(X) = T [X]Nv(T ) = T [X]Nv(D)

hold. Sine the elements of Dv
are ontained in T v

, Kroneker divisors for D an be

regarded as Kroneker divisors for T in a most natural way.

In regard to v-ideal divisors it is well-known that dv = (dT )v ∩K for all D-ideals d

(f. [5, Satz 9℄). This, however, implies that nothing is lost when we lift v-ideals of D to

v-ideals of T . Thus, we may identify the v-ideals of D with the v-ideals they generate

in T . Note that, in partiular, the gd-property of a Kroneker resp. v-ideal divisor
remains untouhed when passing on from one algebrai extension �eld to another.

Informally speaking, �gd in D stays gd in T �.

Sine the algebrai struture of the �eld extension L(X)/K(X) mimiks that of

L/K, we have [L(X) : K(X)] = [L : K] = m. In partiular, the degrees of separability

s and inseparability i are the same. Sine every onjugation map over K is equal to the

restrition of a onjugation map overK(X), we will denote theK-monomorphisms from

L into the normal losure of L/K resp. the K(X)-monomorphism from L(X) into the

normal losure of L(X)/K(X) uniformly by σ1, . . . , σs. For the norm funtion of L/K
resp. L(X)/K(X), whih is given by

∏s

k=1 σk(·)
i
, we will always use the abbreviated

notation NL/K, even when applied to L(X).

Aording to this de�nition the meaning of the norm of a Kroneker divisor is

obvious, at least if it is referred to as an element of L(X). For an element of Λ(T v), i. e.
for a prinipal ideal of the form FT v

, F ∈ L(X), we de�ne NL/K(FT v) := NL/K(F )Dv
.

Sine the map Λ(T v) → Λv(T ) with FT v 7→ (F )v is a well-de�ned isomorphism and

sine any v-ideal of T an be written as the v-ontent of a polynomial with oe�ients

in L, this de�nition indues a well-de�ned norm funtion for v-ideal divisors of T by

N (v)

L/K(A) := (NL/K(F ))v for all A ∈ Λv(T ), F ∈ L(X) with A = (F )v.

It is alled the v-ideal norm or just v-norm with respet to L/K. Note that per de�-

nitionem the v-norm of a v-ideal of T gives a v-ideal of D.

Proposition 1.1. Let L/K be an algebrai �eld extension with degree of separability

s and degree of inseparability i. Let further A = Av be a v-ideal of T . If σk(A)v,
1 6 k 6 s, is the v-ideal generated by σk(A) in the normal losure of L/K, we get

N (v)

L/K(A) = σ1(A)
i
v× . . .×σs(A)

i
v ∩K.

Thus, if L/K is a separable �nite extension, the v-norm of a v-ideal is just the v-produt
of its onjugates.

Proof: It has already been mentioned that in ase of an arbitary algebrai �eld

extension L/K the equality dv = (dT )v ∩ K holds for any D-ideal d. This, however,

implies that nothing is lost when we lift v-ideals in L to v-ideals in the normal losure
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of L/K. Thus, we may assume without loss of generality that the �nite extension

L/K is normal. Let F ∈ L[X] be a polynomial with v-ontent A. Per de�nitionem,

N (v)

L/K(A) = (NL/K(F ))v. In addition, we obtain

σk(A)v = σk(A) = σk

(
(F )v

)
= 

(
σk(F )

)
v

for 1 6 k 6 s

sine L/K is normal. Observing that the v-ontent in an integrally losed domain is

always multipliative we obtain

N (v)

L/K(A) = 

(
σ1(F )i · . . . · σs(F )i

)
v

= (σ1(F ))iv× . . .×(σm(F ))iv ∩K

= σ1((F )v)
i× . . .×σm((F )v)

i ∩K

= σ1(A)
i× . . .×σm(A)

i ∩K. ✷

Proposition 1.2. Let F ∈ L(X) be a Kroneker divisor with v-ontent A = Av. If

�∼� means �is assoiated to�, we have

NL/K(F ) ∼ gd

(
{NL/K(α)}α∈L, F |α

)
.

In terms of v-ideals we obtain

N (v)

L/K(A) =
(
{NL/K(α)}α∈A

)
v
.

Proof: Making the divisor group of T expliit by the Lorenzen v-group we have

gd({αi}i∈I) = ({αi}i∈I)v for any family {αi}i∈I of elements in L (f. [7, Satz 2.6℄).

Beause of the de�nition of the v-norm it is therefore su�ient to prove the statement

for Kroneker divisors. Obviously, NL/K(F ) | NL/K(α) for all α ∈ L with F | α. Thus, it
remains to show gd

(
{NL/K(α)}α∈L,F |α

)
| NL/K(F ). Let p ∈ Dv

be a Kroneker divisor

prime in Dv
. Sine T is a Krull domain, there exists a Kroneker divisor Gp ∈ T v

with

gd(p,Gp) ∼ 1 in T v
and F · Gp = αp ∈ T (f. [7, Satz 3.1, (G 2.4)℄). The ondition

gd(p,Gp) ∼ 1 in T v
implies that the orresponding norms are relatively prime in Dv

,

hene gd

(
p,NL/K(Gp)

)
∼ 1 in Dv

. With vp(·) denoting the p-exponent of a Kroneker

divisor we obtain

vp
(
NL/K(αp)

)
= vp

(
NL/K(F ) ·NL/K(Gp)

)

= vp
(
NL/K(F )

)
+ vp

(
NL/K(Gp)

)

= vp
(
NL/K(F )

)
.

Sine min
{
vp
(
NL/K(α)

)
: α ∈ L, F | α

}
≤ vp

(
NL/K(αp)

)
= vp

(
NL/K(F )

)
for all prime

Kroneker divisors p ∈ Dv
, it follows that

gd

(
{NL/K(α)}α∈L, F |α

)
=

∏

p∈Dv
prime

pmin{vp(NL/K(α)): α ∈ L, F | α}

divides NL/K(F ). ✷

We want to end this setion by proving that in the ase of a Krull domain D
the ismorphism Λv(D) ∼= Λ(Dv) is given by extending divisorial D-ideals to prinipal

Dv
-ideals and by ontrating prinipal Dv

-ideals to divisorial D-ideals. This follows

immediately from
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Lemma 1.3. Let D be a v-domain in whih the v-operation is of �nite type. Then

aDv = avD
v
for all D-ideals a. In partiular, fDv = (f)vD

v
for all f ∈ K[X].

Proof: Due to a ⊆ av the inlusion aDv ⊆ avD
v
is trivial. Let α ∈ avD

v
. There

are α1, . . . , αm ∈ av and f1, . . . , fm ∈ Dv
suh that α = α1f1 + . . . + αmfm. Sine the

v-operation is of �nite type, for every αi there is a �nitely generated D-ideal a(i) with

a(i) ⊆ a and αi ∈ a
(i)
v . Let b be the D-ideal generated by a(1), . . . , a(m)

. Then, we have

b ⊆ a and αi ∈ bv for 1 6 i 6 m. Sine b is �nitely generated, there is a polynomial

f ∈ K[X] whose oe�ients generate b. This implies αi ∈ (f)v, hene f | αi with

respet to Dv
. Thus, f | α, i. e. α ∈ fDv = bDv ⊆ aDv

. ✷

Theorem 1.4. Let D be a Krull domain with �eld of frations K and T the inte-

gral losure of D in the �nite �eld extension L/K. Then the following diagrams are

ommutative with the horizontal maps being inverse isomorphisms:

Λv(T )
· T v

−−−→←−−−
∩ L

Λ(T v)

N
(v)
L/K





y





y

NL/K

Λv(D)
· Dv

−−−→←−−−
∩ K

Λ(Dv)

Λv(T )
· T v

−−−→←−−−
∩ L

Λ(T v)

∩ K





y





y

∩ K(X)

Λv(D)
· Dv

−−−→←−−−
∩ K

Λ(Dv)

Proof: Sine D and T are Krull domains, the orresponding Kroneker funtion

rings Dv
and T v

are prinipal ideal domains and all divisorial ideals of D resp. T are

v-�nite. The map Λ(Dv) → Λv(D), fDv 7→ (f)v, is known to be a well-de�ned iso-

morphism with inverse map av 7→ bDv
, where b is a �nitely generated D-ideal with

av = bv. Sine (f)v = fDv ∩ K for all f ∈ K[X], the isomorphism fDv 7→ (f)v
is atually given by ontrating Dv

-ideals to divisorial D-ideals. Vie versa, the iso-

morphism av 7→ aDv
is given by extending divisorial D-ideals to Dv

-ideals beause

aDv = avD
v
aording to Lemma 1.3. By de�nition of the v-norm the �rst diagram

is obviously ommutative. Let F ∈ L[X] be a Kroneker divisor of T and A the or-

responding v-ideal of T suh that A = (F )v = FT v ∩ L resp. AT v = FT v
. Sine

the ontrated ideal FT v ∩ K(X) is a prinipal Dv
-ideal, there is an f ∈ K[X] with

fDv = FT v ∩ K(X). The orresponding v-ideal of D is given by fDv ∩ K = (f)v,
and we obtain FT v ∩ K = FT v ∩ L ∩ K = A ∩ K = (f)v. This proves that the

ontration of a divisorial T -ideal gives a divisorial D-ideal. This means that the map

Λv(T )
∩ K
−→ Λv(D) is de�ned and that the seond diagram is ommutative. ✷

For the reader familiar with the theory of ∗-operations and ∗-ideals it is a well-

known fat that the following onditions are equivalent for a ∗-operation (·)∗ of �nite

type whih is endlih arithmetish brauhbar, i. e. for whih the Kroneker funtion

ring D(∗)
resp. the Lorenzen ∗-group is de�ned: (1) The ∗-�nite ∗-ideals form a group

by ∗-multipliation. (2) The map a∗ 7→ a∗D
(∗)

from the semigroup of ∗-ideals of D
to the semigroup of D(∗)

-ideals is an isomorphism (f. [4, II, � 3.1, Théorème 3℄). In

addition, it is easy to prove the ∗-theoreti analogue to Lemma 1.3, whih says that

a∗D
(∗) ∩K = a∗ for any ∗-ideal a∗ of D if the ∗-�nite ∗-ideals are ∗-invertible. If any of
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the onditions (1) or (2) hold it an be dedued that the inversve map of a∗ 7→ a∗D
(∗)

is given by ontrating D(∗)
-ideals to ∗-ideals of D. Translating this general result to

Krull domains we get an alternative proof of Theorem 1.4.

Notation: To make the reading of this paper easier we will use the following stan-

dard of notation: Elements in K are denoted by small Latin letters (a, b, c, . . . ), ele-
ments in the algebrai extension �eld L by small Greek letters (α, β, γ, . . . ). D-ideals

are denoted by small, T -ideals by apital German letters (a, b, c, . . . resp. A,B,C, . . . ).
Kroneker divisors of D, i. e. elements of the funtion �eld K(X), are denoted by small,

Kroneker divisors of T by apital Latin letters (f, g, h, . . . resp. F,G,H, . . . ). v-Ideals
and Kroneker divisors that orrespond to eah other aording to Theorem 1.4 are

denoted by orresponding letters: av ↔ f , i. e. av = (f)v, bv ↔ g, . . . resp. Av ↔ F ,

Bv ↔ G, . . . . For D- resp. T -ideals extended to Dv(X) resp. Tv(X) we will also write

av(X), bv(X), . . . resp. Av(X),Bv(X), . . . , i. e. we will set av(X) := avD
v = avDv(X)

et. av[X], bv[X], . . . resp. Av[X], bv[X] denote the set of polynomials in the indetermi-

nate X with oe�ients in av, bv, . . . resp. Av,Bv, . . . , i. e. we will set av[X] := avD[X]
et. Prime ideals or prime Kroneker divisors are denoted by the letter p in its adequate

form (p,P resp. p, P ). If not otherwise stated, all ideals in this paper are v-ideals so
that the index letter v will usually be omitted.

2 Residue lass �elds, inertia degree and ramifation index

Let D be a Krull domain with �eld of frations K and a = av ∈ Λ+
v (D) an integral

v-ideal of D that is not v-primitive. Extending the anonial epimorphism D → D/a
to the ring of polynomials over D in the indeterminate X we obtain

ϕa : D[X] −→ D/a [X]

a0 + a1X + . . .+ amX
m 7−→ a0 + a1X + . . .+ amX

m,
(2.1)

where the bar stands for taking the residue modulo a, i. e. ai := ai mod a. We are

interested in the image of the set of v-primitive polynomials over D.

Proposition 2.2. The anonial epimorphism ϕa : D[X]→ D/a [X] of (2.1) maps

the v-primitive polynomials of D to the non-zero divisors of D/a [X]. To be preise,

ϕa

(
Nv(D)

)
=

{
ϕa(f) : f ∈ D[X]∗; fg ∈ a(X) for g ∈ D[X] ⇔ g ∈ a(X)

}
.

Proof: �⊆� Let g ∈ Nv(D) and h ∈ D[X] be polynomials over D with ϕa(g) ·
ϕa(h) = 0, i. e. gh ∈ a[X]. Sine (g)v = D, it follows (h)v = (g)v×(h)v = (gh)v ⊆
a. This, however, means h ∈ a[X], hene ϕa(h) = 0, whih proves that ϕa(g) is a

non-zero divisor in D/a [X].

�⊇� Let ϕa(h) be a non-zero divisor of D/a [X]. First, we prove that the v-
ideal generated by a and the v-ontent of h is the unit ideal, i. e. ((h)v, a)v = D.

Assume that ((h)v, a)v $ D. By the v-invertiblity of any v-ideal in D, there is a

frational v-ideal b = bv with D $ bv suh that bv×((h)v, a)v = D. This implies

(av×bv)×((h)v, a)v = av with av×bv % av. Sine every v-ideal in a Krull domain is
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v-�nite, there is a polynomial f ∈ K[X] with v-ontent av×bv. It follows

(f)v×((h)v, a)v = ((f · h)v, a · (f)v)v = av = a,

hene fh ∈ a[X]. Sine f, h /∈ a[X], we obtain ϕa(f) ·ϕa(h) = 0 with ϕa(f), ϕa(h) 6= 0.
This shows that ϕa(f) is a zero divisor in D/a [X], whih ontradits our assump-

tion. Thus, ((h)v, a)v = D. Realling that any v-ideal in a Krull domain an be

v-generated by two elements we onlude that there must be elements a, b ∈ a suh

that ((h)v, a, b)v = D. Let g = h + aXm + bXm+1
with m := 1 + deg h. Then g is

v-primitive, and from g − h = aXm + bXm+1 ∈ a[X] we get ϕa(g)− ϕa(h) = 0. Thus,
ϕa(g) = ϕa(h), whih proves that there is a v-primitive polynomial that is mapped

onto the non-zero divisor ϕa(h). ✷

Proposition 2.3. Let D be a Krull domain and a = av a v-ideal whih is not v-
primitive. Writing D/a [X]ϕa (Nv(D)) for the quotient ring of D/a [X] with respet to the

multipliative set of non-zero divisors ϕa (Nv(D)), we have the isomorphisms

Dv(X)/a(X) ∼= D[X]Nv(D)/aD[X]Nv(D)

∼= D/a [X]ϕa (Nv(D)).

Proof: We prove that the well-de�ned epimorphism

ϕ̃a : D[X]Nv(D) −→ D/a [X]ϕa (Nv(D))

f

g
7−→ ϕa(f) · ϕa(g)

−1, f ∈ D[X], g ∈ Nv(D)

has kernel a(X) = aD[X]Nv(D). Let h = f

g
, f ∈ D[X], g ∈ Nv(D), be a Kroneker

divisor of D. Sine ϕa(g) 6= 0, we have

ϕ̃a(h) = 0 ⇔ ϕa(f) = 0 ⇔ f ∈ a[X] ⇔ h ∈ aD[X]Nv(D). ✷

Let p be a prime v-ideal of D and p the orresponding Kroneker divisor, i. e. an

element of K(X) with (p)v = p. Note that p need not be a maximal D-ideal and

onsequently the residue lass ring of D modulo p, whih is an integral domain, need

not be a �eld. We all the quotient �eld of D/p the residue lass �eld of D with

respet to p. It is denoted by Kp. This terminology is obviously ompatible with the

one developed for Dedekind domains. Passing on to the Kroneker funtion ring Dv =
Dv(X) = D[X]Nv(D) of D the situation beomes even simpler and learer. Aording

to Theorem 1.4 the extended Dv(X)-ideal pDv(X) = p(X) = pDv(X) gives a prime

Kroneker divisor of D. Sine prinipal prime ideals are maximal, the residue lass ring

Dv(X)/pDv(X) atually is a �eld, namely the residue lass �eld of Dv(X) with respet

to p, denoted by K(X)p .

Theorem 2.4. Let D be a Krull domain with quotient �eld K and T the integral

losure of D in a �nite �eld extension L/K. Let p be a prime Kroneker divisor of D
with v-ontent p and P a prime Kroneker divisor of T with v-ontent P, suh that

P | p in Tv(X), i. e. P ∩K = p. Then

(1) Kp(X) ∼= K(X)p and LP(X) ∼= L(X)P.

(2) [LP : Kp] = [L(X)P : K(X)p ] 6 L/K.
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Proof: Ad (1) Sine D/p is an integral domain, the orresponding polynomial

ring D/p [X] is an integral domain as well. Thus, D/p [X] ontains no zero divisors,

whih implies ϕp (Nv(D)) = D/p [X] aording to Proposition 2.2. Therefore,

D/p [X]ϕp (Nv(D)) = Quot

(
D/p [X]

)
= Quot(D/p)(X) = Kp(X).

The isomorphism now follows from Proposition 2.3.

Ad (2) By (1) the equality [LP : Kp] = [L(X)P : K(X)p ] is obvious. It is well-
known that [LP : Kp] 6 [L : K] holds if D and T are Dedekind domains. Sine

Dv(X) and Tv(X) are even prinipal ideal domains we get [L(X)P : K(X)p ] 6 [L(X) :
K(X)] = [L : K]. ✷

In line with the usual terminology the inertia degree of the prime Kroneker divisor

P with respet to L/K, i. e. the degree [LP : Kp] = [L(X)P : K(X)p ], is denoted by

fL/K(P ). For the ramifation index of P with respet to L/K we will write eL/K(P ).
The meaning of the terms inertia degree and ramifaation index for a prime v-ideal in
T is obvious. From the theory of Dedekind domains we obtain the following results.

Proposition 2.5. Let p ∈ Dv(X) be a prime Kroneker divisor of D whose prime

fatorization in Tv(X) is given by p ∼ P e1
1 · . . . ·P

en
n , where the Pi ∈ Tv(X) are distint

prime divisors with eL/K(Pi) = ei. Interpreting the residue lass ring Tv(X)/pTv(X) as
a vetor spae over the residue lass �eld Dv(X)/pDv(X) = K(X)p of dimension d we

obtain:

(1) d =
∑n

i=1 eL/K(Pi) · fL/K(Pi) 6 [L : K]. If L/K is a separable extension, equality

holds.

(2) If L/K is a normal extension, then eL/K(Pi) = e and fL/K(Pi) = f for all 1 6 i 6 n.
Thus, d = e · f · n 6 [L : K].

(3) If L/K is a Galois extension, then d = e · f · n = [L : K]

Proposition 2.6. Let L/K be a �nite separable extension. If P ∈ Tv(X) and p ∈
Dv(X) are prime Kroneker divisors suh that P | p with respet to Tv(X) and if P

and p are the orresponding v-ideals, we have

NL/K(P ) ∼ pfL/K(P )
and N (v)

L/K(P) = (pfL/K(P))v.

3 Di�erents, disriminants and fundamental divisors

From now on let L/K be a �nite separable extension of degree m. Then L(X)/K(X)
is also separable of degree m. We denote the trae funtion with respet to L/K resp.

L(X)/K(X) uniformly by TrL/K. For A ⊆ L

AT̂/D := {γ ∈ L : TrL/K(γA) ⊆ D}

is alled the omplementary set orresponding to A. Any omplementary set is a D-

module. If A is a free module with D-basis {ω1, . . . , ωm}, then AT̂/D is a free D-module

with the omplementary basis {ω̂1, . . . , ω̂m}. The omplementary basis is determined

by TrL/K(ωiω̂j) = δij, 1 6 i, j 6 m, where δij means the Kroneker symbol. If A = A
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is a frational T -ideal, the omplementary set AT̂/D is a frational T -ideal, too. If T is

a Krull domain, it even is a v-ideal. This follows from

Lemma 3.1. Let A be an arbitrary frational ideal of the Krull domain T . Then,

A(X)
T̂v(X)/Dv(X)

∩ L = AT̂/D.

Proof: Sine any element in Tv(X) an be written as the quotient of a polynomial

F over T and a v-primitive polynomial g over D and sine TrL/K(
F
g
) = 1

g
· TrL/K(F )

for all F ∈ T [X] and g ∈ D[X], we have

A(X)
T̂v(X)/Dv(X)

∩ L

=
{
γ ∈ L(X) : TrL/K(γ · A(X)) ⊆ Dv(X)

}
∩ L

=
{
γ ∈ L : TrL/K

(
γ · F

g

)
∈ Dv(X) for all F ∈ A[X], g ∈ Nv(D)

}

=
{
γ ∈ L : TrL/K(γ · F ) ∈ Dv(X) ∩K[X] = D[X] for all F ∈ A[X]

}

=
{
γ ∈ L : TrL/K(γ · α) ∈ D for all α ∈ A

}
= AT̂/D. ✷

Proposition 3.2. If T is a Krull domain, the omplementary ideal of an arbitrary

T -ideal is always a v-ideal. Two T -ideals generating the same v-ideal have the same

omplementary ideal.

Proof: Let A be an arbitrary T -ideal. By Theorem 1.4 the ontrated T -ideal
Av(X)

T̂v(X)/Dv(X)
∩ L = AT̂/D is a v-ideal. If B is another T -ideal with Av = Bv,

we have A(X) = Av(X) = Bv(X) = B(X) by Lemma 1.3. Now Lemma 3.1 yields

AT̂/D = BT̂/D. ✷

The di�erent of the integral ring extension T/D is given by the integral v-ideal(
TT̂/D

)
−1

and is denoted by DT/D. Correspondingly, Dv(X)T/D :=
(
Tv(X)T̂v(X)/Dv(X)

)
−1

means the di�erent of the integral ring extension Tv(X)/Dv(X). By Lemma 3.1 we have

TT̂/D = Tv(X)T̂v(X)/Dv(X) ∩L. Theorem 1.4, however, says that ontrating Tv(X)-ideals
to T -ideals is an isomorphism. Thus, we obtain

Proposition 3.3. Let T be a Krull domain. Then

DT/D = Dv(X)T/D ∩ L.

If T is a Krull domain, all we know about di�erents in Dedekind domains an be

applied to the Kroneker funtion ring T v = Tv(X), whih is a prinipal ideal domain

in this ase. Translating the results into the language of divisorial ideals we see that,

aording to Theorem 1.4 and Proposition 3.3, most of the well-known ideal theoreti

statements on di�erents in Dedekind domains, suh as Dedekind's Di�erent theorem

or the Di�erent tower theorem, arry over to di�erents in Krull domains.

The same is true for disriminants in Krull domains. It is well known that the

disriminant of an extension T/D is the ideal norm of the orresponding di�erent

if D resp. T are Dedekind domains. The disriminant of Tv(X)/Dv(X) is therefore

given by the integral Kroneker divisor dv(X)T/D := NL/K(Dv(X)T/D). Correspondingly,
we de�ne the disriminant of T/D to be the integral v-ideal dT/D := N (v)

L/K(DT/D).
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Theorem 1.4 and Proposition 3.3 yield

dT/D = dv(X)T/D ∩ L.

Thus, the well-known ideal theoreti statements on disriminants in Dedekind domains,

suh as Dedekind's disrimiant theorem or the Disriminant tower theorem, remain

valid for Krull domains.

In fat, it would be su�ient to know all the results on di�erents and disriminants

in the ase of an integral extension of prinipal ideal domains instead of Dedekind

domains. We leave it to the reader to simplify the standard proofs. It is most likely

that many proofs do without the methods of loalization and ompletion, whih are

usually applied.

There is another point whih makes things easier in Kroneker's divisor theory. If

the �nite extensions L/K resp. L(X)/K(X) are separable, the prinipal ideal domain

Tv(X) beomes a free Dv(X)-module of degree [L(X) : K(X)] = m (f. [8, V, � 4,

Corollary 2 of Theorem 7℄). In partiular, the algebrai funtion �eld L(X) has an

integral basis over K(X). This remarkable fat has not been put muh emphasis on

yet.

Let {F1, . . . , Fm}, Fi ∈ Tv(X), be an integral basis of L(X) over K(X). Sine
every element in Tv(X) an be written as the quotient of a polynomial over T and

a polynomial over D whih is v-primitive, we may assume without loss of generality

that the Fi are polynomials with oe�ients in T . Let α1, . . . , αr be the oe�ients

of F1, . . . , Fm. Any Kroneker divisor of T whose denominator is a polynomial with

exatly these oe�ients and whose nominator is v-primitive is alled fundamental

Kroneker divisor with respet to the integral basis {F1, . . . , Fm}. The polynomials

α1X + . . . + αrX
r
and F := F1X

r1 + . . . + F rm
m with r1 = 0 and ri+1 = i ·

(
1 +

max16j6m{deg fj}
)
for 1 6 i 6 m−1 are examples of fundamental Kroneker divisors.

It will be su�ient to think of fundamental divisors as polynomials of exatly this type.

Note that any fundamental divisor is a greatest ommon divisor of its orrespon-

ding integral basis, but that not any greatest ommon divisor of an integral basis is

fundamental. This is obvious sine

Tv(X) = F1Dv(X) + . . .+ FmDv(X) ⊆ F1Tv(X) + . . .+ FmTv(X) ⊆ Tv(X),

whih means that the elements of an integral basis {F1, . . . , Fm} are always relatively
prime with respet to Tv(X).

To show that a fundamental divisor is also a primitive element of the separable

extension L(X)/K(X) we have to take a look at the element di�erent of F . Remember

that if χ(t) denotes the harateristi polynomial of F over K(X), the element di�erent

of F is de�ned by

di�L/K(F ) =
d

dt
χ(t)|t=F =

d

dt
NL/K(t− F )|t=F =

m∏

k=2

(
F − σk(F )

)
.(3.4)

Proposition 3.5. Let L/K be a �nite separable extension and F ∈ L[X] a polyno-

mial with the oe�ients α1, . . . , αr. Then the following onditions are equivalent:
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(1) di�L/K(F ) 6= 0.
(2) L(X) = K(X)[F ].
(3) L = K[α1, . . . , αr].

Proof: The equivalene (1) ⇔ (2) is well-known.

(1)⇒ (3) Let di�L/K(F ) 6= 0. SupposeK ′ := K(α1, . . . , αr) $ L, i. e. [L : K ′] > 1,
in partiular. Sine the �eld polynomial of F over K is given by χ(t) = NL/K(t−F ) =
NL/K′

(
NK′/K(t− F )

)
= NK′/K(t− F )[L:K

′]
,

di�L/K(F ) = [L : K ′] ·NL/K′(F − F )[L:K
′]−1 ·

d

dt
NK′/K(t− f)|t=F = 0,

whih is a ontradition.

(3)⇒ (1) Let L = K(α1, . . . , αr). Assume di�L/K(F ) = 0. By (3.4) this means

there is a k ∈ {2, . . . ,m} suh that σk(αi) = αi for all 1 6 i 6 r. This, however,
implies σk(α) = α for all α ∈ L, hene σk = σ1 = idL, whih is impossible. ✷

To show that the fundamental Kroneker divisor F with the oe�ients α1, . . . , αr

is a primitive element of the separable extension L(X)/K(X), hene a divisor with

di�L/K(F ) 6= 0, it is therefore su�ient to prove L = K[α1, . . . , αr]. Sine

Tv(X) = F1Dv(X) + . . .+ FmDv(X) ⊆ Dv(X)[α1, . . . , αr] ⊆ Tv(X)

the Kroneker funtion ring Tv(X) is a �nitely generated extension ring of Dv(X) with
Tv(X) = Dv(X)[α1, . . . , αr]. Passing on to the orresponding quotient �elds we obtain

L = L(X) ∩ L = K(X)(α1, . . . , αr) ∩ L = K(α1, . . . , αr).

Sine the αi are algebrai over K, this yields L = K[α1, . . . , αr].

We will show that even more is true, namely that any fundamental divisor F
generates the Kroneker funtion ring Tv(X) over Dv(X), i. e. Tv(X) = Dv(X)[F ].
This follows from

Theorem 3.6. Let D be a Krull domain with quotient �eld K, T the integral losure

of D in the �nite separable extension L/K and F ∈ T [X] a fundamental Kroneker

divisor of T with respet to the integral basis {F1, . . . , Fm}. If the residue lass �eld

extensions L(X)P/K(X)p are separable for all prime Kroneker divisors P ∈ Tv(X),
p ∈ Dv(X) with P | p, we have

Dv(X)T/D = di�L/K(F )Tv(X).

We prove this theorem by means of

Lemma 3.7. Let D be a Krull domain with quotient �eld K, T the integral losure

of D in the �nite separable extension L/K and F ∈ T [X] a fundamental Kroneker

divisor of T with respet to the integral basis {F1, . . . , Fm}. Then we have

di�L/K(F ) ∼ gd

({
di�L/K(G) : G ∈ Tv(X) with L(X) = K(X)[G]

})
.



14 3. Di�erents, disriminants and fundamental divisors

Proof: Let α1, . . . , αr be the oe�ients of F1, . . . , Fm. Sine we have the equality

Tv(X) = Dv(X)[α1, . . . , αr] any element G ∈ Tv(X) an be written as

G =
∑

i1,... ,ir∈N

di1,... ,irα
i1
1 · . . . · α

ir
r with di1,... ,ir ∈ Dv(X),

where only �nitely many di1,... ,ir are 6= 0. Let G ∈ Tv(X) be a primitive element of the

separable �eld extension L(X)/K(X), i. e. let di�L/K(G) 6= 0. We denote the normal

losure of L(X)/K(X) by L(X) and the integral losure of Tv(X) in L(X) by Tv(X).
Let σ be a K(X)-automorphism of L(X). To show di�L/K(F ) | di�L/K(G) we �rst prove
by indution on the number of oe�ients r that G− σ(G) is a linear ombination of

α1 − σ(α1), . . . , αr − σ(αr) over Tv(X). For r = 1 we have G =
∑

i∈N di · α
i
1 with

di ∈ Dv(X). This, however, implies

G− σ(G) =
∑

i∈N

di
(
αi
1 − σ(α1)

i
)

=
(
α1 − σ(α1)

)
·
∑

i∈N

di ·
(
αi−1
1 + αi−2

1 σ(α1) + . . .+ α1σ(α1)
i−2 + σ(α1)

i−1
)
,

whih obviously is an element of the desired form. Suppose now that the statement has

been proved for r > 1 and let

G =
∑

i1,... ,ir ,ir+1∈N

di1,... ,ir ,ir+1 · α
i1
1 · . . . · α

ir
r · α

ir+1

r+1

=
∑

ir+1∈N

α
ir+1

r+1 ·
∑

i1,... ,ir∈N

di1,... ,ir,ir+1 · α
i1
1 · . . . · α

ir
r .

We de�ne Gir+1 to be the Kroneker divisor

∑
di1,... ,ir ,ir+1 · α

i1
1 · . . . · α

ir
r . Then, by

indution hypothesis, Gir+1 − σ(Gir+1) is a linear ombination of α1 − σ(α1), . . . , αr −

σ(αr) over Tv(X). Thus,

G− σ(G) =
∑

ir+1∈N

(
Gir+1 · α

ir+1

r+1 − σ(Gir+1) · σ(α
ir+1

r+1 )
)

=
∑

ir+1∈N

(
α
ir+1

r+1

(
Gir+1 − σ(Gir+1)

)
+ σ(Gir+1)

(
α
ir+1

r+1 − σ(α
ir+1

r+1 )
))

is a linear ombination of α1 − σ(α1), . . . , αr+1 − σ(αr+1) over Tv(X), where we made

use of the fat that

α
ir+1

r+1 − σ(α
ir+1

r+1 ) =
(
αr+1 − σ(αr+1)

)
·
(
α
ir+1−1
r+1 + . . .+ σ(α

ir+1−1
r+1 )

)

and αi+1
r+1 resp. σ(Gir+1)

(
α
ir+1−1
r+1 + . . . + σ(α

ir+1−1
r+1 )

)
are elements in Tv(X). For the

fundamental divisor F = α1X
i1 + . . . + αrX

ir
, ik 6= il for k 6= l, with respet to the

integral basis {F1, . . . , Fm} we have

F − σ(F ) = (α1 − σ(α1))X
i1 + . . .+ (αr − σ(αr))X

ir .

Sine Tv(X) is equal to the Kroneker funtion ring of T , the Kroneker divisor F−σ(F )
divides eah of its oe�ients in Tv(X). This however, implies F − σ(F ) | G− σ(G) in
Tv(X) for any G ∈ Tv(X) with di�L/K(G) 6= 0. Sine di�L/K(F ) =

∏
σ 6=idL

(
F − σ(F )

)
,
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we obtain di�L/K(F ) | di�L/K(G) in Tv(X) ∩ L(X) = Tv(X). Thus, di�L/K(F ) is a

greatest ommon divisor o� all element di�erents di�L/K(G) 6= 0. ✷

Proof of Theorem 3.6: It is well-known that the di�erent of a Dedekind domain is

the greatest ommon divisor of all element di�erents 6= 0 (f. [6, III, � 2, Proposition 8℄

or [3, XII, Satz 4.3℄). Thus, by Lemma 3.7

Dv(X)T/D =
({

di�L/K(G) : G ∈ Tv(X) with L(X) = K(X)[G]
})

Tv(X)

= di�L/K(F )Tv(X). ✷

Theorem 3.6 is indeed remarkable. Sine we have

NL/K

(
di�L/K(G)

)
= (−1)

1
2
n(n−1)

disrL/K(G)

for any primitive element G ∈ Tv(X) of the separable extension L(X)/K(X), it follows
that the disriminant of Tv(X)/Dv(X) is given by

dv(X)T/D = disrL/K(F )Dv(X).

But we already know dv(X)T/D = disrL/K(F1, . . . , Fm) sine the disriminant of the

integral extension Tv(X)/Dv(X) is just the disriminant of any integral basis. Thus,

{1, F, . . . , Fm−1} is shown to be an integral basis of L(X)/K(X), too, and we obtain

Theorem 3.8. Let D be a Krull domain with quotient �eld K and T the integral

losure of D in the �nite separable extension L/K. All residue lass �eld extensions

L(X)P/K(X)p are supposed to be separable for any pair of prime Kroneker divisors

P ∈ Tv(X), p ∈ Dv(X) with P | p. If F ∈ T [X] is a fundamental Kroneker divisor of

T , we have

Tv(X) = Dv(X)[F ].

In partiular, there are no ommon inessential disriminant divisors 6∼ 1 with respet

to the integral extension Tv(X)/Dv(X).

4 Fatorizing primes in Kroneker's divisor theory

Suppose now that the assumptions of Theorem 3.8 are ful�lled. Sine we have Tv(X) =
Dv(X)[F ] for any fundamental Kroneker divisor F , we an always apply Kummer's

deomposition theorem (f. [6, I, � 8, Proposition 25℄) in order to fatorize prime

Kroneker divisors of Dv(X) in the integral losure Tv(X).

Let p ∈ Dv(X) be a prime Kroneker divisor of Dv(X). Assume that F ∈ Dv(X)
is a fundamental divisor with minimal polynomial µ(t) ∈ Dv(X)[t]. Redution modulo

pDv(X) gives the deomposition

µ(t) = µ1(t)
e1
· . . . · µn(t)

en

with µi ∈ Dv(X)[t] suh that µi is prime in Dv(X)/pDv(X)[t]. Then the deompositi-

on of p into irreduible fators in Tv(X) is given by

p ∼ P e1
1 · . . . · P

en
n ,
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where Pi ∼ gd

(
p, µi(F )

)
with fL/K(Pi) = deg µi(t) for all 1 6 i 6 n.

Let us have a look at the lassial situation of algebrai number theory, i. e. let

D be the ring of rational integers Z with quotient �eld K = Q and T the ring of

algebrai integers in the algebrai number �eld L. Then there is an integral basis

{ω1, . . . , ωm} of L/K whih is also an integral basis of L(X)/K(X). Thus, we an

hoose a fundamental Kroneker divisor of the form F = ω1X + . . . + ωmX
m
. Note

that in the ase of an algebrai number �eld the v-operation is the identity on the

system of all ideals. Thus, v-primitivity means primitivity in the usual sense, i. e. a

polynomial over Z resp. T is v-primitive if and only if its oe�ients generate the

unit ideal. In Z this is obviously equivalent to the ondition that all oe�ients are

relatively prime. Thus, the Kroneker funtion rings Zv(X) and Tv(X) are given by

Zv(X) =
{

f

g
: f, g ∈ Z[X], gd(oe�ients of g) ∼ 1

}
and Tv(X) =

{
F
G

: F,G ∈

T [X], (oe�ients of G)T = T
}
.

Suppose that p ∈ Z is a rational prime with orresponding prime ideal p = pZ. Let
P ∈ Tv(X) be a prime Kroneker divisor of T with orresponding v-ideal P suh that

P | p in Tv(X). Sine p and P are maximal ideals the residue lass rings Z/p = Zp

and T/P are �elds, namely the residue lass �elds of p and P. Sine Zp is �nite,

T/P is separable over Zp. This implies that T/P (X) is separable over Zp(X). By
Theorem 2.4.(1) it follows that Tv(X)/PTv(X) is separable over Zv(X)/pZv(X). Thus,
the onditions of Theorem 3.8 are ful�lled and we obtain Tv(X) = Zv(X)[F ].

Let µ(t) ∈ Zv(X)[t] be the minimal polynomial of the fundamental divisor F .

The proof of Proposition 2.3 shows that reduing a Kroneker divisor

f

g
∈ Zv(X),

f ∈ Z[X], g ∈ Nv(Z), modulo pZv(X) = p(X) atually means reduing the oe�ients

of f and g modulo pZ = p. Sine µ(t) has oe�ients in Z[X] ⊆ Zv(X), redution
modulo pZv(X) gives the polynomial µ(t) with oe�ients in Zp[X] ⊆ Quot

(
Zp[X]

)
∼=

Zv(X)/pZv(X). Note that by Gauss' Lemma any irreduible fator of µ(t) in Zp[X][t]
remains irreduible over Zv(X)/pZv(X). Thus, it is su�ient to determine the prime

deomposition of µ(t) over Zp[X]. Sine Zp is a �nite �eld, this an be done in a �nite

number of steps. If µ1, . . . , µn ∈ Z[X][t] are suh that

µ(t) = µ1(t)
e1
· . . . · µn(t)

en
with µi(t) prime in Zp[X][t],

all prime Kroneker divisors of T dividing p in Tv(X) are given by

Pi ∼ gd

(
p, µi(F )

)
∼ p+ µi(F ) ·X,

and we obtain the prime deomposition of p in Tv(X) by

p ∼ P e1
1 · . . . · P

en
n .

A similar result has also been obtained by H.M. Edwards in the ase of algebrai

number �elds (f. [1, �� 2.4�2.7℄). Edward's presentation, however, is unfamiliar to the

modern reader and sometimes laks the larity of modern mathematial language. In

my opinion, it does not reveal the real ause why Kroneker divisors make Kummer's

fatorization method work also for ommon inessential disriminant divisors.
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