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Introduction

Introductions to algebraic number theory often regard the classical theory of algebraic
number fields just as a special case of the theory of Dedekind domains. The level of
abstraction can even be more increased by studying Krull domains instead of Dede-
kind domains. Rings of this type, also known as rings with divisor theory, still allow
some sort of prime factorization, but in general, the corresponding system of prime
divisors can no longer be made explicit by the system of prime ideals. It has become
standard to describe the prime divisors of a Krull domain by its p-adic valuations, i. e.
by its discrete rank one valuations. Thus, Krull domains are usually studied by means
of valuation theory and local-global arguments. This methodical approach, however,
has the disadvantage of being more abstract and less graphic than classical ideal theo-
ry. Compared to prime ideals discrete rank one valuations are indeed rather abstract
algebraic objects. In addition, there is no natural definition of the norm of a divisor or
the different of a Krull domain with respect to a finite field extension.

The intention of this paper is to present and propagate a methodical alterna-
tive devoid of these inconveniences, namely Kronecker’s divisor theory. There have
been several attempts to make Kronecker’s methods popular, but most of the treat-
ments on Kronecker’s divisor theory lack of systematic approach. This may explain
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why Kronecker’s approach to algebraic number theory is little known and still lives in
the shadow of ideal and valuation theory.

In [7] Kronecker’s theory was analyzed in modern terms, i. e. by means of the theory
of divisorial ideals, Kronecker function rings and Nagata domains. In the present paper
we want to show how Kronecker’s divisor theory can be used to transfer notions and
well-known results from the theory of Dedekind domains to Krull domains thereby
giving an alternative approach to the fundamentals of algebraic number theory.

If D is a Krull domain with field of fractions K, the corresponding Kronecker func-
tion ring D" with respect to the v-operation is a principal ideal domain whose elements
deliver a complete and (up to association) uniquely determined system of divisors for D
in a most natural way. It is well-known that the group of fractional D"-ideals is isomor-
phic to the Lorenzen v-group A, (D) of D, i.e. the group of fractional divisorial ideals
of D. We will show that this isomorphism is given by extending divisorial D-ideals to
Dv-ideals and by contracting D"-ideals to D-ideals. Observing that the integral closure
T of D in a finite field extension L/K is again a Krull domain and that the integral
closure of DV in the corresponding extension L(X)/K(X) is given by the Kronecker
function ring 7, we define the norm of a divisor of 7" with respect to L/K in line with
the usual norm with respect to L(X)/K(X). Since the Kronecker function rings D"
resp. TV are principal ideal domains, hence Dedekind domains, the same translation
process can be applied to the definition of the residue class field, the ramification in-
dex, the inertial degree, the different, the discriminant etc. Consequently, many results
on Dedekind domains such as the different and discriminant theorems can easily be
transferred to Krull domains. Finally, we will show that the different of T over DV is
generated by an element different diff(F'), F' € T, which implies that 7" is a simple
extension ring of DV with TV = DV[F]. From this we will explain, why, whith slight
modifications, Kummer’s method to factorize rational primes in an algebraic number
field is also applicable to common inessential discriminant divisors.

The present paper generalizes several results already obtained by H. Flanders for
Dedekind domains (cf. [2]). It is a contribution to an adequate assessment of Kronecker’s
method. The following passage quoted from the introduction of Flander’s paper ex-
plains why Kronecker’s approach to algebraic number theory deserves being carefully
studied even today:

In many situations it is extremely convenient, indeed almost imperative, to have a
principal ideal ring instead of a Dedekind ring. The usual modern device for passing
to this technically vastly simpler situation is to localize either by passing to p-adic
completions or by forming the quotient ring with respect to the complement of a
finite set of prime ideals. [Kronecker’s divisor ...| theory has not generally been
looked upon as a tool for accomplishing this reduction to principal ideals, [...]. In
a certain sense it accomplishes the task much better than does localization because
with localization the bulk of the structure of the ideal group is lost, whereas with
forms [i. e. elements of the Kronecker function ring] this structure is preserved down
to the finest detail. [2, 92]



1. Divisorial ideals, Kronecker divisors and the norm 3

1 Divisorial ideals, Kronecker divisors and the norm

We start this section with a short introduction to the theory of divisorial ideals and
Kronecker divisors as outlined in [7]. If not otherwise stated, we always mean fractional
ideals with respect to an integral domain when speaking of ideals.

Let D be a domain with quotient field K. If a is a D-ideal and if a—! means the ideal
quotient (D : a) := {u € K : pa C D}, we call the fractional D-ideal a, := (a=!)7!
the divisorial or v-ideal corresponding to a. The map a — a, is referred to as the
v-operation with respect to D. It induces the t-operation, which is given by

a— a; ;= ﬂ ¢y,

ef. g
eCa

where the abbreviation “f. g.” stands for “finitely generated D-ideal”. The v-operation
is said to be of finite type if it coincides with the t-operation. Note that v- and t-
operation mean the same when restricted to the set of finitely generated D-ideals. If
a = a,, the D-ideal a is called divisorial or v-ideal; if a = a;, it is called t-ideal. In the
next paragraph the symbol “x” is used to denote both the v- and the t-operation on D.

A x-ideal a is x-finite if there is a finitely generated D-ideal b with a = b,. If
this ideal b is generated by ay,... ,a, € b, we also write a = a, = (a1,... ,ay). and
refer to aq, ... ,a,, as the x-generating system of a. The fractional x-ideals of D form
a partially ordered semigroup by the so-called x-multiplication “x”. 1t is defined by
a.xb, := (a’ - b'),, where a’, b’ denote fractional D-ideals with a, = a, and b, = b..
The meaning of x-divisibility and x-invertibility is obvious. Note that, in general, the
v-inverse of a v-invertible v-ideal a is not v-finite, even if a is v-finite. The t-inverse of
a t-invertible t-ideal, however, is always t-finite.

If f(X)=ao+a X +...+a,X™is a polynomial in K[X], the v-ideal

c(fo:i=(ar, ... ,am)v
is called the wv-content of f. If ¢(f), = D, f is called v-primitive. The set of v-
primitive polynomials is denoted by N,(D). The v-content is said to be multiplica-
tive if c¢(f - g)» = c(f)vxc(g), for all f,g € K[X]. The v-content is multiplicative
if and only if D is integrally closed. If the v-finite v-ideals of D are v-invertible, the
v-content function c(-), can be extended from polynomials to rational functions over
K by c(f)y := c(f1)exc(f2), ! for all f:= %, fi1, fo € D[X].

If the v-finite v-ideals of D are v-cancellative with respect to the v-multiplication,
which is shown to be equivalent to the v-finite v-ideals being v-invertible, D is called a
v-domain. The quotient group A, (D) of all integral v-finite v-ideals is referred to as the
Lorenzen v-group of D; A} (D) denotes the semigroup of all integral v-ideals in A (D).
If D is a v-domain, the set

DY = {g : f7g c D[X] with C(f)v - C(g)v}

of rational functions over K becomes an integral domain, the Kronecker function ring
of D with respect to the v-operation. Any D"-ideal generated by finitely many rational
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functions %, e %”, fi,g € D[X], is a principal ideal of the form gD”, where f(X) =
fi- X"+ ...+ fin - X' denotes a polynomial in which the exponents r; are such
that in the representation of f no monomials of equal degree occur. This shows that
Dv is actually a Bezout domain. It is easy to see that D" N K = D. With A(D")
(resp. AT(D")) denoting the Lorenzen (semi)group of DV, i.e. the (semi)group of all
(integral) finitely generated, hence principal D'-ideals, we get the isomorphisms of
ged-(semi)groups A, (D) = A(DV) resp. A (D) = AT(DY).

If the v-finite v-ideals of D even form a group by v-multiplication, i.e. if the v-
inverse of any v-finite v-ideal is v-finite again, D is called Prifer v-multiplication domain
(PVMD). In this case, the Kronecker function ring D" is equal to the quotient ring of
DI[X] with respect to the multiplicatively closed set N, (D) of v-primitive polynomials

iy
Pk
We call D,(X) the Nagata domain of D with respect to the v-operation.

If D is a Priifer v-multiplication domain in which every v-ideal is v-finite, D is shown
to be a Krull domain (and vice versa). Observing that the v-finiteness condition means
that v-operation and t-operation coincide, we obtain ideal theoretic characterizations
of a Krull domain which are analogue to those of a Dedekind domain. To be precise,
D is a Krull domain if and only if any of the following conditions holds: (1) The
fractional ¢-ideals form a group by ¢-multiplication. (2) Any t¢-ideal can be uniquely
written as the ¢-product of finitely many prime t-ideals. (3) D is integrally closed,
every ascending chain of ¢-ideals becomes stable (t-noetherian property) and any prime
t-ideal is maximal in the set of all ¢-ideals.

Dy(X) = DXy, = {2+ f € DIX].g € Nu(D) }.

We recall that a Krull domain is nothing else than a ring with divisor theory, i.e.
a domain together with a factorial semigroup ©* and a homomorphism () : D* — ©*F
such that the following conditions hold:
(D 1) a| b with respect to D < (a) | (b) with respect to ©.
(D2) {deK:a|(d)}={deK:b|(d)} < a=0>bforallabecD".
According to this defintion the second ideal theoretic criterion for Krull domains cited
above says that an adequate system of divisors is given by the factorial group of t-ideals,
i. e. by the Lorenzen v-group A, (D). Up to isomorphism, there is no other divisor theory
for D than the homomorphism (+), : D* — A (D) with a — (a), = aD.

An alternative to make the divisor theory for D explicit is given by the Kronecker
function ring D" of D with respect to the v-operation. It is well-known that D is a
Krull domain if and only if its corresponding Nagata domain D, (X) is a principal ideal
domain. Since D,(X) = DV in this case, the order preserving isomorphism A, (D) =
A(DV) becomes an isomorphism of factorial groups. Thus, [-], : D* — AT (DY) with
a — [a], := aD" defines another divisor theory for D. It is called Kronecker’s divisor
theory for D. The elements of DV are referred to as integral Kronecker divisors, the ele-
ments in K (X) as fractional Kronecker divisors. Since any element in DV is associated

to a polynomial over K, we can think of Kronecker divisors as polynomials. Note that
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with respect to DV every polynomial in K [X]| can be interpreted as a greatest common
divisor of its coefficients.

If T is the integral closure of a Krull domain D in the finite field extension L/K,
then 7' is again a Krull domain whose Kroencker function ring 7" is the integral closure
of DV in the finite field extension L(X)/K(X). Thus, the equalities

T° =T,(X) =T[X] T[X]
hold. Since the elements of DV are contained in TV, Kronecker divisors for D can be
regarded as Kronecker divisors for 7" in a most natural way.

In regard to v-ideal divisors it is well-known that 9, = (97"), N K for all D-ideals d
(cf. |5, Satz 9]). This, however, implies that nothing is lost when we lift v-ideals of D to
v-ideals of T. Thus, we may identify the v-ideals of D with the v-ideals they generate
in T. Note that, in particular, the gced-property of a Kronecker resp. v-ideal divisor
remains untouched when passing on from one algebraic extension field to another.
Informally speaking, “gcd in D stays ged in 17,

Since the algebraic structure of the field extension L(X)/K(X) mimicks that of
L/K, we have [L(X) : K(X)] = [L: K] = m. In particular, the degrees of separability
s and inseparability ¢ are the same. Since every conjugation map over K is equal to the
restriction of a conjugation map over K (X), we will denote the K-monomorphisms from
L into the normal closure of L/K resp. the K (X)-monomorphism from L(X) into the
normal closure of L(X)/K(X) uniformly by oy, ... ,0s. For the norm function of L/K
resp. L(X)/K(X), which is given by [];_, ox(+)", we will always use the abbreviated
notation NN, ., even when applied to L(X).

No(T) Nu(D)

According to this definition the meaning of the norm of a Kronecker divisor is
obvious, at least if it is referred to as an element of L(X). For an element of A(T"), i.e.
for a principal ideal of the form FT, F € L(X), we define N, (FT") := N, ,«(F)D".
Since the map A(TV) — A (T') with FTV — ¢(F), is a well-defined isomorphism and
since any v-ideal of T' can be written as the v-content of a polynomial with coefficients
in L, this definition induces a well-defined norm function for v-ideal divisors of T' by

Nf’/)K(Ql) = c(Ny(F)), forallAe A(T), F e L(X) with 2 = c(F),.
It is called the v-ideal norm or just v-norm with respect to L/K. Note that per defi-
nitionem the v-norm of a v-ideal of T" gives a v-ideal of D.

Proposition 1.1. Let L/ K be an algebraic field extension with degree of separability
s and degree of inseparability i. Let further A = 24, be a v-ideal of T. If o (2A),,
1 < k < s, is the v-ideal generated by oy, () in the normal closure of L/ K, we get

Nf})K(Q() =0 (A x ... xo (A N K.
Thus, if L/ K is a separable finite extension, the v-norm of a v-ideal is just the v-product

of its conjugates.

Proof: 1t has already been mentioned that in case of an arbitary algebraic field
extension L/K the equality 9, = (07), N K holds for any D-ideal 9. This, however,
implies that nothing is lost when we lift v-ideals in L to v-ideals in the normal closure
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of L/K. Thus, we may assume without loss of generality that the finite extension
L/K is normal. Let F € L[X] be a polynomial with v-content 2. Per definitionem,
N (@) = ¢(Nyx(F)),. In addition, we obtain
ok (A)y = 0k (A) = or(c(F)y) = c(on(F)), for1<k<s
since L/K is normal. Observing that the v-content in an integrally closed domain is
always multiplicative we obtain
N (@) = c(on(F) - ... oy(F)'),
(Ul(F))Z - xe(om(F)), N
o1 (c(F v)z - X o (C(F)y )
()% .. XUm(Ql) N K. 0

I
o

01

01

Proposition 1.2. Let F' € L(X) be a Kronecker divisor with v-content A = 2,,. If
“~" means “is associated to”, we have

Npjw(F) ~ ng({NL/K(Oé)}aeL, F|a)-
In terms of v-ideals we obtain

N7 @) = ({Noyx(a) Yaea) -

Proof: Making the divisor group of T explicit by the Lorenzen v-group we have
ged({aitier) = ({@itier)y for any family {o;}ier of elements in L (cf. |7, Satz 2.6]).
Because of the definition of the v-norm it is therefore sufficient to prove the statement
for Kronecker divisors. Obviously, N, (F) | Ny, x(«) for all @ € L with F' | o. Thus, it
remains to show gcd({NL/K(a)}aeLfm) | N,k (F). Let p € DY be a Kronecker divisor
prime in D". Since T' is a Krull domain, there exists a Kronecker divisor GG, € T with
ged(p, Gp) ~1in TV and F - G, = oy, € T (cf. |7, Satz 3.1, (G 2.4)]). The condition
ged(p, Gp) ~ 1 in TV implies that the corresponding norms are relatively prime in DY,
hence ged(p, N,k (Gy)) ~ 1 in D¥. With v,(-) denoting the p-exponent of a Kronecker
divisor we obtain

Up(NL/K(%)) = (NL/K(F> Nyw(G ))
= (NL/K(F)) + Up( L/K(Gp))
= (NL/K(F>)

Since min {v, (N, x(@)): @ € L, F | a} < v,(N,«(ap)) = v,(N,x(F)) for all prime
Kronecker divisors p € D", it follows that

ged ({Ny/x (@) Yacer, Fla) = H pmin{vP(NL/K(a)>i a€L, Fla}

peD? prime

divides Ny« (F). O

We want to end this section by proving that in the case of a Krull domain D
the ismorphism A, (D) = A(D") is given by extending divisorial D-ideals to principal
Dv-ideals and by contracting principal D"-ideals to divisorial D-ideals. This follows
immediately from
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Lemma 1.3. Let D be a v-domain in which the v-operation is of finite type. Then
aD = a,D" for all D-ideals a. In particular, fD* = c(f),D" for all f € K[X].

Proof: Due to a C a, the inclusion aD" C a,D" is trivial. Let o € a,D". There

are aq,... ,ay, € a, and fi,..., f,, € DV such that a = a1 f; + ... + au, fin. Since the
v-operation is of finite type, for every a; there is a finitely generated D-ideal a® with
a® Caand o; € a’. Let b be the D-ideal generated by a®,...  a™. Then, we have

b Caand o; € b, for 1 < i < m. Since b is finitely generated, there is a polynomial
f € K[X] whose coefficients generate b. This implies o; € ¢(f),, hence f | a; with
respect to DV. Thus, f | a,i.e. « € fD" =bD" C aD". O

Theorem 1.4. Let D be a Krull domain with field of fractions K and T the inte-
gral closure of D in the finite field extension L/K. Then the following diagrams are
commutative with the horizontal maps being inverse isomorphisms:

A - Tv

A(T) &= AT") A(T) &= ATV)
nL AL
Nf’/)Kl lNL/K N Kl lm K(X)
. DV . DV
A, (D) == A(D") A (D) &= A(D")
nK nK

Proof: Since D and T are Krull domains, the corresponding Kronecker function
rings DV and T are principal ideal domains and all divisorial ideals of D resp. T are
v-finite. The map A(DV) — A, (D), fD" — c(f)y, is known to be a well-defined iso-
morphism with inverse map a, — bD", where b is a finitely generated D-ideal with
a, = b,. Since ¢(f), = fD" N K for all f € K[X], the isomorphism fD" — c(f),
is actually given by contracting D"-ideals to divisorial D-ideals. Vice versa, the iso-
morphism a, — aD" is given by extending divisorial D-ideals to D"-ideals because
aD’ = a,D" according to Lemma 1.3. By definition of the v-norm the first diagram
is obviously commutative. Let F' € L[X]| be a Kronecker divisor of 7" and 2 the cor-
responding v-ideal of T" such that 2 = ¢(F), = FT" N L resp. AT" = FT". Since
the contracted ideal FTV N K(X) is a principal D'-ideal, there is an f € K[X] with
fD? = FT" N K(X). The corresponding v-ideal of D is given by fD" N K = c(f),,
and we obtain FT"NK = FIT" N LN K = 2AN K = ¢(f),. This proves that the
contraction of a divisorial T-ideal gives a divisorial D-ideal. This means that the map

A, (T) AEN A, (D) is defined and that the second diagram is commutative. O

For the reader familiar with the theory of x-operations and *-ideals it is a well-
known fact that the following conditions are equivalent for a *-operation (-), of finite
type which is endlich arithmetisch brauchbar, i.e. for which the Kronecker function
ring D™ resp. the Lorenzen #-group is defined: (1) The *-finite *-ideals form a group
by s-multiplication. (2) The map a, — a.D® from the semigroup of *-ideals of D
to the semigroup of D™-ideals is an isomorphism (cf. [4, II, § 3.1, Théoréme 3]). In
addition, it is easy to prove the x-theoretic analogue to Lemma 1.3, which says that
a,.D® N K = a, for any *-ideal a, of D if the *-finite *-ideals are x-invertible. If any of
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the conditions (1) or (2) hold it can be deduced that the inversve map of a, — a, D™
is given by contracting D™-ideals to *-ideals of D. Translating this general result to
Krull domains we get an alternative proof of Theorem 1.4.

Notation: To make the reading of this paper easier we will use the following stan-
dard of notation: Elements in K are denoted by small Latin letters (a,b,c,...), ele-
ments in the algebraic extension field L by small Greek letters (a, 3,7,...). D-ideals
are denoted by small, T-ideals by capital German letters (a, b, ¢c,... resp. 2,B,&, .. ).
Kronecker divisors of D, i. e. elements of the function field K (X), are denoted by small,
Kronecker divisors of T' by capital Latin letters (f, g, h,... resp. F,G, H,...). v-Ideals
and Kronecker divisors that correspond to each other according to Theorem 1.4 are
denoted by corresponding letters: a, <> f, i.e. a, = ¢(f)., by <> g, ... resp. A, <> F,
B, <> G, .... For D- resp. T-ideals extended to D,(X) resp. T,(X) we will also write
a,(X), b,(X),... resp. A, (X),B,(X),..., i.e we will set a,(X) = a,D" = a,D,(X)
etc. a,[X], b,[X], ... resp. A,[X], b,[X] denote the set of polynomials in the indetermi-
nate X with coefficients in a,, b,,... resp. 2, B,, ..., i.e. we will set a,[X] := a,D[X]
etc. Prime ideals or prime Kronecker divisors are denoted by the letter p in its adequate
form (p,P resp. p, P). If not otherwise stated, all ideals in this paper are v-ideals so
that the index letter v will usually be omitted.

2 Residue class fields, inertia degree and ramifaction index

Let D be a Krull domain with field of fractions K and a = a, € AJ (D) an integral
v-ideal of D that is not v-primitive. Extending the canonical epimorphism D — D/q
to the ring of polynomials over D in the indeterminate X we obtain

' a+auX+.. .. +a, X" —a+taX+... . +a,X",
where the bar stands for taking the residue modulo a, i.e. @ := a; mod a. We are

interested in the image of the set of v-primitive polynomials over D.

Proposition 2.2. The canonical epimorphism oo : D[X] — D/q [X] of (2.1) maps
the v-primitive polynomials of D to the non-zero divisors of D/q [X]. To be precise,

@a(No(D)) = {pa(f) : f € DIX]*; fg € a(X) for g € D[X] & g € a(X)}.

Proof: “C” Let g € N,(D) and h € D[X] be polynomials over D with ¢4(g) -
wa(h) =0, i.e. gh € a[X]. Since ¢(g), = D, it follows c(h), = c¢(g),xc(h), = c(gh), C
a. This, however, means h € a[X], hence p,(h) = 0, which proves that p,(g) is a
non-zero divisor in D/q [X].

“D" Let ¢q(h) be a non-zero divisor of D/q [X]. First, we prove that the v-
ideal generated by a and the v-content of h is the unit ideal, i.e. (c(h),,a), = D.
Assume that (c(h),,a), & D. By the v-invertiblity of any v-ideal in D, there is a
fractional v-ideal b = b, with D ;Ct b, such that b,x(c(h),,a), = D. This implies
(ayxby)x (c(h)y, a), = a, with a,xb, 2 a,. Since every v-ideal in a Krull domain is
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v-finite, there is a polynomial f € K[X] with v-content a,xb,. It follows

C(f)vx (C(h)va a)v = (C<f ) h)vv a- C(f)v)v =0, = a,
hence fh € a[X]. Since f,h ¢ a[X], we obtain p4(f) - @a(h) = 0 with pa(f), pa(h) # 0.
This shows that ¢q(f) is a zero divisor in D/q [X], which contradicts our assump-
tion. Thus, (c(h),,a), = D. Recalling that any v-ideal in a Krull domain can be
v-generated by two elements we conclude that there must be elements a,b € a such
that (c(h)y,a,b), = D. Let g = h + aX™ + bX™ with m := 1 + deg h. Then g is
v-primitive, and from g — h = aX™ + bX™ ! € a[X] we get pq(g) — @a(h) = 0. Thus,
©a(g) = pa(h), which proves that there is a v-primitive polynomial that is mapped
onto the non-zero divisor ¢q(h). O

Proposition 2.3. Let D be a Krull domain and a = a, a v-ideal which is not v-
primitive. Writing D/q [X], . v, o), for the quotient ring of D/q [X| with respect to the
multiplicative set of non-zero divisors ¢q (N,(D)), we have the isomorphisms

DU(X)/a(X) = D[X]NU(D)/QD[X] = D/q [X],. v

Ny(D)

Proof: We prove that the well-defined epimorphism

Da D[X]NU(D) — D/Cl [X]W(Nv(m)
L e fEDIX) g€ N(D)

has kernel a(X) = aD[X] Let h = 5, f € D[X], g € Ny(D), be a Kronecker
divisor of D. Since ¢4(g) # 0, we have
Pa(h) =0 & @if)=0 < feaX] & heaDX], ). =

Ny (D)*

Let p be a prime v-ideal of D and p the corresponding Kronecker divisor, i.e. an
element of K(X) with ¢(p), = p. Note that p need not be a maximal D-ideal and
consequently the residue class ring of D modulo p, which is an integral domain, need
not be a field. We call the quotient field of D/y the residue class field of D with
respect to p. It is denoted by K,. This terminology is obviously compatible with the
one developed for Dedekind domains. Passing on to the Kronecker function ring D" =
D,(X) = D[X],, o, of D the situation becomes even simpler and clearer. According
to Theorem 1.4 the extended D,(X)-ideal pD,(X) = p(X) = pD,(X) gives a prime
Kronecker divisor of D. Since principal prime ideals are maximal, the residue class ring
D,(X)/pD,(X) actually is a field, namely the residue class field of D,(X) with respect
to p, denoted by K(X),.

Theorem 2.4. Let D be a Krull domain with quotient field K and T the integral
closure of D in a finite field extension L/K. Let p be a prime Kronecker divisor of D
with v-content p and P a prime Kronecker divisor of T' with v-content B, such that
PlpinTy(X), i.e. PNK =yp. Then
(1) Kp(X) = K(X), and Ly(X) = L(X)p.

(2) Ly : ) = [L(X)p: K(X),] < L/K.



10 3. Differents, discriminants and fundamental divisors

Proof: Ad (1) Since D/p is an integral domain, the corresponding polynomial
ring D/p [X] is an integral domain as well. Thus, D/p [X] contains no zero divisors,
which implies ¢, (N, (D)) = D/p [X] according to Proposition 2.2. Therefore,

D/p [X],, oy = Quot(D/p [X]) = Quot(D/p)(X) = Ky(X).
The isomorphism now follows from Proposition 2.3.

Ad (2) By (1) the equality [Ly @ Kp] = [L(X)p : K(X),] is obvious. It is well-
known that [Ly : K,|] < [L : K] holds if D and T are Dedekind domains. Since
D,(X) and T,(X) are even principal ideal domains we get [L(X)p : K(X),] < [L(X) :
K(X)]=[L:K]. 0

In line with the usual terminology the inertia degree of the prime Kronecker divisor
P with respect to L/K, i.e. the degree [Ly : K] = [L(X)p : K(X),], is denoted by
fu/x(P). For the ramifaction index of P with respect to L/K we will write e, (P).
The meaning of the terms inertia degree and ramifacation index for a prime v-ideal in
T is obvious. From the theory of Dedekind domains we obtain the following results.

Proposition 2.5. Let p € D,(X) be a prime Kronecker divisor of D whose prime
factorization in T,(X) is given by p ~ P{* - ... P where the P, € T,(X) are distinct
prime divisors with e, (F;) = ;. Interpreting the residue class ring T,(X)/pT, (X) as
a vector space over the residue class field D,(X)/pD,(X) = K(X), of dimension d we
obtain:

(1) d=>""enx(B) - fu(P) <[L: K| If L/K is a separable extension, equality
holds.
(2) If L/K is a normal extension, then ey, (P;) = e and f,,«(P;) = f forall1 <i < n.

Thus, d=e-f-n<|[L:K].

(3) If L/K is a Galois extension, then d=e- f-n=[L: K|
Proposition 2.6. Let L/K be a finite separable extension. If P € T,(X) and p €

D,(X) are prime Kronecker divisors such that P | p with respect to T,(X) and if B
and p are the corresponding v-ideals, we have

Ny (P) ~ pr/K(P) and Nij)K(f,B) — (pr/K(‘B))v‘

3 Differents, discriminants and fundamental divisors

From now on let L/K be a finite separable extension of degree m. Then L(X)/K(X)
is also separable of degree m. We denote the trace function with respect to L/K resp.
L(X)/K(X) uniformly by Tr, . For AC L

AL, ={v €L :Tryx(vA) C D}

is called the complementary set corresponding to A. Any complementary set is a D-

module. If A is a free module with D-basis {w;, ... ,wy}, then AT is a free D-module
with the complementary basis {1, ... ,W,}. The complementary basis is determined

by Trpx(wiw;) = 0;5, 1 < 4,5 < m, where d;; means the Kronecker symbol. If A =2
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~

is a fractional T-ideal, the complementary set 217, is a fractional T-ideal, too. If T" is
a Krull domain, it even is a v-ideal. This follows from
Lemma 3.1. Let A be an arbitrary fractional ideal of the Krull domain T'. Then,
A(X) NL=2]

Ty (X)/ Dy (X) T/D*

Proof: Since any element in 7,(X) can be written as the quotient of a polynomial
F over T and a v-primitive polynomial g over D and since T”/’L/K(%) = é “Try(F)
for all F € T[X] and g € D[X], we have

2(X) 2 0/p000) N L

={v€eLX): Tryx(y-AX)) CD,(X)}NL
={y€L:Tryx(y-5) € Dy(X) for all F € A[X], g € N,(D)}
={v€L:Tr, (v F)€ D,(X)NK[X]| = D[X] for all F € A[X]}
Z{VGL:TTL/K('y-a)GDforallaei’l}:ﬂA O

T/D*

Proposition 3.2. If T is a Krull domain, the complementary ideal of an arbitrary
T-ideal is always a v-ideal. Two T-ideals generating the same v-ideal have the same
complementary ideal.

Proof: Let 2 be an arbitrary T-ideal. By Theorem 1.4 the contracted T-ideal

A (X) 1 xymey N L= A7, is a v-ideal. If B is another T-ideal with 24, = %B,,
we have 2A(X) = 2,(X) = B,(X) = B(X) by Lemma 1.3. Now Lemma 3.1 yields
Q’[;\/D = %;\/D‘ O

The different of the integral ring extension 7'/D is given by the integral v-ideal
(T:;,) " and is denoted by ©,,,. Correspondingly, Du(X )z = (To(X)7 )00 00)
means the different of the integral ring extension T,,(X)/D,(X). By Lemma 3.1 we have
T = To(X)7 x)/pyx) N L- Theorem 1.4, however, says that contracting 7, (X)-ideals
to T-ideals is an isomorphism. Thus, we obtain

Proposition 3.3. Let T be a Krull domain. Then
©T/D - QU(X)T/D ﬂ L

If T'is a Krull domain, all we know about differents in Dedekind domains can be
applied to the Kronecker function ring 7% = T,(X), which is a principal ideal domain
in this case. Translating the results into the language of divisorial ideals we see that,
according to Theorem 1.4 and Proposition 3.3, most of the well-known ideal theoretic
statements on differents in Dedekind domains, such as Dedekind’s Different theorem
or the Different tower theorem, carry over to differents in Krull domains.

The same is true for discriminants in Krull domains. It is well known that the
discriminant of an extension 7'/D is the ideal norm of the corresponding different
if D resp. T are Dedekind domains. The discriminant of 7, (X)/D,(X) is therefore
given by the integral Kronecker divisor 9,(X)7,» := Ny x(D4(X)r/p). Correspondingly,
we define the discriminant of 7'/D to be the integral v-ideal d,,, = Név/)K(QT/D).
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Theorem 1.4 and Proposition 3.3 yield
DT/D = OU(X)T/D N L

Thus, the well-known ideal theoretic statements on discriminants in Dedekind domains,
such as Dedekind’s discrimiant theorem or the Discriminant tower theorem, remain
valid for Krull domains.

In fact, it would be sufficient to know all the results on differents and discriminants
in the case of an integral extension of principal ideal domains instead of Dedekind
domains. We leave it to the reader to simplify the standard proofs. It is most likely
that many proofs do without the methods of localization and completion, which are
usually applied.

There is another point which makes things easier in Kronecker’s divisor theory. If
the finite extensions L/K resp. L(X)/K(X) are separable, the principal ideal domain
T,(X) becomes a free D,(X)-module of degree [L(X) : K(X)] = m (cf. [8, V, § 4,
Corollary 2 of Theorem 7|). In particular, the algebraic function field L(X) has an
integral basis over K (X). This remarkable fact has not been put much emphasis on
yet.

Let {F1,... ,Fn}, Fi € T,(X), be an integral basis of L(X) over K(X). Since
every element in 7,(X) can be written as the quotient of a polynomial over 7" and
a polynomial over D which is v-primitive, we may assume without loss of generality
that the F; are polynomials with coefficients in T'. Let aq, ..., a, be the coefficients
of Fi,...,F,,. Any Kronecker divisor of 7" whose denominator is a polynomial with
exactly these coefficients and whose nominator is v-primitive is called fundamental
Kronecker divisor with respect to the integral basis {Fy,..., F,,}. The polynomials
X + ...+ X and F = F,X™ + ...+ Fy» with 1y = 0 and ryq = i+ (1 +
maxi<j<m{deg f;}) for 1 <i < m—1 are examples of fundamental Kronecker divisors.
It will be sufficient to think of fundamental divisors as polynomials of exactly this type.

Note that any fundamental divisor is a greatest common divisor of its correspon-
ding integral basis, but that not any greatest common divisor of an integral basis is
fundamental. This is obvious since

Ty(X) = FiDy(X) 4 ...+ FuDy(X) C FiTy(X) + ...+ FuT,(X) C T,(X),

which means that the elements of an integral basis {F,... , F,,} are always relatively
prime with respect to T, (X).

To show that a fundamental divisor is also a primitive element of the separable
extension L(X)/K (X) we have to take a look at the element different of /. Remember
that if x(¢) denotes the characteristic polynomial of F' over K (X), the element different
of F'is defined by

d d i

EX(t)’t:F = — Nyt = F)li=r = H (F = ou(F)).

(34)  diff,,((F) = — I1

Proposition 3.5. Let L/K be a finite separable extension and F € L[ X| a polyno-
maal with the coefficients av, ... , .. Then the following conditions are equivalent:
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Proof: The equivalence (1) < (2) is well-known.

(1) = (3) Let diff,,(F) # 0. Suppose K := K(a1,... ,a.) G L, i.e.
in particular. Since the field polynomial of F' over K is given by x(t) =
Ny (Nt = F)) = Nygr e (t — F)IEETD

diffL/K(F) = [L : K/] : NL/K’(F - F)[L:K,]_l : %NK’/K(t - f)|t:F =0,

which is a contradiction.
(3)= (1) Let L = K(ay,...,qa,). Assume diff, ,(F) = 0. By (3.4) this means

there is a k € {2,...,m} such that ox(a;) = «; for all 1 < i < r. This, however,
implies oy () = « for all @ € L, hence oy, = 07 = id,,, which is impossible. O
To show that the fundamental Kronecker divisor F' with the coefficients a4, ... , a,

is a primitive element of the separable extension L(X)/K(X), hence a divisor with
diff, ,« (F) # 0, it is therefore sufficient to prove L = Koy, ... , a,]. Since

T,(X) = FLD,(X) + ... + FuDy(X) € Dy(X)[an, ... ] € To(X)

the Kronecker function ring 7, (X) is a finitely generated extension ring of D,(X) with
T,(X) = Dy(X)|a, ... ,a,]. Passing on to the corresponding quotient fields we obtain

L=L(X)NL=KX)(a1,...,a,)NL=K(aq,...,).

Since the «; are algebraic over K, this yields L = K|ay, ... ,a,].

We will show that even more is true, namely that any fundamental divisor F'
generates the Kronecker function ring T,(X) over D,(X), i.e. T,(X) = D,(X)[F].
This follows from

Theorem 3.6. Let D be a Krull domain with quotient field K, T the integral closure
of D in the finite separable extension L/K and F € T[X] a fundamental Kronecker
divisor of T with respect to the integral basis {Fy,... , Fy,}. If the residue class field
extensions L(X)p/K(X), are separable for all prime Kronecker divisors P € T,(X),
p € Dy(X) with P | p, we have

We prove this theorem by means of

Lemma 3.7. Let D be a Krull domain with quotient field K, T the integral closure
of D in the finite separable extension L/K and F € T[X]| a fundamental Kronecker
divisor of T' with respect to the integral basis {F\, ..., F,}. Then we have

diff, . (F) ~ gcd({diffL/K(G) LG e T,(X) with L(X) = K(X)[G]}).
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Proof: Let aq, ... ,a, be the coefficients of Fi,... , F,,. Since we have the equality
T,(X) = D,(X)[aq, ..., any element G € T,,(X) can be written as

)
G= > diy. g0 -...-af with d _; €Dy(X),

i1, sir €N
where only finitely many d;, ;. are # 0. Let G € T,(X) be a primitive element of the
separable field extension L(X)/K(X), i.e. let diff,,,(G) # 0. We denote the normal
closure of L(X)/K(X) by L(X) and the integral closure of T,,(X) in L(X) by T,(X).
Let o be a K(X)-automorphism of L(X). To show diff, . (F) | diff,,,(G) we first prove
by induction on the number of coefficients r that G — ¢(G) is a linear combination of
ay —o(ar),...,ar —o(a,) over T,(X). For r = 1 we have G = ), d; - o} with
d; € D,(X). This, however, implies

Zd — 0 al )

€N
= (a1 — (o)) Zd ot aPo(on) + . 4 aro(on) T+ (o)),
€N
which obviously is an element of the desired form. Suppose now that the statement has
been proved for » > 1 and let

- . . . i1 . . s . Tl
G = § dzl,... U © % RERIIPINIL @ SO @ Sl
U15eees0ryir+1 EN
_ ir+1 ) o . i1 . . in
- § : Qi E dzl,... iryiprn T O e O
irp1E€EN 1,00 ,irEN

We define G; ., to be the Kronecker divisor > odi, .
induction hypothesis, G;, ., —
o(a,) over T,(X). Thus,

G=0(G)= Y (Gi-alii —0(Gi) - olal}))

ir41EN

i1 i
irirer 04t ..o apr. Then, by
0(Gj,,,) is a linear combination of a; — o(ay),... ,a —

- Z (O‘Zf:ll (GiT+1 - U(Gir+1>) + U(Girﬂ)(aii:ll - 0<O‘Z~T:11))>

ir+1€EN
is a linear combination of oy — o(ay),. .. , @1 — 0(41) over T,(X), where we made
use of the fact that
"r '7‘ Ar -1 '7‘ -1
0ttt = a(al) = (arss — olars)) - (@8 4o+ olai ™)
and ot} resp. U(Girﬂ)(aiﬁf_l + ...+ a(ozirjf_l)) are elements in 7T,(X). For the

fundamental divisor F' = a; X% + ... + a, X, i), # i; for k # 1, with respect to the
integral basis {F1, ... , F,,} we have

F—0(F)=(a; — (o) X" + ...+ (a, — o(a)) X"
Since T,(X) is equal to the Kronecker function ring of T', the Kronecker divisor F—o(F)

divides each of its coefficients in T,(X). This however, implies F' — o(F') | G — ¢(G) in
T,(X) for any G € T,(X) with diff,(G) # 0. Since diff, ) (F) = [ [, 44, (F —o(F)),
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we obtain diff, . (F) | diff,,«(G) in T,(X) N L(X) = T,(X). Thus, diff,, «(F) is a
greatest common divisor off all element differents diff, . (G) # 0. O

Proof of Theorem 3.6: 1t is well-known that the different of a Dedekind domain is
the greatest common divisor of all element differents # 0 (cf. [6, III, § 2, Proposition §|
or |3, XII, Satz 4.3|). Thus, by Lemma 3.7

Do(X )y = <{diffL/K(G) .G € T,(X) with L(X) = K(X)[G]})T,U(X)
— dift, . (F) T,(X). O

Theorem 3.6 is indeed remarkable. Since we have
Ny (diff, (@) = (=1)2" Ddiser,, . (G)
for any primitive element G € T,,(X) of the separable extension L(X)/K(X), it follows
that the discriminant of T,,(X)/D,(X) is given by
But we already know 0,(X);,p, = discrp «(F1,... , F,) since the discriminant of the

integral extension 7,(X)/D,(X) is just the discriminant of any integral basis. Thus,
{1,F,... ,F™ '} is shown to be an integral basis of L(X)/K(X), too, and we obtain

Theorem 3.8. Let D be a Krull domain with quotient field K and T the integral
closure of D in the finite separable extension L/K. All residue class field extensions
L(X)p/K(X), are supposed to be separable for any pair of prime Kronecker divisors
PeT,X),pe€ Dy(X) with P|p. If F € T[X] is a fundamental Kronecker divisor of
T, we have

T,(X) = Dy(X)[F].
In particular, there are no common inessential discriminant divisors o4 1 with respect
to the integral extension T,(X)/D,(X).

4 Factorizing primes in Kronecker’s divisor theory

Suppose now that the assumptions of Theorem 3.8 are fulfilled. Since we have T,,(X) =
D,(X)[F] for any fundamental Kronecker divisor F', we can always apply Kummer’s
decomposition theorem (cf. [6, I, § 8, Proposition 25|) in order to factorize prime
Kronecker divisors of D,(X) in the integral closure T,,(X).

Let p € D,(X) be a prime Kronecker divisor of D,(X). Assume that F' € D,(X)
is a fundamental divisor with minimal polynomial u(t) € D,(X)[t]. Reduction modulo
pD,(X) gives the decomposition

p(t) = ()" - (0)
with yi; € Dy (X)[t] such that 7z; is prime in D,(X)/pp, (X)[t]. Then the decompositi-
on of p into irreducible factors in 7,(X) is given by

p~ PR P

€n
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where P; ~ ged(p, 1(F)) with fo,(P;) = deg p;(t) for all 1 <i < n.
Let us have a look at the classical situation of algebraic number theory, i.e. let
D be the ring of rational integers Z with quotient field K = Q and T the ring of
algebraic integers in the algebraic number field L. Then there is an integral basis
{wi,... ,wn} of L/K which is also an integral basis of L(X)/K(X). Thus, we can
choose a fundamental Kronecker divisor of the form F' = w1 X + ... + w,,X™. Note
that in the case of an algebraic number field the v-operation is the identity on the
system of all ideals. Thus, v-primitivity means primitivity in the usual sense, i.e. a
polynomial over Z resp. T is v-primitive if and only if its coefficients generate the
unit ideal. In Z this is obviously equivalent to the condition that all coefficients are
relatively prime. Thus, the Kronecker function rings Z,(X) and T,(X) are given by
= {f f,9 € Z[X], ged(coefficients of g) ~ 1} and T,(X) = {£ : F,G €
T[X], (coefficients of G)T = T'}.

Suppose that p € Z is a rational prime with corresponding prime ideal p = pZ. Let
P € T,(X) be a prime Kronecker divisor of T" with corresponding v-ideal 3 such that
P | pin T,(X). Since p and P are maximal ideals the residue class rings Z/p = Z,
and T/gp are fields, namely the residue class fields of p and . Since Z, is finite,
T'/sp is separable over Z,. This implies that T'/s3 (X) is separable over Z,(X). By
Theorem 2.4.(1) it follows that T, (X)/pT;,(X) is separable over Z,(X)/pz, (X ). Thus,
the conditions of Theorem 3.8 are fulfilled and we obtain T, (X) = Z,(X)[F].

Let u(t) € Z,(X)[t] be the minimal polynomial of the fundamental divisor F.
The proof of Proposition 2.3 shows that reducing a Kronecker divisor g € Z,(X),
f € Z[X], g € N,(Z), modulo pZ,(X) = p(X) actually means reducing the coefficients
of f and g modulo pZ = p. Since u(t) has coefficients in Z[X| C Z,(X), reduction
modulo pZ,(X) gives the polynomial u(t) with coefficients in Zy[X] € Quot (Zp [X ]) =
Zo(X)/pZ,(X)- Note that by Gauss’ Lemma any irreducible factor of p(t) in Z,[X][t]
remains irreducible over Z,(X)/pz,(X). Thus, it is sufficient to determine the prime

decomposition of u(t) over Z,[X]. Since Z,, is a finite field, this can be done in a finite
number of steps. If pq, ..., u, € Z[X][t] are such that

p(t) = m()" ()" with pi(t)

all prime Kronecker divisors of 7" dividing p in T, (X) are given by
(
)

prime in Z,[X][t],

P; ~ ged(p, pi(F)) ~p+ pi(F) - X

and we obtain the prime decomposition of p in T,(X) by

p~ PP

A similar result has also been obtained by H.M. Edwards in the case of algebraic
number fields (cf. [1, §§ 2.4-2.7]). Edward’s presentation, however, is unfamiliar to the
modern reader and sometimes lacks the clarity of modern mathematical language. In
my opinion, it does not reveal the real cause why Kronecker divisors make Kummer’s
factorization method work also for common inessential discriminant divisors.
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